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Abstract

We study the geometry of the twistor space of the universal hy-
perkähler implosion Q for SU(n). Using the description of Q as a
hyperkähler quiver variety, we construct a holomorphic map from
the twistor space ZQ of Q to a complex vector bundle over P1,
and an associated map of Q to the affine space R of the bundle’s
holomorphic sections. The map from Q to R is shown to be injec-
tive and equivariant for the action of SU(n)×T n−1×SU(2). Both
maps, from Q and from ZQ, are described in detail for n = 2 and
n = 3. We explain how the maps are built from the fundamental
irreducible representations of SU(n) and the hypertoric variety as-
sociated to the hyperplane arrangement given by the root planes
in the Lie algebra of the maximal torus. This indicates that the
constructions might extend to universal hyperkähler implosions
for other compact groups.

0. Introduction

In [4, 5] we introduced a hyperkähler analogue in the case of SU(n)
actions of Guillemin, Jeffrey, and Sjamaar’s construction of symplectic
implosion [7]. The aim of this paper is to find a description of hy-
perkähler implosion for SU(n) which can be generalized to other com-
pact groups K.

If M is a symplectic manifold with a Hamiltonian action of a com-
pact group K with maximal torus T , the symplectic implosion Mimpl is
a stratified symplectic space (usually singular) with an action of T such
that the symplectic reductions of Mimpl by T coincide with the sym-
plectic reductions of M by K. The implosion of the cotangent bundle
T ∗K ∼= K × k∗ acts as a universal symplectic implosion in that the im-
plosion of a general Hamiltonian K-manifold M can be identified with
the symplectic reduction by K of M × (T ∗K)impl.
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The construction in [4] of the universal hyperkähler implosion when
K = SU(n) uses quiver diagrams and gives us a stratified hyperkähler
space Q = (T ∗KC)hkimpl. The hyperkähler implosion of a general hy-
perkähler manifold M with a Hamiltonian action of K = SU(n) is then
defined as the hyperkähler reduction by K of M ×Q. The hyperkähler
strata of Q can be described in terms of open sets in complex symplectic
quotients of the cotangent bundle of KC = SL(n,C) by subgroups which
are extensions of abelian groups by commutators of parabolic subgroups.
There is an action of the maximal torus T of K, and the hyperkähler
quotients by this action are the Kostant varieties, affine varieties which
are closures in k∗C of complex co-adjoint orbits. As in [4] we will identify
Lie algebras with their duals via an invariant inner product, so that
co-adjoint orbits of KC are identified with adjoint orbits.

The universal symplectic implosion has a natural (K×T )-equivariant
embedding into a complex affine space, whose image is the K-sweep
KTCv of the closure of an orbit TCv of the complexified maximal torus
TC [7]. Here TCv is the toric variety associated to a positive Weyl cham-
ber t+ in the Lie algebra t of T . It was shown in [5] that the hyper-
toric variety associated to the hyperplane arrangement given by the
root planes in t maps generically injectively to Q and that (for any
choice of complex structure on Q) the KC-sweep KCQT of its image QT

is dense in Q. In this paper we shall construct a (K × T )-equivariant
embedding σ of the universal hyperkähler implosion Q for K = SU(n)
into a complex affine space R with a natural SU(2)-action which ro-
tates the complex structures on Q = (T ∗KC)hkimpl. This embedding is
constructed using the moment maps for the K×T action and the funda-
mental irreducible representations of K. Its image is the closure of the
KC-sweep of the image σ(QT ) in R of the hypertoric variety associated
to the hyperplane arrangement given by the root planes in t. Our future
aim is to use this description of Q as the closure of the KC-sweep of the
image of this hypertoric variety in the (K × T × SU(2))-representation
R to extend the hyperkähler implosion construction from K = SU(n)
to more general compact groups K.

Any hyperkähler manifold M has a twistor space ZM , which is a
complex manifold with additional structure from which we can recover
M . As a smooth manifold ZM is the product M × P1 of M and the
complex projective line P1, which is identified with the unit sphere S2

in R3 in the usual way. The complex structure on ZM is such that the
projection π : ZM → P1 is holomorphic and its fiber at any ζ ∈ P1 = S2

is M equipped with the complex structure determined by ζ.
We shall give a description of the twistor space for the universal

hyperkähler implosion for SU(n). Motivated by the embedding of the
implosion into the affine space R described above, we shall also con-
struct a generically injective holomorphic map from its twistor space to
a vector bundle over P1.
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The layout of the paper is as follows. In §1 we review the theory of
twistor spaces for hyperkähler manifolds, and in §2 we recall the hy-
perkähler structure on the nilpotent cone in the Lie algebra of KC =
SL(n,C) obtained in [12]. We also describe its twistor space which can
be embedded in the vector bundle O(2) ⊗ kC over P1, where kC is the
Lie algebra of the complexification KC = SL(n,C) of K = SU(n). In
§3 we recall the constructions of symplectic implosion from [7] and
hyperkähler implosion for K = SU(n) from [4, 5]. In §4 we define a
K × T × SU(2)-equivariant map σ from the universal hyperkähler im-
plosion Q for K = SU(n) to

R = H0(P1, (O(2) ⊗ (kC ⊕ tC))⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn)

where ℓj = j(n − j), and an associated holomorphic map σ̃ from the

twistor space ZQ ofQ to the vector bundle (O(2)⊗(kC⊕tC))⊕
⊕n−1

j=1 O(ℓj)

⊗∧jCn over P1. Here SU(2) acts on R via its usual action on P1 and the
line bundles O(ℓj) over P1 for j ∈ Z, while K = SU(n) acts on R via
its adjoint action on kC = k⊗R C, the trivial action on tC and its usual
action on ∧jCn. The action of T on O(2) ⊗ (kC ⊕ tC) is the restriction
of the K-action, but T acts on O(ℓj) ⊗ ∧jCn as multiplication by the
highest weight for the irreducible representation ∧jCn of K = SU(n).

In §5 we recall the stratification given in [4] of Q into strata which
are hyperkähler manifolds, and its refinement in [5] which has strata
Q[∼,O] indexed in terms of Levi subgroups and nilpotent orbits in KC =
SL(n,C). In §6 we prove that the map σ defined in §4 is injective and
that σ̃ is generically injective; we will see that σ̃ fails to be injective
in the example n = 2 in §7. In §7 we describe the full structure of the
twistor space of Q in terms of its embedding in the space of holomorphic
sections of the vector bundle (O(2) ⊗ (kC ⊕ tC)) ⊕

⊕n−1
j=1 O(ℓj) ⊗ ∧jCn

over P1, and we consider the low-dimensional examples n = 2 and n = 3
in detail. Finally, in §8 we consider how to use the description of Q as
the closure of the KC-sweep of the image of a hypertoric variety in the
(K×T ×SU(2))-representation R and the corresponding description of
its twistor space ZQ to extend the hyperkähler implosion construction
from K = SU(n) to more general compact groups K.
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1. Twistor spaces

In this section we review the theory of twistor spaces for hyperkähler
manifolds; for more details see [9].

A hyperkähler manifold M has a Riemannian metric, together with a
triple of complex structures (I, J,K) satisfying the quaternionic relations
such that the metric is Kähler with respect to each complex structure.
Thus a hyperkähler manifold has a triple (in fact, a whole two-sphere)
of symplectic forms (ω1, ω2, ω3) which are Kähler forms for the complex
structures (I, J,K).

If a compact groupK acts on a hyperkähler manifoldM preserving its
hyperkähler structure with moment maps µ1, µ2, µ3 for the symplectic
forms ω1, ω2, ω3, then the hyperkähler quotient µ−1(0)/K (where µ =
(µ1, µ2, µ3) : M → k ⊗ R3) inherits a hyperkähler structure from that
on M .

A hyperkähler manifold M has (real) dimension 4k for some non-
negative integer k. We can associate to M its twistor space ZM which
is a complex manifold of (complex) dimension 2k + 1 with some addi-
tional structure from which we can recover the hyperkähler manifold
M . As a smooth manifold ZM is the product M×S2 of M and the two-
dimensional sphere S2, but its complex structure at (m, ζ) ∈ M × S2

is defined by (Iζ , Ĩ) where Ĩ is the usual complex structure on S2 ∼= P1

and if

ζ = (ζ1, ζ2, ζ3) ∈ S2 ⊂ R3

then Iζ = ζ1I+ζ2J+ζ3K, where (I, J,K) is the triple of complex structures
on M as above. The twistor space ZM is equipped with the following
additional structure [9]:

1) a holomorphic projection π : ZM → P1 whose fiber at ζ ∈ P1 is M
equipped with the holomorphic structure Iζ determined by ζ;

2) a holomorphic section ω of the holomorphic vector bundle

∧2T ∗
F (2) = ∧2T ∗

F ⊗O(2)

over ZM where TF is the tangent bundle along the fibers of π, such that
ω defines a holomorphic symplectic form ωζ on each fiber π−1(ζ) ∼= M
of π;

3) a real structure (that is, an anti-holomorphic involution) τ on ZM

preserving this data and covering the antipodal map on P1.

With respect to the C∞-identification of ZM with M × P1, the real
structure is given by

τ(m, ζ) = (m,−1/ζ̄).

With respect to the fixed holomorphic section (1/2)∂/∂ζ of TP1 ∼= O(2),
the holomorphic symplectic form ωζ is given by

ωζ = ω2 + iω3 − 2ζω1 − ζ2(ω2 − iω3),
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where ω1, ω2, ω3 are the Kähler forms associated to the hyperkähler
metric and the complex structures I, J,K.

A holomorphic section of π : ZM → P1 is called a twistor line, and a
twistor line σ : P1 → ZM is real if τσ(ζ) = σ(−1/ζ̄) for every ζ ∈ P1.
Each point m ∈ M gives rise to a real twistor line {m} × P1 with
normal bundle C2k ⊗O(1), and using such twistor lines we can recover
the hyperkähler manifold M from its twistor space.

If a compact groupK acts on a hyperkähler manifoldM preserving its
hyperkähler structure with a hyperkähler moment map µ = (µ1, µ2, µ3),
then there is an associated holomorphic map Zµ : ZM → k∗C ⊗ O(2)
whose restriction to each fiber of π is a complex moment map for the
holomorphic symplectic form defined by ω on the fiber. The twistor
space of the hyperkähler quotient µ−1(0)/K is the quotient (in the sense
of Kähler geometry or geometric invariant theory [10]) of Z−1

µ (0) by the
complexification KC of K.

Remark 1.1. The twistor moment map Zµ : ZM → k∗C ⊗ O(2) re-
stricts to a holomorphic section of k∗C⊗O(2) on each twistor line {m}×P1

in ZM . This gives us a map

φ : M → H0(P1, k∗C ⊗O(2)) ∼= k∗C ⊗H0(P1,O(2))

whose evaluation at any p ∈ P1 can be identified (modulo choosing
a basis for the one-dimensional complex vector space O(2)p) with the
complex moment map associated to the corresponding complex struc-
ture on M . Then φ−1(0) = µ−1(0) and the hyperkähler quotient of M
by K is φ−1(0)/K.

The twistor space for a flat hyperkähler manifold Hk is the vector
bundle Z = O(1) ⊗C2k over P1. If we write Z as

Z = O(1)⊗ (W ⊕W ∗)

where W = Ck, then the natural pairing between W and W ∗ defines
a constant holomorphic section ω of ∧2T ∗

F (2). The standard hermitian

structure on W gives us an identification of W with W
∗
, and this to-

gether with the antipodal map on P1 gives us the real structure on Z.
Let α1, . . . , αk be the standard coordinates on W , and let β1, . . . , βk

be the dual coordinates on W ∗. We can cover Z with two coordinate
patches ζ 6= ∞ and ζ 6= 0 with coordinates

(1.2) (α1, . . . , αk, β1, . . . , βk, ζ) and (α̃1, . . . , α̃k, β̃1, . . . , β̃k, ζ̃)

related by the transition functions

ζ̃ = 1/ζ, α̃j = αj/ζ, β̃j = βj/ζ.

With respect to these coordinates the real structure on Z is given by

(α1, . . . , αk, β1, . . . , βk, ζ) 7→ (β̄1/ζ̄, . . . , β̄k/ζ̄,−ᾱ1/ζ̄, . . . ,−ᾱk/ζ̄,−1/ζ̄),

while ω is given by
∑k

j=1 dαj ∧ dβj/2.
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2. The nilpotent cone

In this section we recall the hyperkähler structure on the nilpotent
cone in the Lie algebra of KC = SL(n,C) obtained in [12] and describe
its twistor space which can be embedded in the vector bundle O(2)⊗ kC
over P1.

The nilpotent cone for KC = SL(n,C) is identified in [12] with a

hyperkähler quotient M///H̃, where M is a flat hyperkähler space and

H̃ is a product of unitary groups acting on M .
Let us choose integers 0 6 n1 6 n2 6 · · · 6 nr = n and consider the

flat hyperkähler space
(2.1)

M = M(n) =

r−1
⊕

i=1

Hnini+1 =

r−1
⊕

i=1

Hom(Cni ,Cni+1)⊕Hom(Cni+1 ,Cni)

with the hyperkähler action of U(n1)× · · · ×U(nr)

αi 7→ gi+1αig
−1
i , βi 7→ giβig

−1
i+1 (i = 1, . . . r − 1),

with gi ∈ U(ni) for i = 1, . . . , r. Here αi and βi denote elements of
Hom(Cni ,Cni+1) and Hom(Cni+1 ,Cni), respectively, and right quater-
nion multiplication is given by

(2.2) (αi, βi)j = (−β∗
i , α

∗
i ).

We may write (α, β) ∈ M(n) as a quiver diagram:

(2.3) 0
α0

⇄
β0

Cn1
α1

⇄
β1

Cn2
α2

⇄
β2

· · ·
αr−2

⇄
βr−2

Cnr−1
αr−1

⇄
βr−1

Cnr = Cn,

where α0 = β0 = 0. For brevity, we will often call such a diagram a
quiver. Let H̃ be the subgroup, isomorphic to

∏r−1
i=1 U(ni), given by

setting gr = 1, and let

µ̃ : M → Lie(H̃)⊗ R3 = Lie(H̃)⊗ (R⊕ C)

µ̃(α, β) =
(

(αiα
∗
i − β∗

i βi + βi+1β
∗
i+1 − α∗

i+1αi+1)i, αiβi − βi+1αi+1

)

be the corresponding hyperkähler moment map.
It is proved in [12] that when we have a full flag (that is, when r = n

and nj = j for each j, so that the center of H̃ can be identified with
the maximal torus T of K = SU(n)), then the hyperkähler quotient

µ̃−1(0)/H̃ of M by H̃ can be identified with the nilpotent cone in kC.
This hyperkähler quotient carries an SU(n) action induced from the

action of this group on the top space Cn of the quiver. In [12] Theorem
2.1 it is shown that, for any choice of complex structure, the complex
moment mapM///H̃ → kC for this action induces a bijection fromM///H̃
onto the nilpotent cone in kC. This moment map is given, with complex
structure as above, by

(α, β) 7→ αn−1βn−1.
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Thus the hyperkähler moment map µ : M///H̃ → k⊗R3 provides a bijec-

tion from M///H̃ to its image in k⊗R3, and this image is a (K×SU(2))-
invariant subset Nil(K) of k ⊗ R3 such that after acting by any ele-
ment of SU(2) the projection Nil(K) → kC given by the decomposition
R3 = R⊕ C is a bijection onto the nilpotent cone in kC.

The hyperkähler structure on the nilpotent cone in kC can in prin-
ciple be determined explicitly from the bijection from M///H̃ given by
(α, β) 7→ αn−1βn−1, but it is not very easy to write down a lift to µ−1(0)
of the inverse of this bijection. However, the hyperkähler structure can
be determined explicitly from the embedding of Nil(K) in k ⊗ R3 as
follows. The complex and complex-symplectic structures on Nil(K) are
given by pulling back the standard complex and complex-symplectic
structures on nilpotent orbits in kC under the projections of k⊗R3 onto
k⊗ C corresponding to the different choices of complex structures, and
these determine the metric.

Thus it is useful to describe as explicitly as possible the embedding
of Nil(K) in k⊗R3. If we fix a complex structure and use it to identify
Nil(K) with the nilpotent cone in kC and to identify k⊗R3 with k⊕ kC,
then the embedding is given by

η 7→ (Φn(η), η)

where the map Φn from the nilpotent cone in sl(n,C) to su(n) is the
(real) moment map for the action of K = SU(n) on the nilpotent cone
with respect to the Kähler form determined by the standard complex
structure and the hyperkähler metric. The map Φn is determined in-
ductively by the properties given in Lemma 2.5, below.

Remark 2.4. Note that M has an SU(2)-action which commutes

with the action of H̃ and rotates the complex structures on M . This
action descends to an SU(2)-action on M///H̃ and hence on Nil(K). The
induced SU(2)-action on Nil(K) extends to the action on k ⊗ R3 given
by the usual rotation action on R3. When Nil(K) is identified with the
nilpotent cone in kC by projection from k⊗ R3 to kC, the action of

(

u v
−v̄ ū

)

∈ SU(2),

where |u|2 + |v|2 = 1, is given by

η 7→ u2η + 2uvΦn(η) − v2η̄T .

Lemma 2.5. The map Φn from the nilpotent cone in kC = sl(n,C)
to k = su(n) is SU(n)-equivariant for the adjoint action of SU(n) on
sl(n,C) and su(n). Furthermore, if A is a generic upper triangular (n−
1) × (n − 1) complex matrix with positive real eigenvalues so that the
n× n matrix

(

0 A2

0 0

)
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is strictly upper triangular, then

Φn

((

0 A2

0 0

))

=

((

AB(AB)T 0
0 0

)

−
(

0 0

0 (B
−1

A)TB−1A

))

i

where B is upper triangular with real positive eigenvalues and satisfies

Φn−1

(

(

0 B−1A
)

(

AB
0

))

= (B−1A(B
−1

A)T − (AB)TAB)i.

These properties determine the continuous map Φn inductively.

Remark 2.6. In order for the upper triangular matrix A to be generic
in the sense of this lemma, it is enough for A to lie in the regular
nilpotent orbit in kC.

Proof. First, note that any nilpotent matrix lies in the SU(n)-adjoint
orbit of a strictly upper triangular matrix with non-negative real en-
tries immediately above the leading diagonal, and a generic such matrix
(lying in the regular nilpotent orbit in kC) can be expressed in the form

(

0 A2

0 0

)

where A has positive real eigenvalues. The hyperkähler quotient M///H̃

can be described as µ−1
H̃

(0)/H̃ where µH̃ is the hyperkähler moment map

for the action of H̃ on M , and also as the GIT quotient of (µH̃)−1
C (0)

by its complexification H̃C. A quiver (α, β) ∈ M(n) as at (2.3) lies in

µ−1
H̃

(0)/H̃ if and only if βjαj = αj−1βj−1 for 0 < j < n. Writing
(

0 A2

0 0

)

= αn−1βn−1

where

αn−1 =

(

A
0

)

and βn−1 =
(

0 A
)

,

so that

βn−1αn−1 =
(

0 A
)

(

A
0

)

is a strictly upper triangular matrix with non-negative real entries im-
mediately above the leading diagonal, allows us inductively to find a
quiver (α, β) in (µH̃)−1

C (0) such that

(2.7) αn−1βn−1 =

(

0 A2

0 0

)

for generic A as above. In order to find the value of Φn on this matrix,
however, we need to find a representative quiver in µ−1

H̃
(0), since

Φn

((

0 A2

0 0

))

= (αn−1α
∗
n−1 − β∗

n−1βn−1)i
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for any quiver (α, β) ∈ µ−1
H̃

(0) such that (2.7) holds, and then

Φj(αj−1βj−1) = (αj−1α
∗
j−1 − β∗

j−1βj−1)i

for 0 < j < n. The theory of moment maps and GIT quotients tells us
that there will exist such a representative quiver in the closure of the
H̃C-orbit of the quiver we have already found, and that for generic A
this orbit is closed. Indeed, since H̃C can be expressed as the product
of a Borel subgroup and its maximal compact subgroup H̃, we can find
such a representative quiver in the intersection of the Borel orbit and
µ−1
H̃

(0). The maps αn−1 and βn−1 in this quiver will be given by matrices

of the form
(

AB
0

)

and
(

0 B−1A
)

where we can assume that B is an upper triangular (n − 1) ×
(n − 1) complex matrix with positive real eigenvalues. As the quiver
lies in µ−1

H̃
(0), it follows that

Φn−1

(

(

0 B−1A
)

(

AB
0

))

= (B−1A(B
−1

A)T − (AB)TAB)i.

This completes the proof. q.e.d.

Example 2.8. Consider the case when n = 2. If d is real and positive,
then

(

0 d
0 0

)

=

(√
d
0

)

(

0
√
d
)

,

where
(

0
√
d
)

(√
d
0

)

= 0,

and Φ1 = 0 so

Φ2

((

0 d
0 0

))

=

(

d 0
0 −d

)

i.

♦

Example 2.9. Let n = 3 and let

A =

(

a b
0 c

)

and B =

(

α β
0 1/γ

)

where a, c, α, γ are real and positive and b, β ∈ C. Then, using the
previous example, we have

Φ2

(

(

0 B−1A
)

(

AB
0

))

= Φ2

((

0 ac/αγ
0 0

))

=

(

ac/αγ 0
0 −ac/αγ

)

i,
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while

(B−1A(B
−1

A)T − (AB)TAB)i

=

(

a2(1/α2 − α2) + |(b− cβγ)/α|2 cγ(b− cβγ)/α − aα(aβ + b/γ)

cγ(b− cβγ)/α− aα(aβ + b/γ) c2(γ2 − 1/γ2)− |aβ + b/γ|2

)

i.

When these are equal we have

β =
b(cγ2 − aα2)

γ(a2α2 + c2γ2)

and

a2(1/α2−α2)+

∣

∣

∣

∣

ab(a+ c)α

a2α2 + c2γ2

∣

∣

∣

∣

2

= ac/αγ = c2(1/γ2−γ2)+

∣

∣

∣

∣

bc(a+ c)γ

a2α2 + c2γ2

∣

∣

∣

∣

2

.

It is convenient to write α/γ = δ; then these equations are equivalent
to

(2.10) |b| = a2δ2 + c2

a+ c

√

γ4 +
a2/δ2 − c2

c2 − a2δ2

and f(a/c)(δ) = 0 where

f(a/c)(x) = x4 − (a/c)x3 + (c/a)x − 1.

Note that this polynomial factorizes as (x− (a/c))(x3+(c/a)), so it has
a unique positive root δ = a/c. Thus

γ = c

(

(a+ c)|b|
a4 + c4

)1/2

and α = aγ
c and β = b(c3−a3)

γ(a4+c4) =
γb(c3−a3)
|b|c2(a+c) . Then

Φ3

((

0 A2

0 0

))

is given by substituting these expressions for α, β, γ into the matrix






a2α2 + |aβ + b/γ|2 (aβγ + b)c/γ2 0

(aβ̄γ + b̄)c/γ2 c2/γ2 − a2/α2 −a(bα− βγc)/α2

0 −a(b̄α− β̄γc)/α2 |b− βγc|2/α2 − c2γ2






i.

We obtain






|b|(a+ c) bc2

|b| 0
b̄c2

|b| 0 − ba2

|b|

0 − b̄a2

|b| −|b|(a+ c)






i

(cf. [11, §5]). ♦
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Since M is a flat hyperkähler manifold, it follows as in §1 that its
twistor space ZM is the vector bundle

O(1)⊗
r−1
⊕

i=1

(Hom(Cni ,Cni+1)⊕Hom(Cni+1 ,Cni))

over P1. The complex moment map for the action of H̃ defines a mor-
phism Zµ from ZM into the vector bundle O(2) ⊗ Lie H̃C over P1, and

the twistor space for the hyperkähler quotient M///H̃ is the quotient
(in the sense of geometric invariant theory) by the action of the com-

plexification H̃C =
∏n−1

k=1 GL(k) on the zero section of this morphism.

The complex moment map for the action of K = SU(n) defines a H̃C-
invariant morphism from ZM into the vector bundle O(2)⊗ kC over P1,
and this induces an embedding into O(2)⊗kC of the GIT quotient which

is the twistor space ZNil(K) for Nil(K) = M///H̃. It follows from [12]
Theorem 2.1 that this is an isomorphism of the twistor space with the
closed subvariety of the vector bundle O(2) ⊗ kC over P1 which meets
each fiber in the tensor product of the corresponding fiber of O(2) with
the nilpotent cone in kC.

The real structure on the twistor space ZNil(K) is represented in local
coordinates as at (1.2) by

(αn−1βn−1, ζ) 7→ (−β
T
n−1α

T
n−1/ζ̄

2,−1/ζ̄)

or equivalently

(X, ζ) 7→ (−X̄T /ζ̄2,−1/ζ̄)

for X in the nilpotent cone in kC.
The remaining structure required for the twistor space ZNil(K) is a

holomorphic section ω of ∧2T ∗
F ⊗ O(2) where TF denotes the tangent

bundle along the fibers of π : ZNil(K) → P1; or rather, this is what
would be required if Nil(K) were smooth. In fact, Nil(K) is singular
with a stratified hyperkähler structure, where the strata are given by the
(finitely many) (co-)adjoint orbits in the nilpotent cone in kC ∼= k∗C, and ω
restricts on each stratum Σ to a holomorphic section ωΣ of ∧2T ∗

F,Σ⊗O(2)
where TF,Σ is the tangent bundle along the fibers of the restriction of π
to the twistor space ZΣ.

Recall that any co-adjoint orbit Oη
∼= K/Kη for η ∈ k∗ of a compact

group K has a canonical K-invariant symplectic form, the Kirillov–
Kostant form ωη, which can be obtained by symplectic reduction at η
from the cotangent bundle T ∗K with its canonical symplectic structure.
The K-invariant symplectic form ωη is characterized by the property
that the corresponding moment map for the action of K on Oη is the
inclusion of Oη in k∗.

Similarly, a co-adjoint orbit Oη for η ∈ k∗C of the complexification
KC of K has a canonical KC-invariant holomorphic symplectic form ωη
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which is again characterized by the property that the associated complex
moment map for the action of KC is the inclusion of Oη in k∗C.

If Σ is a stratum of Nil(K) given by a co-adjoint orbit in k∗C, then
the holomorphic section ωΣ of ∧2T ∗

F,Σ ⊗O(2) which restricts to a holo-

morphic symplectic form on each fiber of π : ZΣ → P1 is KC-invariant
for K = SU(n), and the corresponding twistor moment map ZΣ →
k∗C ⊗O(2) is the restriction of the embedding of ZNil(K) into k∗C ⊗O(2).
Thus it follows that each ωΣ (and hence also the holomorphic section
ω of ∧2T ∗

F ⊗O(2)) is given by the Kirillov–Kostant construction on the
fibers of π.

The Springer resolution of the nilpotent cone in kC is given by the
complex moment map for the action of kC on the cotangent bundle
T ∗B where B is the flag manifold KC/B = K/T identified with the
space of Borel subgroups of KC [2]. The twistor space ZNil(K) has a
corresponding resolution of singularities

Z̃Nil(K)
∼= KC ×B (b0 ×O(2)) ∼= K ×T (t0 ×O(2))

whereB is a Borel subgroup ofKC containing T and b0 is the annihilator
of its Lie algebra in k∗C while t0 is the annihilator of the Lie algebra of
T in k∗.

Remark 2.11. The twistor moment map ZNil(K) → k∗C ⊗ O(2) re-

stricts to a holomorphic section of k∗C⊗O(2) on each twistor line {m}×P1

in ZNil(K), and gives us a map

φ : Nil(K) → H0(P1, k∗C ⊗O(2))

as in Remark 1.1. For any p ∈ P1 the composition of φ with the evalu-
ation map

H0(P1, k∗C ⊗O(2)) → k∗C ⊗O(2)p
is injective, and its image is the nilpotent cone in k∗C = kC if we choose
any basis for the one-dimensional complex vector space O(2)p to identify
k∗C ⊗ O(2)p with k∗C. If we fix the complex structure corresponding to
[1 : 0] ∈ P1 to identify Nil(K) with the nilpotent cone in k∗C, then φ is
given by

φ(η)[u : v] = u2η + 2uvΦn(η)− v2η̄T

when η ∈ kC is nilpotent and [u : v] ∈ P1 and Φn is as at Lemma 2.5.
The map φ : Nil(K) → H0(P1, k∗C ⊗O(2)) induces an embedding

φZ : ZNil(K) = P1 ×Nil(K) → P1 ×H0(P1, k∗C ⊗O(2))

which is not holomorphic, as well as the holomorphic embedding

ZNil(K) → k∗C ⊗O(2).

This map (which may also be viewed as the twistor moment map for
the KC action) is the composition of φZ with the natural map

P1 ×H0(P1, k∗C ⊗O(2)) → k∗C ⊗O(2).
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The real structure on ZNil(K) extends to the real structure on P1 ×
H0(P1, k∗C ⊗O(2)) determined by the standard real structure ζ 7→ −1/ζ̄

on P1 and the real structure η 7→ −η̄T on kC.
If X is any hyperkähler manifold on which K = SU(n) acts with

hyperkähler moment map µX : X → k∗ ⊗ R3 and corresponding

φX : X → H0(P1, k∗C ⊗O(2))

as in Remark 1.1, then we obtain a stratified hyperkähler space

Xnil = (X ×Nil(K))///K =
⊔

O

φ−1
X (φ(O))/K

where the strata are indexed by the nilpotent co-adjoint orbits O in k∗C.
Since φX and φ are K-equivariant and KC = KPO, the stratum indexed
by O is given by

φ−1
X (φ(O))/K ∼= φ−1

X (φ(POηO))/KO,

where ηO is a representative of the orbit O in Jordan canonical form,
PO is the associated Jacobson–Morosov parabolic (see [3] Remark 3.8.5),
and KO = K ∩ PO.

It follows from [4] Theorem 7.18 that Nil(K) with any of its complex
structures is the non-reductive GIT quotient (in the sense of [6]) of
KC × b0 by the Borel B = TCN in KC. Hence if X is a complex affine
variety with respect to any of its complex structures, then Xnil is the
complex symplectic quotient (with respect to non-reductive GIT) of X
by the action of the Borel B.

3. Symplectic and hyperkähler implosion

In this section we recall the constructions of symplectic implosion
from [7] and hyperkähler implosion for K = SU(n) from [4, 5].

LetM be a symplectic manifold with Hamiltonian action of a compact
groupK. The imploded spaceMimpl is a stratified symplectic space with
a Hamiltonian action of the maximal torus T of K. It has the property
that, denoting symplectic reduction at λ by //sλ,

(3.1) M//sλK = Mimpl//
s
λT

for all λ in the closure t∗+ of a fixed positive Weyl chamber in t∗. In
particular the implosion (T ∗K)impl of the cotangent bundle T

∗K inherits
a Hamiltonian (K×T )-action from the Hamiltonian (K×K)-action on
T ∗K. This example is universal in the sense that for a general M we
have

Mimpl = (M × (T ∗K)impl)//
s
0K.

Concretely, the implosion (T ∗K)impl of T
∗K with respect to the right

action is constructed from K × t∗+ by identifying (k1, ξ) with (k2, ξ) if

k1k
−1
2 lies in the commutator subgroup of the K-stabilizer of ξ. The
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identifications which occur are therefore controlled by the face struc-
ture of the Weyl chamber. In particular, if ξ is in the interior of the
chamber, its stabilizer is a torus and no identifications are performed.
An open dense subset of (T ∗K)impl, therefore, is the product of K with
the interior of the Weyl chamber.

As explained in [7], when K is a connected, simply connected, semi-
simple compact Lie group, we may embed the universal symplectic im-
plosion (T ∗K)impl in the complex affine space E = ⊕V̟, where V̟ is
the K-module with highest-weight ̟ and we sum over a minimal gener-
ating set Π for the monoid of dominant weights. Under this embedding,
the implosion is identified with the closure KCv, where v is the sum of
the highest-weight vectors v̟ of the K-modules V̟, and as usual KC

denotes the complexification of K. This gives an alternative, more alge-
braic, description of the implosion as a stratified space. For the stabilizer
of v is a maximal unipotent subgroup N of KC (that is, the commutator
subgroup [B,B] of the corresponding Borel subgroup B) and hence we
may regard KCv as KC/N . The lower-dimensional strata which we ob-
tain by taking the closure are just the quotients KC/[P,P ] for standard
parabolic subgroups P of KC. These standard parabolics are, of course,
in bijective correspondence with the faces of the Weyl chamber, and this
algebraic stratification is compatible with the symplectic stratification
described above.

The whole implosion may be identified with the Geometric Invariant
Theory (GIT) quotient of KC by the non-reductive group N :

KC//N = Spec(O(KC)
N );

it is often useful to view this as the canonical affine completion of the
quasi-affine variety KC/N (cf. [6]).

Recalling the Iwasawa decomposition KC = KAN , where TC = TA,
we see that

(3.2) KCv = KAv = K(TCv),

so the implosion is described as the sweep under the compact group K
of a toric variety TCv. This toric variety is associated to the positive
Weyl chamber t+ and is in fact the subspace

EN =
⊕

̟∈Π

Cv̟

of E spanned by the highest-weight vectors v̟. The canonical affine
completion KC//N of KC/N has a resolution of singularities

K̃C//N = KC ×B EN → KC//N

induced by the group action KC × EN → E.
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As explained in [4] one can also construct the symplectic implosion
for K = SU(n) using symplectic quivers. These are diagrams

(3.3) 0 = V0
α0→ V1

α1→ V2
α2→ · · · αr−2→ Vr−1

αr−1→ Vr = Cn

where Vi is a vector space of dimension ni. We realized the symplectic
implosion as the GIT quotient of the space of full flag quivers (that is,

where r = n and ni = i), by
∏r−1

i=1 SL(Vi), where this group acts by

αi 7→ gi+1αig
−1
i (i = 1, . . . , r − 2),

αr−1 7→ αr−1g
−1
r−1.

In [4] a hyperkähler analogue of the symplectic implosion was intro-
duced for the group K = SU(n). We consider quiver diagrams of the
following form:

0 = V0

α0

⇄
β0

V1

α1

⇄
β1

V2

α2

⇄
β2

· · ·
αr−2

⇄
βr−2

Vr−1

αr−1

⇄
βr−1

Vr = Cn

where Vi is a complex vector space of complex dimension ni and α0 =
β0 = 0. The space M of quivers for fixed dimension vector (n1, . . . , nr)
is a flat hyperkähler vector space.

As discussed earlier, there is a hyperkähler action of U(n1) × · · · ×
U(nr) on this space given by

αi 7→ gi+1αig
−1
i , βi 7→ giβig

−1
i+1 (i = 1, . . . r − 1),

with gi ∈ U(ni) for i = 1, . . . , r. Recall that we defined H̃ be the sub-
group, isomorphic to U(n1)×· · ·×U(nr−1), given by setting gr = 1. We

also let H = SU(n1)× · · · × SU(nr−1) 6 H̃.

Definition 3.4. The universal hyperkähler implosion for SU(n) is
the hyperkähler quotient Q = M///H, where M,H are as above with
r = n and nj = j, for j = 1, . . . , n.

This hyperkähler quotient Q has a residual action of (S1)n−1 = H̃/H
as well as an action of SU(nr) = SU(n). As explained in [4] we may
identify (S1)n−1 with the maximal torus T of SU(n). There is also an
Sp(1) = SU(2) action which is not hyperkähler but rotates the complex
structures.

Using the standard theory relating symplectic and GIT quotients, we
have a description of Q = M///H, as the quotient (in the GIT sense) of
the subvariety defined by the complex moment map equations

αiβi − βi+1αi+1 = λC
i+1I (0 6 i 6 r − 2)(3.5)
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where λC
i for 1 6 i 6 r − 1 are complex scalars, by the action of

HC =

r−1
∏

i=1

SL(ni,C)

αi 7→ gi+1αig
−1
i , βi 7→ giβig

−1
i+1 (i = 1, . . . r − 2),(3.6)

αr−1 7→ αr−1g
−1
r−1, βr−1 7→ gr−1βr−1,(3.7)

where gi ∈ SL(ni,C).
The element X = αr−1βr−1 ∈ Hom(Cn,Cn) is invariant under the ac-

tion of
∏r−1

i=1 GL(ni,C) and transforms by conjugation under the resid-
ual SL(n,C) = SL(nr,C) action on Q. We thus have a TC-invariant and
SL(n,C)-equivariant map Q → sl(n,C) given by

(α, β) 7→ (X)0 = X − 1

n
tr(X)In

where In is the n×n identity matrix. This is the complex moment map
for the residual SU(n) action.

It is shown in [4] that X satisfies an equation

X(X + ν1) . . . (X + νn−1) = 0

where νi =
∑r−1

j=i λ
C
j . This generalizes the equation Xn = 0 in the

quiver construction of the nilpotent variety in [12] and is a consequence
of Lemma 5.9 from [4] which gives information about the eigenvalues of
X and other endomorphisms derived from final segments of the quiver.
Define

(3.8) Xk = αr−1αr−2 . . . αr−kβr−k . . . βr−2βr−1 (1 6 k 6 r − 1)

so that X = X1. It is proved in [4] Lemma 5.9 that for (α, β) ∈ µ−1
C (0),

satisfying (3.5), we have

(3.9) XkX = Xk+1 − (λC
r−1 + · · ·+ λC

r−k)Xk.

It follows from this by induction on j that if 0 ≤ j < k < r, then

Xk = Xk−jX
j +

j
∑

i=1

σi(νr−k+1, . . . , νr−k+j)Xk−jX
j−i

where σi denotes the ith elementary symmetric polynomial. In particu-
lar putting j = k − 1 gives us

Xk = Xk +

k−1
∑

i=1

σi(νr−k+1, . . . , νr−1)X
k−i = X

k−1
∏

i=1

(X + νr−i),

so

Xk =

k−1
∏

i=0

(X +

i
∑

j=1

λC
r−j).

Thus we have the following lemma.
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Lemma 3.10. If 1 6 k 6 r − 1, then

∧r−k(αr−1αr−2 · · ·αr−k)∧r−k (βr−k · · · βr−1) = ∧r−k
k−1
∏

i=0

(X +

i
∑

j=1

λC
r−j).

Recall from (3.2) that the universal symplectic implosion is the KC-
sweep of a toric variety TCv. In [5] we found a hypertoric variety map-
ping generically injectively to the hyperkähler implosion. Hypertoric
varieties are hyperkähler quotients of flat quaternionic spaces Hd by
subtori of (S1)d; for more background see [1, 8].

Definition 3.11. Let MT be the subset of M consisting of hy-
perkähler quivers of the form

αk =













0 · · · 0 0
νk1 0 · · · 0
0 νk2 · · · 0

· · ·
0 · · · 0 νkk













and

βk =









0 µk
1 0 · · · 0

0 0 µk
2 · · · 0

· · ·
0 0 · · · 0 µk

k









for some νki , µ
k
i ∈ C. Note that this definition of MT differs slightly from

the definition in [5], but only by the action of an element of the Weyl
group of H ×K.

As explained in [5], for quivers of this form the moment map equations
for the action ofH reduce to the moment map equations for the action of
its maximal torus TH which is the product over all k from 1 to n−1 of the
standard maximal tori in SU(k). We say that the quiver is hyperkähler
stable if it has all αi injective and all βi surjective after a suitable rotation
of complex structures. For quivers of the form above, this means that
µk
i and νki do not both vanish for any (i, k) with 1 ≤ i ≤ k < n.

Two hyperkähler stable quivers of this form satisfying the hyperkähler
moment map equations lie in the same orbit for the action of H if and
only if they lie in the same orbit for the action of its maximal torus TH .
We therefore get a natural map ι from the hypertoric variety MT ///TH

to the implosion Q = M///H, which restricts to an embedding

ι : Qhks
T → Q

where Qhks
T = Mhks

T ///TH and Mhks
T denotes the hyperkähler stable ele-

ments of MT . Let QT = ι(MT ///TH) be the image of ι : MT ///TH → Q.

The space MT is hypertoric for the maximal torus TH̃ of H̃, and

MT ///TH is hypertoric for the torus TH̃/TH = H̃/H = (S1)n−1, which
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can be identified with T as in [5, §3], in such a way that the induced
action of K × T on Q restricts to an action of T × T on QT such that
(t, 1) and (1, t) act in the same way on QT for any t ∈ T .

Indeed, by [5, Remark 3.2], MT ///TH is the hypertoric variety for T
associated to the hyperplane arrangement in its Lie algebra t given by
the root planes.

Remark 3.12. The root planes in the Lie algebra of the maximal
torus TU(n) of U(n) are the coordinate hyperplanes in Lie(TU(n)) = Rn,
and the corresponding hypertoric variety for TU(n) is H

n. Thus we can
identify MT ///TH with the hypertoric variety

{(w1, . . . , wn) ∈ Hn : w1 + · · ·+ wn = 0}
for T = (S1)n−1.

4. Toward an embedding of the universal hyperkähler

implosion in a linear representation of K × T

Let ℓj = j(n−j). In this section we define aK×T×SU(2)-equivariant
map σ from the universal hyperkähler implosion Q for K = SU(n) to

R = H0(P1, (O(2) ⊗ (kC ⊕ tC))⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn)

and an associated holomorphic map σ̃ from the twistor space of Q to
the vector bundle (O(2)⊗ (kC ⊕ tC))⊕

⊕n−1
j=1 O(ℓj)⊗∧jCn over P1; the

first of these maps is proved to be injective, and the second is proved to
be generically injective in §6.

As in §3 the universal symplectic implosion (T ∗K)impl for K = SU(n)
has a canonical embedding in a linear representation of K×T associated
to its description as the non-reductive GIT quotient

KC//N = Spec(O(KC)
N )

where N is a maximal unipotent subgroup of the complexification KC =
SL(n,C) of K (cf. [7]). The highest weights of the irreducible represen-
tations Cn,∧2Cn, . . . ,∧n−1Cn of K generate the monoid of dominant
weights, and each ∧jCn becomes a representation of K×T when T acts
as multiplication by the inverse of the corresponding highest weight.
Then KC//N is embedded in the representation

Cn ⊕ ∧2Cn ⊕ · · · ⊕ ∧n−1Cn

of K × T as the closure of the KC-orbit of

n−1
∑

j=1

vj

where vj ∈ ∧jCn is a highest-weight vector, fixed by N .



TWISTOR SPACES FOR HYPERKÄHLER IMPLOSIONS 55

Similarly, we expect the universal hyperkähler implosion for K =
SU(n) to have an embedding in a representation of K × T . In this
section we will define a map which will later be shown to provide such
an embedding.

Let

(4.1) 0
α0

⇄
β0

C
α1

⇄
β1

C2
α2

⇄
β2

· · ·
αn−2

⇄
βn−2

Cn−1
αn−1

⇄
βn−1

Cn

be a quiver in M which satisfies the hyperkähler moment map equations
for

H =

n−1
∏

k=1

SU(k).

Recalling that α0 = β0 = 0, these equations are given by

(4.2) αiβi − βi+1αi+1 = λC
i+1I (0 6 i 6 n− 2),

where λC
i ∈ C for 1 6 i 6 n− 1, and

(4.3) αiα
∗
i − β∗

i βi + βi+1β
∗
i+1 − α∗

i+1αi+1 = λR
i+1I (0 6 i 6 n− 2),

where λR
i ∈ R for 1 6 i 6 n− 1. Then

(αn−1βn−1)0 = αn−1βn−1 −
1

n
tr(αn−1βn−1)In ∈ kC

is invariant under the action of H, as is
(

(uαn−1 + vβ∗
n−1)(−vα∗

n−1 + uβn−1)
)

0

for any (u, v) ∈ C2 representing an element of

SU(2) =

{(

u v
−v̄ ū

)

: |u|2 + |v|2 = 1

}

,

where α∗
n−1 and β∗

n−1 denote the adjoints of αn−1 and βn−1. The same
is true of

σ
(α,β)
j = ∧j(αn−1αn−2 · · ·αj) ∈ ∧jCn,

where the linear map ∧j(αn−1αn−2 · · ·αj) : ∧j Cj → ∧jCn is identified
with the image of the standard basis element of the one-dimensional
complex vector space ∧jCj, and the element

σ
(uα+vβ∗,−vα∗+uβ)
j = ∧j(uαn−1+ vβ∗

n−1)(uαn−2+ vβ∗
n−2) · · · (uαj + vβ∗

j )

of ∧jCn is also H-invariant for any (u, v) ∈ C2. Note that

P1 = SU(2)/S1

where

S1 =

{(

t 0
0 t̄

)

: |t| = 1

}

acts on SU(2) by left multiplication, and that

(4.4) (u, v) 7→
(

(uαn−1 + vβ∗
n−1)(−vα∗

n−1 + uβn−1)
)

0
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defines an element of

H0(P1,O(2)⊗ kC)

whose value on a point p of P1 is the value at the quiver (4.1) of the
corresponding complex moment map for the K-action on M (up to
multiplication by a non-zero complex scalar depending on a choice of
basis of the fiber O(2)p of the line bundle O(2) at p). Similarly, the map

(4.5) (u, v) 7→ u2λC + uvλR − v2λ̄C

defines an element of

H0(P1,O(2)) ⊗ tC

whose value on a point p of P1 is the value at the quiver (4.1) of the
corresponding complex moment map for the T -action on M (up to mul-
tiplication by a non-zero complex scalar depending on a choice of basis
of the fiber O(2)p). Again this map is defined in an H-invariant way.
Finally, if 1 6 j 6 n− 1, then
(4.6)

(u, v) 7→ σ
(uα+vβ∗ ,−vα∗+uβ)
j

= ∧j(uαn−1 + vβ∗
n−1)(uαn−2 + vβ∗

n−2) · · · (uαj + vβ∗
j ) ∈ ∧jCn

defines an element of

H0(P1,O(ℓj)⊗ ∧jCn).

Definition 4.7. Let ℓj = j(n − j) as before and let

σ : Q → R = H0(P1,O(2) ⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn)

be the map defined by combining (4.4), (4.5), and (4.6), above.

Remark 4.8. The projection of σ to H0(P1,O(2)⊗ (kC ⊕ tC)) is the
map φ associated as in Remark 1.1 to the action of K × T on Q.

Remark 4.9. Note that σ is (K ×T × SU(2))-equivariant when K×
T ×SU(2) acts on R as described in the introduction, and SU(2) acts on
Q (commuting with the actions of K and T ) via the inclusion SU(2) =
Sp(1) 6 H∗. Moreover, the evaluation

σp : Q → O(2)p ⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)p ⊗ ∧jCn ∼= kC ⊕ tC ⊕
n−1
⊕

j=1

∧jCn

of σ at any point p of P1 is a morphism of complex affine varieties with
respect to the complex structure on Q determined by that point of P1.
Furthermore, the projection of σp to kC and to tC can be identified with
the complex moment map for the complex structure associated to p for
the action of K and of T on Q, once we have fixed a basis element
for the fiber O(2)p of the line bundle O(2) at p. Of course, a choice of
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basis elements for the fibers O(ℓj)p of the line bundles O(ℓj) at p for
all j > 1 is determined canonically by a choice of basis element for the
fiber O(1)p of the line bundle O(1) at p, and so σp determines a map

Q → kC⊕tC⊕
⊕n−1

j=1 ∧jCn canonically up to the action of C∗ with weight

2 on kC ⊕ tC and weight ℓj on ∧jCn.

Remark 4.10. Note that if uαj + vβ∗
j is injective for each j, then

the projection of σ[u:v] onto E =
⊕n−1

j=1 ∧jCn maps the quiver into the
KC-orbit of the sum

n−1
∑

j=1

vj ∈ EN ⊆ E

of highest-weight vectors vj in the fundamental representations ∧jCn

of K = SU(n) for j = 1, . . . , n − 1. Since this condition is satisfied
by generic quivers in Q, it follows that the projection of σ[u:v] onto

E =
⊕n−1

j=1 ∧jCn maps Q into the canonical affine completion

KC//N = KC





n−1
∑

j=1

vj



.

Indeed, recall from [7] that KC//N is the union of finitely many KC-
orbits, one for each face τ of the positive Weyl chamber t+ for K, with
stabilizer the commutator subgroup [Pτ , Pτ ] of the corresponding para-
bolic subgroup Pτ of KC whose intersection with K is the stabiliser Kτ

of τ under the (co-)adjoint action of K. It follows from Theorem 6.13
of [4] that if q ∈ Q, then for generic p ∈ P1 the projection of σp onto

E =
⊕n−1

j=1 ∧jCn lies in the KC-orbit in KC//N with stabilizer [Pτ , Pτ ]
where τ is the face of t+ whose stabilizer Kτ in K is the stabilizer Kλ

of the image λ ∈ k⊗R3 of q under the hyperkähler moment map for the
action of T on Q.

We will prove in §6 the following theorem.

Theorem 4.11. The map σ : Q → R defined at Definition 4.7 is
injective.

Remark 4.12. It follows from Remark 4.9 that if q ∈ Q, then σ(q)
determines the image of q under the hyperkähler moment maps for the
actions of T and K on Q. Recall that the hyperkähler reductions by the
action of T on the universal hyperkähler implosion Q for K = SU(n)
are closures of co-adjoint orbits of KC = SL(n,C). In particular, the
hyperkähler reduction at level 0 is the nilpotent cone for KC, which
is identified in [12] with the hyperkähler quotient M///H̃, where H̃ =
∏n−1

k=1 U(k). This hyperkähler quotient carries an SU(n) action induced
from the action of this group on the top space Cn of the quiver. We
recalled in §2 that, for any choices of complex structures, the complex
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moment mapM///H̃ → kC for this action induces a bijection fromM///H̃
onto the nilpotent cone in kC, and thus the hyperkähler moment map
M///H̃ → k⊗R3 provides a bijection from M///H̃ to its image in k⊗R3.
Moreover, this image is a (K×SU(2))-invariant subset Nil(K) of k⊗R3

such that after acting by any element of SU(2) the projection Nil(K) →
kC given by the decomposition R3 = C ⊕ R is a bijection onto the
nilpotent cone in kC.

We obtain an induced map σ̃ from the twistor space ZQ of Q to the
vector bundle

O(2)⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗∧jCn

over P1. It is the composition of the product of the identity on P1 and
σ from Q to R with the natural evaluation map from P1 ×R to

O(2)⊗ (kC ⊕ tC)⊕
n−1
⊕

j−1

O(ℓj)⊗ ∧jCn.

As in Remark 4.9 we see that σ̃ is holomorphic and (K × T × SU(2))-
equivariant. We will prove in §6 the following theorem.

Theorem 4.13. The map

σ̃ : ZQ → O(2)⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn

is generically injective; that is, its restriction to a dense Zariski-open
subset of ZQ is injective.

Remark 4.14. It follows from Remark 4.10 and (5.3), below, that
the image of σ̃ is contained in the subvariety of O(2) ⊗ (kC ⊕ tC) ⊕
⊕n−1

j=1 O(ℓj)⊗∧jCn whose fiber at any p ∈ P1 is identified (after choosing

any basis vector for O(1)p and thus for O(ℓj)p for all j > 1) with the
product of

{ (η, ξ) ∈ kC × tC : η and ξ have the same eigenvalues }
and the canonical affine completion KC//N of KC/N . We can also im-
pose the condition provided by Lemma 3.10. The image of σ satisfies
analogous constraints.

5. Stratifying the universal hyperkähler implosion for SU(n)
and its twistor space

In this section we recall the stratification given in [4] of the univer-
sal hyperkähler implosion Q for K = SU(n) into strata which are hy-
perkähler manifolds and its refinement in [5]. The refined stratification
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has strata Q[∼,O] indexed in terms of Levi subgroups and nilpotent or-
bits in KC = SL(n,C). The latter stratification is not hyperkähler but
reflects well the group structure of K = SU(n). These stratifications
induce corresponding stratifications of the twistor space of Q.

First of all, given a quiver we may decompose each space in the quiver
into generalized eigenspaces ker(αiβi − τI)m of αiβi. We showed in [4]
using the complex moment map equations (3.5) that βi and αi preserve
this decomposition. More precisely, we have

(5.1) βi : ker(αiβi − τI)m → ker(αi−1βi−1 − (λC
i + τ)I)m

and

(5.2) αi : ker(αi−1βi−1 − (λC
i + τ)I)m → ker(αiβi − τI)m.

So we actually have a decomposition into subquivers. Moreover, we
showed the maps (5.1) and (5.2) are bijective unless τ = 0.

It follows that τ 6= 0 is an eigenvalue of αiβi if and only if τ+λC
i 6= λC

i
is an eigenvalue of αi−1βi−1. Moreover, αiβi has zero as an eigenvalue
and αi, βi restrict to maps between the associated generalized eigenspace
with eigenvalue 0 and the generalized eigenspace for αi−1βi−1 associated
to λC

i (which could be the zero space).
One can deduce that the trace-free part X0 of X = αn−1βn−1 now

has eigenvalues κ1, . . . , κn, where

κj =
1

n

(

λC
1 + 2λC

2 + · · ·+ (j − 1)λC
j−1

− (n− j)λC
j − (n− j − 1)λC

j+1 − · · · − λC
n−1

)

.

In particular, if i < j, then

(5.3) κj − κi = λC
i + λC

i+1 + · · ·+ λC
j−1.

This shows that to understand the quiver it is important to understand
when collections of λi sum to zero.

Now we recall that

T = (S1)n−1 =
n−1
∏

k=1

U(k)/SU(k) = H̃/H

acts on Q = M///H with hyperkähler moment map

µ(S1)n−1 : Q → t⊗ R3 = (R3)n−1 = (C⊕ R)n−1

which maps a quiver to

(λ1, . . . , λn−1) = (λC
1 , λ

R
1 , . . . , λ

C
n−1, λ

R
n−1).
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Definition 5.4. For each choice of (λ1, . . . , λn−1) we define an equiv-
alence relation ∼ on {1, . . . , n} by declaring that if 1 6 i < j 6 n then

i ∼ j ⇐⇒
j−1
∑

k=i

λk = 0 in R3.

There is thus a stratification of (R3)n−1 = t⊗R3 into strata (R3)n−1
∼ =

(t ⊗ R3)∼, indexed by the set of equivalence relations ∼ on {1, . . . , n},
where

(R3)n−1
∼ = {(λ1, . . . , λn−1) ∈ (R3)n−1 : if 1 6 i < j 6 n then

i ∼ j ⇐⇒
j−1
∑

k=i

λk = 0 in R3}.

Under the identification of T with (S1)n−1 using the positive simple
roots as a basis for t, this stratification of (R3)n−1 = t ⊗ R3 is induced
by the stratification of t associated to the root planes in t (see [4, §3]
and Remark 3.12).

We thus obtain a stratification of Q into subsets Q∼, which are the
preimage in Q under µ(S1)n−1 of (R3)n−1

∼ .
The choice of ∼ corresponds to the choice of a subgroup K∼ of K

which is the compact real form of a Levi subgroup of KC; this subgroup
K∼ is the centralizer of µ(S1)n−1(q) ∈ t⊗ R3 for any q ∈ Q∼.

We observe from (5.3) that if i ∼ j, then we have equality of the
eigenvalues κi and κj .

Now let Q◦ denote the subset of Q consisting of quivers such that

j−1
∑

k=i

λk = 0 in R3 ⇐⇒
j−1
∑

k=i

λC
k = 0 in C,

and for each equivalence relation ∼ on {1, 2, . . . , n} let Q◦
∼ denote its

intersection with Q∼, consisting of quivers such that

i ∼ j ⇐⇒
j−1
∑

k=i

λk = 0 in R3 ⇐⇒
j−1
∑

k=i

λC
k = 0 in C.

The full implosion Q is the sweep of Q◦ under the SU(2) action.
For a quiver q in Q◦ the equivalence relation ∼ for which q ∈ Q∼

is determined by the fact that we have equality of the eigenvalues κi
and κj of the trace-free part X0 of X = αn−1βn−1 if and only if i ∼
j. In particular, if q ∈ Q◦, then (K∼)C is the subgroup of KC which
preserves the decomposition of q into the subquivers determined by the
generalized eigenspaces of the compositions αiβi.

Remark 5.5. Unfortunately, Q◦ is not an open subset of Q, although
its intersection Q◦

∼ with Q∼ is open in Q∼ for each ∼. In fact, we

will show in forthcoming work that there is a desingularisation Q̂ of Q
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covered by open subsets sQ̂◦ for s ∈ SU(2) such that the image of the

open subset Q̂◦ of Q̂ under Q̂ → Q is Q◦.

Let us now return to considering the decomposition of the quiver into
subquivers

· · · V j
i

αi,j

⇄
βi,j

V j
i+1 · · ·

determined by the generalized eigenspaces (with eigenvalues τi+1,j) of
the compositions αiβi, such that

αi,jβi,j − βi+1,jαi+1,j = λC
i+1

and αi,j and βi,j are isomorphisms unless τi+1,j = 0. If for some j we
have that αk,j, βk,j are isomorphisms for i + 1 6 k < s but not for

k = i, s, then it follows that τi+1,j = τs+1,j = 0, hence
∑s

k=i+1 λ
C
k = 0,

and so since the quiver lies in Q◦
∼ we have

s
∑

k=i+1

λk = 0 ∈ R3.

As explained in [4] and [5], we may contract the subquivers at edges
where the maps are isomorphisms. Explicitly, if αi,j and βi,j are isomor-
phisms (which will occur when the associated τi+1,j is non-zero), then
we may replace

· · ·V j
i−1

αi−1,j

⇄
βi−1,j

V j
i

αi,j

⇄
βi,j

V j
i+1

αi+1,j

⇄
βi+1,j

V j
i+2

with

V j
i−1

αi−1,j

⇄
βi−1,j

V j
i

αi+1,jαi,j

⇄
(αi,j)−1βi+1,j

V j
i+2,

and then the complex moment map equations are satisfied with

αi−1,jβi−1,j − (αi,j)
−1βi+1,jαi+1,jαi,j = λC

i−1 + λC
i .

If we fix an identification of V j
i+1 with V j

i and apply the action of SL(Vi,j)
so that αi,j is a non-zero scalar multiple aI of the identity, then βi,j is
determined by αi−1,j, αi+1,j , βi−1,j , βi+1,j and the scalars a and λC

i via
the equations (3.5) (see [4] for more details).

After performing such contractions, the resulting quivers satisfy the
complex moment map equations with zero scalars. In other words, they
satisfy the complex moment map equations for the product of the rele-

vant GL(V j
i ). In fact, because our quiver is in Q◦, the full hyperkähler

moment map equations for the associated product of unitary groups
are satisfied, and the orbits under the action of the complex group are
closed.
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Remark 5.6. We are now in the situation analyzed by the third au-
thor and Kobak [12] in their construction of the nilpotent variety, as
discussed in §2. Their results, in particular Theorem 2.1 (cf. [4, Propo-
sition 5.16]), show that each contracted subquiver is the direct sum of
a quiver where all α are injective and all β are surjective and a quiver
in which all maps are 0. Moreover, the direct sum of the contracted
subquivers is completely determined (modulo the action of the product
of the GL groups) by the elements αn−1βn−1 at the top edge of each
injective/surjective subquiver. The argument of [12] shows these are
actually nilpotent.

We also observe that because ∼ determines the decomposition of the
original quiver into eigenspaces, the direct sum of these nilpotents is
actually a nilpotent element of (k∼)C. It coincides with X0

n, the nilpo-
tent part in the Jordan decomposition of the trace-free part X0 ∈ kC
of X = αn−1βn−1. (Recall that this is the unique decomposition X0 =
X0

s +X0
n whereX0

s andX0
n in kC satisfy [X0

s ,X
0
n] = 0 andX0

s is semisim-
ple while X0

n is nilpotent.) Furthermore, given ∼, the adjoint orbit of
this nilpotent element in (k∼)C corresponds precisely to determining the
dimensions of the various vector spaces in the injective/surjective sub-
quivers (see [5, Remarks 5.10 and 5.11]). For example, if a quiver has
all λi = 0, then ∼ has a single equivalence class, k∼ = k, and the choice
of O is just the choice of a nilpotent orbit in kC. At the other extreme, if
no non-trivial sums are zero, the equivalence classes are singletons and
K∼ is a torus. The orbit O must now be zero.

To each quiver in Q◦ we have associated an equivalence relation ∼
and a nilpotent orbit O in (k∼)C. Let Q◦

[∼,O] denote the set of quivers

in Q◦ with given ∼ and O, and let Q[∼,O] denote the SU(2) sweep of
Q◦

[∼,O]. We may therefore stratify Q as a disjoint union

Q =
∐

∼,O

Q[∼,O]

over all equivalence relations ∼ on {1, . . . , n} and all nilpotent adjoint
orbits O in (k∼)C.

Remark 5.7. Defining Q[∼,O] as the SU(2) sweep of Q◦
[∼,O] in this

way, it is not clear that the strata Q[∼,O] are disjoint. Hence in [5] a
different approach is taken in which the stratification {Q[∼,O]} of Q is
initially indexed differently; the equivalence between the two viewpoints
is made in [5, Remark 5.13].

Remark 5.8. The stratum Q[∼,O] in which a quiver lies is determined
by the values at the quiver of the hyperkähler moment maps for the
actions on Q of K = SU(n) and T = (S1)n−1.
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For the value (λ1, . . . , λn−1) of µ(S1)n−1 determines the equivalence
relation ∼ and also the generic choices of complex structures for which

(5.9)

j−1
∑

k=i

λk = 0 in R3 ⇐⇒
j−1
∑

k=i

λC
k = 0 in C.

Moreover, for such choices of complex structures the quiver decomposes
as a direct sum of subquivers determined by the generalized eigenspaces
of the composition αn−1βn−1, and this is given by the complex moment
map for the action of K. It follows that the Jordan type of αn−1βn−1

(for one of the generic choices of complex structures for which (5.9)
holds) determines the nilpotent orbit O in (k∼)C.

Remark 5.10. The stratification of Q into strata Q[∼,O] induces a
stratification of the twistor space ZQ into strata (ZQ)[∼,O].

Let ∼ be an equivalence relation on {1, . . . , n}, and let O be a nilpo-
tent adjoint orbit in (k∼)C. In [5] we explained how quivers in Q◦

[∼,O]

may be put in standard forms using Jordan canonical form.
As above, we first decompose q into a direct sum of subquivers de-

termined by the generalized eigenspaces of the compositions αiβi. Since
q lies in Q◦

[∼,O] each such subquiver is the direct sum of a quiver q[j] of

the form

(5.11) 0
α
[j]
0

⇄

β
[j]
0

Cm1

α
[j]
1

⇄

β
[j]
1

Cm2

α
[j]
2

⇄

β
[j]
2

· · ·
α
[j]
n−2

⇄

β
[j]
n−2

Cmn−1

α
[j]
n−1

⇄

β
[j]
n−1

Cmn

where the maps α
[j]
k for 1 6 k 6 n − 1 are injective and the maps β

[j]
k

for 1 6 k 6 n− 1 are surjective, together with quivers of the form (for
1 6 h 6 p)

Cdh

α
(h)
ih

⇄

β
(h)
ih

Cdh ⇄ · · · ⇄ Cdh

α
(h)
jh−2

⇄

β
(h)
jh−2

Cdh

in the places ih, ih + 1, . . . , jh − 1, where the maps α
(h)
k , β

(h)
k , for ih 6

k < jh − 1, are multiplication by complex scalars such that γ
(h)
k =

α
(h)
k + jβ

(h)
k ∈ H \ {0}. Moreover the combinatorial data here and the

Jordan type of αn−1βn−1 for each summand (5.11) is determined by the
pair (∼,O).

As explained in [5], we may use complex linear changes of coordinates
in KC × HC =

∏n
k=1 SL(k,C) to put αn−1βn−1 into Jordan canonical

form and then decompose the quiver (5.11) into a direct sum of quivers

determined by the Jordan blocks of α
[j]
n−1β

[j]
n−1. More precisely, α

[j]
k is a

direct sum over the set Bj of Jordan blocks for α
[j]
n−1β

[j]
n−1 of matrices of
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the form

(5.12)



















ξbjk1 0 · · · 0 0

νbjk1 ξbjk2 0 · · · 0

0 νbjk2 · · · 0
· · ·

0 · · · 0 νbjkℓb−n+k−1 ξbjkℓb−n+k

0 · · · 0 0 νbjkℓb−n+k



















for some νbjki , ξbjki ∈ C∗ where ℓb is the size of the Jordan block b ∈ Bj ,

while β
[j]
k is a corresponding direct sum over b ∈ Bj of matrices of the

form

(5.13)















0 µbjk
1 0 0 · · · 0

0 0 µbjk
2 0 · · · 0
· · ·

0 0 · · · 0 µbjk
ℓb−n+k−1 0

0 0 · · · 0 0 µbjk
ℓb−n+k















for some µbjk
i ∈ C∗, all satisfying the complex moment map equations

(3.5). The quiver given by the direct sum over all the Jordan blocks
⋃

j Bj for αn−1βn−1 has closed (HS)C-orbit. If we allow complex linear

changes of coordinates in KC × H̃C = SL(n,C) × ∏n−1
k=1 GL(k,C) (or

equivalently allow the action of its quotient group KC × TC on Q[∼,O]),
then the quiver can be put into a more restricted form which is com-
pletely determined by αn−1βn−1 and (λC

1 , . . . , λ
C
n−1), and hence by the

value of the complex moment map for the action of K × T on Q.

Remark 5.14. Let {e1, . . . , en} be the standard basis for Cn. When
complex linear changes of coordinates in KC ×HC are used to put the
quiver in the standard form given by (5.12) and (5.13), then

∧jαn−1 ◦ · · · ◦ αj

takes the standard basis vector for ∧jCj to a scalar multiple of e1∧· · ·∧
ej ∈ ∧jCn.

Let Q◦,JCF
[∼,O] be the subset of Q◦

[∼,O] representing quivers of the stan-

dard form described above via (5.12) and (5.13) where αn−1βn−1 is in
Jordan canonical form and the summands of the quiver corresponding
to generalized eigenspaces of the compositions αiβi (and thus to equiv-
alence classes for ∼) are ordered according to the usual ordering on the
minimal elements of the equivalence classes, and the Jordan blocks for
each equivalence class are ordered by size. Then in particular we have

Q◦
[∼,O] = KCQ

◦,JCF
[∼,O]
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and the nonempty fibers of the complex moment map

Q◦
[∼,O] → kC ⊕ tC

for the action of K × T are contained in KC × TC-orbits (see [5, §7 and
in particular Lemma 7.5]).

Remark 5.15. We can also identify Q◦,JCF
[∼,O]

with an open subset of a

hypertoric variety by replacing all the ξ entries in (5.13) with zero (see
[5, Lemma 7.13]).

More precisely, if a quiver q has α, β maps of the form given by
(5.12) and (5.13), then we may obtain a new quiver which still satisfies
the complex moment map equations by replacing all the ξ entries in β
by zero. The resulting maps are denoted by αT , βT .

So if q is any quiver representing a point in Q◦,JCF
[∼,O] whose Jordan

blocks are of the form given by αk and βk as above, then we may form
a new quiver qT from q by replacing each such Jordan block with the
quiver given by αT

k and βT
k . The new quiver now satisfies the complex

moment map equations for the action ofH, or equivalently for the action
of the maximal torus TH of H.

Remark 5.16. The subgroup of KC × TC preserving the standard
form must preserve the decomposition of q into subquivers given by the
generalized eigenspaces and hence must lie in (K∼)C × TC.

Let P be the parabolic subgroup of (K∼)C which is the Jacobson–
Morozov parabolic of the element of the nilpotent orbit O for (K∼)C
given by the nilpotent component of X0. In [5] we identified the group
which preserves the standard form as R[∼,O] × TC where R[∼,O] is the
centralizer in P of this nilpotent element. It follows that

(5.17) Q◦
[∼,O]

∼= (KC × TC)×(R[∼,O]×TC) Q
◦,JCF
[∼,O]

∼= KC ×R[∼,O]
Q◦,JCF

[∼,O] .

Moreover [P,P ] ∩R[∼,O] acts trivially on Q◦,JCF
[∼,O] . If we define T[∼,O] to

be the intersection of R[∼,O] with the maximal torus T , then (T[∼,O])C/

[P,P ] ∩ (T[∼,O])C acts freely on Q◦,JCF
[∼,O] .

The situation is summarized in the following theorem, which is The-
orem 8.1 of [5].

Theorem 5.18. For each equivalence relation ∼ on {1, . . . , n} and
nilpotent adjoint orbit O for (K∼)C, the stratum Q[∼,O] is the union
over s ∈ SU(2) of its open subsets sQ◦

[∼,O], and

Q◦
[∼,O]

∼= KC ×R[∼,O]
Q◦,JCF

[∼,O]

where R[∼,O] is the centralizer in (K∼)C of the standard representative

ξ0 in Jordan canonical form of the nilpotent orbit O in (k∼)C and Q◦,JCF
[∼,O]
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can be identified with an open subset of a hypertoric variety. The image
of the restriction

Q◦
[∼,O] → kC

of the complex moment map for the action of K on Q is KC((tC)∼⊕O) ∼=
KC ×(K∼)C ((tC)∼ ⊕O) and its fibers are single ((T[∼,O])C × TC)-orbits,
where (T[∼,O])C = TC∩R[∼,O] and (T[∼,O])C/[P,P ]∩(T[∼,O])C acts freely

on Q◦,JCF
[∼,O] . Here P is the Jacobson–Morozov parabolic of an element of

the nilpotent orbit O for (K∼)C, and [P,P ] ∩ (T[∼,O])C acts trivially on

Q◦,JCF
[∼,O] .

6. Embeddings

In this section we will prove that the map σ defined in §4 is injective
and the map σ̃ defined in §4 is generically injective.

First, consider the restriction of σ to the image QT in Q of the hy-
pertoric variety MT ///TH under the natural map ι : MT ///TH → Q (see
Definition 3.11).

Lemma 6.1. The restriction of

σ : Q → R = H0(P1, (O(2) ⊗ (kC ⊕ tC))⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn)

to QT = ι(MT ///TH) is injective.

This follows immediately from the following lemma.

Lemma 6.2. The restriction to QT = ι(MT ///TH) of the projection

σT : Q → H0(P1, (O(2) ⊗ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn)

of σ is injective.

Proof. By Remark 4.9 we can recover the value of the hyperkähler
moment map for the action of T on MT ///TH at any point from its image
under σT ◦ ι. Since MT ///TH is hypertoric, the fibers of this hyperkähler
moment map are T -orbits, so it suffices to show that σT is injective on
T -orbits in QT .

Recall that for any t ∈ T the action on QT of (t, 1) ∈ K × T is the
same as the action of (1, t) ∈ K × T . If q ∈ QT , then q ∈ sQ◦

[∼,O] for

some s ∈ SU(2) and stratum Q◦
[∼,O] with the nilpotent orbit O equal

to the zero orbit {0} in k∗C. Hence, in the notation of Theorem 5.18, we
have

R[∼,O] = P = (K∼)C and T[∼,O] = T,
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and thus the stabilizer of q in T is

T ∩ [P,P ] = T ∩ [K∼,K∼] = T ∩ [Kλ,Kλ]

where λ is the image of q under the hyperkähler moment map for the
action of T . Both σT and ι are T -equivariant, so it is enough to show
that the stabilizer in T of σT (q) is contained in T ∩ [Kλ,Kλ]. But it
follows from Remark 4.10 that the stabilizer of σT (q) in K is contained
in

Kλ ∩ (K ∩ [Pλ, Pλ]) = [Kλ,Kλ],

where Pλ is the standard parabolic in KC whose Levi subgroup is (Kλ)C
and whose intersection with K is Kλ, so the result follows. In more
detail, consider a quiver q in MT given as in Definition 3.11 by

αk =













0 · · · 0 0
νk1 0 · · · 0
0 νk2 · · · 0

· · ·
0 · · · 0 νkk













and

βk =









0 µk
1 0 · · · 0

0 0 µk
2 · · · 0

· · ·
0 0 · · · 0 µk

k









for some νki , µ
k
i ∈ C. For every (u, v) ∈ C2 and every j ∈ {1, . . . , n− 1},

its image under the composition σT ◦ ι determines the element

∧j(uαn−1 + vβ∗
n−1)(uαn−2 + vβ∗

n−2) · · · (uαj + vβ∗
j ) ∈ ∧jCn,

where

uαk + vβ∗
k =













0 · · · 0 0
uνk1 + vµ̄k

1 0 · · · 0
0 uνk2 + vµ̄k

2 · · · 0
· · ·

0 · · · 0 uνkk + vµ̄k
k













,

and thus determines the product

n−1
∏

k=j

j
∏

i=1

(uνki + vµ̄k
i ).

The action of an element t of T ∼= (S1)n−1 ∼=
∏n−1

j=1 U(j)/SU(j) repre-

sented by matrices Aj ∈ U(j) for j = 1, . . . , n−1 multiplies this product
by

n−1
∏

k=j

detAk.
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The contracted quivers associated as in Remark 5.6 to a quiver of this
form are all identically zero. Thus this product is non-zero (and hence
∏n−1

k=j detAk = 1 if t stabilizes σT (q)) precisely when j+1 is the smallest
element of its equivalence class under ∼. This tells us that the stabilizer
in T of σT (q) is contained in [Kλ,Kλ] as required. q.e.d.

Remark 6.3. We note that on the subset Q◦,JCF
[∼,O] embedded in the

hypertoric variety as in Remark 5.15, the fibers of the complex moment
map for the complex structure associated to [1 : 0] are TC-orbits. More-
over, a straightforward modification of the above proof shows that the
composition (σT )[1:0] of σT with evaluation at [1 : 0] ∈ P1 is injective on

TC-orbits in Q◦,JCF
[∼,O] , and thus that (σT )[1:0] is injective on Q◦,JCF

[∼,O] .

We now turn to showing injectivity for the map σ on the full implo-
sion Q.

By Remark 5.8 it suffices to show that the restriction of σ to any
stratumQ[∼,O] is injective. Indeed, we need only show that its restriction
to Q◦

[∼,O] is injective, since if two points lie in Q[∼,O], then there is some

s in SU(2) such that they both lie in sQ◦
[∼,O], and σ is by construction

SU(2)-equivariant. We will do this by showing that the restriction to
Q◦

[∼,O] of the composition σ[1:0] of σ with evaluation at [1 : 0] ∈ P1 is

injective, and this will also show that σ̃ is generically injective.

Proposition 6.4. For any equivalence relation ∼ on {1, . . . , n} and
nilpotent co-adjoint orbit O in k∗C, the restriction

σ[1:0] : Q
◦
[∼,O] → (kC ⊕ tC)⊗O(2)[1:0] ⊕

n−1
⊕

j=1

∧j(Cn)⊗O(ℓj)[1:0]

to Q◦
[∼,O] of the composition σ[1:0] of σ with evaluation at [1 : 0] ∈ P1 is

injective.

Proof.

σ[1:0] : Q
◦
[∼,O] → (kC ⊕ tC)⊗O(2)[1:0] ⊕

n−1
⊕

j=1

∧j(Cn)⊗O(ℓj)[1:0]

is holomorphic and (K ×T )-equivariant, so it is (KC ×TC)-equivariant.
By Theorem 5.18

Q◦
[∼,O]

∼= KC ×R[∼,O]
Q◦,JCF

[∼,O]

where R[∼,O] is the centralizer in (K∼)C of the standard representative
ξ0 in Jordan canonical form of the nilpotent orbit O in (k∼)C. It follows

immediately from the definition of Q◦,JCF
[∼,O] by looking at the projection

of σ[1:0] to kC ⊗O(2)[1:0] that if g ∈ KC and q ∈ Q◦,JCF
[∼,O] and

(6.5) gσ[1:0](q) ∈ σ[1:0](Q
◦,JCF
[∼,O] ),
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then g ∈ R[∼,O].
Proposition 6.4 now follows from the following lemma.

Lemma 6.6. The restriction of σ[1:0] to Q◦,JCF
[∼,O] is injective.

Proof. As in Theorem 5.18, Q◦,JCF
[∼,O] can be identified with an open

subset of a hypertoric variety by associating to a quiver q ∈ Q◦,JCF
[∼,O] with

blocks of the form (5.12) and (5.13) a quiver qT where each ξijkℓ in q is
replaced with zero (cf. Remark 5.15). This hypertoric variety is (up to
the action of the Weyl group of H ×K) a subvariety of QT . Moreover,
the projection (σT )[1:0] of σ[1:0] to

tC ⊗O(2)[1:0] ⊕
n−1
⊕

j=1

∧j(Cn)⊗O(ℓj)[1:0]

satisfies (σT )[1:0](q
T ) = (σT )[1:0](q), so the result follows immediately

from Lemma 6.2 and Remark 6.3. q.e.d.

To complete the proof of Proposition 6.4, suppose that σ[1:0](g1q1) =
σ[1:0](g2q2) where g1 and g2 are elements of KC and q1 and q2 are ele-

ments of Q◦,JCF
∼,O . As σ[1:0] is equivariant, we have r = g−1

1 g2 ∈ R[∼,O]

as at (6.5), and hence σ[1:0](g1q1) = σ[1:0](g1rq2). Hence by equivariance

σ[1:0](q1) = σ[1:0](rq2) where both rq2 and q1 lie inQ◦,JCF
[∼,O] , so Lemma 6.6

shows that q1 = rq2 and thus that g1q1 = g2q2, as desired. q.e.d.

This completes the proof of Theorem 4.11. Moreover, since the map

σ̃ : ZQ → O(2)⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn

is compatible with the projections to P1 and is SU(2)-equivariant, it
follows immediately from Proposition 6.4 that σ̃ is injective on the dense
subset of ZQ = P1 ×Q which is the union over all (∼,O) of the SU(2)-
sweep of {[1 : 0]} × Q◦

[∼,O]. In particular σ̃ is injective on the dense

Zariski-open subset of ZQ = P1 × Q which is the SU(2)-sweep of {[1 :
0]} ×Q◦

[∼,O] where ∼ and O are such that i ∼ j if and only if i = j and

O = {0}. Therefore the proof of Theorem 4.13 is also complete.

Remark 6.7. It follows from [5, Remark 3.4 and §7] that the image
of σ : Q → R is the closure in R of the KC-sweep of the image σ(QT )
in R of the hypertoric variety MT ///TH associated to the hyperplane
arrangement in t given by the root planes (see Definition 3.11, above).
Here σ(QT ) = σ(ι(MT ///TH)) where the composition σ ◦ ι : MT ///TH →
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R takes a quiver of the form

αk =













0 · · · 0 0
νk1 0 · · · 0
0 νk2 · · · 0

· · ·
0 · · · 0 νkk













and

βk =









0 µk
1 0 · · · 0

0 0 µk
2 · · · 0

· · ·
0 0 · · · 0 µk

k









to the section ρK+ρT+
∑n−1

j=1 ρj of O(2)⊗(kC⊕tC)⊕
⊕n−1

j=1 O(ℓj)⊗∧jCn

where

ρK(u, v) = ρT (u, v) =
(

(uαn−1 + vβ∗
n−1)(−vα∗

n−1 + uβn−1)
)

0

=

















0 0 · · · 0

0
(uνn−1

1 + vµ̄n−1
1 )×

(−vν̄n−1
1 + uµn−1

1 )
· · · 0

· · ·

0 0 · · · (uνn−1
n−1 + vµ̄n−1

n−1)×
(−vν̄n−1

n−1 + uµn−1
n−1)

















−
n−1
∑

i=1

(uνn−1
i + vµ̄n−1

i )(−vν̄n−1
i + uµn−1

i )

n
In

and

ρj(u, v) =
n−1
∏

k=j

j
∏

i=1

(uνki + vµ̄k
i )ej+1 ∧ · · · ∧ en

where e1, . . . , en form the standard basis for Cn.
For any p ∈ P1 the projection to

n−1
⊕

j=1

O(ℓj)p ⊗ ∧jCn ∼=
n−1
⊕

j=1

∧jCn

of the evaluation σp of σ at p takes QT to the toric variety TCv where

v ∈
⊕n−1

j=1 ∧jCn is the sum v =
∑n−1

j=1 vj of highest-weight vectors vj ∈
∧jCn. Moreover, if B = TCN is the standard Borel subgroup of KC =
SL(n,C) and N = [B,B] is its unipotent radical which fixes the highest-
weight vectors vj , then this projection also takes the closure BQT of

the B-sweep of QT to Bv = TCv. Thus this projection of σp takes
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Q = KCQT = KBQT to the universal symplectic implosion

KTCv = KCv ⊆
n−1
⊕

j=1

∧jCn.

Furthermore, σp takes QT (respectively BQT ) birationally into the sub-

variety tC ⊕ TCv (respectively n⊕ tC ⊕ TCv ∼= n⊕ σp(QT )) of

kC ⊕ tC ⊕
n−1
⊕

j=1

∧jCn ∼= O(2)p ⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)p ⊗ ∧jCn,

where n is the Lie algebra of N and tC is embedded diagonally in kC⊕tC,
while n⊕ tC is embedded via (ξ, η) 7→ (ξ + η, η).

Since Q = KCQT = KBQT and BQT is (T )-invariant, we get a
birational K × T -equivariant surjection

K ×T BQT → Q.

Similarly, the twistor space ZQ of Q is the closure in P1 ×R of the KC-
sweep of the twistor space ZQT

of the image QT in R of the hypertoric
variety MT ///TH . We have

ZQ = KCZQT
= KBZQT

,

and there is a birational surjection

K ×T BZQT
→ ZQ.

Moreover, σ̃ restricts to T -equivariant birational morphisms

σ̃|ZQT
: ZQT

→ O(2)⊗ tC ⊕ TCv ⊆ O(2)⊗ (kC ⊕ tC)⊕
n−1
⊕

j=1

O(ℓj)⊗∧jCn

and σ̃|BZQT

: BZQT
→ O(2) ⊗ (n ⊕ tC) ⊕ TCv. Thus the twistor space

ZQ is birationally equivalent to K ×T ((O(2) ⊗ n)⊕ZQT
).

7. The twistor space of the universal hyperkähler implosion

for SU(n)

In this section we will describe the full structure of the twistor space
ZQ of Q in terms of the embedding σ of Q in the space of holomorphic

sections of the vector bundle O(2) ⊗ (kC ⊕ tC) ⊕
⊕n−1

j=1 O(ℓj) ⊗ ∧jCn

over P1 and consider the cases when n = 2 and n = 3 in detail. The
embedding σ gives us an embedding σZ of the twistor space ZQ = P1×Q
of Q into P1 ×R, where, as always,

R = H0(P1, (O(2) ⊗ (kC ⊕ tC))⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn).
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This map σZ is not holomorphic; however its composition σ̃ with the
natural evaluation map from P1 ×R to

(O(2) ⊗ (kC ⊕ tC))⊕
n−1
⊕

j=1

O(ℓj)⊗ ∧jCn

is holomorphic and (K×T×SU(2))-equivariant (see Remark 4.9), and σ̃
is generically injective by Theorem 4.13. Indeed, as we saw at the end of
the last section, σ̃ is injective on the dense subset of ZQ = P1×Q which
is the union over all (∼,O) of the SU(2)-sweep of {[1 : 0]} ×Q◦

[∼,O].

It follows that if q ∈ Q lies in the stratum Q[∼,O] indexed by equiva-
lence relation ∼ and nilpotent co-adjoint orbit O, then we can find an
open neighborhood Uq of q in Q[∼,O] and a closed subset Bq of P1 of
arbitrarily small area such that the restriction of σ̃ to the open subset
(P1 \Bq)× Uq of ZQ is a holomorphic embedding. Since we can choose
Bq sufficiently small that there is some s ∈ SU(2) for which s(P1 \ Bq)
contains the points corresponding to the complex structures i, j, k on Q,
it follows that the hypercomplex structure on Q and thus the complex
structure on ZQ are determined by the embedding σ.

Now consider the holomorphic section ω[∼,O] of

∧2T ∗
F,Q[∼,O]

⊗O(2)

where T ∗
F,Q[∼,O]

is the tangent bundle along the fibers of the restriction

of π : ZQ = P1×Q → P1 to P1×Q[∼,O]. The reasoning above allows us to
consider the restriction of ω[∼,O] to {[1 : 0]} ×Q◦

[∼,O]. By Theorem 5.18

this can be identified with

KC ×(K∼)C ((K∼)C ×R[∼,O]
Q◦,JCF

[∼,O] )

where Q◦,JCF
[∼,O] can, in turn, be identified with an open subset of a hyper-

toric variety QT,[∼,O] and KC/(K∼)C and (K∼)C/R[∼,O] can be identi-
fied with co-adjoint orbits in kC and (k∼)C. The restriction of ω[∼,O] is
now obtained from the Kirillov–Kostant construction as in §2, combined
with the holomorphic section of

∧2T ∗
F,QT,[∼,O]

⊗O(2)

associated to the twistor space ZQT,[∼,O]
of the hypertoric variety QT,[∼,O].

Finally, as in Remark 2.11, the real structure on the twistor space ZQ

is determined by the embedding σZ and the real structure on P1 × R
determined by the real structure ζ 7→ −1/ζ̄ on P1, together with the
real structures η 7→ −η̄T on kC and tC and the real structures on ∧jCn

induced by the standard real structure on Cn.
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Example 7.1. Consider the case when n = 2 and K = SU(2). Then
M is the space of quivers of the form

(7.2) C
α
⇄
β

C2

and Q = M///SU(1) = M ∼= C2 ⊕ (C2)∗ ∼= H2 (see [4, Example 8.5]).
There are two equivalence relations on {1, 2}; let ∼1 denote the equiv-
alence relation with one equivalence class {1, 2}, and let ∼2 denote the
equivalence relation with two equivalence classes {1} and {2}. Then
(k∼1)C has two nilpotent orbits, O1,0 = {0} and the orbit O1,1 of

(

0 1
0 0

)

,

while the only nilpotent orbit in (k∼2)C is O2,0 = {0}. The corresponding
stratification of Q = H2 is

Q = Q[∼1,O1,0] ⊔Q[∼1,O1,1] ⊔Q[∼2,O2,0]

where

Q[∼1,O1,0] = Q◦
[∼1,O1,0]

= {(0, 0)}.
Moreover Q[∼1,O1,1] = Q◦

[∼1,O1,1]
consists of non-zero quivers of the form

Eq. (7.2) satisfying the hyperkäher moment map equations for the action
of U(1), so by Example 2.7 they belong to the K-sweep of the set of
quivers satisfying

α =

(√
d
0

)

, β = (0
√
d)

for real and strictly positive d. The quotient of Q∼1 = Q[∼1,O1,0] ⊔
Q[∼1,O1,1] by the action of U(1) is the nilpotent cone in the Lie algebra

kC of SL(2,C), with the quotient map given by (α, β) 7→ αβ.
Finally, Q◦

[∼2,O2,0]
consists of the quivers Eq. (7.2) such that the 2×2

matrix αβ has distinct eigenvalues, while its sweep

Q[∼2,O2,0] = SU(2)Q◦
[∼2,O2,0]

by the action of SU(2) which rotates the complex structures on Q con-
sists of the quivers Eq. (7.2) such that the 2× 2 matrix

(uα+ vβ∗)(−vα∗ + uβ)

has distinct eigenvalues for some (and hence generic) choice of (u, v) ∈
C2.

Now consider the map

σ : Q = H2 → R = H0(P1,O(2)⊗ (kC ⊕ tC)⊕O(1)⊗ C2).

The projection of σ onto

H0(P1,O(1) ⊗ C2) ∼= H0(P1,O(1)) ⊗ C2 ∼= C2 ⊗ C2
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takes a quiver Eq. (7.2) to the section of O(1) ⊗ C2 over P1 given by

(u, v) 7→ uα+ vβ∗

and hence is bijective. Moreover, the projection onto H0(P1,O(2) ⊗
(kC ⊕ tC)) is the map induced by the hyperkähler moment maps for the
(K × T )-action on Q, and so σ embeds Q into R as the graph of this
map.

Since Q = H2 is a flat hyperkähler manifold its twistor space is the
vector bundle

ZQ = O ⊗ (C2 ⊕ (C2)∗)

over P1. We can cover P1 with two open subsets {ζ ∈ P1 : ζ 6= ∞} and
{ζ ∈ P1 : ζ 6= 0}, and thus cover ZQ with two coordinate patches where
ζ 6= ∞ and where ζ 6= 0 with coordinates

(α, β, ζ) and (α̃, β̃, ζ̃)

for α, α̃ ∈ C2 and β, β̃ ∈ (C2)∗ related by

ζ̃ = 1/ζ, α̃ = α/ζ, β̃ = β/ζ;

we have similar coordinates on O(2)⊗ (kC ⊕ tC)⊕O⊗C2. With respect
to these coordinates the map σ̃ : ZQ → O(2)⊗ (kC ⊕ tC)⊕O(1)⊗C2 is
given by

σ̃(α, β, ζ) = (αβ − tr(αβ)

2
I2, βα, α, ζ)

(see §4). Observe that where the coordinate α is non-zero (or equiva-
lently defines an injective linear map α : C → C2), then we can recover
α, β, and ζ from σ̃(α, β, ζ), but that σ̃(0, β, ζ) = (0, 0, 0, ζ) for any β.
Thus σ̃ is only generically injective on the twistor space ZQ.

Recall from §1 that the real structure on ZQ is given in these coordi-
nates by

(α, β, ζ) 7→ (β̄/ζ̄,−ᾱ/ζ̄,−1/ζ̄);

this is induced via the embedding σZ from the real structure on P1×R
determined by the standard real structures on P1, kC, tC, and C2.

Finally, observe thatQ[∼1,O1,0] = Q◦
[∼1,O1,0]

= {(0, 0)} and thatQ[∼1,O1,1] =

Q◦
[∼1,O1,1]

can be identified with the regular nilpotent orbit in kC, and

the holomorphic symplectic form on each is obtained by the Kirillov–
Kostant construction. Moreover,

Q◦
[∼2,O2,0]

∼= KC ×TC
Q◦,JCF

[∼2,O2,0]

where Q◦,JCF
[∼2,O2,0]

can be identified with an open subset of H; the holo-

morphic symplectic form on this is obtained from the Kirillov–Kostant
construction on the adjoint orbit KC/TC combined with the flat struc-
ture on H. ♦
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Example 7.3. Finally, let us consider briefly the case when n = 3 and
K = SU(3). We have five equivalence relations ∼123,∼12,3,∼13,2,∼23,1,
and ∼1,2,3 on {1, 2, 3} given by the partitions

{{1, 2, 3}}, {{1, 2}, {3}}, {{1, 3}, {2}}, {{2, 3}, {1}}, {{1}, {2}, {3}}.
The Lie algebra of (K∼123)C = KC has three nilpotent orbits O123,j for
j = 1, 2, 3, and the corresponding strata Q[∼123,O123,j ] can be described

using Example 2.8. At the other extreme the Lie algebra of (K∼1,2,3)C =
TC has only the zero nilpotent orbit, and the structure of the stratum
Q[∼1,2,3,{0}] is similar to that of Q[∼2,O2,0] in Example 7.1. In between,
the Lie algebras of

(K∼12,3)C
∼= (K∼13,2)C

∼= (K∼23,1)C
∼= GL(2,C)

have two nilpotent orbits each, the zero orbit and the regular nilpotent
orbit. These give us the six remaining strata Q[∼,O] = SU(2)Q◦

[∼,O], for

each of which the open subset Q◦
[∼,O] of Q[∼,O] has the form

Q◦
[∼,O]

∼= KC ×GL(2,C)

(

GL(2,C) ×R[∼,O]
Q◦,JCF

[∼,O]

)

where R[∼,O] is the stabilizer of O in GL(2,C) and Q◦,JCF
[∼,O] can be iden-

tified with an open subset of H. ♦

8. More general compact Lie groups

Our future aim and the main motivation for this paper is to be able
to construct the hyperkähler implosion of a hyperkähler manifold M
with a Hamiltonian action of any compact Lie group K. For this it
suffices to construct a universal hyperkähler implosion (T ∗KC)hkimpl of
the hyperkähler manifold T ∗KC (see [13]) with suitable properties. In
particular, (T ∗KC)hkimpl should be a stratified hyperkähler space with
a Hamiltonian action of K × T where T is a maximal torus of K; then
we can define the hyperkähler implosion Mhkimpl as the hyperkähler
quotient of M × (T ∗KC)hkimpl by the diagonal action of K.

As Guillemin, Jeffrey and Sjamaar observed in [7] for symplectic im-
plosion, it suffices to consider the case whenK is semi-simple, connected
and simply connected. In this case, as was noted in §3, above, we can em-
bed the universal symplectic implosion (T ∗K)impl in the complex affine
space

E =
⊕

̟∈Π

V̟

where Π is a minimal generating set for the monoid of dominant weights;
here if ̟ ∈ Π then V̟ is the K-module with highest-weight ̟ and T
acts on V̟ as multiplication by this highest weight. As we recalled in §3,
(T ∗K)impl is embedded in E as the closure of the KC-orbit KCv where v
is the sum

∑

̟∈Π v̟ of highest-weight vectors v̟ ∈ V̟, or equivalently
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(T ∗K)impl = K(TCv) where TCv is the toric variety associated to the
positive Weyl chamber t+.

This representation E =
⊕

̟∈Π V̟ of K gives us an identification
of K with a subgroup of

∏

̟∈Π SU(V̟). Theorem 4.11 gives us an em-
bedding σ of the universal hyperkähler implosion for

∏

̟∈ΠK̟, where
K̟ = SU(V̟) has maximal torus T̟, in

∏

̟∈Π

R̟ = H0(P1,
⊕

̟∈Π

O(2)⊗ (k̟ ⊕ t̟)C ⊕
dimV̟−1
⊕

j=1

O(ℓj)⊗ ∧jV̟).

We may assume that the inclusion of K in
∏

̟∈ΠK̟ restricts to an
inclusion of its maximal torus T in the maximal torus

∏

̟∈Π T̟ of
∏

̟∈ΠK̟ as K ∩∏̟∈Π T̟, and that the intersection k ∩∏̟∈Π(t̟)+
in
∏

̟∈Π k̟ is a positive Weyl chamber t+ for K. Then the hypertoric
variety for T associated to the hyperplane arrangement given by the root
planes in t embeds in the hypertoric variety for

∏

̟∈Π T̟ associated to
the hyperplane arrangement given by the root planes in

∏

̟∈Π t̟ and
thus maps into

∏

̟∈ΠR̟.
By analogy with the situation described in [7] for symplectic implo-

sion and using Remark 6.7, we expect the twistor space Z(T ∗KC)hkimpl

for the universal hyperkähler implosion (T ∗KC)hkimpl to embed in the
intersection in P1 ×

∏

̟∈ΠR̟ of the corresponding twistor space for
(T ∗(

∏

̟∈ΠK̟)C)hkimpl and

P1 ×H0(P1,O(2) ⊗ (kC ⊕ tC)⊕
⊕

̟∈Π

dimV̟−1
⊕

j=1

O(ℓj)⊗ ∧jV̟).

Moreover, we expect the image of this embedding to be the closure of
the KC-sweep of the image of the twistor space of the hypertoric variety
for T associated to the hyperplane arrangement given by the root planes
in t, and that the full structure of the twistor space Z(T ∗KC)hkimpl

for the
universal hyperkähler implosion is obtained from this embedding as in
§7, above.
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