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ANISOTROPIC FRACTIONAL PERIMETERS

Monika Ludwig

Abstract

The anisotropic fractional s-perimeter with respect to a convex
body K in R

n is shown to converge as s → 1− to the anisotropic
perimeter with respect to the moment body of K. For anisotropic
fractional s-seminorms on BV (Rn), the corresponding result is es-
tablished (generalizing results of Bourgain, Brezis, and Mironescu
[5] and Dávila [10]). Minimizers of the anisotropic fractional iso-
perimetric inequality with respect to K are shown to converge to
the moment body of K as s→ 1−. Anisotropic fractional Sobolev
inequalities are established.

For a Borel set E ⊂ R
n and 0 < s < 1, the fractional s-perimeter of

E is given by

Ps(E) =

∫

E

∫

Ec

1

|x− y|n+s
dx dy,

whereEc denotes the complement of E in R
n and | · | the Euclidean norm

on R
n. Fractional perimeters are closely related to fractional Sobolev

seminorms (see Sections 5 and 7). On Borel sets in R
n, the functional Ps

is an (n− s)-dimensional perimeter, as Ps(λE) = λn−sPs(E) for λ > 0.
It is non-local in the sense that it is not determined by the behavior
of E in a neighborhood of ∂E. Fractional s-perimeters have attracted
increased attention in recent years (see [3, 6, 7, 8, 11, 14, 15, 36] and
the references therein).

The limiting behavior of fractional s-perimeters as s → 1− and as
s→ 0+ turns out to be very interesting. A result by Dávila [10], which
extends results by Bourgain, Brezis, and Mironescu [5], shows that for
a bounded Borel set E ⊂ R

n of finite perimeter,

(1) lim
s→1−

(1− s)Ps(E) = αnP (E),

where P (E) is the perimeter of E and αn is a constant depending on n.
The perimeter P (E) coincides with the (n − 1)-dimensional Hausdorff
measure of ∂E when E has smooth boundary. If E is a Borel set of
finite Lebesgue measure, then E is of finite perimeter if its characteristic
function 11E is in BV (Rn) and then P (E) is the total variation of the
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weak gradient of 11E . We refer to [4, 31] for the basic properties of sets
of finite perimeter and note that

(2) P (E) =

∫

∂∗E

|νE(x)| dH
n−1(x),

where Hn−1 denotes (n − 1)-dimensional Hausdorff measure, ∂∗E the
reduced boundary of E, and νE(x) the measure theoretic outer unit
normal of E at x ∈ ∂∗E. If E has smooth boundary, then ∂∗E is just
the topological boundary, ∂E, of E and νE(x) is the usual outer unit
normal vector of E at x ∈ ∂E.

The limiting behavior for s → 0+ of fractional Sobolev s-seminorms
was determined by Maz′ya and Shaposhnikova [32]. Their result implies
that

(3) lim
s→0+

s Ps(E) = n |B| |E|,

for every bounded Borel set E ⊂ R
n of finite fractional s′-perimeter

for all s′ ∈ (0, 1). Here B is the Euclidean unit ball and | · | is the
n-dimensional Lebesgue measure. See Dipierro, Figalli, Palatucci, and
Valdinoci [11] for a detailed study of the limiting behavior in this case.

Anisotropic perimeter is a natural generalization of the Euclidean
notion of perimeter obtained by replacing the Euclidean norm | · | in (2)
by an arbitrary norm ‖ · ‖L with unit ball L. We say that a set K ⊂ R

n

is a convex body if it is compact and convex and has non-empty interior.
For an origin-symmetric convex bodyK ⊂ R

n, the anisotropic perimeter
of a Borel set E ⊂ R

n with respect to K is

P (E,K) =

∫

∂∗E

‖νE(x)‖K∗ dHn−1(x),

where K∗ = {v ∈ R
n : v · x ≤ 1 for all x ∈ K} is the polar body of

K. If E is a convex body, then P (E,K) is equal (up to a factor n) to
the classical first mixed volume of E and K (cf. [19, 33]). Anisotropic
perimeters are important as a model for surface tension in the study of
equilibrium configurations of crystals and constitute the basic model for
surface energies in phase transitions (cf. [12] and the references therein).
Anisotropic perimeters correspond to anisotropic Sobolev seminorms,
which have been studied in numerous papers (cf. [2, 9, 13, 18] and the
references therein).

For a Borel set E ⊂ R
n, an origin-symmetric convex body K ⊂ R

n

and 0 < s < 1, the anisotropic fractional s-perimeter of E with respect
to K is given by

Ps(E,K) =

∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy,

where ‖ · ‖K denotes the norm with unit ball K.
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A natural question is to study the limiting behavior of anisotropic
s-perimeters as s → 1− and s → 0+. While one might suspect that the
limit as s → 1− of anisotropic s-perimeters with respect to the origin-
symmetric convex body K is the anisotropic perimeter with respect
to the same convex body, this turns out not to be true in general. In
Section 3, we show that for E ⊂ R

n, a bounded Borel set of finite
perimeter,

lim
s→1−

(1− s)Ps(E,K) = P (E,ZK).

Here the convex body ZK is the moment body of K, that is, the convex
body such that for v ∈ R

n,

(4) ‖v‖Z∗K =
n+ 1

2

∫

K

|v · x| dx,

where Z∗K is the polar body of ZK. For the Euclidean unit ball B, the
convex body ZB is just a multiple of B. Hence we recover (1), including
the value of the constant αn.

The moment body is closely related to the classical centroid body of
K, which is defined as

2

(n+ 1)|K|
ZK.

If we intersect the origin-symmetric convex body K by all halfspaces
orthogonal to u ∈ Sn−1, then the centroids of these intersections trace
out the boundary of twice the centroid body of K, which explains the
name centroid body. The namemoment body comes from the fact that the
moment vectors of these halfspaces trace out the boundary (of a constant
multiple) of ZK. Centroid bodies play an important role in the geometry
of convex bodies (cf. [17, 25]) and moment bodies in the theory of
valuations on convex bodies (see [20, 23, 24]). In recent years, centroid
bodies have found powerful extensions within the Lp Brunn–Minkowski
theory [26, 27, 28, 30], the asymmetric Lp Brunn–Minkowski theory
[21, 23] and the Orlicz–Brunn–Minkowski theory [29].

In Section 3, we show that for E ⊂ R
n a bounded Borel set of finite

perimeter,

lim
s→0+

s Ps(E,K) = n |K| |E|.

The special case when K is the Euclidean unit ball follows from the
result (3) by Maz′ya and Shaposhnikova [32]. The limiting results for
s → 1− and s → 0+ for the anisotropic s-perimeters are both obtained
by using the Blaschke–Petkantschin formula from integral geometry and
results on fractional perimeters for subsets of the real line.

One of the most important results for Euclidean s-perimeters is the
Euclidean fractional isoperimetric inequality. For a bounded Borel set
E ⊂ R

n,

(5) Ps(E) ≥ γn,s |E|
n−s

n ,
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where |E| is the n-dimensional Lebesgue measure of E and γn,s > 0
is a constant depending on n and s. Using a symmetrization result
by Almgren and Lieb [1], Frank and Seiringer [14] proved that there is
equality in (5) precisely for balls (up to sets of measure zero). A stability
version was recently established by Fusco, Millot, and Morini [15].

While it is not difficult to see that for a given origin-symmetric convex
body K there is an optimal constant γs(K) > 0 such that

(6) Ps(E,K) ≥ γs(K) |E|
n−s
n

for every bounded Borel set E ⊂ R
n, it turns out that the determination

of the minimizers is more challenging and remains open. Inequality (6)
is the anisotropic fractional isoperimetric inequality. In Section 4, we
show that if minimizers of (6) converge to a bounded Borel set E1 as
s→ 1−, then E1 is (up to a constant factor) the moment body of K.

In the last sections, we establish analogues of the results on anisotropic
fractional perimeters in the setting of fractional Sobolev spaces. We
prove results on the limiting behavior of anisotropic fractional Sobolev
seminorms on BV (Rn) and anisotropic fractional Sobolev inequalities
with the sharp constants from (6).

Acknowledgments. The author would like to thank Tuo Wang and
the referees for their helpful comments.

The work of the author was supported in part by Austrian Science
Fund (FWF) Project P23639-N18.

1. Preliminaries

We state the Blaschke–Petkantschin formula (cf. [34, Theorem 7.2.7])
in the case in which it will be used. Let Hk denote the k-dimensional
Hausdorff measure on R

n and Aff(n, 1) the affine Grassmannian of lines
in R

n. If g : Rn × R
n → [0,∞) is measurable, then

(7)

∫

Rn

∫

Rn

g(x, y) dHn(x) dHn(y)

=

∫

Aff(n,1)

∫

L

∫

L

g(x, y) |x − y|n−1 dH1(x) dH1(y) dL,

where dL denotes integration with respect to a suitably normalized,
rigid motion invariant Haar measure on Aff(n, 1). This measure can be
described in the following way. Any line L ∈ Aff(n, 1) is parameterized
using one of its direction normal vectors u = u(L) ∈ Sn−1 and its
base point x ∈ u⊥, where u⊥ is the hyperplane orthogonal to u, as
L = {x+ λu(L) : λ ∈ R}. For h : Aff(n, 1) → [0,∞) measurable,

(8)

∫

Aff(n,1)
h(L) dL =

1

2

∫

Sn−1

∫

u⊥

h(x+ Lu) dH
n−1(x) dHn−1(u),

where Lu = {λu : λ ∈ R}.
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If E ⊂ R
n has finite perimeter, then De Giorgi’s Structure Theorem

(cf. [31, Theorem 15.9]) implies that the reduced boundary, ∂∗E, of E is
Hn−1-rectifiable. Hence Theorem 1 of Wieacker [39] gives the following:
If E ⊂ R

n has finite perimeter, then

(9)

∫

∂∗E

|u · νE(x)| dH
n−1(x) =

∫

E|u⊥

H0(∂∗E ∩ (y + Lu)) dH
n−1(y)

for all u ∈ Sn−1, where Lu is the line with direction vector u. Wieacker
[39] used the right-hand side of (9) to define the support function of the
projection body of ∂∗E. We remark that Tuo Wang [37] has defined the
projection body of the set E using the left-hand side of (9) and obtained
the Petty projection inequality for sets of finite perimeter (generalizing
a result of Gaoyong Zhang [40]).

Let Ω ⊂ R
n be an open bounded set, and let 0 < s < 1. We set

(10) γs(K) = inf{Ps(E,K) |E|−
n−s
n : E ⊂ Ω, |E| > 0}.

Let c1, c2 > 0 be chosen such that c1 ≤ ‖u‖K ≤ c2 for all u ∈ Sn−1.
Then

c
−(n+s)
2 Ps(E) ≤ Ps(E,K) ≤ c

−(n+s)
1 Ps(E).

Since the optimal constant in the Euclidean fractional s-isoperimetric
inequality (5) is positive, we see that 0 < γs(K) < ∞ for all origin-
symmetric convex bodies K. Let Ei ⊂ Ω be Borel sets such that

γs(K) = lim
i→∞

Ps(Ei,K) |Ei|
−n−s

n .

It follows from [3, (4)] (and hence from the Fréchet–Kolmogorov com-
pactness criterion) that the sequence Ei is pre-compact. In particular,
the infimum in (10) is attained. Note that the homogeneity of Ps(·,K)
implies that γs(K) does not depend on the choice of the open bounded
set Ω.

Let E ⊂ R
n be a Lebesgue measurable set with |E| < ∞ and K ⊂

R
n a convex body. The anisotropic isoperimetric inequality, also called

generalized Minkowski inequality or Wulff inequality, states that

(11) P (E,K) ≥ n |K|
1

n |E|
n−1

n

with equality if and only if E is homothetic to K (up to a set of measure
zero). If E is a convex body, (11) is the classical Minkowski inequality
(cf. [19, 33]). For general E, inequality (11) including the equality case
is due to Taylor [35]. A quantitative version was recently established by
Figalli, Maggi, and Pratelli [12].

2. Fractional Perimeters on the Real Line

In the next lemma, the one-dimensional case of (1) is proved together
with estimates, which are used in the proof of Theorem 4. For a set
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A ⊂ R
n, let diam(A) = sup{|x − y| : x ∈ A, y ∈ A} denote the (Eu-

clidean) diameter of A.

Lemma 1. If A ⊂ R is a bounded Borel set of finite perimeter, then

(12) lim
s→1−

(1− s)Ps(A) = H0(∂∗A)

and

(13) (1− s)Ps(A) ≤ 8H0(∂∗A)max{1,diam(A)}

for 1/2 ≤ s < 1.

Proof. Since A has finite perimeter, it is up to a set of measure zero
the disjoint union of finitely many intervals lying at mutually positive
distance (cf. [31, Proposition 12.13]). Also note that ∂∗A is not changed
by changing A on a set of measure zero (cf. [31, Remark 15.2]). Hence,
w.l.o.g., we write A =

⋃m
i=1 Ii, where Ii = (ai, bi). Set Jj = (bj, aj+1)

for j = 1, . . . ,m− 1 and J0 = (−∞, a1) and Jm = (bm,∞). Hence

(14) Ps(A) =
m
∑

j=0

∫

Jj

∫

A

1

|x− y|s+1
dx dy.

A simple calculation shows that

lim
s→1−

(1− s)

∫

Jj

∫

A

1

|x− y|s+1
dx dy = 1

for j = 0 and j = m and

lim
s→1−

(1− s)

∫

Jj

∫

A

1

|x− y|s+1
dx dy = 2

for j = 1, . . . ,m− 1. Since H0(∂∗A) = 2m, we obtain (12) from (14).
We have

∫

J0

∫

A

1

|x− y|s+1
dx dy ≤

∫ a1

−∞

∫ bm

a1

1

(x− y)s+1
dx dy

≤
2

1− s
max{1,diam(A)}

and, similarly,

∫

Jm

∫

A

1

|x− y|s+1
dx dy ≤

2

1− s
max{1,diam(A)}.
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For j = 1, . . . ,m− 1, we have
∫

Jj

∫

A

1

|x− y|s+1
dx dy ≤

∫ bj

a1

∫ aj+1

bj

1

(y − x)s+1
dy dx

+

∫ bm

aj+1

∫ aj+1

bj

1

(x− y)s+1
dy dx

≤
8

s(1− s)
max{1,diam(A)}.

Hence we obtain (13) from (14) by combining these estimates. q.e.d.

A sequence of Borel sets Ei ⊂ R
n converges to a Borel set E ⊂ R

n

if 11Ei
→ 11E in L1(Rn), where 11E denotes the indicator function of

E. The following lemma is the one-dimensional case of [3, Lemma 7]
combined with the one-dimensional case of [3, Lemma 9] by Ambrosio,
De Philippis, and Martinazzi.

Lemma 2. If si → 1− and Ai, A ⊂ R are bounded Borel sets, then

lim inf
i→∞

(1− si)Psi(Ai) ≥ H0(∂∗A)

for Ai → A.

The following lemma contains the one-dimensional case of (3) for sets
of finite perimeter and some estimates. It follows from (3) that (15) also
holds for bounded Borel sets of finite s′-perimeter for all s′ ∈ (0, 1).

Lemma 3. If A ⊂ R is a bounded Borel set of finite perimeter, then

(15) lim
s→0+

s Ps(A) = 2 |A|

and

(16) Ps(A) ≤
4

s
max{1,diam(A)} + diam(A)2 + Ps′(A)

for 0 < s < s′ < 1/2.

Proof. Let a = inf A and b = supA. First, note that
∫ a

−∞

∫ b

a

1

|x− y|1+s
dx dy =

(b− a)1−s

s(1− s)
≤

2

s
max{1,diam(A)}

and
∫ ∞

b

∫ b

a

1

|x− y|1+s
dx dy ≤

2

s
max{1,diam(A)}.

Let C = Ac ∩ (a, b). Note that
∫ ∫

{|x−y|≥1}∩(A×C)

1

|x− y|1+s
dx dy ≤ diam(A)2
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and
∫ ∫

{|x−y|<1}∩(A×C)

1

|x− y|1+s
dx dy ≤

∫ ∫

{|x−y|<1}∩(A×C)

1

|x− y|1+s′
dx dy.

Thus, (16) holds.
Next, we prove (15). Since A has finite perimeter, it is the disjoint

union of finitely many intervals lying at mutually positive distance up
to a set of measure zero (cf. [31, Proposition 12.13]). Hence, w.l.o.g.,
A =

⋃m
i=1 Ii, where Ii = (ai, bi). Set Jj = [bj, aj+1] for j = 1, . . . ,m− 1

and J0 = (−∞, a1) and Jm = (bm,∞). We have

(17) Ps(A) =

m
∑

j=0

m
∑

i=1

∫

Jj

∫

Ii

1

|x− y|s+1
dx dy.

A simple calculation shows that

lim
s→0+

s

∫

Jj

∫

Ii

1

|x− y|s+1
dx dy = |Ii|

for j = 0 and j = m, and

lim
s→0+

s

∫

Jj

∫

I

1

|x− y|s+1
dx dy = 0

for j = 1, . . . ,m− 1. Hence, we obtain (15) from (17). q.e.d.

3. Limiting Behavior of Fractional Perimeters

Let K ⊂ R
n be an origin-symmetric convex body.

Theorem 4. If E ⊂ R
n is a bounded Borel set of finite perimeter,

then

(1− s)Ps(E,K) → P (E,ZK)

as s→ 1−.

Proof. By the Blaschke–Petkantschin formula (7),
∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy

=

∫

E∩L 6=∅

1

‖u(L)‖n+s
K

∫

E∩L

∫

Ec∩L

1

|x− y|s+1
dH1(x) dH1(y) dL.

Let Lu = {λu : λ ∈ R}. The sets E ∩ L have for L = Lu + y for a.e.
y ∈ u⊥ finite perimeter (cf. [31, Proposition 14.5]). Hence we obtain
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by the Dominated Convergence Theorem, which can be used because of
(13), and by Lemma 1 that

lim
s→1−

(1− s)

∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy =

∫

E∩L 6=∅

H0(∂∗E ∩ L)

‖u(L)‖n+1
K

dL.

Since ∂∗E ∩ L = ∂∗(E ∩ L) for a.e. line L (cf. [31, Theorem 18.11
and Remark 18.13]) and by the definition of the measure on the affine
Grassmannian (8), we get

∫

E∩L 6=∅

H0(∂∗E ∩ L)

‖u(L)‖n+1
K

dL

=
1

2

∫

Sn−1

∫

E|u⊥

H0(∂∗E ∩ (y + Lu))

‖u‖n+1
K

dHn−1(y) dHn−1(u),

where Lu = {λu : λ ∈ R}. By (9), Fubini’s Theorem and the definition
(4) of the moment body of K, we conclude that

lim
s→1−

(1− s)

∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy

=
1

2

∫

Sn−1

∫

∂∗E

|u · νE(x)|

‖u‖n+1
K

dHn−1(x) dHn−1(u)

=

∫

∂∗E

‖νE(x)‖Z∗K dHn−1(x).

The last term is the anisotropic perimeter of E with respect to ZK.
q.e.d.

As a consequence, we obtain the following result. Combined with
Theorem 4, we obtain Gamma-convergence of (1−s)Ps(·,K) to P (·,ZK)
as s→ 1−.

Corollary 5. Let Ei, E ⊂ R
n be bounded Borel sets of finite peri-

meter. If si → 1− and Ei → E as i→ ∞, then

lim inf
i→∞

(1− si)Psi(Ei,K) ≥ P (E,ZK).
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Proof. By the Blaschke–Petkantschin formula (7), Fatou’s lemma,
and Lemma 2,

lim inf
i→∞

(1− si)

∫

Ei

∫

Ec
i

1

‖x− y‖n+si
K

dx dy

= lim inf
i→∞

∫

Ei∩L 6=∅

(1− si)Psi(Ei ∩ L)

‖u(L)‖n+si
K

dL

≥

∫

E∩L 6=∅

H0(∂∗E ∩ L)

‖u(L)‖n+1
K

dL = P (E,ZK),

where the last step is as in the proof of Theorem 4. q.e.d.

The following theorem establishes the limiting behavior of anisotropic
s-perimeters as s → 0. Using the one-dimensional case of the result by
Maz′ya and Shaposhnikova [32], the theorem can also be derived for
bounded Borel sets of finite s′-perimeters for all s′ ∈ (0, 1).

Theorem 6. If E ⊂ R
n is a bounded Borel set of finite perimeter,

then

s Ps(E,K) → n |K| |E|

as s→ 0+.

Proof. We proceed as in the proof of Theorem 4. By the Blaschke–
Petkantschin formula (7), we have

∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy

=

∫

E∩L 6=∅

1

‖u(L)‖n+s
K

∫

E∩L

∫

Ec∩L

1

|x− y|s+1
dH1(x) dH1(y) dL.

The sets E ∩L have for L = Lu + y for a.e. y ∈ u⊥ finite perimeter (cf.
[31, Proposition 14.5]). Hence we obtain by the Dominated Convergence
Theorem, which can be used because of (16), and Lemma 3 that

lim
s→0+

s

∫

E

∫

Ec

1

‖x− y‖n+s
K

dx dy = 2

∫

E∩L 6=∅

|E ∩ L|

‖u(L)‖nK
dL.
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By the definition of the measure on the affine Grassmannian (8) and
the polar coordinate formula for volume, we get

2

∫

E∩L 6=∅

|E ∩ L|

‖u(L)‖nK
dL =

∫

Sn−1

∫

E∩u⊥

|E ∩ (Lu + y)|

‖u‖nK
dHn−1(y) dHn−1(u)

= |E|

∫

Sn−1

1

‖u‖nK
du

= n |K| |E|.

This concludes the proof of the theorem. q.e.d.

4. Fractional Isoperimetric Inequalities

The next theorem shows that minimizers of the anisotropic fractional
s-isoperimetric inequality with respect to K converge as s → 1− to
minimizers of the anisotropic isoperimetric inequality with respect to
ZK.

Theorem 7. Let Esi ⊂ R
n be bounded Borel sets such that

Psi(Esi ,K) = γsi(K) |Esi |
n−si

n ,

and let E1 ⊂ R
n be a bounded Borel set. If si → 1− and Esi → E1 as

i → ∞, then there exists c ≥ 0 such that E1 = cZK up to a set of
measure zero.

Proof. If E1 has measure zero, the statement is true for c = 0. So,
w.l.o.g., let |E1| = |ZK|. Assume that E1 is not a multiple of ZK (up
to a set of measure zero). Hence, by the equality case of the generalized
Minkowski inequality (11) and Corollary 5, we have

n |ZK| < P (E1,ZK)

≤ lim inf
i→∞

(1− si)Psi(Esi ,K)

= lim inf
s→1−

(1− s) γs(K) |ZK|
n−s
n .

But

lim inf
s→1−

(1− s) γs(K) |ZK|
n−s
n ≤ lim inf

s→1−
(1− s)Ps(ZK,K)

= P (ZK,ZK)

= n |ZK|.

This is a contradiction. Thus, E1 is (up to a set of measure zero) a
multiple of ZK. q.e.d.
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5. Preliminaries on Fractional Sobolev Norms

For a function f ∈ L1(Rn) and 0 < s < 1, Gagliardo [16] introduced
the fractional Sobolev s-seminorm of f as

(18) ‖f‖W s,1 =

∫

Rn

∫

Rn

|f(x)− f(y)|

|x− y|n+s
dx dy.

Extending a result by Bourgain, Brezis, andMironescu [5] fromW 1,1(Rn)
to BV (Rn), Dávila [10] proved that for f ∈ BV (Rn),

(19) lim
s→1−

(1− s)‖f‖W s,1 = 2αn ‖f‖BV ,

where αn is the constant from (1), the vector valued Radon measure
Df is the weak gradient of f , and ‖f‖BV is the total variation of Df
on R

n. Note that

(20) ‖f‖BV =

∫

Rn

∣

∣

∣

Df

|Df |

∣

∣

∣
d|Df |,

where the vector Df/|Df | is the Radon–Nikodym derivative of Df with
respect to the total variation |Df | of Df . Also note that

(21) ‖f‖BV =

∫ ∞

0
P ({|f | > t}) dt

by the coarea formula on BV (Rn) (cf. [4, Theorem 3.40]).
An anisotropic Sobolev seminorm on BV (Rn) is defined by replacing

the Euclidean norm by an arbitrary norm in (20). For K an origin-
symmetric convex body in R

n, we set

‖f‖BV,K =

∫

Rn

∥

∥

∥

Df

|Df |

∥

∥

∥

K∗

d|Df |.

Note that

(22) ‖f‖BV,K =

∫ ∞

0
P ({|f | > t},K) dt

by the coarea forula on BV (Rn) (cf. [12, (2.22)]). Define the anisotropic
fractional s-seminorm as

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy,

where K is an origin-symmetric convex body in R
n.

Visintin [36] pointed out that as a consequence of Fubini’s theorem, a
generalized coarea formula for fractional perimeters can be established.
If f ∈ L1(Rn), then

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy = 2

∫ ∞

−∞
Ps({f > t},K) dt
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(or see [3, Lemma 10]). If K is origin-symmetric, then Ps(E,K) =
Ps(E

c,K) for all Borel sets E ⊂ R
n. Since |{f = t}| = 0 a.e. on R, we

have Ps({f ≤ −t},K) = Ps({f < −t},K}) a.e. on R. Hence,

(23)

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy

= 2

∫ ∞

0
Ps({f > t},K) dt+ 2

∫ ∞

0
Ps({f ≤ −t},K) dt

= 2

∫ ∞

0
Ps({|f | > t},K) dt.

In Section 7, we make use of the Minkowski inequality for integrals in
the following form: If g : Rn×R → [0,∞) is measurable and r > 1, then

(24)

∫

R

(

∫

Rn

g(x, t)r dx
)

1

r dt ≥
(

∫

Rn

(

∫

R

g(x, t) dt
)r
dx

)
1

r
.

If both sides are finite, there is equality if and only if g(x, t) = φ(x)ψ(t)
a.e. with φ,ψ non-negative and measurable (cf. [22, (6.13.9)]).

6. Limiting Behavior of Fractional Sobolev Norms

For functions of bounded variation, we obtain the following analogue
of the result (19) by Dávila. Let K ⊂ R

n be an origin-symmetric convex
body.

Theorem 8. If f ∈ BV (Rn) has compact support, then

(25) (1− s)

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy → 2 ‖f‖BV, ZK

as s→ 1−.

Proof. By the generalized coarea formula (23), we obtain
∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy = 2

∫ ∞

0
Ps({|f | > t},K) dt.

By Lemma 1 combined with the Blaschke–Petkantschin formula (7) and
the definition of the measure on the affine Grassmannian (8), we have

(1− s)Ps(E,K) ≤ 4n|B|max{1,diam(E)}max{1,diam(K)}n+1P (E)

for 1/2 ≤ s < 1. Hence,

(26)

(1− s)

∞
∫

0

Ps({|f | > t},K) dt

≤ α(K)max{1,diam(S)}

∞
∫

0

P ({|f | > t}) dt,
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where S is the support of f and α(K) only depends on K. Since the
function f ∈ BV (Rn), the coarea formula (21) implies that the right
side of (26) is finite. Thus, we conclude by the Dominated Convergence
Theorem and Theorem 4 that

(1− s)

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy → 2

∫ ∞

0
P ({|f | > t},ZK) dt

as s → 1−. Combined with the coarea formula (22), this concludes the
proof of the theorem. q.e.d.

7. Fractional Sobolev Inequalities

Let K ⊂ R
n be an origin-symmetric convex body and 0 < s < 1. Let

W s,1(Rn) denote the set of f ∈ L1(Rn) such that ‖f‖W s,1 <∞.

Theorem 9. If f ∈W s,1(Rn) has compact support, then

(27)

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy ≥ 2 γs(K)
(

∫

Rn

|f(x)|
n

n−s dx
)

n−s
n
.

There is equality in this inequality if and only if f is a constant multiple
of the indicator function of a minimizer of (6).

Proof. If f ∈W s,1(Rn) has compact support, then by the generalized
coarea formula (23) we obtain that

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy = 2

∫ ∞

0
Ps({|f | > t},K) dt.

Hence, the isoperimetric inequality (6) and the Minkowski inequality
for integrals (24) imply that

∫

Rn

∫

Rn

|f(x)− f(y)|

‖x− y‖n+s
K

dx dy

≥ 2 γs(K)

∫ ∞

0
|{|f | > t}|

n−s
n dt

= 2 γs(K)

∫ ∞

0

(

∫

Rn

11{|f |>t}(x) dx
)

n−s
n
dt

≥ 2 γs(K)
(

∫

Rn

(

∫ ∞

0
11{|f |>t}(x) dt

)
n

n−s
dx

)
n−s
n

= 2 γs(K)
(

∫

Rn

|f(x)|
n

n−s dx
)

n−s
n
.

This concludes the proof of the inequality.
Suppose there is equality in (27). By the equality condition of (24),

we have 11{|f |>t}(x) = φ(x)ψ(t) with non-negative measurable functions
φ,ψ. Thus, f is a constant multiple of an indicator function. Since there



ANISOTROPIC FRACTIONAL PERIMETERS 91

is equality in (6), we obtain that f is a constant multiple of the indicator
function of a minimizer of (6). On the other hand, if f = c 11Es

, where
Es is a minimizer of (6), then

∫

Rn

∫

Rn

|11Es
(x)− 11Es

(y)|

‖x− y‖n+s
K

dx dy = 2P (Es,K).

Hence, there is equality in (27) if and only if Es is a minimizer of (6).
q.e.d.
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