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AREA GROWTH AND RIGIDITY OF SURFACES

WITHOUT CONJUGATE POINTS

Victor Bangert & Patrick Emmerich

Abstract

We prove flatness of complete Riemannian planes and cylinders
without conjugate points under optimal conditions on the area
growth.

1. Introduction

In 1942 Morse and Hedlund [23] conjectured that every Riemannian
2-torus without conjugate points is flat. This was proved by E Hopf
in 1943; see [19]. The natural question of whether Riemannian tori
of arbitrary dimension without conjugate points are flat or not was
answered in the affirmative by D. Burago and S. Ivanov [4] with use of
a completely new method.

Here, we apply E. Hopf’s original method to the study of complete
Riemannian planes and cylinders without conjugate points. In these
cases one needs additional assumptions to prove flatness since the plane
and the cylinder admit complete Riemannian metrics with nonpositive
curvature (and, hence, without conjugate points) that are not flat. In
this situation, conditions on the area growth are particularly natural.
For the case of the plane, we prove the following optimal result.

Theorem 1. Let g be a complete Riemannian metric without conju-

gate points on the plane R
2. Then, for every p ∈ R

2, the area Ap(r) of

the metric ball with center p and radius r satisfies

lim inf
r→∞

Ap(r)

πr2
≥ 1

with equality if and only if g is flat.

Note that, for every ǫ > 0, one can easily find complete planes with
nonpositive curvature and conical end such that limr→∞Ap(r)/πr

2 =
1+ ǫ. These examples show that the estimate in Theorem 1 is optimal.
Note, moreover, that Theorem 1 does not follow from the following well-
known conjecture on the area of small disks (see [11]): If a metric ball
B(p, r) with center p and radius r in a complete Riemannian surface
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has no conjugate points, then Ap(r) ≥ 8
π
r2 with equality if and only if

B(p, r) is isometric to a hemisphere of radius r.
To state our rigidity result for cylinders we first define what it means

that an end of a cylinder has subquadratic area growth. As usual, let A
denote the area induced by the Riemannian metric.

Definition. Let S be a complete, connected Riemannian surface. An
end E of S has subquadratic area growth if there exists a neighborhood
U ⊆ S of E such that

lim inf
r→∞

A(U ∩B(p, r))

r2
= 0

for one (and hence every) point p ∈ S.

Theorem 2. Let g be a complete Riemannian metric without con-

jugate points on the cylinder S1 × R. If both ends of the cylinder have

subquadratic area growth, then g is flat.

There is an alternative version of Theorem 2 that involves an assump-
tion on the growth of the lengths of shortest noncontractible loops. Ac-
tually, we will prove in Section 8 that the two versions are equivalent.
We let d denote the distance induced by the Riemannian metric.

Definition. Let C = S1 × R be a complete Riemannian cylinder,
and, for p ∈ C, let l(p) denote the length of a shortest noncontractible
loop based at p. We say that an end E of C opens less than linearly if
there exists a sequence (pi) in C converging to E such that

lim
i→∞

l(pi)

d(pi, p0)
= 0.

Theorem 2′. Let g be a complete Riemannian metric without con-

jugate points on the cylinder S1 × R. If both ends of the cylinder open

less than linearly, then g is flat.

Again, simple examples of cylinders of revolution with nonpositive
curvature and conical ends show that the conditions in Theorem 2 and
in Theorem 2′ are optimal, see [2, Section 1].

Rigidity results of the type of Theorem 2′ have been proved by Burns
and Knieper [7], Koehler [22], and by the present authors [2]. All of
these involve stronger conditions on the growth of l and additional con-
ditions on the Gaussian curvature. So they are far from being optimal.
The basic idea, however, is the same in all these papers: E. Hopf’s
method is applied to an appropriate exhaustion by compact sets. This
introduces boundary terms that have to be controlled in the limit and
that do not appear in the case of the 2-torus treated by E. Hopf. Here
the essential difficulty is that the geometric quantities that influence
these boundary terms might oscillate dramatically in the noncompact
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situation. Any naive attempt to control them induces unwanted addi-
tional assumptions, as present in the previous results. To our surprise, a
delicate analysis of the differential inequality that results from E. Hopf’s
method finally leads to the optimal results presented here.

In [7], the same method is applied to complete planes without conju-
gate points. The rigidity result proved in [7] assumes a strong “parallel
axiom.” In connection with this and Theorem 1, we mention the follow-
ing interesting question posed by Knieper; see [10] and [7, 1.7].

Open problem. Suppose a complete Riemannian plane P satisfies

the parallel axiom; i.e., for every geodesic c on P and every point p ∈ P
not on c there exists a unique geodesic through p that does not intersect

c. Does this imply that P is isometric to the Euclidean plane?

For complete, connected Riemannian manifolds (M,g) of dimension
n ≥ 3, the natural generalization of the area growth is the volume
growth V (M,g) defined by

V (M,g) = lim inf
r→∞

Vol(B(p, r))

β(n) rn

where β(n) is the volume of the unit ball in Euclidean n-space. For com-
pact manifolds (M,g) one considers the volume growth of the universal

Riemannian covering space (M̃, g̃). In the compact situation, one has
the following beautiful rigidity results.

Theorem ([9]). If (M,g) is a compact, connected Riemannian mani-

fold without conjugate points then V (M̃, g̃) ≥ 1 with equality if and only

if g is flat.

Theorem ([5]). If g is a Z
n-periodic Riemannian metric on R

n then

V (Rn, g) ≥ 1 with equality if and only if g is flat.

For complete, noncompact Riemannian manifolds there are results
showing that arbitrary compactly supported perturbations of certain
natural metrics without conjugate points necessarily introduce conju-
gate points; see [16, 12, 13].

Another type of rigidity results for complete, noncompact Riemann-
ian manifolds without conjugate points assumes summability conditions
on the Ricci curvature; see [20, 21, 18].

Plan of the paper. In Section 2, we derive the equation that arises
from E. Hopf’s method in the case that the compact surface without
conjugate points has a boundary. The proof of Theorem 1 is given in
Section 3. It depends on a differential inequality derived from E. Hopf’s
method and a sharp estimate for the asymptotic growth of functions
satisfying this differential inequality. This sharp estimate is proved in
Section 4. In Sections 5 and 6, we describe the exhaustion by compact
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subcylinders with horocyclic boundary that we use in the case of cylin-
ders. This is based on results from [2]. The proof of Theorem 2′ is given
in Section 7. It also depends on the sharp growth estimate from Sec-
tion 4. Finally, in Section 8 we prove the equivalence of Theorem 2 and
Theorem 2′.

Acknowledgments. This research was supported by the German Re-
search Foundation (DFG) Collaborative Research Center SFB TR 71.

2. E. Hopf’s method

E. Hopf’s method from [19] is also applicable in the more general
situation of complete surfaces without conjugate points. Lemma 2.1 be-
low is used to treat the boundary terms that occur in the noncompact
situation. It could be of independent interest and is stated for arbitrary
dimensions.

Let M be a complete Riemannian manifold of dimension n ≥ 2. Let
〈, 〉 be its metric, let σ : T 1M → M be its unit tangent bundle, and
let Φ: T 1M × R → T 1M be its geodesic flow. We say that a function
f : T 1M → R has Lie derivative LΦf : T

1M → R with respect to the
flow Φ if for every v ∈ T 1M the function t 7→ f ◦Φ(v, t) is differentiable
and

(LΦf)(v) =
d

dt

∣

∣

∣

∣

t=0

(f ◦ Φ)(v, t).

We use the Liouville measure µ on T 1M , as well as the measure ν on
T 1M that is locally the product of the codimension-1 Hausdorff measure
Hn−1 on M with the standard Lebesgue measure on the fibers of T 1M .

In the proof of Theorem 2′ we will exhaust the cylinder by compact
subcylinders with horocyclic boundaries. A priori, these boundaries need
not be smooth, and this is why we introduce subsets with strong Lip-
schitz boundary at this point. By definition, a closed subset A of M

has strong Lipschitz boundary B if A = Å and if B = A r Å is a
strong Lipschitz submanifold of M ; see [1, p. 334]. If B is nonempty
then dimB = n− 1. Let A := σ−1(A) and B := σ−1(B). Let B′ be the
points of differentiability of B. By Rademacher’s theorem the set BrB′

has Hn−1-measure zero. Let B′ := σ−1(B′), and let N : B′ → B
′ denote

the inner unit normal.

Lemma 2.1. If A is a compact subset of M with strong Lipschitz

boundary B, if f : T 1M → R is Borel measurable and has Lie derivative

LΦf , and if f and LΦf are locally bounded, then
∫

A

LΦf dµ = −
∫

B′

f(v) 〈v,N ◦ σ(v)〉 dν(v).

We will prove the lemma at the end of this section. Now we present
E. Hopf’s method, which is based on the following observation made in



AREA GROWTH AND RIGIDITY OF SURFACES 371

[19]. As usual, we let K denote the Gaussian curvature of a Riemannian
surface.

Lemma 2.2. Let S be a complete Riemannian surface without con-

jugate points. Then there exists a Borel measurable and locally bounded

function u : T 1S × R → R with the following properties: For every

v ∈ T 1S the function uv(t) := u(v, t) is a solution of the Riccati equation

along the geodesic γv with γ̇v(0) = v, i.e.,

(uv)
′(t) + (uv)

2(t) +K ◦ γv(t) = 0

for all t ∈ R. The function u is invariant under the geodesic flow Φ,
i.e.,

u(v, s + t) = u(Φsv, t)

for all v ∈ T 1S and all s, t ∈ R.

Proof. Except for the local boundedness this follows from [19]. That
u is locally bounded also in the noncompact situation is proved in [2,
p. 787]. q.e.d.

We express the properties of u in the following form. By the Φ-
invariance of u there exists a function U : T 1S → R such that

(2.1) u = U ◦ Φ.
It is given by U(v) = u(v, 0) for every v ∈ T 1S. It follows that U is
Borel measurable and locally bounded. Since the uv are solutions of the
Riccati equation, it follows that U has Lie derivative LΦU(v) = (uv)

′(0)
for every v ∈ T 1S, and that it satisfies the equation

(2.2) LΦU + U2 +K ◦ σ = 0

on T 1S. Let A denote the area induced by the Riemannian metric.

Proposition 2.3. Let S be a complete Riemannian surface without

conjugate points, and let U be as in (2.1). If Q is a compact subset of

S with strong Lipschitz boundary ∂Q, then
∫

σ−1(Q)
U2 dµ = −2π

∫

Q

K dA+

∫

σ−1(∂Q′)
U(v) 〈v,N ◦ σ(v)〉 dν(v).

Proof. We integrate (2.2) over σ−1(Q) with respect to µ and use that
the pushforward of µ under σ is given by 2πA. Hence we obtain

∫

σ−1(Q)
U2 dµ = −2π

∫

Q

K dA−
∫

σ−1(Q)
LΦU dµ.

Together with Lemma 2.1, this proves the claim. q.e.d.

E. Hopf proves Proposition 2.3 in case S is a closed surface and Q = S.
In this case, there is no boundary term; see the last equation in [19].
Since for the 2-torus the integral of the Gaussian curvature is zero, the
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remaining equation implies that U = 0 almost everywhere. Then (2.2)
implies that K = 0, i.e., g is flat.

There are previous versions of Proposition 2.3, see [7, 1.3] and [2,
Lemma 4.2]. Here, we relax the conditions on the boundary of the subset
and sharpen the result to an equality.

Proof of Lemma 2.1. By definition of the Lie derivative, we have the
pointwise convergence LΦf = limǫ→0

1
ǫ
(f ◦Φǫ−f). In particular, LΦf is

Borel measurable. Lebesgue’s dominated convergence theorem implies
that

∫

A

LΦf dµ = lim
ǫ→0

1

ǫ

∫

A

(f ◦Φǫ − f) dµ.

Since Φ preserves µ, we obtain
∫

A

LΦf dµ = lim
ǫ→0

1

ǫ

(

∫

Φǫ(A)rA

f dµ−
∫

ArΦǫ(A)
f dµ

)

.

Let B+ := {v ∈ B
′ : 〈v,N ◦ σ(v)〉 > 0}. We will prove that we have

(2.3) lim
ǫ→0

1

ǫ

∫

ArΦǫ(A)
f dµ =

∫

B+

f(v) 〈v,N ◦ σ(v)〉 dν(v),

and

(2.4) lim
ǫ→0

1

ǫ

∫

Φǫ(A)rA

f dµ =

∫

B′rB+

f(v) 〈v,−N ◦ σ(v)〉 dν(v).

The lemma then follows by combining the preceding three equations.
We first establish formulas (2.5)–(2.7) below that are closely related

to Santaló’s formula [24, eq. (21)]. These can be found in [1, (3.1)–(3.2)]
in a slightly more special form. We extend the proof that is given in [1].
Obviously, B×R is a (2n−1)-dimensional strong Lipschitz submanifold
of T 1M × R. Let Φ̌ := Φ ↾ B× R. If J ⊆ B× R>0 is measurable, then
[14, 3.2.5] implies that

(2.5) µ(Φ(J)) ≤
∫

J

|det Φ̌∗| d(ν ⊗ L1),

with equality if Φ ↾ J is injective (see [1, (2.2)]). Since Φ preserves µ,
we have

(2.6) |det Φ̌∗|(v, t) = 〈v,N ◦ σ(v)〉
for every (v, t) ∈ B

′ × R>0 (see [1, p. 337]). From [14, 3.2.5], it follows
that for every measurable J ⊆ B×R>0 such that Φ ↾ J is injective, we
have

(2.7)

∫

Φ(J)
f dµ =

∫

J

f ◦ Φ(v, t) 〈v,N ◦ σ(v)〉 d(ν ⊗ L1).

We next prove (2.3) and (2.4). For every ǫ > 0 let

Dǫ := {v ∈ B
+ : Φt(v) ∈ Å and Φ−t(v) ∈ (T 1M r A)̊ for t ∈ (0, ǫ)}.
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Then
⋃

ǫ>0Dǫ = B
+, and Φ ↾ Dǫ × [0, ǫ] is injective. Note that

(2.8) Φ(Dǫ × (0, ǫ)) ⊆ Ar Φǫ(A) ⊆ Φ
(

(B+ ∪ (BrB
′))× (0, ǫ)

)

for every ǫ > 0. The set-theoretic difference of the set on the right and
the set on the left is contained in Φ (((B+

rDǫ) ∪ (BrB
′))× (0, ǫ)).

By (2.5) and (2.6), we have

lim
ǫ→0

1

ǫ
µ
(

Φ
((

(B+
rDǫ) ∪ (BrB

′)
)

× (0, ǫ)
))

≤ lim
ǫ→0

∫

B+rDǫ

〈v,N ◦ σ(v)〉 dν(v),

where the right-hand side, and hence the left-hand side, is zero. Now it
follows from (2.8) and from (2.7) that

lim
ǫ→0

1

ǫ

∫

ArΦǫ(A)
f dµ = lim

ǫ→0

1

ǫ

∫

Φ(Dǫ×(0,ǫ))
f dµ

= lim
ǫ→0

1

ǫ

∫

Dǫ×(0,ǫ)
f ◦ Φ(v, t) 〈v,N ◦ σ(v)〉 d(ν ⊗ L1).

Since limǫ→0
1
ǫ

∫ ǫ

0 f ◦Φ(v, t) dt = f(v) for every v, Fubini’s theorem and
Lebesgue’s dominated convergence theorem applied to the right-hand
side prove (2.3). Equation (2.4) follows from (2.3), since Ã := M rA is
a closed subset of M that has strong Lipschitz boundary B, and since
the symmetric difference of Φǫ(A) r A and Ã r Φǫ(Ã) is contained in
B ∪Φǫ(B) and hence has µ-measure zero. q.e.d.

3. The case of the plane

Proof of Theorem 1. Let U : T 1
R
2 → R be as in (2.1).

We apply E. Hopf’s method to the exhaustion that is given by the
closed metric balls with center p. By Proposition 2.3, we have

∫

σ−1(B(p,r))
U2 dµ ≤ −2π

∫

B(p,r)
K dA+

∫

σ−1(∂B(p,r))
|U | dν

for every r > 0. We estimate the boundary term, using the Cauchy-
Schwarz inequality and the local product structure of the measure ν,
by

∫

σ−1(∂B(p,r))
|U | dν ≤

(

∫

σ−1(∂B(p,r))
U2 dν · 2πH1(∂B(p, r))

)
1

2

.

The coarea formula [14, 3.2.11], applied to the distance function from
p, implies that the area of the metric ball B(p, r) satisfies

(3.1) Ap(r) =

∫ r

0
H1(∂B(p, t)) dt
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for every r > 0. The function Ap : R>0 → R>0 is smooth and nonde-
creasing. Similarly, if we define Fp : R>0 → R≥0 at r as the left-hand
side of the first of the above two inequalities, then

Fp(r) :=

∫

σ−1(B(p,r))
U2 dµ =

∫ r

0

(

∫

σ−1(∂B(p,t))
U2 dν

)

dt

for every r > 0, by the coarea formula in T 1
R
2. The function Fp is

nondecreasing, and, by [14, 2.9.20], it is locally absolutely continuous.
We combine the preceding two inequalities and obtain

Fp(r) ≤ −2π

∫

B(p,r)
K dA+

(

F ′
p(r) · 2πA′

p(r)
)

1

2

for almost every r > 0. From (3.1) and the first variation formula it
follows that the second derivative of Ap at r equals the rotation of
∂B(p, r)—i.e., the integral of the geodesic curvature of ∂B(p, r) with
respect to the inward pointing normal. Hence the Gauss-Bonnet theorem
implies

A′′
p(r) = 2π −

∫

B(p,r)
K dA

for every r > 0. From the preceding two expressions, we obtain a differ-
ential inequality for the functions Ap and Fp, valid almost everywhere
on R>0:

Fp ≤ 2πA′′
p +

√
2π
(

F ′
pA

′
p

)
1

2 − 4π2.

We apply Lemma 4.1 below to this inequality. It is stated in a slightly
more general form, since we will also apply it in the proof of Theorem 2′.
We let A = Ap, F = Fp, R = A′′

p, a = 2π, b =
√
2π, and c = −4π2, and

we obtain

0 ≤ supFp ≤ 4π

(

lim inf
r→∞

Ap(r)

r2
− π

)

.

This implies the inequality lim infr→∞
Ap(r)
πr2

≥ 1 claimed in Theorem 1.
If equality holds we obtain Fp = 0. The remainder of the proof is the
same as in E. Hopf’s original argument: By definition of Fp, we have
U = 0 almost everywhere, and then (2.2) implies that K = 0, i.e., g is
flat. q.e.d.

4. A sharp estimate for an ODE inequality

Here we provide the analysis of the differential inequality that results
from E. Hopf’s method applied to the plane and the cylinder.

Lemma 4.1. Let A,F : R>0 → R≥0 be nondecreasing and locally ab-

solutely continuous, and suppose that R ∈ L1
loc(R>0,R) satisfies
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∫ r

0

(∫ ρ

0 R(t) dt
)

dρ ≤ A(r) for every r > 0. If a, b > 0 and c ∈ R are

constants such that the differential inequality

F ≤ aR+ b (F ′A′)
1

2 + c

holds almost everywhere on R>0, then

supF ≤ 2a lim inf
r→∞

A(r)

r2
+ c.

Proof. In the course of the proof, we will integrate the differential in-
equality twice. Let [q, r] ⊆ R>0 be a nonempty compact interval. Define

I(q, r) :=

∫ r

q

(
∫ ρ

q

F (t)− F (q) dt

)

dρ.

First, we prove that

(4.1)

∫ r

q

(
∫ ρ

q

(F ′A′)
1

2 (t) dt

)

dρ ≤
(

2I(q, r)A(r)
)

1

2 .

Integration by parts [14, 2.9.24] shows that for every Lebesgue-integrable
function f : [q, r] → R, we have

(4.2)

∫ r

q

(
∫ ρ

q

f(t) dt

)

dρ =

∫ r

q

(r − ρ) f(ρ) dρ.

We use this equation for f := (F ′A′)
1

2 and apply the Cauchy-Schwarz
inequality, to obtain

∫ r

q

(
∫ ρ

q

(F ′A′)
1

2 (t) dt

)

dρ ≤
(
∫ r

q

(r − ρ)2F ′(ρ) dρ

)
1

2

A(r)
1

2 .

The content of the first bracket on the right-hand side equals 2I(q, r).
This follows from integration by parts, from equation (4.2) for f := F ,
and from

2I(q, r) = 2

∫ r

q

(
∫ ρ

q

F (t) dt

)

dρ − (r − q)2F (q).

This proves (4.1).
Integrating the differential inequality twice, we obtain
∫ r

q

(
∫ ρ

q

F (t) dt

)

dρ ≤ a

∫ r

q

(
∫ ρ

q

R(t) dt

)

dρ

+ b

∫ r

q

(
∫ ρ

q

(F ′A′)
1

2 (t) dt

)

dρ + c
(r − q)2

2
.

On the left-hand side, we use the preceding equation; on the right-hand
side, we use the assumption on R and (4.1). It follows that

I(q, r) +
F (q)

2
r2 ≤ aA(r) + b

(

2I(q, r)A(r)
)

1

2 +
c

2
r2 +O(q, r)
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for every 0 < q < r < ∞ and for a function O(q, r) that satisfies
limr→∞O(q, r)/r2 = 0 for every fixed q > 0. We divide by r2 and
obtain

(4.3)
I(q, r)

r2
+
F (q)

2
≤ a

A(r)

r2
+ b

(

2
I(q, r)

r2

)
1

2
(

A(r)

r2

)
1

2

+
c

2
+
O(q, r)

r2

for every 0 < q < r < ∞.
Since F is nondecreasing, we have

lim
r→∞

I(q, r)

r2
=

supF − F (q)

2
.

To prove the lemma, we can assume that lim infr→∞A(r)/r2 is finite.
Then (4.3) implies that the preceding expression—i.e., supF—is finite.
Now take the limit inferior r → ∞ of (4.3) to obtain

supF

2
≤ a lim inf

r→∞

A(r)

r2
+ b

(

supF − F (q)
)

1

2

(

lim inf
r→∞

A(r)

r2

)
1

2

+
c

2
.

Since F is nondecreasing and supF is finite, we have limq→∞(supF −
F (q)) = 0. Hence, taking the limit q → ∞ in the preceding inequality
proves the lemma. q.e.d.

5. The cylinder: Construction of the exhaustion

In the proof of Theorem 2′, E. Hopf’s method is applied to compact
sets exhausting S1 × R. In [7], Burns and Knieper used compact sets
bounded by noncontractible geodesic loops. In [2] we used sets bounded
by horocycles—i.e., by level sets of Busemann functions—and this led
to better estimates. Here we briefly describe the construction of the
exhaustion that we will use in the proof of Theorem 2′; it is similar to
the exhaustion in [2].

Definition ([8, (22.3)]). Let γ be a ray in a complete Riemannian
manifold M—i.e., a minimizing geodesic γ : R≥0 → M . Its Busemann

function bγ : M → R is defined by

bγ(p) := lim
t→∞

(

d(p, γ(t)) − t
)

.

Busemann functions are examples of distance functions as defined in
[17]; see also [2, Section 2]. Distance functions are Lipschitz, and not
C1 in general, but there is a notion of regularity for them. It has similar
consequences as the usual one. In particular, all level sets of a proper and
regular distance function are homeomorphic (see [17, Proposition 1.8]).

Recall that l(p) denotes the length of a shortest noncontractible loop
based at p.
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Proposition 5.1 ([2, Proposition 3.2]). Let C = S1×R be a complete

Riemannian cylinder without conjugate points. If γ : R≥0 → C is a ray

such that

lim inf
t→∞

1

t
l(γ(t)) < 1,

then bγ is a proper and regular distance function and each of its level

sets is homeomorphic to S1 and generates the fundamental group of C.

Now assume that C = S1×R is a complete Riemannian cylinder with-
out conjugate points such that both ends of C open less than linearly.
Choose a minimizing geodesic γ : R → C that joins the two ends (see [7,
p. 630]). Consider the two rays γ1(t) := γ(−t) (t ≥ 0) and γ2(t) := γ(t)
(t ≥ 0) of γ. Then γ1 and γ2 converge to the different ends of C. Our
exhaustion will be constructed from the Busemann functions bγ1 and
bγ2 . Since both ends of C open less than linearly, the assumption of
Proposition 5.1 is satisfied for the rays γ1 and γ2. Since γ is minimizing,
we have

b−1
γ1

((−∞, 0)) ∩ b−1
γ2

((−∞, 0)) = ∅.

Definition. LetH0 be the complement of b−1
γ1

((−∞, 0))∪b−1
γ2

((−∞, 0))
in C. For i ∈ {1, 2} and every t > 0, we define the sets

H i
t := b−1

γi
([−t, 0)), hit := b−1

γi
(−t)

and the functions

Hi(t) := A(H i
t), hi(t) := H1(hit).

Here the notation is chosen so that γi(t) ∈ hit for i ∈ {1, 2} and t > 0.

Proposition 5.2. For every pair of positive real numbers (r1, r2), the
set H1

r1
∪H0 ∪H2

r2
is a compact subcylinder of C with strong Lipschitz

boundary h1r1 ∪ h2r2 . For i ∈ {1, 2} and all 0 < t < r, we have

(5.1) hit = {p ∈ H i
r : d(p, h

i
r) = r − t};

i.e., the horocycles hit are “inner equidistants” of hir ⊆ ∂H i
r. For i ∈

{1, 2}, hi : R>0 → R≥0 is continuous, and Hi ∈ C1(R>0,R>0) satisfies

H ′
i = hi.

Proof. Let i ∈ {1, 2}. By Proposition 5.1, bγi is a proper and regular
distance function and its level sets hit, t ∈ R, are circles that generate
the fundamental group of C. For every r ∈ R and every p ∈ C such that
bγi(p) ≥ −r, we have

bγi(p) = d(p, b−1
γi

(−r))− r,

which is a general fact for Busemann functions and follows from [8,
(22.18)]. Hence, for every r > 0 and every p ∈ H i

r, we have

bγi(p) = d(p, hir)− r.
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This implies (5.1). From [2, Proposition 2.1], it follows that the hit are
strong Lipschitz submanifolds of C and that hi is continuous. Since bγi is
a distance function, it satisfies | grad bγi | = 1 almost everywhere. Hence
H ′

i = hi by the coarea formula [14, 3.2.11]. q.e.d.

Note that so far we used only that the assumption of Proposition 5.1
is satisfied for the rays γ1 and γ2, and not the stronger assumption that
both ends of the cylinder open less than linearly. The latter one has the
following effect on the growth of the area functions Hi, that will be used
in the proof of Theorem 2′.

Lemma 5.3. If γi converges to an end E that opens less than linearly,

then

lim inf
r→∞

Hi(r)

r2
= 0.

Note that this lemma depends on the assumption that C has no
conjugate points.

Proof of Lemma 5.3. Since E opens less than linearly, there exists a
sequence (pj) in C converging to E such that

lim
j→∞

l(pj)

d(pj , p0)
= 0.

Note that shortest noncontractible loops on C are simple and generate
the fundamental group of C; see [2, Remark 3.1]. Since the ray γi and
the sequence (pj) converge to the same end, a shortest noncontractible
loop with basepoint pj intersects the ray γi, for all but possibly finitely
many j. Hence we can assume that pj = γi(sj) for a sequence sj → ∞.
In addition, we can assume p0 = γi(0), so that sj = d(pj , p0) for every j.

For every j ≥ 1, we choose a shortest noncontractible loop Γj based
at pj and let rj := sj − l(pj). We claim that, for every j ≥ 1, we have

Γj ⊆ b−1
γi

((−∞,−rj)).

To prove this, note, that at the basepoint of Γj we have bγi(pj) = −sj,
that bγi is 1-Lipschitz, and that diam(Γj) ≤ l(pj)/2. Choose a non-
contractible, simple, piecewise C1-regular loop Γ0 based at p0 that is
contained in b−1

γi
([0,∞)). Then, for every j such that rj > 0, the set

H i
rj

= b−1
γi

([−rj, 0)) is contained in the compact subcylinder that is

bounded by Γ0 and Γj. We use [2, Proposition 7.2] to estimate the area
of this subcylinder and hence the area of the included set H i

rj
by

Hi(rj) ≤
8

π
(sj + Lj)Lj,

where Lj :=
1
2

(

length(Γ0) + l(pj)
)

. The condition on the sequence (pj)
implies limj→∞ l(pj)/sj = 0. Hence limj→∞ rj/sj = 1, and then the
preceding inequality implies limj→∞Hi(rj)/(rj)

2 = 0. q.e.d.
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6. The cylinder: The lengths of inner equidistants

We continue to assume that the rays γ1, γ2 and the associated ex-
haustion of C are as in the previous section.

Let i ∈ {1, 2}. For technical reasons, we choose an isometric embed-
ding of the half cylinder b−1

γi
((−∞, 0)) into some complete Riemannian

R
2; i.e., we attach a closed Riemannian disk D to the half cylinder

b−1
γi

((−∞, 0)). It follows that the union of H i
t = b−1

γi
([−t, 0)) and D is a

closed disk with boundary hit, for every t > 0. Let ω(B) :=
∫

B
K dA de-

note the integral of the Gaussian curvature over a Borel subset B ⊆ R
2.

Define

ωi(t) := ω(D ∪H i
t)

for every t > 0. The Gauss-Bonnet theorem [6, 2.1.5] implies that ωi(t)
is independent of the choice of the disk D.

If bγi is smooth, then 2π−ωi(t) equals the rotation of hit = ∂(D∪H i
t)—

i.e., the integral of its geodesic curvature with respect to the inward
pointing normal. By (5.1), the hit are inner equidistants of hir = ∂(D ∪
H i

r) for every 0 < t < r. Hence in the smooth case we have

h′i(t) = 2π − ωi(t).

This equation is no longer true if bγi is not smooth; see [2, p. 791]. In
the general case, one has the following inequality that goes back to work
by Bol [3] and Fiala [15]. The proof given below consists in applying
[6, 3.2.3] to our situation.

Lemma 6.1. For i ∈ {1, 2} and every r > 0, we have

hi(r) ≥
∫ r

0
2π − ωi(t) dt.

Note that the direction of this inequality is compatible with inequality
(7.1) below. This is due to our choice of exhaustion.

Proof of Lemma 6.1. Let G := D ∪H i
r. Then G is a subset of a com-

plete Riemannian plane, is homeomorphic to a closed disk, and has
strong Lipschitz boundary ∂G = hir. For 0 < t < r, let

Pt := {p ∈ G : d(p, ∂G) < t}, lt := {p ∈ G : d(p, ∂G) = t}.
By (5.1), we have, for every 0 < t < r,

H i
t =

⋃

0<s≤t

his = {p ∈ H i
r : d(p, h

i
r) ≥ r − t}.

Thus G is the disjoint union of D ∪H i
t and Pr−t, for every 0 < t < r.

Hence

ωi(t) + ω(Pr−t) = 2π − τ,
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for τ := 2π − ω(G). Note that τ is the rotation of ∂G as defined in
[6, 2.1.5]. Together with l0 = hir, this implies that the inequality in
Lemma 6.1 is equivalent to the inequality

H1(l0) ≥
∫ r

0
ω(Pt) + τ dt.

According to the approximation theorem [6, 3.1.1], it suffices to prove
the preceding inequality in case G is a polyhedron as in [6, 3.1]. In this
case, an application of lemma [6, 3.2.3] shows that

H1(lr)−H1(l0) ≤
∫ r

0
−ω(Pt)− τ dt.

q.e.d.

The reader may consult the appendix to [2] for details on the approx-
imation and for the application of lemma [6, 3.2.3].

7. The cylinder: Proof of Theorem 2′

The proof of Theorem 2′ is similar to the proof of Theorem 1. Some
additional arguments, provided in Sections 5 and 6, are necessary. Let
the rays γ1, γ2 and the associated exhaustion of C = S1 × R be as in
Section 5.

Proof of Theorem 2′. Let U : T 1C → R be as in (2.1).
We apply E. Hopf’s method to an exhaustion by compact subcylinders

as in Proposition 5.2. By Proposition 2.3, we have
∫

σ−1(H1
r1

∪H0∪H2
r2

)
U2 dµ ≤ −2π

∫

H1
r1

∪H0∪H2
r2

K dA+

∫

σ−1(h1
r1

∪h2
r2

)
|U | dν

for every (r1, r2) ∈ R>0 × R>0. We estimate the boundary terms, using
the Cauchy-Schwarz inequality and the local product structure of ν, by

∫

σ−1(hi
r)
|U | dν ≤

(

∫

σ−1(hi
r)
U2 dν · 2πH1(hir)

)
1

2

for every i ∈ {1, 2} and every r > 0.
Recall that Hi(r) = A(H i

r) and hi(r) = H1(hir), and that H ′
i = hi by

Proposition 5.2. The coarea formula [14, 3.2.12] in T 1C implies that

Fi(r) :=

∫

σ−1(Hi
r)
U2 dµ =

∫ r

0

(

∫

σ−1(hi
t)
U2 dν

)

dt.

The functions Fi : R>0 → R≥0 are nondecreasing, and locally absolutely
continuous by [14, 2.9.20]. Let F0 :=

∫

σ−1(H0) U
2 dµ.

We combine the preceding two inequalities and obtain

F0 +
∑

i∈{1,2}

Fi(ri) ≤ −2π

∫

H1
r1

∪H0∪H2
r2

K dA +
∑

i∈{1,2}

(

F ′
i (ri) · 2πH ′

i(ri)
)

1

2
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for almost every (r1, r2) ∈ R>0 × R>0. We claim that, for ωi as in
Section 6, we have

∫

H1
r1

∪H0∪H2
r2

K dA = ω1(r1) + ω2(r2)− 4π

for every (r1, r2) ∈ R>0 × R>0. To prove this, choose a smooth, simple
closed, noncontractible curve c that is contained in the interior of the
compact subcylinderH1

r1
∪H0∪H2

r2
. Choose a Riemannian metric on S2

such that a neighborhood of its equator is isometric to a neighborhood
of c. Now cut the subcylinder along c and attach the appropriate hemi-
sphere of the S2 to each of the halves, according to the chosen isometry.
This process increases the curvature integral by 2πχ(S2) = 4π. Together
with the definitions of the ωi, this proves the equation.

We combine the two expressions and obtain

(7.1) F0 +
∑

i∈{1,2}

Fi(ri) ≤
∑

i∈{1,2}

2π
(

2π − ωi(ri)
)

+
√
2π
(

F ′
iH

′
i

)
1

2 (ri)

for almost every (r1, r2) ∈ R>0 × R>0. From H ′
i = hi and Lemma 6.1,

it follows that

(7.2)

∫ r

0

(
∫ ρ

0
2π − ωi(t) dt

)

dρ ≤ Hi(r)

for i ∈ {1, 2} and every r > 0.
Considering the preceding two inequalities, we are precisely in the

situation of Lemma 4.1: Fix an r1 > 0 such that (7.1) is valid for almost
every r2 > 0. We apply the lemma for A = H2, F = F2, R = 2π − ω2,
a = 2π, b =

√
2π, and the constant c defined by

c(r1) := 2π
(

2π − ω1(r1)
)

+
√
2π
(

F ′
1H

′
1

)
1

2 (r1)− F0 − F1(r1).

According to inequality (7.2), the assumption of Lemma 4.1 is satisfied
for A = H2 and R = 2π − ω2. Thus we obtain

supF2 ≤ 4π lim inf
r→∞

H2(r)

r2
+ c(r1).

This can be done for almost every r1 > 0. Hence we obtain

F1 ≤ 2π(2π − ω1) +
√
2π
(

F ′
1H

′
1

)
1

2 +

(

4π lim inf
r→∞

H2(r)

r2
− supF2 − F0

)

almost everywhere on R>0. As above, we apply Lemma 4.1 for A = H1,
F = F1, R = 2π− ω1, a = 2π, b =

√
2π, and c equal to the value of the

rightmost bracket of the preceding inequality. Thus we obtain

supF1 ≤ 4π lim inf
r→∞

H1(r)

r2
+ 4π lim inf

r→∞

H2(r)

r2
− supF2 − F0.
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By definition of the Fi, this is equivalent to
∫

σ−1(C)
U2 dµ ≤ 4π

(

lim inf
r→∞

H1(r)

r2
+ lim inf

r→∞

H2(r)

r2

)

.

Since both ends of C open less than linearly, the right-hand side is zero
by Lemma 5.3. It follows that U = 0 almost everywhere, and then (2.2)
implies that K = 0, i.e., g is flat. q.e.d.

8. The cylinder: Area growth versus length growth

Here we prove the equivalence of Theorem 2 and Theorem 2′.

Proposition 8.1. Let C = S1×R be a complete Riemannian cylinder

without conjugate points. An end E of C has subquadratic area growth

if and only if it opens less than linearly.

We note that the only-if part is true without the assumption “with-
out conjugate points”; see the proof given below. We start with some
preparations for the proof of the proposition. Recall that l(p) denotes
the length of a shortest noncontractible loop based at p, and that H1

denotes one-dimensional Hausdorff measure on C.

Lemma 8.2. If γ : R≥0 → C is a ray that converges to an end E of

C, and if U ⊆ C is a neighborhood of E, then
l(γ(r)) ≤ H1(U ∩ ∂B(γ(0), r))

for every sufficiently large r > 0.

The idea of the proof of the lemma is that, for sufficiently large r,
the component of ∂B(γ(0), r) that contains γ(r) is a noncontractible
loop. This is true, but it is technically simpler to base the proof on
some simple point set topology. The proof is similar to the proof of [2,
Lemma 6.2].

Proof of Lemma 8.2. Choose r0 >
1
2 l(γ(0)) such that the component

of CrB(γ(0), r0) that is determined by E is contained in U . Let r > r0.
The minimality of γ implies that for every s > r we have γ(s) ∈ C r

B(γ(0), r). Since γ converges to E , we even have

γ(s) ∈ U rB(γ(0), r)

for every s > r. We denote by E the component of U r B(γ(0), r)
containing γ((r,∞)). Note that E ⊆ U , and that ∂E is a closed subset
of U ∩ ∂B(γ(0), r). So our claim is proved once we have proved that

l(γ(r)) ≤ H1(∂E).

We prove this by showing that for every 0 < t < 1
2 l(γ(r)) the metric

circle ∂B(γ(r), t) intersects ∂E in at least two points. Then we can apply
[14, 2.10.11] to the distance function from γ(r) and to the set ∂E and
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obtain 2 · 1
2 l(γ(r)) ≤ H1(∂E). To prove that ∂B(γ(r), t) ∩ ∂E contains

at least two points, we note that the minimality of γ and the definition
of E imply that

γ(r + t) ∈ ∂B(γ(r), t) ∩ E and γ(r − t) ∈ ∂B(γ(r), t) ∩ (C r E).

Since t < 1
2 l(γ(r)) and 1

2 l(γ(r)) is the injectivity radius of C at γ(r),
we know that ∂B(γ(r), t) is homeomorphic to a circle. Since E is open
and ∂B(γ(r), t) ∩ E 6= ∅ and ∂B(γ(r), t) ∩ (C r E) 6= ∅, we see that
∂B(γ(r), t) ∩ ∂E contains at least two points. q.e.d.

Proof of Proposition 8.1. We first prove that if an end E of C has
subquadratic area growth, then it opens less than linearly.

Let p ∈ C and let U ⊆ C be Borel measurable. We apply the coarea
formula [14, 3.2.11] to the distance function from p and obtain

A(U ∩B(p, 2r)) ≥
∫ 2r

r

H1(U ∩ ∂B(p, t)) dt

for every r > 0. This implies that

A(U ∩B(p, 2r))

r2
≥ inf

t≥r

H1(U ∩ ∂B(p, t))

t

for every r > 0. By our assumption on E , we can choose a neighborhood
U of E such that the limit inferior r → ∞ of the left-hand side is zero,
and hence

lim inf
r→∞

H1(U ∩ ∂B(p, r))

r
= 0.

Choose a ray γ : R≥0 → C that satisfies γ(0) = p and that converges to
E . Now Lemma 8.2 and the preceding equation imply that

lim inf
r→∞

l(γ(r))

r
= 0.

Using the minimality of γ, we see that E opens less than linearly.
We next prove the reverse implication—i.e., if an end E of C opens

less than linearly then E has subquadratic area growth. The proof is the
same as the proof of Lemma 5.3, up to the following modification.

Choose a ray γi that converges to E . Let the sequences (pj), (sj) and
(rj), and the loops Γj , j ≥ 1, be as in the proof of Lemma 5.3. Let Γ0 be
a shortest noncontractible loop based at p0, and let U be the component
of C r Γ0 that is a neighborhood of E . By the triangle inequality, we
have

Γj ⊆ U rB(p0, rj)

for all j such that rj > 0. Hence for such j the set U ∩ B(p0, rj) is
contained in the compact subcylinder that is bounded by Γ0 and Γj .
Now we can apply [2, Proposition 7.2], as in the proof of Lemma 5.3, to
obtain limj→∞A(U ∩B(p0, rj))/(rj)

2 = 0 for a sequence rj → ∞. This
shows that E has subquadratic area growth. q.e.d.
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