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CONFINED STRUCTURES OF

LEAST BENDING ENERGY

Stefan Müller & Matthias Röger

Abstract

In this paper we study a constrained minimization problem for
the Willmore functional. For prescribed surface area, we consider
smooth embeddings of the sphere into the unit ball. We evaluate
the dependence of the the minimal Willmore energy of such sur-
faces on the prescribed surface area and prove corresponding upper
and lower bounds. Interesting features arise when the prescribed
surface area just exceeds the surface area of the unit sphere. We
show that (almost) minimizing surfaces cannot be a C2-small per-
turbation of the sphere. Indeed, they have to be nonconvex and
there is a sharp increase in Willmore energy with a square root
rate with respect to the increase in surface area.

1. Introduction

Constrained minimization problems for bending energies arise natu-
rally in various applications. In biophysics, for example, the shape of the
cell membranes is often modeled as (local) minimizer of an appropriate
curvature energy, most notably of the Helfrich–Canham energy

EHC(Σ) =

∫

Σ

(

κb(H −H0)
2 + κgK

)

dH2.

Here Σ ⊂ R
3 is a smooth surface describing the shape of the cell, H

and K are the mean and Gaussian curvature of Σ, and the spontaneous
curvatureH0 and the bending moduli κb, κg are given parameters. Under
appropriate constraints on the total surface area and on the enclosed
volume, local minimizers of such shape energies are in good agreement
with typical shapes of cell membranes.

In this article we are interested in the minimization of bending ener-
gies under an additional confinement condition. This problem is moti-
vated by the shape of inner organelles in a biological cell. These struc-
tures are confined to the inner volume of the cell. Moreover, as the
membrane contributes to their biological function, organelles often have
large surface area (see, for example, the typical shape of mitochondriae).

Received 7/25/2013.

109
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We start here a mathematical analysis of a simple prototype of such
constrained minimization problems: As curvature energy we consider
the Willmore functional and choose as outer container the unit ball. To
give a precise description of the problem let us introduce some notation:
Let a > 0 be given, and let B = B(0, 1) be the unit ball in R

3. We denote
by Ma the class of smoothly embedded surfaces Σ ⊂ B of sphere type
with surface area ar(Σ) = a. We associate to Σ ∈ Ma the outer unit
normal field ν : Σ → R

3, denote by κ1, κ2 the principal curvatures of Σ
with respect to ν, and define the scalar mean curvature H = κ1+κ2, the

mean curvature vector ~H = −Hν, and the Gauss curvature K = κ1κ2.
For Σ ∈ M, we then consider the Willmore energy

W(Σ) :=
1

4

∫

Σ
| ~H|2 dH2(1)

and the constrained minimization problem

w(a) := inf
Σ∈Ma

W(Σ).(2)

We are interested in the dependence of w(a) on the surface area a, in par-
ticular for large values of a. The infimum w(a) may not be attained, as
limit points of minimal sequences need not to be embedded. Therefore,
we cannot make use of the Euler–Lagrange equation. It is an interesting
open problem to identify a class of (generalized) surfaces that comprises
the closure of Ma and in which the infimum of the Willmore energy is
attained. One possible candidate is the class of Hutchinson varifolds
that have a unique tangent plane in every point but possibly varying
multiplicity.

Our main results are, first, a general lower bound w(a) ≥ a and
the optimality of this bound for a = 4kπ with k ∈ N, and, second, a
characterization of the behavior of w as a just exceeds the value 4π. For
a = 4kπ the optimal value w realizes the Willmore energy of k spheres
and the varifold limit of a minimal sequence converges to the unit sphere
with density k. Configurations at a ≈ 4πk resemble k unit spheres
(connected by catonoid-like structures in order to have the topology of
a sphere). We therefore believe that the behavior of w as a crosses 4π
is key for the understanding of the constrained minimization problem.
As there are no surfaces that are C2-close to the sphere with area above
4π, a change of behavior at this value can be expected. In fact, we prove
a sharp increase in the optimal energy at 4π: the difference in Willmore
energy w(a) − 4π behaves like the square root of the area difference
a−4π. The proof of the corresponding lower bound is the most delicate
step and uses rigidity estimates for nearly umbilical surfaces shown by
De Lellis and Müller [7, 8] (see also [15] for an extension to higher
codimensions).
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Whereas our analysis does use the particular choice of the unit ball
as the confinement condition, we also gain some insight in the mini-
mization problem for more general containers C ⊂ R

3. In particular,
we obtain general upper and lower bounds that are linear in a. In fact,
if C ⊂ B(x0, R), a rescaling argument shows that W(Σ) ≥ a

R2 for any
Σ ⊂ C. If on the other hand B(x1, r) ⊂ C, then W(Σ) ≤ 4πk for any
a = 4πkr2, k ∈ N. In case of a convex container with C2-boundary, we
expect that with growing surface area first the full space provided by
the container will be used (with a linear growth rate of the minimal
Willmore energy) before a protrusion inside the container will be devel-
oped (with a square root–type increase in Willmore energy). Comparing
the behavior of our constrained minimization problem with the shape
of inner structures in cells, we remark that our model supports forma-
tion of single protrusions that grow inside rather than the formation of
multiple folds. This indicates that for a proper model of such structures
more details have to be taken into account, such as the dynamic process
of fold formation or additional constraints on the enclosed volume of
the inner structures.

The minimization of the Willmore functional under constraints has
been studied in detail for rotationally symmetric surfaces; see [18] for
a review. General existence results without any symmetry assumptions
were obtained by Simon [19], proving the existence of smooth minimizer
for the Willmore functional for tori in R

3. This result was extended to
surfaces with arbitrary prescribed genus by Bauer and Kuwert [3]. Re-
cently, Schygulla [17] showed the existence of smooth minimizers of the
Willmore functional for sphere-type surfaces with prescribed isoperimet-
ric ratio. The Willmore boundary value problem for surfaces of revolu-
tion has been considered in [5, 6], where the existence and regularity
of minimizing solutions as well as estimates for the optimal Willmore
energy have been shown.

The following relation between Willmore functional, surface area, and
(external) diameter d has been shown in [19] and has been refined in
[22]:

W(Σ) ≥ d2π2

4ar(Σ)
.

For our purposes, however, this estimates is not very helpful, as it de-
generates with increasing surface area. An estimate between the isoperi-
metric and the Willmore deficit is proved in [16].

An alternative approach for minimizing the Willmore energy is to
employ a gradient flow. For the Willmore flow Simonett [21] and Kuwert
and Schätzle [11, 12, 13] have proved existence and convergence results.
However, as we need to satisfy constraints on area and confinement, such
results are not directly applicable to our problem.
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A closely related confinement problem has been studied by numerical
simulations in [10]. For a phase field approach to the minimization of
the Willmore energy under a confinement and connectedness constraint,
see [9].

2. Estimate from below

We will first prove a general lower bound for surfaces in the unit
ball by exploiting the classical Gauss integration-by-parts formula on
manifolds. As remarked above, limit points of minimizing sequences
for our constrained minimization problem may leave the class Ma. By
Allard’s compactness theorem [2], such limit points at least belong to
the class of integral 2-varifolds with weak mean curvature in L2; see
[20] for the relevant definitions (note that we identify an integral 2-
varifold with its associated weight measure on R

3). It is therefore useful
(and straigthforward) to prove the lower bound in this extended class
of generalized surfaces.

Theorem 1. Let µ be an integral 2-varifold with weak mean curvature

vector ~H ∈ L2(µ) and support contained in B. Then we have

∫

1

4
| ~H|2 dµ ≥ µ(B),(3)

and equality holds if and only if µ = kH2⌊S2 for an integer k ∈ N.

Proof. Since µ has weak mean curvature H ∈ L2(µ), we have (just
by definition of weak mean curvature) that for any η ∈ C1

c (R
3;R3) the

first variation formula
∫

divTxµ η(x) dµ(x) = −
∫

~H(x) · x dµ(x)

holds. Consider now the vector field η(x) := x. Then divTxµ η(x) = 2
and we deduce

2µ(B) =

∫

divTxµ η(x) dµ(x)

= −
∫

~H(x) · x dµ(x)

=

∫

1

4
| ~H|2 dµ(x) +

∫

1 dµ(x)− 1

4

∫

∣

∣ ~H + 2x⊥
∣

∣

2
dµ(x)

−
∫

(

1− |x⊥|2
)

dµ(x),

where for x ∈ spt(µ) the projection onto (Txµ)
⊥ is denoted by x⊥ and

where we have used that ~H(x) is perpendicular to Txµ in µ-almost every
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point [4, Theorem 5.8]. From the last equality, we obtain

µ(B) =

∫

1

4
| ~H|2 dµ(x)− 1

4

∫

∣

∣ ~H + 2x⊥
∣

∣

2
dµ(x)−

∫

(

1− |x⊥|2
)

dµ(x).

(4)

Since |x| ≤ 1, this immediately implies (3). Equality in (3) holds if

and only if x⊥ = −1
2
~H(x) and |x⊥| = 1 for µ-almost every x ∈ B.

This implies x = x⊥ and |x| = 1 for µ-almost every point x ∈ B—in
particular, spt(µ) ⊂ S2. From the monotonicity formula, one derives
[13, (A.17)] that for any x0 ∈ S2 the two-dimensional density satisfies
θ2(µ, x0) ≤ 1

4πW(µ). Therefore, if equality holds in (3), then

W(µ) = µ(B) =

∫

S2

θ2(µ, x0) dH2(x0) ≤ W(µ),

and we thus obtain that θ2(µ, ·) = 1
4πW(µ) hold µ-almost everywhere.

By integrality of µ, this in particular implies µ = kH2⌊S2. q.e.d.

This result immediately implies a lower bound for w and shows that
equality can only be attained for a = 4kπ with k ∈ N.

Corollary 1. We have

w(a) ≥ a for all a > 0,

w(a) > a for all a ∈ R+ \ {4kπ : k ∈ N}.
Proof. Let a ∈ R be fixed and (Σj)j∈N be a minimal sequence in Ma.

We associate with Σj the integer rectifiable varifolds µj = H2⌊Σj. For

all j ∈ N, the varifold µj has total mass µj(B) = a and mean curvature

vector ~Hj that is uniformly bounded in L2(µj) by ‖ ~Hj‖2L2(µj)
≤ 4w(a)+

1. By Allards compactness theorem for integral varifolds [2], there exists
a subsequence of µj that converges to an integral varifold µ with weak

mean curvature ~H ∈ L2(µ). In addition, the support of µ is contained
in B, and we have

µ(B) = lim
j→∞

µj(B) = a.

Furthermore, we obtain that for any η ∈ C1
c (B)

∫

~H · η dµ = −
∫

divTxµ η(x) dµ(x) = − lim
j→∞

∫

Σj

divTxΣj η(x) dH2(x)

= lim
j→∞

∫

Σj

~Hj · η dH2

≤ lim inf
j→∞

(

∫

Σj

η2 dH2(x)
)1/2(

∫

Σj

| ~Hj|2 dH2
)1/2

=
(

∫

η2 dµ
)1/2

lim inf
j→∞

(

∫

Σj

| ~Hj|2 dH2
)1/2

,
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Figure 1. Construction of a minimizing sequence. For
details, we refer to the appendix.

and it follows that
∫

1

4
| ~H |2 dµ =

1

4

(

sup
‖η‖L2(µ)≤1

∫

~H · η dµ
)2

≤ lim inf
j→∞

W(Σj) = w(a).

Theorem 1 then first yields w(a) ≥ µ(B) = a and secondly that w(a) = a
implies µ = kH2⌊S2 for an k ∈ N and µ(B) = 4kπ. q.e.d.

We next show that for a = 4kπ, k ∈ N, the optimal value w(a) = a is
in fact achieved.

Theorem 2. Let a = 4kπ for k ∈ N. Then w(a) = a and any

minimizing sequence converges as varifolds to µ = kH2⌊S2.

Proof. The last property is proved by similar arguments as used in
the proof of Corollary 1. To show that w(a) = a holds we construct
a sequence (Σj)j∈N ⊂ Ma such that W(Σj) → a. For k = 1 the unit
sphere is the unique minimizer. The main idea for k = 2 is to take two
concentric spheres, one with radius 1 and the other with radius close to
1. For both spheres we remove a cap close to the north pole, deform the
upper halves, and connect them by a catenoid-like structure (see Figure
1). We give the details of the proof in Section 5.

For k ≥ 3, we take k nested spheres and apply (k − 1) times the
construction described for k = 2. q.e.d.

3. Upper bound for a close to 4πk

Using that a dilation of space does not change the Willmore energy,
we obtain the following monotonicity property.
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Proposition 1. The mapping a 7→ w(a) is monotonically increasing.

In particular, for all a ≤ 4πk we have

w(a) ≤ 4πk.(5)

Proof. Fix 0 < a1 < a2 and let (Σ̃j)j∈N be a minimal sequence in
Ma2 ,

ar(Σ̃j) = a2 for all j ∈ N, lim
j→∞

W(Σ̃j) → w(a2).

Let s :=
√

a1
a2
< 1, and denote by ϑs : R3 → R

3 the dilation by factor

s, i.e., ϑs(x) = sx. Define

Σj := ϑs(Σ̃j).

Then ar(Σj) = s2ar(Σ̃j) = a1 and Σj ∈ Ma1 for all j ∈ N. Moreover,

W(Σj) = W(Σ̃j) → w(a2),

and therefore w(a1) ≤ w(a2). Since w(4πk) = 4πk, by Theorem 2 the
second conclusion follows. q.e.d.

For k = 1 the sphere with radius r(a) :=
√

a/(4π) is the unique mini-
mizer of W in Ma (up to translations) and (5) is sharp.

For a approaching 4π from above, we have the following upper bound.

Proposition 2. For all δ > 0, there exists a constant C > 0 such

that

w(a)− 4πk ≤ C ·
√
a− 4πk(6)

for all 4πk ≤ a < 4πk + δ, k ∈ N.

Proof. The first five steps of the proof deal with the case k = 1.
Step 1: We modify the unit sphere by growing a “bump” directed in-
wards and supported close to (0, 0, 1). First, we choose two parameters
0 < s, t ≪ 1 controlling the support of the bump and its extension.
We fix a symmetric function η ∈ C∞(−1, 1) that is positive inside its
support and decreasing on (0, 1). We define

ψ = ψs,t : [0, 1] → R, ψ(r) :=
√

1− r2 − tη(rs−1).

Next, let

Ψ : B2
1(0) → R, Ψ(x) = ψ(|x|),

and define

Ms,t := graphΨ, Σs,t := Ms,t ∪ S2
−,

where S2
− denotes the lower half of the unit sphere. Then, for t < t0(η),

the surface Σs,t is smooth, compact, without boundary, and is contained
in B3

1(0). Moreover, we have Σs,0 = S2.
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Step 2: We compute the surface area element g, the scalar mean curva-
ture H, and the Gaussian curvature K of Ms,t. We first obtain

ψ′(r) = − r√
1− r2

− t

s
η′(rs−1),(7)

ψ′′(r) = −(1− r2)−3/2 − t

s2
η′′(rs−1).(8)

For the surface area element g(x) = g(r) we deduce

g(r)2 = 1 + |∇ψ|2 =
1

1− r2
+ 2

r

1− r2
t

s
η′(rs−1) +

t2

s2
η′(rs−1)2.(9)

For the scalar mean curvature H(r) = H(x) = −∇ ·
(

∇ψ(x)/g(x)
)

, we
have

g(r)3H(r) =2(1 − r2)−3/2 +
t

s2
η′′(rs−1)

+
t

s

1

r
η′(rs−1) + 3

t

s

r

1− r2
η′(rs−1)

+ 3
t2

s2
1√

1− r2
η′(rs−1)2 +

1

r

t3

s3
η′(rs−1)3.(10)

Step 3: We choose t in dependence of s such that Ms,t has larger area
than the half sphere and such that the area converges to 2π as s→ 0.

We first observe thatMs,t only differs from S2∩{x3 > 0} in B2
s (0)×R.

Therefore, by a Taylor expansion of the square root in g(r),

ar(Ms,t)− ar(S2 ∩ {x3 > 0})

=

∫ s

0
2πrg(r) dr −

∫ s

0
2πr

1√
1− r2

dr

=2π

∫ s

0

r

2

√

1− r2
(

2
t

s

r√
1− r2

η′(rs−1) +
t2

s2
η′(r/s)2

)

dr

+ 2π

∫ s

0
rRs,t(r) dr,(11)

where |Rs,t(r)| ≤ C
∣

∣

∣
2 t
s

r√
1−r2

+ t2

s2
η′(r)2

∣

∣

∣

2
. For t ≪ s, we therefore can

approximate

ar(Ms,t)− ar(S2 ∩ {x3 > 0})

≈ 2π

∫ s

0

( t

s
r2η′(rs−1) +

t2

s2
r

2

√

1− r2η′(rs−1)2
)

dr

≈ 2πt

∫ 1

0

(

s2̺2η′(̺) + t
̺

2
η′(̺)2

)

d̺.(12)

We now can choose α≪ 1 depending only on η such that the for t = αs2

the right-hand side is positive and converges to zero with s → 0; more
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precisely,

ar(Ms,t)− ar(S2 ∩ {x3 > 0}) ≈ 2παs4C(η) > 0.(13)

Step 4: We next show that the mean curvature is uniformly bounded in
s > 0. Since g(r) ≈ 1, it is sufficient to bound the right-hand side of
(10). We estimate the different terms:

2(1− r2)−3/2 ≈ 2,

| t
s2
η′′(rs−1)| ≤ α‖η′′‖C0 ,

0 ≥ t

s

1

r
η′(rs−1) ≥ −αs

r

(

η′(rs−1)− η′(0)
)

≥ α‖η′′‖C0 ,

0 ≥ t

s

r

1− r2
η′(rs−1) ≥ α

sr

1− r2
η′(rs−1) ≥ −2αs2‖η′‖C0 ,

0 ≤ t2

s2
1√

1− r2
η′(rs−1)2 ≤ 1

2

√
2α2s2‖η′‖2C0 ,

0 ≥ t3

s3
1

r
η′(rs−1) ≥ −r2α3‖η′′‖3C0 ≥ −s2α3‖η′′‖3C0 .

Together with (10), this yields

|H(r)| ≤ C(η).(14)

Step 5: By the construction above, we obtain a sequence s → 0 and

smooth, compact surfaces Σs without boundary and contained in B3
1(0),

such that

a(s) := ar(Σs) > 4π, a(s) → 4π (s→ 0)

and

w(a(s)) − 4π

≤W(Σs)−W(S2)

≤ sup{|H(r)|2 : 0 < r < s}ar
(

graph(Ψ|B2
s (0)

)
)

− ar(graph |B2
s (0)

(r 7→
√

1− r2))

≤C(η)(a(s)− 4π) + |2− C(η)|ar(graph |Bs(0)(r 7→
√

1− r2))

≤C(η)
(

(a(s)− 4π) + s2
)

≤ C(η)
√

(a(s)− 4π)

by (13).
Step 6: For k ≥ 2, we follow the construction of a minimal sequence for
a = 4kπ described in Section 5, except that we grow in Step 5 of Section
5 a slightly larger bump, such that the area of the constructed surface
just exceeds 4kπ. q.e.d.
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4. Lower bound for a close to 4π

By Corollary 1, we immediately obtain the lower estimate

w(a)− w(4π) ≥ a− 4π(15)

for a ≥ 4π. The upper bound in Proposition 2 on the other hand, shows
the square-root behavior w(a)−w(4π) ≤ C

√
a− 4π. In this section we

derive an improved lower bound with square root–type growth rate.
The next proposition gives a a useful characterization of the area

difference. In particular, we see that there are no surfaces in Ma with
area larger than 4π that are C2-close to the sphere, which gives a first
hint to a change of behavior in the constrained optimization.

Proposition 3. For any Σ ∈ Ma,

ar(Σ)− 4π

= −
∫

Σ

(

1− (x · ν(x))2 + 1

2
|x− (x · ν(x))ν(x)|2

)

K(x) dH2(x)(16)

holds. In particular, K ≥ 0 on Σ implies ar(Σ) ≤ 4π.

Proof. Let ν denote a smooth unit-normal field on Σ, and let (e1, e2, e3) =
(τ1, τ2, ν) be a smooth orthonormal frame on Σ. We define pi(x) := x ·τi,
q :=

√

p21 + p22, η(x) := x, and ωij := ej · dei. For the 1-form ω :=
η · (ν × dν) = p2ω31 − p1ω32, we compute [1, proof of Theorem 26]

dω = −Hσ + 2p3Kσ, dp3 = ω31p1 + ω32p2,(17)

where σ denotes the volume form on Σ (note that in [1] the mean
curvature is defined as 1

2 times the trace of the Weingarten map, and
hence the term 2H appears there instead of H). We thus obtain

d(p3ω) = dp3 ∧ ω + p3dω = −q2Kσ − p3Hσ + 2p23Kσ.

Integration over Σ yields
∫

Σ

(

p23 −
1

2
q2
)

Kσ =
1

2

∫

Σ
p3Hσ =

1

2

∫

Σ
−x · ~Hσ

=
1

2

∫

Σ
divΣ ησ = ar(Σ),(18)

where we have used in the last two equalities the classical divergence
formula on smooth closed surfaces [20, (7.6)] and divΣ η = 2 on Σ.
By the Gauss–Bonnet formula

∫

ΣK dH2 = 4π, and substracting this
identity from (18) we obtain (16). q.e.d.

The main result of this section is following improved lower bound.

Theorem 3. There exists c > 0 such that for all Σ ∈ Ma, a ≥ 4π,

w(a)− 4π ≥ c
√
a− 4π(19)

holds.
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In the remainder of this section, we prove Theorem 3. We first in-
troduce some notation and recall rigidity estimates for nearly umbilical
surfaces derived by De Lellis and Müller [7, 8].

For Σ ∈ Ma, let g denote the first fundamental form of Σ, ν the
outer unit normal field, A the second fundamental form, A(v,w) =
g(v, dν(w)), H = tr(A). With this convention, the unit sphere hasH = 2

and A = Id. Further, let Å denote the trace-free part of the second
fundamental form,

Å(x) = A(x)− trA(x)

2
⊗ g = A(x)− 1

2
H(x)⊗ g for x ∈ Σ.

We have the relation

2|Å|2 = κ21 + κ22 − 2κ1κ2 = H2 − 4K.

The Gauss–Bonnet Theorem then implies that

W(Σ)−W(S2) =
1

4

∫

Σ
H2 dH2 − 4π =

1

2

∫

Σ
|Å|2 dH2.(20)

By [7, Theorem 1.1] for Σ ∈ M4π with W(Σ) ≤ 6π there exists a
universal constant C > 0 and a conformal parametrization ψ : S2 → Σ
such that after a suitable translation

‖ψ − Id ‖W 2,2(S2) ≤ C‖Å‖L2(Σ).(21)

Moreover, for the conformal factor h : S2 → R
+ given by ψ♯g = h2σ, σ

the standard metric on S2, we have by [8, Theorem 2]

‖h− 1‖W 1,2(S2) + ‖h− 1‖C0(S2) ≤ C‖Å‖L2(Σ)(22)

for a universal constant C > 0. Fixing such a parametrization ψ, we
define

N : S2 → S2, N := ν ◦ ψ.
Note that

N(x) =
dψ(x)(τ̃1)× dψ(x)(τ̃2)

|dψ(x)(τ̃1)× dψ(x)(τ̃2)|
,

where (τ̃1, τ̃2, x) is an orthonormal basis of Rn in x ∈ S2.
By (21) and (22), we deduce

‖ψ −N‖W 1,2(S2) ≤ C‖Å‖L2(Σ).(23)

Around a point x0 ∈ Σ, x0 = ψ(ξ0), we often use a local parametrization
of the following type. Denote by Dr := B(0, r) ⊂ R

2 the open ball in
R
2 with radius r > 0 and center 0. Let Π : S2 \ {−ξ0} → R

2 denote the
standard stereographic projection that maps ξ0 to the origin and the
equator S2 ∩ {ξ0}⊥ to ∂D1 ⊂ R

2. We then define

Ψ : D1 → Σ, Ψ := ψ ◦ Π−1,

M : D1 → S2, M := N ◦Π−1 = ν ◦Ψ.
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We deduce from (21), (22), and (23) that for Σ ∈ M4π withW(Σ) ≤ 6π,

‖Ψ −Π−1‖W 2,2(D1) ≤ C‖Å‖L2(Σ),(24)

‖|JΨ| − |JΠ−1|‖C0(D1) ≤ C‖Å‖L2(Σ),(25)

‖Ψ−M‖W 1,2(D1) ≤ C‖Å‖L2(Σ).(26)

Since 1− |Ψ|2 = (Π−1 −Ψ) · (Π−1 +Ψ) and since |Ψ| > 1
2 for ‖Å‖L2(Σ)

sufficiently small, this yields

‖1− |Ψ|2‖W 2,2(D1) + ‖1− |Ψ|‖W 2,2(D1) ≤ C‖Å‖L2(Σ)(27)

for ‖Å‖L2(Σ) sufficiently small.
In order to prove Theorem 3, we fix Σa ∈ Ma with a > 4π and define

δ :=
√

W(Σa)− 4π =

√
2

2
‖Å‖L2(Σa).

It is sufficient to prove (19) for all δ < δ0, where δ0 > 0 is an arbitrary
universal constant, since for δ ≥ δ0 by (15)

W(Σa)− 4π ≥ δ0
√
a− 4π

holds. In the following, we assume δ0 <
√
2π, associate to Σa the dilated

surface Σ =
√

4π
a Σa with ar(Σ) = 4π, and let λ = a

4π . By [7, 8], there

exists a conformal parametrization ψ : S2 → Σ with (21)–(27). By
choosing δ0 > 0 sufficiently small, we can moreover assume that

1

2
≤ λ ≤ 2,(28)

|ψ| ≥ 1

2
,(29)

1

2
≤ |JΨ| ≤ 5(30)

for any local parametrization Ψ : D1 → Σ as above.
To derive the desired lower bound, we use (16) for Σa and estimate

the right-hand side of this inequality from above. We observe that

1− (x · ν(x))2 = 1− |x|2 + |x− (x · ν(x))ν(x)|2

and reformulate (16) in terms of the dilated surface Σ as

−
(

a− 4π
)

=

∫

Σ

(

1− λ|x|2
)

K(x) dH2(x)

+
3λ

2

∫

Σ
η(x)

∣

∣x− (x · ν(x))ν(x)
∣

∣

2
K(x) dH2.(31)

We have to show that both terms on the right-hand side are bounded
from below by −Cδ4.
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Remark. Let us first briefly outline the intuition behind the proof
of these lower bounds. For the second term on the right-hand side of
(31), the lower bound is easy if one has slightly stronger assumptions
than (21)–(27). Indeed, since K = detA, we get from (21) and (22)
that L2({K ≤ 0}) ≤ Cδ2, while (24) and (25) imply that ‖ν(x) −
x‖Lq ≤ Cqδ for all q < ∞. If we had an L∞ bound, the lower bound
−Cδ4 for the second term would follow immediately. Now W 1,2 does
not embed into L∞ but into BMO, the space of functions of bounded
mean oscillation. This space is dual to the Hardy space H1 and since the
Gauss curvature has the structure of a determinant, one might expect
that we can bound K − 1 not only in L1 but in H1. One can, however,
not rely directly on the BMO −H1 duality, since, e.g., BMO is not an
algebra and ‖f2‖BMO cannot be estimated by ‖f‖2BMO. Instead, similar
to [7] one has to carefully approximate |K − 1||x− (x · ν(x))ν(x)|2 in a
way which preserves as much of the determinant structure as possible;
see, in particular, (49), (52), and Proposition 6. For the first integral on
the right-hand side of (31), the estimate L2({K ≤ 0}) ≤ Cδ2, (27), and
the Sobolev embedding W 2,2 →֒ L∞ give immediately the lower bound
−Cδ3, but this bound has the wrong exponent 3 instead of 4. To get a
better bound, we exploit that K ≥ 1

2 − 2|A− Id |2 (see below) and that

f(x) = 1 − λ|x|2 has small oscillations on small balls. Indeed, if W 2,2

would embed into W 1,∞, we knew that f is Lipschitz with Lipschitz
constant Cδ, and hence that oscDr f ≤ Cδr. Now the embedding from
W 2,2 to W 1,∞ again just fails, but we can use Lemma 1, below, as a
substitute.

We now start with the rigorous estimate of the integrals in (31). We
use a partition of unity on S2 and local parametrizations ψ as described
above. We then have to estimate expressions of the form

∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

K(Ψ(y))|JΨ(y)| dy

+
3λ

2

∫

D1

η(y)
∣

∣Ψ(y)− (Ψ(y) ·M(y))M(y)
∣

∣

2
K(Ψ(y))|JΨ(y)| dy(32)

from below, where η is a smooth localization,

η ∈ C∞
c (D1), 0 ≤ η ≤ 1, ‖η‖C1(D1) ≤ C.(33)

We proceed in several steps.

4.1. First term in (32). In this subsection, we prove the following
proposition.



122 S. MÜLLER & M. RÖGER

Proposition 4. There exists C > 0 such that for any η as in (33),
c0 > 0, and all δ < δ0 sufficiently small,

∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

K(Ψ(y))|JΨ(y)| dy

≥ 1

2

∫

D1

η
(

1− λ|Ψ|2
)

|JΨ| − C

c20

∫

D1

(1− λ|Ψ|2)− Cc0δ
4.(34)

In the remainder of this subsection, we prove Proposition 4. We start
by observing that

tr(A− Id) ≤
√
2|A− Id | ≤ 1

2
+ |A− Id |2,

det(A− Id) ≤ |A− Id |2,
which yields

K = detA = det(Id+A− Id) = 1 + tr(A− Id) + det(A− Id)

≥ 1

2
− 2|A− Id |2.

We therefore obtain for the the left-hand side of (34)
∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

K(Ψ(y))|JΨ(y)| dy

=
1

2

∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

|JΨ(y)| dy

− 2

∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

|A(Ψ(y)) − Id |2|JΨ(y)| dy(35)

Below we will cover D1 by smaller balls and control the right-hand side
by using the positive contribution from the first term and the smallness
of ‖A− Id ‖L2(Σ). We need the following auxiliary result.

Lemma 1. For any nonnegative f ∈W 2,2(Dr), 0 < r ≤ 1,

sup
Dr

f ≤ 2 6
∫

Dr

f + 2Cr‖D2f‖L2(Dr)(36)

holds.

Proof. Set ar := 6
∫

Dr
f , Ar := 6

∫

Dr
∇f , and define

h(y) := f(y)− ar −Ar · y.
We first prove

‖h‖L∞(Dr) ≤ Cr‖D2f‖L2(Dr).(37)

Since the estimate is invariant under the rescaling fr(y) = f(ry), it
is sufficient to prove the claim for r = 1. We obtain by the Poincaré
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inequality

‖∇h‖L2(D1) = ‖∇f − 6
∫

∇f‖L2(D1) ≤ C‖D2f‖L2(D1),

‖h‖L2(D1) = ‖h− 6
∫

h‖L2(D1) ≤ C‖∇h‖L2(D1)

and deduce that ‖h‖W 2,2(D1) ≤ C‖D2f‖L2(D1). By the Sobolev embed-
ding theorem, we deduce (37).

Next, we obtain from (37)

sup
Dr

f = sup
y∈Dr

(

ar +Ar · y + h(y)
)

≤ ar + r|Ar|+ ‖h‖L∞(Dr)

≤ ar + r|Ar|+ Cr‖D2f‖L2(Dr)

and

0 ≤ inf
Dr

f = inf
y∈Dr

(

ar +Ar · y + h(y)
)

≤ ar +Ar ·
−rA(r)
|A(r)| + sup

Dr

|h(y)|

≤ ar − r|Ar|+Cr‖D2f‖L2(Dr).

Combining both inequalities (36) follows. q.e.d.

Proof of Proposition 4. There exists a universal constant CB ∈ N and a
finite partition of unity 1 =

∑N
i=1 ϑi on D1 such that

#{1 ≤ i ≤ N : y ∈ spt(ϑi)} ≤ CB for all y ∈ D1

and such that 0 ≤ ϑi ≤ 1 for all i = 1, . . . , N and ϑi ∈ C∞(Dr(y
i)) for

r = c0δ as chosen below.
We apply the previous lemma to the function f :=

(

1 − λ|Ψ|2
)

. By
(24),

‖Ψ−Π−1‖W 2,2(D1) ≤ Cδ(38)

holds, and we obtain f ∈W 2,2(D1) and, using (27),

‖D2f‖L2(D1) ≤ Cδ.(39)

Since λ ≤ 2, |Ψ| ≤ 1, we deduce from (37)

sup
Dr

(1− λ|Ψ|2) ≤ 2 6
∫

Dr

(1− λ|Ψ|2) + 2Crδ.(40)
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This yields for all r < 1 the estimate
∫

Dr(yi)
ηϑi(1− λ|Ψ|2)|A ◦Ψ− Id |2|JΨ|

≤ 2
(

6
∫

Dr(yi)

(1− λ|Ψ|2) + Cδr
)

∫

Dr(yi)
ηϑi|A ◦Ψ− Id |2|JΨ|

≤ 2

πr2

(

∫

Dr(yi)
(1− λ|Ψ|2)

)

δ2 + 2Cδr

∫

Dr(yi)
ηϑi|A ◦Ψ− Id |2|JΨ|.

We deduce from (35)
∫

D1

η(y)
(

1− λ|Ψ(y)|2
)

K(Ψ(y))|JΨ(y)| dy

≥ 1

2

∫

D1

η
(

1− λ|Ψ|2
)

|JΨ| − 2
N
∑

i=1

∫

D1

ηϑi
(

1− λ|Ψ|2
)

|A(Ψ)− Id |2|JΨ|

≥ 1

2

∫

D1

η
(

1− λ|Ψ|2
)

|JΨ| − CBδ
2

πr2

(

∫

D1

(1− λ|Ψ|2)
)

− 2Cδr

∫

D1

η|A ◦Ψ− Id |2|JΨ|.

By choosing r = c0δ, we obtain (34). q.e.d.

4.2. Second term in (32). Because in this term λ only appears as a
constant prefactor and since 1

2 ≤ λ ≤ 2, we drop the factor λ in the
following. We first show that

(

K ◦Ψ− 1
)

|JΨ| = M · ∂1M × ∂2M −M · ∂1Ψ× ∂2Ψ

can be well approximated by a term that preserves the determinat struc-
ture plus an extra error term which is more regular, i.e., in Lq rather
than in L1, q < 2.

For Ψ : D1 → Σ as above, we set e3 := Ψ
|Ψ| . Then e3 ∈ W 2,2(D1)

and there exist e1, e2 ∈ W 2,2(D1) such that (e1(y), e2(y), e3(y)) is an
orthonormal basis of R3 for all y ∈ D1. We then define

Fi := M · ei, i = 1, 2, 3,

F := (F1, F2, F3)
T ∈ S2,

F ′ := (F1, F2)
T

and observe that

Fi = (M −Ψ) · ei for i = 1, 2,

|Ψ − (Ψ ·M)M |2 = |Ψ|2|F ′|2.(41)
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By (26) we have, using ‖fg‖W 1,2(D1) ≤ C‖f‖W 1,2(D1)‖g‖W 2,2(D1),
∫

D1

|F ′|2 +
∫

D1

|∇F ′|2 ≤ Cδ2.(42)

Furthermore, (M −Ψ) · e3 = F3 − |Ψ|, and for i = 1, 2

∂iF3 = ∂i
(

(M −Ψ) · e3
)

+
1

|Ψ|Ψ · ∂iΨ(43)

holds and we obtain from (26) and (27) that
∫

D1

|∇F3|2 ≤ Cδ2.(44)

We further compute

∂i(M −Ψ) =

3
∑

j=1

(∂iFj)ej +R
(1)
i , R

(1)
i :=

3
∑

j=1

Fj∂iej − ∂iΨ(45)

and claim that

‖R(1)
i ‖W 1,p(D1) ≤ Cpδ, i = 1, 2 for all 1 ≤ p < 2.(46)

In fact,

3
∑

j=1

Fj∂iej − ∂iΨ = F1∂ie1 + F2∂ie2 +
(

F3∂i
Ψ

|Ψ| − ∂iΨ
)

.

The estimate for the first two terms on the right-hand side follows from
(42) and the embeddingW 1,2(D1) →֒ Lq(D1) for all 1 ≤ q <∞, whereas
the third term can first be written as

F3∂i
Ψ

|Ψ| − ∂iΨ =
1

|Ψ|(F3 − |Ψ|)∂iΨ− F3

|Ψ|3Ψ · ∂iΨΨ

=
1

|Ψ|(M −Ψ) · e3∂iΨ+
F3

2|Ψ|3 ∂i(1− |Ψ|2)Ψ.

The estimate then follows from (26) and (27) and the embedding
W 1,2(D1) →֒ Lq(D1).

We next write, using (45),

M · ∂1(M −Ψ)× ∂2(M −Ψ)

=M ·
3

∑

j=1

(∂1Fj)ej ×
3

∑

k=1

(∂2Fk)ek +M ·R(1)

=F · ∂1F × ∂2F +M ·R(1),(47)

with

R(1) :=
(

3
∑

j=1

(∂1Fj)ej ×R
(1)
2

)

+
(

R
(1)
1 ×

3
∑

j=1

(∂2Fj)ej

)

+
(

R
(1)
1 ×R

(1)
2

)

.



126 S. MÜLLER & M. RÖGER

The estimates (42), (44), and (46) imply that for all 1 ≤ q < 2 there
exists Cq > 0 such that

‖R(1)‖Lq(D1) ≤ Cqδ
2.(48)

Furthermore, we observe that M · ∂1Ψ × ∂2Ψ = |∂1Ψ × ∂2Ψ| = |JΨ|
and thus

K ◦Ψ|JΨ|
=M · ∂1M × ∂2M

=M · ∂1(M −Ψ)× ∂2(M −Ψ)

+M ·
(

∂1Ψ× ∂2(M −Ψ) + ∂1(M −Ψ)× ∂2Ψ
)

+ |JΨ|
=F · ∂1F × ∂2F +R+ |JΨ|,(49)

where by (47)

R := M · R(1) +M ·
(

∂1Ψ× ∂2(M −Ψ) + ∂1(M −Ψ)× ∂2Ψ
)

.(50)

The main point is that F has values in S2 and F · ∂1F × ∂2F is just the
pull-back of the volume form on S2, so that F · ∂1F × ∂2F is essentially
a two-dimensional determinant (see (65)). If instead we directly expand
M · ∂1M × ∂2M by setting M = Ψ+ (M −Ψ), we get a term (M −Ψ) ·
∂1(M −Ψ)× ∂2(M −Ψ) that has no such interpretation.

For the following calculations it is convenient to treat the cases F3

close to 1 and F3 not close to 1 differently. We therefore introduce a
cut-off function ϑ acting on the values of F3,

ϑ ∈ C∞[−1, 1], 0 ≤ ϑ ≤ 1, ϑ|[ 1
2
,1] = 1, ϑ|[−1, 1

3
] = 0.(51)

Using (41) we then rewrite the second term in (32) as

∫

D1

η
∣

∣Ψ(y)− (Ψ(y) ·M(y))M(y)
∣

∣

2
K ◦Ψ|JΨ|

(52)

=

∫

D1

η|Ψ|2|F ′|2
(

1− ϑ(F3)
)

F · ∂1F × ∂2F

+

∫

D1

η|Ψ|2|F ′|2ϑ(F3)F · ∂1F × ∂2F +

∫

D1

η|Ψ|2|F ′|2
(

R+ |JΨ|
)

.

We treat the three terms on the right-hand side separately.

4.2.1. First term on the right-hand side of (52).

Proposition 5. Let ϑ ∈ C∞[−1, 1], 0 ≤ ϑ ≤ 1, ϑ|[ 1
2
,1] = 1 be given.

Then for δ0 > 0 sufficiently small we have
∫

D1

η|Ψ|2|F ′|2
(

1− ϑ(F3)
)

F · ∂1F × ∂2F ≥ −Cδ4.(53)
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As η is compactly supported in D1, we may extend Ψ to a W 2,2-map
Ψ : R2 → R

3. We further consider the square Q = [−1, 1]2. For k ∈ N

fixed, it follows from (42) and (44) that

k
∑

j=−k

∫ 1
k

0

∫ 1

−1
|∇F |2(y1 +

j

k
, y2) dy2 dy1 ≤ Cδ2,

k
∑

j=−k

∫ 1
k

0

∫ 1

−1
|∇F |2(y1, y2 +

j

k
) dy1dy2 ≤ Cδ2.

Therefore, we can choose a ∈ [0, 1k ]
2 such that

k
∑

j=−k

∫ 1

−1
|∇F |2(a1 +

j

k
, y2) dy2 ≤ Ckδ2,(54)

k
∑

j=−k

∫ 1

−1
|∇F |2(y1, a2 +

j

k
) dy1 ≤ Ckδ2.(55)

Let Qj, j ∈ N denote an enumeration of the squares with edge length
1
k and corners in the set {a + 1

kZ
2} such that spt(η) ⊂ ⋃

j=1,...,N Qj ,

N ≤ 5k2. By (54) and (55), we have
∫

∂Qj

|∇F |2 ≤ Ckδ2 for all j = 1, . . . , N.(56)

In particular, for δ0 > 0 small enough, we estimate

osc∂Qj
F ≤ C|∂Qj |

1
2

(

∫

∂Qj

|∇F |2
)

1
2

≤ C
1√
k

√
kδ ≤ Cδ.(57)

Furthermore we obtain in the set {F3 ≤ 3
4} that

|M −Ψ|2 ≥
(

(M −Ψ) · e3
)2

= (F3 − |Ψ|)2 > 1

64

for all 0 < δ < δ0 and δ0 sufficiently small such that |Ψ| > 7
8 . By (26),

we deduce that for all 1 ≤ p <∞

|{F3 ≤ 3

4
} ∩Qj| ≤ |{|M −Ψ|2 > 1

64
} ∩Qj |

≤ Cp

∫

Qj

|M −Ψ|p ≤ Cpδ
p.(58)

Lemma 2. There exist δ0 > 0 and constants C̄p > 0, 1 ≤ p < ∞
such that for any 0 < δ < δ0, k ∈ N, and 1 ≤ p < ∞ with 1

k2
≥ C̄pδ

p,
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the inequality

F3 >
1

2
on ∂Qj(59)

holds.

Proof. Assume that F3(y) ≤ 1
2 for a y ∈ ∂Qj , j ∈ {1, . . . , N}. Then

we deduce from (57) that F3 ≤ 2
3 on ∂Qj for δ0 > 0 small enough. By

the Poincaré inequality on the unit cube and a rescaling argument, this
implies

∫

Qj

(F3 −
2

3
)2+ ≤ C

1

k2

∫

Qj

|∇F3|2

≤ C
δ2

k2
≤ 1

288
|Qj |(60)

for δ0 > 0 sufficiently small. Therefore

|{F3 >
3

4
} ∩Qj| ≤ 144

∫

Qj

(F3 −
2

3
)2+ ≤ 1

2
|Qj |,(61)

and in particular, by (58),

Cpδ
p ≥ |{F3 ≤ 3

4
} ∩Qj| ≥

1

2
|Qj| =

1

2k2
.(62)

This gives a contradiction if 1
k2

≥ C̄pδ
p and if C̄p is chosen large enough.

q.e.d.

Proof of Proposition 5. Let us assume (59). This implies that the degree
d := deg(F,Qj , ·) is constant on {ξ ∈ S2 : ξ3 <

1
2}. If d 6= 0, then

{ξ ∈ S2 : ξ3 <
1
2} ⊂ F (Qj), and thus

H2
(

{ξ ∈ S2 : ξ3 <
1

2
}
)

≤
∫

F (Qj)
1 dH2

≤
∫

Qj

(detDF TDF )
1
2 ≤

∫

Qj

|DF |2 ≤ Cδ2

by (42), (44). For δ < δ0 small enough, we therefore obtain a con-
tradiction. This shows that deg(F,Qj , ·) = 0 on {ξ ∈ S2 : ξ23 < 3

4}.
Since ϑ = 1 on {ξ ∈ S2 : ξ3 ≥ 1

2}, this implies for g : S2 → R,

g(ξ) = (1− ϑ(ξ3))(ξ
2
1 + ξ22) and the volume form σ on S2 that g ◦F = 0

on ∂Qj and by deg(F,Qj , ·) = 0 that

0 =

∫

Qj

F ∗(gσ
)

=

∫

Qj

(1− ϑ(F3))|F ′|2F · ∂1F × ∂2F.(63)
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We further deduce that, for any a(j) ∈ Qj ,
∣

∣

∣

∫

Qj

η|Ψ|2(1− ϑ(F3))|F ′|2F · ∂1F × ∂2F
∣

∣

∣

≤
∣

∣

∣

∫

Qj

(

η|Ψ|2 − (η|Ψ|2)(a(j))
)

(1− ϑ(F3))|F ′|2F · ∂1F × ∂2F
∣

∣

∣

+
∣

∣

∣
(η|Ψ|2)(a(j))

)

∫

Qj

F ∗(gσ
)

∣

∣

∣

≤Cα(1 + Lip(η))k−α

∫

Qj

|DF |2,(64)

for α ∈ (0, 1), since ‖1 − |Ψ|2‖C0,α(D1) ≤ Cαδ by (27) and since
∫

Qj

F ∗(gσ
)

= 0 by (63).

We then choose α = 1
2 , p = 8, and δ0 > 0 such that C̄8δ

8
0 < 1 for the

constant C̄8 from Lemma 2. For δ < δ0, we set k = ⌊C̄− 1
2

8 δ−4⌋. Then
(59) is satisfied and (64) shows
∫

Qj

η|Ψ|2|F ′|2(1− ϑ(F3))F · ∂1F × ∂2F ≥ −Cδ2(1 + Lip(η))

∫

Qj

|DF |2,

and by (42) and (44) the claim follows. q.e.d.

4.2.2. Second term on the right-hand side of (52). Let ϑ ∈ C∞

[−1, 1] be chosen as in (51). Since |F |2 = 1 we have

F3 =

{

√

1− |F ′|2 on D+
1 := D1 ∩ {F3 > 0}

−
√

1− |F ′|2 on D−
1 := D1 ∩ {F3 < 0}.

A short computation shows that on D1

∂iF3 = − 1

F3
F ′ · ∂iF ′, i = 1, 2

F · ∂1F × ∂2F =
1

F3
detDF ′(65)

and

ϑ(
√

1− |F ′|2)
√

1− |F ′|2
detDF ′ =

{

ϑ(F3)F · ∂1F × ∂2F on D+
1

−ϑ(−F3)F · ∂1F × ∂2F on D−
1 .

Since ϑ = 0 on [−1, 13 ], this yields
∫

D1

η|Ψ|2|F ′|2ϑ(F3)F · ∂1F × ∂2F(66)

=

∫

D1

η|Ψ|2ϑ(
√

1− |F ′|2) |F ′|2
√

1− |F ′|2
detDF ′

+

∫

D1

η|Ψ|2|F ′|2ϑ(−F3)F · ∂1F × ∂2F.
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Proposition 6. For any η ∈ C∞
c (D1), the estimate

∣

∣

∣

∫

D1

η|Ψ|2|F ′|2ϑ(F3)F · ∂1F × ∂2F
∣

∣

∣
≤ Cδ4(67)

holds.

Proof. We rewrite the integral as in (66). For the second term, we

have by Proposition 5 applied to ϑ̃ ∈ C∞([−1, 1]), ϑ̃(r) := 1− ϑ(−r)
∣

∣

∣

∫

D1

η|Ψ|2|F ′|2ϑ(−F3)F · ∂1F × ∂2F
∣

∣

∣
≤ Cδ4.(68)

It therefore remains to control the first term on the right-hand side
of (66). To rewrite the corresponding integrand, we use that for any
differentiable h : R2 → R

2

∇ ·
(

cof DF ′Th(F ′)
)

= (∇ · h)(F ′) detDF ′(69)

holds and construct h ∈ C∞(R2,R2) with

∇ · h(z) = |z|2ψ(z), |h(z)| ≤ C|z|3 for all z ∈ R
2,(70)

where ψ ∈ C∞
c (B(0, 1)) is defined by

ψ(z) :=







ϑ(
√

1−|z|2)√
1−|z|2

for |z|2 ≤ 8
9

0 else.

Note that this implies

ϑ(
√

1− |F ′|2) |F ′|2
√

1− |F ′|2
= (∇ · h)(F ′) on D1.(71)

As z 7→ |z|2ψ(z) is a smooth function with compact support, there exists
a solution q ∈ C∞(R2) of

∆q(z) = |z|2ψ(z) for all z ∈ R
2,

which satisfies

lim sup
z→∞

|q(z)|
ln(z)

< ∞.

Let T3q denote the third-order Taylor approximation of q in z = 0. We
define q̃(z) := q(z)−(T3q)(z) and set h(z) = ∇q̃(z). Then all derivatives
of h in z = 0 up to second order vanish and h(z) ≤ C|z|3 holds for a
suitable constant C > 0. This is clear for |z| ≤ R; on the other hand, q
is harmonic on R

3 \ B(0, R) and grows at most logarithmically. Hence
∇q is harmonic and satisfies |∇q(z)| ≤ C

|z| as z → ∞.

Furthermore, we deduce that

∇ · h(z) = ∆q̃(z) = |z|2ψ(z) for all z ∈ R
2,
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which proves (70). By (69) and (71) and since η is compactly supported
in D1, we obtain

∫

D1

η|Ψ|2ϑ(
√

1− |F ′|2) |F ′|2
√

1− |F ′|2
detDF ′

=

∫

D1

η|Ψ|2∇ ·
(

cof DF ′Th(F ′)
)

= −
∫

D1

∇
(

η|Ψ|2
)

·
(

cof DF ′Th(F ′)
)

.

The integral on the right-hand side is estimated by
∣

∣

∣

∫

D1

∇
(

η|Ψ|2
)

·
(

cof DF ′Th(F ′)
)
∣

∣

∣

≤‖∇(η|Ψ|2)‖L8(D1)‖h(F ′)‖L8/3(D1)
‖DF ′‖L2(D1)

≤C(1 + ‖∇η‖C0(D1))(1 + ‖∇Ψ‖L8(D1))‖F ′‖3L8(D1)
‖DF ′‖L2(D1)

≤C(1 + ‖∇η‖C0(D1))‖DF ′‖4W 1,2(D1)
≤ C‖η‖C1(D1)δ

4,

where we have used (70), the Sobolev inequality, and (42). Together
with (66) and (68), this proves (67). q.e.d.

4.2.3. Third term on the right-hand side of (52).

Proposition 7. For any c1 > 0 and any δ < δ0, we have
∫

D1

η|Ψ|2|F ′|2
(

R+ |JΨ|
)

≥ − C(1 + c1)δ
4 +

∫

D1

η|F ′|2|JΨ|

− C

c1

∫

D1

|F ′|2.(72)

Proof. We recall from (48) and (50) that

R = M ·R(1) +M ·
(

∂1Ψ× ∂2(M −Ψ) + ∂1(M −Ψ)× ∂2Ψ
)

,

‖R(1)‖Lq(D1) ≤ Cqδ
2 for any 1 ≤ q < 2.

Together with (42), the last estimate implies
∣

∣

∣

∫

D1

η|Ψ|2|F ′|2M ·R(1)
∣

∣

∣
≤ C‖F ′‖2L6(D1)

‖R(1)‖
L

3
2 (D1)

≤ C‖F ′‖2W 1,2(D1)
δ2 ≤ Cδ4.(73)

Moreover we observe that

M ·
(

∂1Ψ× ∂2(M −Ψ) + ∂1(M −Ψ)× ∂2Ψ
)

=
(

H ◦Ψ− 2
)

|JΨ|.
It remains to show that

∫

D1

(

η|F ′|2|Ψ|2
(

H ◦Ψ− 1
)

− η|F ′|2
)

|JΨ| ≥ −Cc1δ4 −
C

c1

∫

D1

|F ′|2.
(74)
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We proceed similarly as in the proof of Proposition 4. Choose a finite
partition of unity 1 =

∑N
i=1 ϑi on D1 such that #{1 ≤ i ≤ N : y ∈

spt(ϑi)} ≤ CB for all y ∈ D1 and such that 0 ≤ ϑi ≤ 1 for all i =
1, . . . , N and ϑi ∈ C∞(Dr(y

i)) for r = c1δ chosen below. We prove the
following auxiliary result.

Lemma 3. Let r > 0 and f ∈W 1,2(Dr,R
2), h ∈ L2(Dr). Then

∣

∣

∣

∫

Dr

|f |2h
∣

∣

∣
≤ Cr‖Df‖2L2(Dr)

‖h‖L2(Dr) +
(

∫

Dr

|f |2
)C

r
‖h‖L2(Dr).(75)

Proof. This is proved like the Ladyzhenskaya estimate ‖g‖L4(R2) ≤
C‖g‖L2(R2)‖Dg‖L2(R2) [14]. Indeed, first observe that the desired esti-
mate is invariant under dilation and it hence suffices to consider r = 1.
Now

‖D|f |2‖L1(D1) = ‖2fDf‖L1(D1) ≤ 2‖f‖L2(D1)‖Df‖L2(D1)

≤ ‖f‖2L2(D1)
+ ‖Df‖2L2(D1)

.

Since ‖|f |2‖L1(D1) = ‖f‖2L2(D1)
, the Sobolev embedding W 1,1(D1) →֒

L2(D1) yields

‖|f |2‖L2(D1) ≤ C
(

‖f‖2L2(D1)
+ ‖Df‖2L2(D1)

)

.

This implies
∣

∣

∣

∫

Dr

|f |2h
∣

∣

∣
≤ ‖|f |2‖L2(D1)‖h‖L2(D1)

≤ C
(

‖f‖2L2(D1)
+ ‖Df‖2L2(D1)

)

‖h‖L2(D1),

which yields (75) for r = 1 and hence for all r > 0. q.e.d.

Fix 1 ≤ i ≤ N , and apply the previous lemma for f = F ′ on Dr(y
i).

Note that by (21)
∫

D1

(

H ◦Ψ− 2
)2 |JΨ| ≤ Cδ2.

Using that |Ψ| ≤ 1, 0 ≤ ηϑi ≤ 1, and (30), we then obtain
∣

∣

∣

∫

Dr(yi)
ηϑi|F ′|2|Ψ|2(H ◦Ψ− 2)|JΨ|

∣

∣

∣

≤Cr‖DF ′‖2L2(Dr(yi))
‖H ◦Ψ− 2‖L2(Dr(yi))

+
C

r
‖H ◦Ψ− 2‖L2(Dr(yi))

∫

Dr

|F ′|2

≤Crδ‖DF ′‖2L2(Dr(yi))
+
C

r
δ

∫

Dr(yi)
|F ′|2.(76)
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Similarly, we have
∫

Dr(yi)
ηϑi|F ′|2

(

|Ψ|2 − 1
)

|JΨ|

≤
(

Cr‖DF ′‖2L2(Dr(yi))
+
C

r

∫

Dr(yi)
|F ′|2

)

‖|Ψ|2 − 1‖L2(Dr(yi))

≤
(

Cr‖DF ′‖2L2(Dr(yi))
+
C

r

∫

Dr(yi)
|F ′|2

)

Cδ(77)

by (27). Summing (76) and (77) over i, we we get with ‖DF ′||L2(D1) ≤
Cδ

∫

D1

η|F ′|2|Ψ|2
(

H ◦Ψ− 2
)

|JΨ|+ η|F ′|2
(

|Ψ|2 − 1
)

|JΨ|

≥ − CCBrδ
3 − CCBδ

r

∫

D1

|F ′|2.(78)

Now let r = c1δ. Then (78) implies (74). q.e.d.

4.3. Conclusion. We are now ready to prove Theorem 3. We choose
a partition of unity 1 =

∑6
i=1 η̃i on S2 such that for each i = 1, . . . , 6

the function η̃i are given as ηi ◦ Π−1
i where ηi ∈ C∞

c (D1) and Πi is a
standard stereographic projection. From Proposition 4, Proposition 5,
Proposition 6, and Proposition 7, we obtain that there exists δ0 > 0
such that for all c0, c1 > 0 and any δ < δ0

∫

Σ

(

1− λ(x · ν(x))2 + λ

2
|x− (x · ν(x))ν(x)|2

)

K(x) dH2(x)

≥ −
6

∑

i=1

C
(

1 + c0 + c1
)

δ4 +

6
∑

i=1

(1

2

∫

Σ
η̃i
(

1− λ|x|2
)

− C

c20

∫

Σ
(1− λ|x|2)

)

+

6
∑

i=1

(

∫

Σ
η̃i(x)|x− (x · ν(x))ν(x)|2 − C

c1

∫

D1

|x− (x · ν(x))ν(x)|2
)

≥ − C(1 + c0 + c1)δ
4 +

(1

2
− C

c20

)

∫

Σ
(1− λ|x|2)

+
(

1− C

c1

)

∫

Σ
|x− (x · ν(x))ν(x)|2.

Choosing c0, c1 large enough, the last two terms become nonnegative.
Together with (31), this proves

a− 4π ≤ Cδ4 = C(W(Σ)− 4π)2

for all δ < δ0 and all Σ ∈ Ma. This concludes the proof of Theorem 3.
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5. Proof of Theorem 2

In this section, we describe in detail the construction of a sequence
(Σj)j∈N ⊂ M8π such that W(Σj) → 8π as j → ∞. We use here surfaces
of revolution given by a C1 curve of circular arcs and a catenary part.
For a similar construction using circular arcs, see [5, 6].

Step 1: Depending on a parameter 0 < r < 1, we construct a curve γ+
in the upper right quarter of the (x, y)-plane and obtain a surface Σ+

in space by rotating γ+ around the y-axis.
For 0 < r < 1 given, we determine 0 < r1 < 1, (x1, y1), (x0, y0) ∈

B1(0), 0 < β < π/2, and 0 < λ < x0 such that (see Figure 2)

• the sphere Sr1(x1, y1) touches the unit sphere from inside at
(cos(β), sin(β)),

• the catenoid {(x, y) : y = y0 ± λ arccosh(xλ)} touches Sr1(x1, x2)
for x = λ in (x1, y1) + r1(cos(π/2 + β), sin(π/2 + β)), and

• the catenoid {(x, y) : y = y0 ± λ arccosh(xλ)} touches Sr(0) for
x = −λ in (cos(π/2 − β), sin(π/2 − β)).

This way, we obtain a C1 curve γ+ in the (x, y)-plane by pasting
together the traces of:

• a curve γ1 that parametrizes the unit circle from (1, 0) to (cos(β),
sin(β)) (the solid green line in Figure 2),

γ1 : (0, β) → R
2, γ1(s) =

(

cos s
sin s

)

;

• a curve γ2 that follows the circle Sr1((x1, y1)) from (cos(β), sin(β))
to (x1, y1) + r1

(

cos(β + π/2), sin(β + π/2)
)

(the solid blue line in
Figure 2),

γ2 : (β, β + r1
π

2
) → R

2, γ2(s) =

(

x1
x0

)

+ r1

(

cos(β + r−1
1 (s− β))

sin(β + r−1
1 (s− β))

)

(79)

• two curves γ±3 that describes the catenary {(x, y) : |y − y0| =
λ arccosh(xλ)} for λ ≤ x ≤ x0 (the solid black line in Figure 2),

γ3 : (λ, x0) → R
2, γ3(x) =

(

x
y0 ± λ(arccosh x/λ)

)

;

• and finally a curve γ4 that parametrizes the circle Sr(0) between
r(cos(π/2 − β), sin(π/2 − β)) and (r, 0) (the solid red line in Fig-
ure 2),

γ4 : (0,
π

2
− β) → R

2, γ4(s) = r

(

cos(s/r)
sin(s/r)

)

.
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y1

y0

1

x0 x1 r 1

r1

β

β

Figure 2. The construction in the upper half-space

Step 2: The conditions above are expressed in the following system of
equations:

(

x1
y1

)

+ r1

(

cos β
sin β

)

=

(

cos β
sin β

)

,(80)

(

x0
y0 + λ arccosh(λ−1x0)

)

=

(

x1
y1

)

+ r1

(

− sin β
cos β

)

,(81)

1

x0

(√

x20 − λ2

λ

)

=

(

cos β
sin β

)

,(82)

(

x0
y0 − λ arccosh(λ−1x0)

)

= r

(

sin β
cos β

)

.(83)

After some manipulations, and defining F : R3 → R
2 by

F (r, r1, β) =

(

r cos β + 2r sin2 β arccosh 1
sinβ − r1 cos β − (1− r1) sin β

(r + r1) sin β − (1− r1) cos β

)

,
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we obtain the equivalent system

0 = F (r, r1, β),(84)

x1 = (1− r1) cos β,(85)

y1 = (1− r1) sin β,(86)

x0 = r sin β,(87)

λ = x0 sin β,(88)

y0 =
1

2

(

y1 + (r + r1) cos β
)

.(89)

We next observe that F (1, 1, 0) = 0 and that F is continuously differ-
entiable. Moreover, we have

det
(

∂r1F ∂βF
)

(1, 1, 0) 6= 0.

Hence, by the Implicit Function Theorem, we obtain C1-functions r1 =
r1(r), β = β(r) such that (r, r1(r), β(r)) satisfy (84) for 0 < r < 1 close
to 1. For the derivatives of r1, β with respect to r we obtain that

r′1(1) = 1, β′(1) = −1

2
,(90)

which shows that 0 < r1 < 1 and 0 < β < π/2 for 0 < r < 1 close to
1. (x0, y0), (x1, y1) and λ are easily determined from (85)–(89) and are
in the range of meaningful values with respect to our construction. In
particular we obtain

(x0, y0) → (0, 1), (x1, y1) → (0, 0), λ → 0 as r ր 1.(91)

Step 3: We compute the surface area of Σ+. Let Ai, i = 1, . . . , 4 denote
the surface area of the parts of the surface that belong to the curves γi.
Since γi is parametrized by arc length, for i = 1, 2, 4 the corresponding
surface area elements are given by the x-components of γi. We therefore
deduce that

A1 = 2π

∫ β

0
cos s ds = 2π sinβ,(92)

A2 = 2π

∫ β+r1
π
2

β
(1− r1) cos β + r1 cos(β + r−1

1 (s− β)) ds

= 2π
(

r1(1− r1)
π

2
cos β + r21(cos β − sin β)

)

,(93)

A4 = 2π

∫ π/2−β

0
r cos(s/r) ds = 2πr2 cos β.(94)

The curve γ3 parametrizes the upper and lower part of the catenary as
two graphs. Since the surface area element for the rotation of a graph
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x 7→ (x, f(x)) around the y-axis is given by x
√

1 + f ′(x)2, we obtain
that

A3 = 2 · 2π
∫ x0

λ

(

1 +
λ2

x2 − λ2

)1/2
x dx

= 2π
(

x0

√

x20 − λ2 + λ2 arccosh
x0
λ

)

= 2π
(

r2 sin2 β cos β + r2 sin4 β arccosh
1

sin β

)

.(95)

The surface area of Σ+ is thus given as

A+ := ar(Σ+) = A1 +A2 +A3 +A4

=2π
(

(1− r21) sin β + r1(1− r1)
π

2
cos β + (r21 + r2) cos β+

+ r2 sin2 β cos β + r2 sin4 β arccosh
1

sinβ

)

.(96)

If we develop A+ = A+(r) at r = 1 we obtain A(1) = 4π and

A′(1) = 2π
(

− π

2
+ 2

)

> 0.(97)

Moreover, we see that

A1, A3 → 0, A2, A4 → 2π as r ր 1.(98)

Step 4: We compute the Willmore energy of the different parts. Since

all these parts have constant mean curvature given by 2, 2
r1
, 0, 2r , respec-

tively, we obtain

W+(r) := W(Σ+)

=
1

2
π(4A1 +

4

r21
A2 +

4

r2
A4)

=
1

2
π
(

4 sin β +
(1− r1

r1

π

2
cos β + (cos β − sin β)

)

+ cos β
)

= π2
1− r1
r1

cos β + 4π cos β.(99)

From the first line and (98), we also get that

W+(r) → 4π as r ր 1(100)

and

W ′
+(1) = −π2.(101)

Step 5: Finally, we add the lower part of the construction. With this
aim, we put Σ− to be the union of the lower unit sphere and the lower
part of the sphere Sr(0), where we have added an inward bump similar
to the construction in Theorem 2. We can then choose the size of a bump
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in such a way that Σ = Σ+∪Σ− satisfy the area constraint ar(Σ) = 8π
and such that W(Σ) is arbitrarily close to 2W(S2).
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