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STABILITY OF HODGE BUNDLES AND A

NUMERICAL CHARACTERIZATION OF SHIMURA

VARIETIES

Martin Möller, Eckart Viehweg & Kang Zuo

Abstract

Let U be a connected non-singular quasi-projective variety and
f : A → U a family of abelian varieties of dimension g. Suppose
that the induced map U → Ag is generically finite and there is a
compactification Y with complement S = Y \U a normal crossing
divisor such that Ω1

Y (logS) is nef and ωY (S) is ample with respect
to U .

We characterize whether U is a Shimura variety by numerical
data attached to the variation of Hodge structures, rather than by
properties of the map U → Ag or by the existence of CM points.

More precisely, we show that f : A→ U is a Kuga fibre space,
if and only if two conditions hold. First, each irreducible local
subsystem V of R1f∗CA is either unitary or satisfies the Arakelov
equality. Second, for each factor M in the universal cover of U
whose tangent bundle behaves like that of a complex ball, an iter-
ated Kodaira-Spencer map associated with V has minimal possible
length in the direction of M . If in addition f : A→ U is rigid, it
is a connected Shimura subvariety of Ag of Hodge type.
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Introduction

Let Y be a non-singular complex projective variety of dimension n,
and let U be the complement of a normal crossing divisor S. We are
interested in families f : A → U of polarized abelian varieties, up to
isogeny, and we are looking for numerical invariants which take the
minimal possible value if and only if U is a Shimura variety of certain
type, or to be more precise, if f : A→ U is a Kuga fibre space as recalled
in Section 2.1. Those invariants will be attached to C-subvariations of
Hodge structures V of R1f∗CA. We will always assume that the family
has semistable reduction in codimension one, hence that the local system
R1f∗CA has unipotent monodromy around the components of S.

In [VZ04] we restricted ourselves to curves Y , and we gave a charac-
terization of Shimura curves in terms of the degree of Ω1

Y (log S) and the
degree of the Hodge bundle f∗Ω

1
X/Y (log f

−1(S)) for a semistable model

f : X → Y of A → U . For infinitesimally rigid families this descrip-
tion was an easy consequence of Simpson’s correspondence, whereas in
the non-rigid case we had to use the classification of certain discrete
subgroups of PSl2(R). In [VZ07] we started to study families over a
higher dimensional base U , restricting ourselves to the rigid case. There
it became evident that one has to consider numerical invariants of all
the irreducible C-subvariations of Hodge structures V of R1f∗CA, and
that for ball quotients one needed some condition on the second Chern
classes, or equivalently on the length of the Higgs field of certain wedge
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products of V. In [VZ07] we have chosen the condition that the discrim-
inant of one of the Hodge bundles is zero. This was needed to obtain the
purity of the Higgs bundles (see Definition 1.4) for the special variations
of Hodge structures considered there, but it excluded several standard
representations.

In this article we give a numerical characterization of a Shimura vari-
ety of Hodge type, or of a Kuga fibre space in full generality, including
rigid and non-rigid ones. We refer to Section 1 for definitions and back-
ground theorems.

Consider a complex polarized variation of Hodge structures V on U
of weight one. The most important numerical invariant of V or of the
associated Higgs bundle (E = E1,0 ⊕ E0,1, θ) is the slope µ(V) . Recall
that the slope µ(F) of a torsion free coherent sheaf F on Y , is defined
by the rational number

(0.1) µ(F) := c1(F)
rk(F) .c1(ωY (S))

dim(Y )−1.

Correspondingly we define µ(V) := µ(E1,0) − µ(E0,1). As we will see,
µ(V) is related to µ-stability, a concept which will be stated in Defini-
tion 4.2.

For any polarized family f : A → U of abelian varieties and for
any irreducible C-subvariation of Hodge structures V on U in R1f∗CA

the unipotence of the local monodromies at infinity implies by [VZ07,
Theorem 1] the Arakelov type inequality

(0.2) µ(V) = µ(E1,0)− µ(E0,1) ≤ µ(Ω1
Y (log S)).

We say that V satisfies the Arakelov equality, if equality holds in (0.2).
A second numerical property will be important to us, the length of

the iterated Kodaira Spencer map ς(V) as defined in Section 1.2.
In these terms, we can state numerically how the variation of Hodge

structures over a Kuga fiber space U looks like. We refer to Section 1.1
for the decomposition of Ω1

Y (log S) into summands Ωi according to the
splitting of its universal covering.

Proposition 0.1. Let f : A → U be a Kuga fibre space, such that
the induced polarized variation of Hodge structures W = R1f∗CA has
unipotent local monodromies at infinity. Then, replacing U by a finite
étale covering if necessary, there exists a compactification Y satisfying
the Assumption 1.1 and the Condition 1.2, such that for all irreducible
non-unitary C subvariations of Hodge structures V of W with Higgs
bundle (E, θ) one has:

i. There exists some i = i(V) such that the Higgs field θ factorizes
through

θ : E1,0 −−→ E0,1 ⊗ Ωi
⊂−−→ E0,1 ⊗ Ω1

Y (log S).
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ii. The Arakelov equality µ(V) = µ(Ω1
Y (log S)) holds.

iii. The sheaves E1,0 and E0,1 are µ-stable.
iv. The sheaf E1,0 ⊗ E0,1∨ is µ-polystable.
v. Assume for i = i(V) that Mi is a complex ball of dimension ni ≥ 1.

Then

ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

The first consequence will be referred to as V being pure of type
i = i(V).

We will verify the first four of those properties, presumably well
known to experts, at the end of Section 3. The fifth one will be proved
in Section 7.

Our main interest is the question, which of the conditions stated in
Proposition 0.1 will force an arbitrary family f : A → U of abelian
varieties to be a Kuga fibre space. We will need the existence of a pro-
jective compactification Y of U satisfying the Assumption 1.1. Remark
however, that this condition automatically holds true for compact non-

singular subvarieties U = Y of the fine moduli scheme A[N ]
g of polarized

abelian varieties of dimension g with a level N structure for N ≥ 3.
The main result of this article characterizes a Kuga fibre space as a

family of abelian varieties f : A→ U for which the slopes µ(V) are maxi-
mal and the complexity ς(V) is minimal for all C-subvariations of Hodge
structures V ⊂ R1f∗CA. In Section 1.1 we will recall Yau’s uniformiza-
tion theorem and the corresponding decomposition of Ω1

Y (log S). Type
B factors are those whose corresponding factor in the uniformization is
a complex ball of dimension greater than one.

Theorem 0.2. Let f : A → U be a family of polarized abelian va-
rieties such that R1f∗CA has unipotent local monodromies at infinity,
and such that the induced morphism U → Ag is generically finite. As-
sume that U has a projective compactification Y satisfying the Assump-
tions 1.1. Then the following two conditions are equivalent:

a. There exists an étale covering τ : U ′ → U such that f ′ : A′ =
A×U U ′ → U ′ is a Kuga fibre space.

b. For each irreducible subvariation of Hodge structures V of R1f∗CA

with Higgs bundle (E, θ) one has:
1. Either V is unitary or the Arakelov equality µ(V)=µ(Ω1

Y (log S))
holds.

2. If for a µ-stable direct factor Ωi of Ω1
Y (log S) of type B the

composition

θi : E
1,0 θ−−→ E0,1 ⊗ Ω1

Y (log S)
pr−−→ E0,1 ⊗ Ωi

⊂−−→ E0,1 ⊗ Ω1
Y (log S)

is non-zero, then ς((E, θi)) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.
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If under the assumption a) or b) f : A→ U is infinitesimally rigid, then
U ′ is a Shimura variety of Hodge type.

For the notions in the last sentence, see Section 2. We add that a
family f : A → U meeting the hypothesis of this theorem also meets
the hypotheses of Proposition 0.1 and thus the properties iii) and iv) on
stability follow as a corollary.

The proof of Theorem 0.2 will be given in Section 7. As indicated,
the subvariations of Hodge structures which are pure of type B will
play a special role. In Section 7 we will obtain a slightly more precise
information, stated as Addendum 7.20.

We do not know whether the condition 2) in Theorem 0.2, b) is really
needed. As we will show in Section 9 for rk(V) ≤ 7 this condition is
not necessary, provided that ωY (S) is ample or more generally if the
Condition 9.2 holds true. However, the necessity of the equality (1.3)
in the characterization of ball quotients might indicate that a condition
on the first Chern class, as given by the Arakelov equality, can not be
sufficient to characterize complex balls.

The main technical step towards this theorem is a purity theorem
for variation of Hodge structures. Proposition 0.1, i) states that for
Kuga fibre spaces the variation of Hodge structures decomposes as a
direct sum of pure and of unitary subvariations. This statement has a
converse.

Theorem 0.3. Under the Assumptions 1.1 consider an irreducible
non-unitary polarized C-variation of Hodge structures V of weight 1 with
unipotent monodromy at infinity. If V satisfies the Arakelov equality,
then V is pure for some i = i(V).

The proof of Theorem 0.3 will cover most of the Sections 4, 5 and 6.
We will have to consider small twists of the slopes µ(F).

In [VZ07] we had to exclude direct factors of Ω1
Y (log S) of type C,

and we used a different numerical condition for V of type B. Recall that
the discriminant of a torsion free coherent sheaf F on Y is given by

δ(F) =
[
2 · rk(F) · c2(F)− (rk(F)− 1) · c1(F)2

]
.c1(ωY (S))

dim(Y )−2,

and that the µ-semistability of E1−q,q implies that δ(E1−q,q) ≥ 0. So
the Arakelov equality implies that

δ(V) := Min{δ(E1,0), δ(E0,1)} ≥ 0.

In [VZ07] we gave two criteria forcing f : A → U to be a Kuga fiber
space. The first one, saying that all the direct factors of Ω1

Y (log S) are
of type A, is now a special case of Theorem 0.2. In the second criterion
we allowed the direct factors of Ω1

Y (log S) to be of type A and B, but
excluded factors of type C. There, for all irreducible subvariations V of
Hodge structures we required δ(V) = 0.
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The bridge between the criterion [VZ07] and Theorem 0.2 is already
contained in [VZ07, Proposition 3.4]. If f : A→ U satisfies the hypoth-
esis of Theorem 0.2, then for every irreducible subvariation of Hodge
structures V of R1f∗CA pure of type i = i(V), with Ωi of type B satis-
fying Arakelov equality and δ(V) = 0, we have either

(0.3) rk(E1,0) = rk(E0,1) · ni or rk(E1,0) · ni = rk(E0,1).

In particular, the condition in Corollary 1.3, equivalent to Theorem 0.2
b.2), holds.

Up to now we did not mention any condition guaranteeing the exis-
tence of fibres with complex multiplication or the equality between the
monodromy group and the derived Mumford-Tate group MT(f)der (see
Section 2.3), usually needed in the construction of Shimura varieties of
Hodge type. In fact, as in [Mo98], we will rather concentrate on the
condition that U → Ag is totally geodesic. This will allow in the proof of
Theorem 0.2 to identify f : A→ U with a Kuga fibre space X (G, τ, ϕ0).
Next, for rigid families we will refer to [Abd94] and [Mo98] for the
proof that they are Shimura varieties of Hodge type (see Section 2 for
more details), hence that there are fibres with complex multiplication.

This implies that for a rigid family f : A→ U the group MT(f)der is
the smallest the Q-algebraic subgroup containing the monodromy group
and that U is up to étale coverings equal to X (MT(f)der, id, ϕ0).

In [VZ07] we used for the last step an explicit identification of pos-
sible Hodge cycles. Although not really needed, we will sketch a similar
calculation in Section 8. There it will be sufficient to assume that the
non-unitary irreducible direct factors of R1f∗CA satisfy the Arakelov
equality, and we will explicitly construct a subgroup MTmov(f)der, iso-
morphic to the monodromy group Mon0(f), which up to constant factors
coincides with the Mumford-Tate group MT(f)der. Hence, Using the
notations of Section 2.1, X (Mon0(f), id, ϕ0) ∼= X (MTmov(f)der, id, ϕ0).

Acknowledgments. It is a pleasure to thank Ngaiming Mok, for sev-
eral letters explaining his results on geometric rigidity, in particular for
the proof of Claim 7.14. Parts of this note grew out of discussions be-
tween the second and third named author during a visit at the East
China Normal University in Shanghai. We would like to thank the
members of its Department of Mathematics for their hospitality.

We are grateful to the referee of an earlier version of this article, who
pointed out several ambiguities and mistakes, in particular in Sections 7
and 8.

1. Notation
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1.1. Positivity and uniformization. Our main numerical criterion
is the Arakelov (in)equality, that involves slopes of Higgs bundles. Con-
sequently, we require throughout some positivity properties of the sheaf
of differential forms on the compactification Y of U .

Assumptions 1.1. We suppose that the compactification Y of U is
a non-singular projective algebraic variety, such that S = Y \ U is a
normal crossing divisor, and such that

• Ω1
Y (log S) is nef and ωY (S) = Ωn

Y (log S) is ample with respect to
U .

By definition a locally free sheaf F is numerically effective (nef) if
for all morphisms τ : C → Y , with C an irreducible curve, and for
all invertible quotients N of τ∗F one has deg(N ) ≥ 0. An invertible
sheaf L is ample with respect to U if for some ν ≥ 1 the sections in
H0(Y,Lν) generate the sheaf Lν over U and if the induced morphism
U → P(H0(Y,Lν)) is an embedding.

At some places we need the following property.

(⋆) If F and G are two µ-stable locally free sheaves, then F ⊗ G is
µ-polystable.

This is certainly implied by the ampleness of ωY (S). S.T. Yau con-
jectures, that Property (⋆) remains true if ωY (S) is only nef and big.
Hopefully there will soon be a proof in a forthcoming article by Sun and
Yau. While this is not available, we state minimal alternative state-
ments, that give the desired conclusion.

If U is the base of a Kuga fibre space or more generally if the universal
covering π : Ũ → U is a bounded symmetric domain, we will need a
second type of condition to hold true for the compactification Y of U .

Condition 1.2. Assume that the universal covering Ũ of U decom-
poses as the product M1 × · · · ×Ms of irreducible bounded symmetric
domains.

• Then the sheaf Ω1
Y (log S) is µ-polystable. If Ω

1
Y (log S) = Ω1⊕· · ·⊕

Ωs′ is the decomposition as a direct sum of µ-stable sheaves, then
s = s′ and for a suitable choice of the indices π∗Ωi|U = pr∗iΩ

1
Mi

.

Mumford studied in [Mu77, Section 4] non-singular toroidal com-
pactifications Y of some finite étale covering of the base U of a Kuga fi-
bre space. As we will recall in Section 3, they satisfy the Assumption 1.1
and we will verify in Corollary 3.2, that such Mumford compactifications
satisfy Condition 1.2.

We need Yau’s Uniformization Theorem ([Ya93], recalled in [VZ07,
Theorem 1.4]), saying in particular that the Assumption 1.1 forces the
sheaf Ω1

Y (log S) to be µ-polystable. So one has a direct sum decompo-
sition

(1.1) Ω1
Y (logS) = Ω1 ⊕ · · · ⊕ Ωs
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in µ-stable sheaves of rank ni = rk(Ωi). We say that Ωi is of type A, if
it is invertible, and of type B, if ni > 1 and if for all m > 0 the sheaf
Sm(Ωi) is µ-stable. Finally, it is of type C in the remaining cases, i.e. if
for some m > 1 the sheaf Sm(Ωi) is not µ-stable, hence a direct sum of
two or more µ-stable subsheaves.

Let again π : Ũ → U denote the universal covering with covering
group Γ. As in the Condition 1.2, the decomposition (1.1) of Ω1

Y (log S)
corresponds to a product structure

(1.2) Ũ = M1 × · · · ×Ms,

where ni = dim(Mi). If Ũ is a bounded symmetric domain, the Mi

in (1.2) are irreducible bounded symmetric domains. If the image of
the fundamental group is an arithmetic group, there exists a Mumford
compactification and the decomposition (1.1) coincides with the one in
Condition 1.2.

Yau’s Uniformization Theorem gives in addition a criterion for each
Mi to be a bounded symmetric domain. In fact, if Ωi is of type A,
then Mi is a one-dimensional complex ball. It is a bounded symmetric
domain of rank > 1, if Ωi is of type C.

If Ωi is of type B, then Mi is an ni-dimensional complex ball if and
only if

(1.3)
[
2 · (ni + 1) · c2(Ωi)− ni · c1(Ωi)

2
]
.c(ωY (S))

dim(Y )−2 = 0.

By Yau’s Uniformization Theorem the Assumption 1.1 implies the
Condition 1.2, generalizing the result in the case of Mumford compact-
ifications.

1.2. Variations of Hodge structure and Higgs bundles. In this
section we recall basic properties about Higgs bundles and define the
invariant ς(V). We show that condition 2) in Theorem 0.2 is a condition
on an upper bound of ς(V) and we give a reformulation of that condition.

Consider a complex polarized variation of Hodge structures V on U
of weight k, as defined in [De87, page 4] (see also [Si88, page 898]),
and with unipotent local monodromy around the components of S. The
F-filtration on V0 = V⊗C OU extends to a filtration of the Deligne ex-
tension V of V0 to Y , again denoted by F (see [Sch73]). By Griffiths’
Transversality Theorem (see [Gr70], for example) the Gauss-Manin
connection ∇ : V → V ⊗ Ω1

Y (log S) induces an OY -linear map

grF (V)=
⊕

p+q=k

Ep,q
⊕

θp,q−−−−→
⊕

p+q=k

Ep,q⊗Ω1
Y (log S) = grF (V)⊗Ω1

Y (log S),

with θp,q : E
p,q → Ep−1,q+1⊗Ω1

Y (log S). So by [Si92]
(
E = grF (V), θ =⊕

θp,q
)
is the (logarithmic) Higgs bundle induced by V. We will write
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θ(m) for the iterated Higgs field

(1.4)

Ek,0 θk,0−−→ Ek−1,1 ⊗ Ω1
Y (log S)

θk−1,1−−−−→ Ek−2,2 ⊗ S2(Ω1
Y (log S))

θk−2,2−−−−→

· · · θk−m+1,m−1−−−−−−−−→ Ek−m,m ⊗ Sm(Ω1
Y (log S)).

For families of polarized abelian varieties we are considering subvaria-
tions V of the complex polarized variation of Hodge structures R1f∗CA.
Of course, V is polarized by restricting the polarization of R1f∗CA, and
V has weight 1. Then its Higgs field is of the form

(E = E1,0 ⊕ E0,1, θ) with θ : E1,0 → E0,1 ⊗ Ω1
Y (log S).

Variations of Hodge structures of weight k > 1 will only occur as
tensor representations of WQ = R1f∗QA or of irreducible direct factors
V of R1f∗CA, in particular in the definition of the invariant ς(V).

Given a Higgs bundle
(
E = E1,0 ⊕ E0,1, θ : E1,0 → E0,1 ⊗Ω1

Y (log S)
)

and some ℓ > 0 one has the induced Higgs bundle

ℓ∧
(E, θ) =

( ℓ⊕

i=0

Eℓ−i,i,
ℓ−1⊕

i=0

θℓ−i,i

)
with

Eℓ−m,m =
ℓ−m∧

(E1,0)⊗
m∧
(E0,1) and with(1.5)

θℓ−m,m :

ℓ−m∧
(E1,0)⊗

m∧
(E0,1) −−→

ℓ−m−1∧
(E1,0)⊗

m+1∧
(E0,1)⊗ Ω1

Y (log S)

induced by θ.
If ℓ = rk(E1,0), then Eℓ,0 = det(E1,0). In this case 〈det(E1,0)〉 denotes

the Higgs subbundle of
∧ℓ(E, θ) generated by det(E1,0). Writing as in

(1.4)

θ(m) = θℓ−m+1,m−1 ◦ · · · ◦ θℓ,0,
we define as a measure for the complexity of the Higgs field

ς((E, θ)) := Max{ m ∈ N; θ(m)(det(E1,0)) 6= 0} =
Max{ m ∈ N; 〈det(E1,0)〉ℓ−m,m 6= 0}.

If (E, θ) is the Higgs bundle of a variation of Hodge structures V we will
usually write ς(V) = ς((E, θ)).

Applying Simpson’s correspondence [Si92] to the Higgs subbundle

〈det(E1,0)〉 of∧rk(E1,0)(E, θ) we will obtain in Lemma 7.2 and Lemma 7.3
as a consequence of Theorem 0.3 the following result.
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Corollary 1.3. Assume in Theorem 0.3 that for i = i(V) the sheaf
Ωi is of type A or B. Then

(1.6) ς(V) ≥ rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

If Ωi is invertible, hence of type A, we will see in Lemma 7.3 that
both the left hand side and the right hand side of (1.6) are equal to
rk(E1,0).

Remark that the condition 1) in Theorem 0.2, b) allows to apply
Theorem 0.3. Since the condition 2) automatically holds true if V is
unitary, or if it is pure of type A or C, we can as well restate the
condition 2) as

2’. If V is non unitary and pure of type i = i(V) with Ωi of type B,
then

ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

1.3. Purity of variation of Hodge structures. With the types of
the factors of Ω1

Y (log S) defined, we restate the concept of purity given in
the introduction and summarize when this is automatic by superrigidity.

Definition 1.4.

1. A subsheaf F ⊂ E1,0 is pure of type i if the composition

F ⊂−−→ E1,0 θ−−→ E0,1 ⊗ Ω1
Y (log S)

pr−−→ E0,1 ⊗ Ωj

is zero for j 6= i and non-zero for j = i.
2. A variation of Hodge structures V (or the corresponding Higgs

bundle (E1,0 ⊕ E0,1, θ)) is pure of type i, if E1,0 is pure of type i.
3. If V (or (E, θ)) is pure of type i and if Ωi is of type A, B, or C, we

sometimes just say that V (or (E, θ)) is pure of type A, B, or C.

Consider the Higgs bundles (E, θj) with the pure Higgs field θj, given
by the composition

θj : E
1,0 θ−−→ E0,1 ⊗ Ω1

Y (log S)
prj−−→ E0,1 ⊗ Ωj

⊂−−→ E0,1 ⊗ Ω1
Y (log S).

In general (E, θj) will not correspond to a variation of Hodge structures.
However if (E, θ) is the Higgs bundle of a non-unitary variation of

Hodge structures, it is pure of type i if and only if θj is zero for j 6= i.
Moreover one has θi = θ in this case.

If in the decomposition (1.1) all the µ-stable direct factors Ωi are

of type C, hence if Ũ is the product of bounded symmetric domains
Mi = Gi/Ki of rank > 1, the Margulis Superrigidity Theorem and a
simple induction argument (see the proof of Proposition 6.9) imply that
up to tensor products with unitary representations each representation
ρ of the fundamental group Γ is coming from a representation of the
group G = G1 × · · · × Gs. Then by Schur’s lemma the irreducibility
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of ρ implies that it is the tensor product of representations ρj of the
Gj . Correspondingly an irreducible variation of Hodge structures V is
the tensor product of a unitary bundle and of polarized C variations of
Hodge structures Vj given by ρj. Since the weight of V is one, all the
Vj, except for one, have to be variations of Hodge structures of weight
zero, hence they are also unitary and the induced Higgs field is zero. So
V is pure. As we will see in Proposition 6.9 one can extend this result
to all U with Ũ a bounded symmetric domain.

Consequently, the main point of Theorem 0.3 is about type C factors.

2. Kuga fibre spaces and Shimura varieties of Hodge type

2.1. Kuga fibre spaces and totally geodesic subvarieties. The
data to construct a Kuga fibre space (see [Mu69] and the references
therein) are

i. a rational vector space V of dimension 2g with a lattice L,
ii. a non-degenerate skew-symmetric bilinear form Q : V × V → Q,

integral on L× L,
iii. a Q-algebraic group G and an injective map τ : G→ Sp(V,Q),
iv. an arithmetic subgroup Γ ⊂ G such that τ(Γ) preserves L,
v. a complex structure

ϕ0 : S
1 = {z ∈ C∗ ; |z| = 1} → Sp(V,Q)

such that τ(G) is normalized by ϕ0(S
1) and such that for all v ∈

V \ {0} we have Q(v, ϕ0(
√
−1)v) > 0 .

We will allow ourselves to replace the arithmetic subgroup in iv) by
a subgroup of finite index, whenever it is convenient. In particular, we
will assume that Γ is neat, as defined in [Mu77, page 599].

For Γ sufficiently small, (L,Q,G, τ, ϕ0,Γ) defines a Kuga fibre space,
i.e. a family of abelian varieties, by the following procedure. Let K0

R
be the connected component of the centralizer of ϕ0(S

1) in GR. Then
there is a map

M := G0
R/K

0
R −−→ Sp(V,Q)R/(centralizer ofϕ0) ∼= Hg

and the pullback of the universal family over Hg descends to the desired
family over

X := X (G, τ, ϕ0) := Γ\G0
R/K

0
R.

In the sequel we will usually suppress V and Q from the notation and
write just Sp(Q) or Sp, if no ambiguity arises.

Two different sets of data (L,Q,G, τ, ϕ0,Γ) and (L′, Q′, G′, τ ′, ϕ′
0,Γ

′)
may define isomorphic Kuga fibre spaces over X (G, τ, ϕ0)∼=X (G′, τ ′, ϕ′

0).
Note that different groups G and G′ might lead to the same Kuga fibre
space and that K0

R is not necessarily compact but the extension of a
central torus in GR by a compact group. Note moreover that replacing
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ϕ0 by τ(g)ϕ0τ(g)
−1 for any g ∈ G gives an isomorphic Kuga fibre space

- this just changes the reference point.
Kuga fibre spaces are the objects that naturally arise when studying

polarized variations of Hodge structures satisfying the Arakelov equal-
ity. We restrict the translation procedure into the language of Shimura
varieties to the case of ‘Hodge type’, see Section 2.4.

We provide symmetric domains throughout with the Bergman metric
(e.g. [Sa80, §II.6]). By condition v) in Mumford’s definition of a Kuga
fibre space, M → Hg is a strongly equivariant map in the sense of
[Sa80]. By [Sa80, Theorem II.2.4], it is a totally geodesic embedding,
i.e. each geodesic curve in Hg which is tangent to M at some point of
M is a curve in M . The converse is dealt with in Section 2.4.

2.2. Étale coverings. Replacing the group Γ by a subgroup of finite
index corresponds to replacing U by an étale covering, and by definition
one obtains again a Kuga fibre space. So we will consider Kuga fibre
spaces and Shimura varieties (see Section 2.4) as equivalence classes
up to étale coverings. The way we stated Theorem 0.2 or the Corol-
lary 7.22 we are allowed to replace U by an étale covering, whenever it
is convenient.

Since U → Ag is induced by a genuine family of polarized abelian
varieties f : A→ U and since the subgroup of N -division points is étale

over U , an étale covering U ′ of U maps to the moduli scheme A(N)
g of

abelian varieties with a level N structure, say for N = 3. We will drop
the ′ as well as the (N), and we will assume in the sequel:

Assumptions 2.1. Ag is a fine moduli scheme, ϕ : U → Ag is
generically finite, and f : A→ U is the pullback of the universal family.

As we will see in the beginning of the Section 7, for ϕ finite and ϕ(U)
non-singular the Arakelov equality will force ϕ to be étale. At other
places, for example if we talk about geodesics, we will have to assume
that ϕ(U) is non-singular, and that ϕ is étale. Then however, since Ag

is supposed to be a fine moduli scheme, we can as well assume that ϕ
is an embedding.

2.3. The Hodge group, the Mumford-Tate group and the mon-

odromy group. We start be recalling the definitions of the Hodge
and Mumford-Tate group. Let A0 be an abelian variety and WQ =
H1(A0,Q), equipped with the polarization Q. The Hodge group
Hg(A0) = Hg(WQ) is defined in [Mu66] (see also [Mu69]) as the small-
est Q-algebraic subgroup of Sp(WQ, Q), whose extension to R contains
the complex structure

ϕ0 : S
1 −−→ Sp(WQ, Q),

where z acts on (p, q) cycles by multiplication with zp · z̄q.



A CHARACTERIZATION OF SHIMURA VARIETIES 83

In a similar way, one defines the Mumford-Tate group MT(WQ) =
MT(A0). The complex structure ϕ0 extends to a morphism of real
algebraic groups

hWQ : ResC/RGm −−→ Gl(WQ ⊗ R),

and MT(WQ) is the smallest Q-algebraic subgroup of Gl(WQ), whose
extension to R contains the image of hWQ .

By [De82] the group MT(WQ) is reductive, and it coincides with the
largest Q-algebraic subgroup of the linear group Gl(WQ), which leaves
all Q-Hodge tensors invariant, hence all elements

η ∈
[
W⊗m

Q ⊗W∨⊗m′

Q

]0,0
.

Here W∨
Q is regarded as a Hodge structure concentrated in the bidegrees

(0,−1) and (−1, 0), and hence W⊗m
Q ⊗W∨⊗m′

Q is of weight m−m′. So

the existence of some η forces m and m′ to be equal.
Let f : A → U be a family of polarized abelian varieties and WQ =

R1f∗QA the induced polarized Q-variation of Hodge structures on U .
By [De82], [An92] or [Sc96] there exist a union Σ of countably many
proper closed subvarieties of U such that for y ∈ U \ Σ the group
MT(WQ|y) is independent of y. We will fix such a ‘very general’ point
y, write WQ instead of WQ|y. We define MT(WQ) or MT(f) to be
MT(WQ).

The monodromy group Mon(WQ) is defined as the smallestQ-algebra-
ic subgroup of Gl(WQ) which contains the image of the monodromy
representation of π1(U, y), and Mon0(WQ) denotes its connected com-
ponent containing the identity. We will often write Mon0 or Mon0(f)
instead of Mon0(WQ).

By [De82] Mon0(WQ) is a normal subgroup of the derived subgroup
MT(WQ)

der. Note that the derived subgroup of the Hodge
group Hg(A0) coincides with the derived Mumford-Tate group
MT(R1f∗QA)

der.

2.4. Shimura varieties of Hodge type and totally geodesic sub-

varieties. A Kuga fibre space X (G, τ, ϕ0) is of Hodge type, if it is iso-
morphic to a Kuga fibre space X (G′, τ ′, ϕ′

0) such that G′ is the Hodge
group of the abelian variety defined by ϕ′

0. Let us next compare this
notion with the one of Shimura varieties of Hodge type.

In [De79], the notion of a connected Shimura datum (G,M) consists
of a reductive Q-algebraic group G and a G(R)+-conjugacy class M of
homomorphisms h : ResC/RGm → GR with the following properties:

(SV1) for h ∈ M , only the characters z/z, 1, z/z occur in the represen-
tation of ResC/RGm on Lie(G).

(SV2) ad(h(i)) is a Cartan involution of Gad.
(SV3) Gad has no Q-factor on which the projection of h is trivial.
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A connected Shimura variety is defined to be the pro-system (Γ\M)Γ,
with Γ running over all arithmetic subgroups Γ of G(Q) whose image
in Gad is Zariski-dense. Since we do not bother about canonical models
and since we allow to replace the base U by an étale cover any time, we
say that U is a Shimura variety of Hodge type, if U is equal to Γ\M for
some Γ. Usually Γ is required moreover to be a congruence subgroup,
but we drop this condition to simplify matters of passing to étale covers
at some places.

We let CSp(Q) (or CSp) be the group of symplectic similitudes with
respect to a symplectic form Q. The Shimura datum (CSp(Q),M(Q))
attached to the symplectic group consists of all maps h : ResC/RGm →
CSp(Q)R defined on R-points by the block diagonal matrix

(2.1) h(x+ iy) = diag

((
x −y
y x

)
, . . . ,

(
x −y
y x

))

with respect to a symplectic basis {ai, bi}, i = 1, . . . , g of the underlying
vector space V .

A Shimura datum (G,M) is of Hodge type, if there is a map τ : G→
CSp(Q) such that composition of h ∈M with τ maps M to M(Q).

There is a bijection between isomorphism classes of Kuga fibre spaces
of Hodge type and the universal families of Shimura varieties of Hodge
type:

Given (L,Q,G, τ, ϕ0,Γ), let Z ∼= Gm be the center of CSp, define
G′ := G · Z ⊂ CSp and define h : ResC/RGm → G′

R by on C-points by
h(z) = ϕ0(z/z)|z|. Finally, let M ′ be the G′

R conjugacy class of h. One
checks that (G′,M ′) is a Shimura datum of Hodge type. Conversely
given (G′,M ′) of Hodge type, let G := G′∩Sp and let ϕ0 be the restric-
tion of a generic h ∈M ′ to S1 ⊂ ResC/RGm(C). Together with τ being
the inclusion map, this defines a Kuga fibre space of Hodge type.

We keep the Assumptions 2.1. We will not assume at the moment
that U is a Shimura variety or that any numerical condition holds on the
variation of Hodge structure. We follow Moonen ([Mo98]) and recall
the construction of the smallest Shimura subvariety XMT of Hodge type
in Ag that contains the image of U .

Theorem 2.2 ([Mo98]). Given a generically finite map ϕ : U →
Ag, there exists a Shimura datum (G,M) such that a Shimura variety
XMT ∼= Γ\M attached to this Shimura datum is the unique smallest
Shimura subvariety of Hodge type in Ag that contains the image of U .

Further, G may be chosen to be the Mumford-Tate group at a very
general point y of U .

Although the Shimura variety XMT is unique, the Shimura datum is
unique only up to the centralizer of G in CSp, see [Mo98, Remark 2.9].
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Proof. Let G be the Mumford-Tate group at a very general point
y of U . In the topological space of all maps h ∈ M(Q) that factor
through GR, choose M to be the connected component containing the
complex structure at y. By definition of the Mumford-Tate group, M
is not empty and by the argument of [De79, Lemma 1.2.4], M is an
G(R)+-conjugacy class. Hence (G,M) is a Shimura datum of Hodge
type. Since y was very general, ϕ : U → Ag factors through XMT.
The minimality of XMT follows from the minimality condition in the
definition of the Mumford-Tate group. q.e.d.

We now suppose that U is a totally geodesic non-singular subvariety
of the Shimura variety XMT ⊂ Ag. As in Section 2.2 we can also allow
a morphism ϕ : U → AG as long as ϕ(U) ⊂ Ag is a non-singular totally
geodesic subvariety and U → ϕ(U) étale.

Theorem 2.3 ([Mo98] Corollary 4.4). If U ⊂ XMT is totally geo-
desic, then U is the base of a Kuga fibre space. It is a Shimura variety
of Hodge type up to some translation in the following sense:

After replacing U by a finite étale cover, there are Kuga fibre spaces
over X1 and X2 and an isomorphism X1 × X2 → XMT, such that U is
the image of X1 × {b} for some point b ∈ X2(C).

For some a ∈ X2(C), the subvariety X1 × {a} in XMT is a Shimura
variety of Hodge type.

Proof. In loc. cit. the author deals with Shimura subvarieties of ar-
bitrary period domains and shows that there exist totally geodesic sub-
varieties Xi such that U is the image of X1 × {b}.

We repeat part of his arguments to justify that X1 is the base of a
Kuga fibre space.

More precisely, let (G,M) be the Shimura datum underlying XMT.
We have a decomposition of the adjoint Shimura datum

(Gad,M) ∼= ((Mon0)ad,M1)× (Gad
2 ,M2)

into connected Shimura data given as follows. Since G is reductive,
there is a complement G2 of Mon0, i.e. such that Mon0 × G2 → G is
surjective with finite kernel. Write G1 := Mon0 and let Mi be the set
of maps

ResC/RGm −−→ G −−→ Gad −−→ (Gi)
ad.

For suitable arithmetic subgroups Γi a component of the quotients Xi :=
Γi\Mi have the claimed property by [Mo98] Corollary 4.4.

It suffices to take τ : Mon0 → Sp the natural inclusion and ϕ0 the
restriction of any h ∈ M to S1 ⊂ C∗. Then ϕ0 normalizes Mon0 and
for a suitable choice of Γ, U is the base of the Kuga fibre space given
by (L,Q,Mon0, τ, ϕ0,Γ). q.e.d.

We call f : A → U rigid, if the induced morphism U → Ag to the
moduli stack has no non-trivial deformations, hence if there is no smooth
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projective morphism f̂ : Â→ U × T with dim(T ) > 0 and extending f ,
such that the induced morphism U × T → Ag is generically finite. In a
similar way, f : A → U is called infinitesimally rigid, if the morphism
from U to the moduli stack has no infinitesimal deformations. Using
Faltings’ description of the infinitesimal deformations (see [Fa83]) this
holds if and only if there are no antisymmetric endomorphisms of the
variation of Hodge structures pure of type (−1, 1). In particular, if
End(R1f∗QX)−1,1 = 0 the family is infinitesimally rigid.

Corollary 2.4 (See also [Abd94]). If in Theorem 2.3 the subvariety
U is rigid, then U is a Shimura variety of Hodge type.

3. Stability for homogeneous bundles and the Arakelov

equality for Shimura varieties

To prove a first part of the properties of Kuga fibre space stated in
Proposition 0.1 we recall from [Mu77] and [Mk89] some facts on ho-
mogeneous vector bundles on Hermitian symmetric domains and deduce
stability results.

Let M be a Hermitian symmetric domain and let G = Aut(M) be the
holomorphic isometries of M . Aut(M) is the identity component of the
isometry group of M and M ∼= G/K for a maximal compact subgroup
K ⊂ G. Let V0 be a vector space with a representation ρ : K → Gl(V0)
and any ρ-invariant metric h0. Then

V = G×KV0 := G×V0/ ∼, where (g, v) ∼ (gk, ρ(k−1)v) for k ∈ K

with the metric h inherited from h0 is a vector bundle on G/K, ho-
mogeneous under the action of G, or as we will say, a homogeneous
bundle.

Let U be non-singular algebraic variety. In this section we suppose
that the universal covering of U is a symmetric domain M = G/K and
that the image of the fundamental group of U in G is a neat arithmetic
subgroup. We call a bundle EU on U homogeneous, if its pullback to M
is homogeneous. We call EU irreducible, if the pullback is given by an
irreducible representation ρ.

For the rest of this section, we work over a smooth toroidal compact-
ification Y of U with S = Y \ U a normal crossing divisor, as studied
in [Mu77]. If Y ∗ denotes the Baily-Borel compactification of U , there
exists a morphism δ : Y → Y ∗ whose restriction to U is the identity.

Obviously, the cotangent bundle of a symmetric domain M = G/K
is the homogeneous bundle associated with the adjoint representation
on (Lie(G)/Lie(K))∨.

We will not need the exact definition of a singular Hermitian metric,
‘good on Y ’ in the sequel. Let us just recall that this implies that the
curvature of the Chern connection ∇h of h represents the first chern
class of E.
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Theorem 3.1 ([Mu77] Theorem 3.1 and Proposition 3.4).

a. Suppose that EU is a homogeneous bundle with Hermitian metric
h induced by h0 as above. Then there exists a unique locally free
sheaf E on Y with E|U = EU , such that h is a singular Hermitian
metric good on Y .

b. For EU = Ω1
U one obtains the extension E = Ω1

Y (log S).
c. For EU = ωU one obtains the extension E = ωY (S) and this sheaf

is the pullback of an invertible ample sheaf on Y ∗.

Corollary 3.2. Assume that U maps to the moduli stack Ag of po-
larized abelian varieties, and that this morphism is induced from a ho-
momorphism G → Sp by taking the double quotient with respect to the
maximal compact subgroup and a lattice as in Section 2.

Then the Mumford compactification Y satisfies the Assumptions 1.1
and Condition 1.2.

Proof. If the bounded symmetric domain M decomposes as M1 ×
· · · × Ms, hence if Aut(M) =: G = G1 × · · · × Gs, the sheaves Ω1

Mi

are homogeneous bundles associated with (Lie(Gi)/Lie(Ki))
∨. They

descend to sheaves Ωi U on U which extend to Ωi on Y . The uniqueness
of the extensions implies that Ω1

Y (log S) = Ω1 ⊕ · · · ⊕ Ωs.

Let f : A → U denote the universal family over U , and let F 1,0
U =

f∗Ω
1
A/U denote the Hodge bundle. Since U → Ag is induced by a

homomorphism G → Sp, and since the bundle Ω1
Ag

is homogeneous on

Ag, its pullback to U is homogeneous under G. The latter is isomorphic

to S2(F 1,0
U ).

The sheaf Ω1
U is a homogeneous direct factor, hence the uniqueness

of the extension in Theorem 3.1 implies that Ω1
Y (log S) is a direct factor

of the extension of S2(F 1,0
U ) to Y . We may assume that the local mon-

odromies of R1f∗CA around the components of S = Y \U are unipotent.
Then the Mumford extension is S2(F 1,0), where F = F 1,0 ⊕ F 0,1 is the
logarithmic Higgs bundle of R1f∗CA. Moreover, as shown by Kawamata
(e.g. [Vi95, Theorem 6.12]), the sheaf F 1,0 is nef. So S2(F 1,0) and the
direct factor Ω1

Y (log S) are both nef.
The nefness of ωY (S) and ampleness with respect to U = Y \S follows

directly from the second part of [Mu77, Proposition 3.4]. In fact, as
remarked in the proof of [Mu77, Proposition 4.2], this sheaf is just the
pullback of the ample sheaf on the Baily-Borel compactification of U .

It remains to verify that Ω1
Y (log S) is µ-polystable and that for all i

Ωi is µ-stable.
Using standard calculation of Chern characters on products, as in Sec-

tion 5, it is easy to show that the slopes µ(Ωi) coincide with µ(Ω1
Y (log S)).

The µ-stability of Ωi follows from Lemma 3.5 by a case by case verifi-
cation that for Mi irreducible the representation attached to the homo-
geneous bundle ΩMi

is irreducible.



88 M. MÖLLER, E. VIEHWEG & K. ZUO

Alternatively, since we have verified the Assumptions 1.1, we can
use Yau’s Uniformization Theorem, stated in [VZ07, Theorem 1.4]. It
implies that Ω1

Y (log S) is µ-polystable. Then the sheaves Ωi, constructed
above, are µ-polystable as well. Moreover, if Ωi decomposes as a direct
sum of two µ-polystable subsheaves the correspondingMi is the product
of two subspaces. So if we choose the decomposition M = M1×· · ·×Ms

with Mi irreducible, the sheaves Ωi are µ-stable. q.e.d.

Example 3.3. Let Ep,q
U be a Hodge bundle of a uniformizing C-

variation of Hodge structures V over U . Then Ep,q
U is a homogeneous

vector bundle and the corresponding invariant metric h is the Hodge
metric, induced by the variation of Hodge structures. Let Y be a Mum-
ford compactification of U . By Theorem 3.1 there exists a good exten-
sion of Ep,q

U to Y .
On the other hand, as described in the introduction, one has the

canonical Deligne extension of V⊗COU to Y . The compatibility of this
extension with the F-filtration (see [Sch73]) gives another extension
Ep,q of Ep,q

U to Y .

Lemma 3.4. In the Example 3.3 the canonical Deligne extension
Ep,q of Ep,q

U to Y coincides with the Mumford extension of Ep,q
U in The-

orem 3.1, a).

Proof. Let e1, . . . , en be a local basis for the canonical extension Ep,q.
Building up on [Sch73], [CKS86, Theorem 5.21] describes the growth
of the Hodge metric near S. In particular ||ei|| is bounded from above
by the logarithm of the coordinate functions z1, . . . , zk. The Deligne
extension is uniquely determined by the condition of logarithmic growth
for the Hodge metric near S.

Since the metric h coincides with the Hodge metric and since Mum-
ford’s notion ‘good’ implies that h(ei) is bounded from above by the
logarithm of the coordinate functions z1, . . . , zk, uniqueness implies that
the Deligne extension and the Mumford extension coincide. q.e.d.

Lemma 3.5. Suppose that the vector bundle E on Y is Mumford’s
extension of an irreducible homogeneous vector bundle E|U . Then E is
stable with respect to the polarization ωY (S).

Proof. By definition of Mumford’s extension ([Mu77, Theorem 3.1]),
E carries a metric h coming from the G-invariant metric, again denoted
by h, on the pull back Ẽ of E to M . As mentioned already, for a
singular metric, good in the sense of Mumford, the curvature of the
Chern connection ∇h of h represents the first chern class of E.

We claim that the restriction of ∇h to U is a Hermitian Yang-Mills
connection with respect to the Kähler-Einstein metric g on Ω1

U . In fact,

the pull back vector bundle Ẽ on M is an irreducible homogeneous
vector bundle.
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So our claim says that this G-invariant metric h on Ẽ is Hermitian-
Yang-Mills with respect to the G-invariant (Kähler-Einstein) metric g
on Ω1

M with the argument adapted from the proof of [Ko86, Theorem
3.3 (1)]. The g−trace of the curvature ∧g(Θh) of h is a G−invariant
endomorphism on the vector bundle Ẽ, and

∧g(Θh)0 := ∧g(Θh)|Ẽ0

is an K−invariant endomorphism on the vector space Ẽ0. Since the
maximal compact subgroup K acts on Ẽ0 irreducibly, ∧g(Θh)0 must be

a scalar multiple of the identity on Ẽ0. The facts that G operates on
M transitively and that the induced action of G on Ẽ commutes with
∧g(Θh) imply that ∧g(Θh) is a constant scalar multiple of the identity
endomorphism. So, h is a Hermitian-Yang-Mills metric with respect to
the G-invariant (Kähler-Einstein) metric g on Ω1

M . Here we regard Ω1
M

as an irreducible homogeneous vector bundle. On the quotient U we
obtain the Hermitian-Yang-Mills metric h on E|U with respect to the
Kähler-Einstein metric g on Ω1

U .
Suppose that F ⊂ E is a subbundle and let sU be the C∞ orthogonal

splitting over U . By Theorem 5.20 in [Kol85] the curvature of the
Chern connection to h|F represents the c1(F ). The Chern-Weil formula
implies

R(∇(h|F )) = R(∇h)|F + su ∧ s∗u.

The Hermitian Yang-Mills property of h yields µ(F ) ≤ µ(E) and equal-
ity holds if and only if sU is holomorphic.

If the equality holds, the pullback of sU to M gives an orthogonal
splitting of Hermitian vector bundles

π∗E|U ∼= π∗F |U ⊕ π∗F⊥|U .
By Proposition 2 on p. 198 of [Mk89] this contradicts the irreducibility
of E|U . Thus E is µ-stable. q.e.d.

Lemma 3.6. Suppose that Ei are vector bundles on Y , that are Mum-
ford’s extensions of irreducible homogeneous vector bundles Ei|U . Then
E1 ⊗ E2 is µ-polystable.

Proof. Let ρi be the representation corresponding to Ei. Since the
Ei are µ-stable, E1 ⊗ E2 is µ-semistable. Repeating the calculation
of the curvature of the Chern connection from the previous Lemma,
the existence of a subbundle of E1 ⊗ E2 of the same slope as E1 ⊗ E2

implies that the representation ρ1 ⊗ ρ2 corresponding to E1 ⊗ E2 is
not irreducible. Since K is reductive, ρ1 ⊗ ρ2 decomposes as a direct
sum of irreducible representations. Each of them defines a µ-stable
bundle, again by the previous Lemma, and equality of slopes follows
from semistability. q.e.d.
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Before proving the first part of Proposition 0.1 for the Mumford com-
pactification Y , let us show that the Arakelov equality is independent
of the compactification Y and compatible with replacing U by an étale
covering U ′.

Lemma 3.7. Let δ : U ′ → U be a finite étale morphism and let
Y, S and Y ′, S′ be two compactifications of U and U ′, both satisfying the
Assumptions 1.1. Let µ denote the slope on Y with respect to ωY (S)
and µ′ the one on Y ′ with respect to ωY ′(S′). Given a complex polarized
variation of Hodge structures V on U with unipotent monodromy at
infinity, let (E, θ) and (E′, θ′) be the logarithmic Higgs bundles of V
and V′ = δ∗V. Then

i. deg(δ) · µ(E1−q,q) = µ′(E′1−q,q), for q = 0, 1.
ii. deg(δ) · µ(Ω1

Y (log S)) = µ′(Ω1
Y ′(log S′)).

iii. In particular the Arakelov equality on Y implies the one on Y ′.

Proof. Choose a compactification Ȳ of U ′, with S̄ = Ȳ \ U a normal
crossing divisor, such that the inclusion U ′ → Y ′ extends to a birational
morphism σ̄ : Ȳ → Y ′ and such that the finite morphism δ : U ′ → U
extends to a generically finite morphism δ̄ : Ȳ → Y . This implies for
the sheaves L = δ̄∗ωY (S) and L′ = σ̄∗ωY ′(S′) and for all ν ≥ 0 the
equality

H0(Ȳ ,Lν) = H0(Ȳ , ωȲ (S̄)
ν) = H0(Ȳ , (L′)ν).

Since by Assumption 1.1 both L and L′ are nef and big, there are
effective exceptional divisors E and E′ such that

ωȲ (S̄) = L ⊗OȲ (E) = L′ ⊗OȲ (E
′).

We claim that E = E′ and thus L = L′. We suppose that E and
E′ are irreducible, the general case follows by applying the following
argument to each irreducible component. Assume that 0 6= E 6= E′.
Then, on the one hand the above equality of global sections can be rein-
terpreted by saying that the multiplication map by the section sνE′ ∈
H0(Ȳ ,OȲ (νE

′)) vanishing precisely along E′ (to the order ν) gives an
isomorphism

H0(Ȳ , (L′)ν) →֒ H0(Ȳ , (L′)ν(νE′ − νE)),

or, that for any section t ∈ H0(Ȳ , (L′)ν) the section

tsνE′ ∈ H0(Ȳ , (L′)ν(νE′))

vanishes to the order at least ν along E.
On the other hand, since L′ is big, one can find an effective divisor F

on Ȳ and some β0 sufficiently large, such that the sheaf (L′)β0⊗OȲ (−F )
is ample. We write F = aE+G with E not a component of G. Tensoring
by a power of L′ we may arrange that (L′)β⊗OȲ (−aE−G) is ample and
β > a. For m sufficiently large, the sheaf (L′)mβ ⊗ OȲ (−maE −mG)
is very ample. Consequently, there exists a section in H0(Ȳ , (L′)mβ ⊗
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OȲ (−maE − mG)) that does not vanish along E. We consider it as
section t ∈ H0(Ȳ , (L′)mβ) that vanishes along E to the order ma. Hence
tsνE′ vanishes along E to the same orderma, contradicting the vanishing
order at least mβ obtained from the first argument. The case E′ 6= 0
can be ruled out interchanging the roles of L and L′.

Let us write µ̄ for the slope with respect to the invertible sheaf L = L′
on Ȳ . The Deligne extension of V⊗C OU is compatible with pullbacks.
This implies that δ̄∗E1−q,q = σ̄∗E′1−q,q, and by the projection formula

deg(δ) · µ(E1−q,q) = µ̄(δ̄∗E1−q,q) = µ̄(σ̄∗E′1−q,q) = µ′(E′1−q,q)

and dim(U) · deg(δ) · µ(Ω1
Y (log S)) = deg(δ) · µ(ωY (S)) = µ̄(L) =

µ̄(L′) = µ′(ωY ′(S′)) = dim(U) · µ′(Ω1
Y ′(log S′)).

Of course, iii) follows from i) and ii). q.e.d.

We now prove Proposition 0.1 except for the statement v). The latter
will be shown at the end of Section 7, by applying Addendum 7.20, III.

Proof of Proposition 0.1, part i)–iv) for Mumford’s compactification.
Those properties can be verified over some étale covering of U . So
one may assume that U → Ag factors through a fine moduli scheme,
hence by Theorem 2.3 through XMT = X1 ×X2 with image of the form
X1×{b}. Let T denote the irreducible direct factor of the uniformizing
C-variation of Hodge structures on the Shimura variety X1 × X2, with
V ⊂ T|X1×{b}.

By Schur’s Lemma and [De87, Prop. 1.13] a polarized variation
of Hodge structures on X1 × X2 is a direct sum of exterior products
of complex polarized variations of Hodge structures (see [VZ05, Prop.
3.3]). The irreducibility of T implies that T = pr∗1V1⊗pr∗2V2 for suitable
irreducible C-variations of Hodge structures Vi on Xi. Remark that V,
T and V1 are concentrated in bidegrees (1, 0) and (0, 1). Hence V2 has
weight zero and is concentrated in bidegree (0, 0). Since pr∗2V2|X1×{b} is
a trivial Hodge structure, independent of the point b, the local system
T|X1×{b} is just a direct sum of several copies of V1. This remains true
if one replaces b by a different point a ∈ X2. The irreducibility of V
implies that V ∼= V1, so passing from b to a one does not change the
irreducible components of the complex variation of Hodge structures.

So we may suppose without loss of generality that U is a Shimura
variety of Hodge type given by the datum (G,M).

Our first aim is to exhibit E1,0 and E0,1 as homogeneous vector bun-
dles. Let τ : G → CSp be the map given by the property ‘of Hodge
type’. Choose a base point on the symmetric domain M and its image
on M ′ := M(Q). There are maximal compact subgroups K of Gder

and K ′ ∼= U(g) of Sp such that U → Ag is uniformized by the map

M = Gder/K → Sp/K ′ =: M ′. Let πU : D → U and πAg : D′ → Ag

be the natural quotients modulo arithmetic subgroups. The choice of
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the base point in M ′ is equivalent to the choice of a Q-symplectic basis
{ai, bi} of V such that we have h(i)(ai) = bi and h(bi) = −ai by 2.1.

Since the (1, 0)- and (0, 1)-parts of π∗
Ag

(R1f∗CA) are the i resp. −i-
eigenspaces of h(i), they are homogeneous bundles. Moreover, they are
given by the representations ρcan and ρcan, where ρcan : U(g)→ GL(g) is
the standard representation. The (1, 0)- and (0, 1)-parts of π∗

U (R
1f∗CA)

are consequently homogeneous bundles too, given by the representation
ρcan ◦ τ |K and ρcan ◦ τ |K .

Next, we link two notions of irreducibility. Since πU is the quo-
tient map by an arithmetic group Γ ⊂ G(Q), whose image in Gad is
Zariski-dense, C-irreducible summands of R1f∗CA are in bijection with
C irreducible summands of the representation

τ̃ : G̃ad −−→ G −−→ CSp.

Here G̃ad → Gad is the universal covering and the map to G̃ad → G
is induced by the canonical splitting of Lie(G) into its abelian and its
semisimple part. We determine these C irreducible summands, following
[De79, §2.3.7 (a)], see also [Sa65] or [Sa80].

By [De79, §2.3.4] the simple components of GR are absolutely simple.
Write

Gad
R =×

i∈I
Gi

and partition the index set I = Ic ∪ Inc according to whether Gi is
compact or not. By [De79, §1.3.8 (a) and §2.3.7] the irreducible direct
factors of VC are of the form ⊗t∈TWt for some T ⊂ I, where Wt is an

irreducible representation of G̃i,R. Moreover, the condition (SV1) forces
T ∩ Inc to contain at most one element, see [De79, Lemma 1.3.7] This
shows i).

If T ∩ Inc = ∅, then V is unitary. We thus restrict to the other
case from now on. Then the condition ‘Shimura variety’ imposes the
restrictions to the representation of the non-compact group as in the
hypothesis of Lemma 3.8, stated below. From this lemma we deduce
that in each case the representation of K ⊂ Gad is irreducible.

Now we know by Lemma 3.5 that for each irreducible summand V of
R1f∗CA, both E1,0 and E0,1 are µ-stable. By Lemma 3.6, the bundle
Hom(E1,0, E0,1) is µ-polystable with the µ-stable summands given as
homogeneous bundles by the irreducible summands of the representation
ρ ⊗ ρ∨, where ρ = ρcan ◦ τ . This proves iii) and iv). Since M → M ′

is induced by a group homomorphism and hence totally geodesic, the
tangent map

TM −−→ T ′
M |M = Hom(E1,0, E0,1)

is onto a direct summand. Since it is a map between homogeneous
bundles, the direct summand corresponds to an irreducible summand of
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the representation ρ⊗ ρ∨. Consequently, the map

(TU ) −−→ Hom(E1,0, E0,1)|U
between the Mumford extensions is an injection onto a µ-stable sum-
mand. Since the Mumford extension of TU is TY (− log S) and the Mum-
ford extension of Ep,q is the Deligne extension, we obtain

µ(TY (− log S)) = µ(E1,0)− µ(E0,1),

i.e. the Arakelov equality, stated as ii). q.e.d.

We keep the notations of the preceding proof, that will be completed
with the following lemma. We follow [De79] and define a cocharacter
χ : Gm → (Gi)C induced by h : ResC/RGm → GR in the following way.
Fix an isomorphism

(ResC/RGm)C ∼= Gm ×Gm

such that the inclusion

(ResC/RGm)(R)→ (ResC/RGm)(C)

is given by z 7→ (z, z). Let i : Gm → Gm × Gm be the inclusion given
by the identity in the second argument. Then χ := hC ◦ i.

Given χ, we let χ̃ be the inductive system of fractional lifts of χ to

G̃i ([De79, §1.3.4]).

Lemma 3.8. Let τi,t : G̃i → GL(Wt) be an irreducible representation
whose highest weight α is a fundamental weight and such that

(3.1) 〈χ̃, α+ ι(α)〉 = 1,

where ι is the opposition involution. Then Wt is the sum of two non-
empty weight spaces, denoted by W 1,0

t and W 0,1
t . Both weight spaces are

irreducible representations of the maximal compact subgroup Ki of Gi.

Proof. The equivalence of the condition (3.1) and the decomposition
into two weight spaces is in ([De79, §1.3.8]). The possible solutions
to 3.1 are listed on [Sa65, p. 461]. We distinguish the cases according
to the Dynkin diagram of Gi. We use that the cocharacter χ̃ satisfying
(3.1) determines a special node in the Dynkin diagram ([De79, §1.2.5]).

Type an: In this case Gi = SU(p, q) with p + q = n − 1, depending
on the signature of the bilinear form induced by the Cartan involution
ad(h(i)). We may assume p ≥ q. The maximal compact subgroup is

Ki = S(U(p)× U(q)).

If q > 1 only the standard representation satisfies 3.1. The weight spaces
W 1,0

t and W 0,1
t carry the standard representation of SU(p) and SU(q)

respectively and are hence irreducible.
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If q = 1 all j-th wedge product representations for j = 1, . . . , n − 1
satisfy 3.1. The weight spaces W 1,0

t (resp. W 0,1
t ) carry the j-th (resp.

j−1-st) exterior power representation of SU(p), which is also irreducible.
Type bn: In this case is Gi = SO(2, 2n − 1) (type IV2n−1 in [Sa80])

and the only representation that satisfies 3.1 is the spin representation of
the double cover Spin(2, 2n−1)→ Gi. The maximal compact subgroup
is

Ki
∼= SO(2n − 1,R)× SO(2,R).

We claim that one weight space carries the tensor product of the spin
representation of SO(2n − 1) and one of the natural representations
SO(2,R)→ U(1) while the other weight space carries the tensor product
of the spin representation and the complex conjugate representation
of SO(2,R). In both cases the representations are well known to be
irreducible.

In order to prove the claim we write down the spin representation
explicitly and exhibit its weight spaces. We follow the notations of
[Sa65, §3.5]. Let Gi be the group of transformations of VR preserving
a bilinear form S of signature (2n − 1, 2). Let {e1, . . . , e2n−1} (resp.
{e2n, e2n+1}) be an orthonormal bases of V + (resp. V −), the subspaces
where the form is positive (resp. negative) definite. We let fj = (e2j−1+
ie2j)/2 for j = 1, . . . , n − 1 and fn = (e2n + ie2n+1). Denote by W
the complex vector space generated by the fj. The exterior algebra
E = Λ(W ) embeds into the Clifford algebra of C(V, S). For an ordered
subset J = {i1, . . . , ia} ⊂ N := {1, . . . , n} we consider the elements
fJ = fi1 · · · fia and their complex conjugates in the Clifford algebra.
We identify E with the left ideal E · fN and obtain a representation of
Spin(2, 2n − 1) on E.

We may choose in

Lie(Gi) =

{(
X1 X12

XT
12 X2

)
; X1,X12,X2 real,X1,X2 skew symmetric

}
.

a maximal abelian subalgebra,

h=

{
diag

((
0 −ξ1
ξ1 0

)
, . . . ,

(
0 −ξn−1

ξn−1 0

)
, 0,

(
0 −ξn
ξn 0

)
, ξi ∈ R

)}
.

Then by the calculation in [Sa65, p. 455]) the fJ are eigenvectors with
corresponding weight i

2(
∑

i 6∈J ξi−
∑

i∈J ξi). The map χ corresponding

to the special node is generated by the element H0 ∈ Lie(Gi) with

X1 = 0, X12 = 0 and X2 =

(
0 −1
1 0

)
. We deduce that the weight

spaces W 1,0
i (resp. W 0,1

i ) are generated by the fJ with n 6∈ J (resp. by
the fJ with n ∈ J ).
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From this we first read off that SO(2,R) acts on the weight spaces as
claimed. Fix the root system

{i(ξ1 − ξ2), . . . , i(ξ2n−2 − ξ2n−1), iξ2n−1}

of so(2n − 1). Consider W 1,0
i as a representation of ˜SO(2n− 1) of

dimension 2n−1. A vector of highest weight is fN\{n} with weight

i/2
∑n−1

i=1 ξi. Consequently, the representation contains a spin repre-
sentation of Spin(2n − 1) → SO(2n − 1). For dimension reasons the

representation is irreducible. The same argument applies to W 0,1
i .

Type cn: In this case Gi = Sp(n), and as in the beginning of the proof
of Proposition 0.1 above, the weight spaces carry the standard represen-
tation of U(n) and its complex conjugate. Thus, they are irreducible.

Type dn: This case splits into two sub-cases according to the χ or
equivalently according to the position of the corresponding special node
in the Dynkin diagram.

Special node at the ‘fork’ end. In this case

Gi = SU−(n,H) ∼= SU(n, n) ∩ SO(2n,C) ⊂ Sl(2n,C)

where H denotes the Hamiltonians. In this matrix representation the
weight spaces are given by the n first (resp. last) column vectors. The
maximal compact subgroup Ki

∼= U(n) sits in Gi via

A+ iB 7→
(

A B
−B A

)
.

Consequently, both weight spaces are n-dimensional and carry the irre-
ducible standard representation of U(n).

Special node at the opposite end. This is completely similar to the
case bn replacing ‘spin’ by ‘half spin’ representations throughout.

Exceptional Lie algebras do not admit any solution to 3.1. q.e.d.

4. Slopes and filtrations of coherent sheaves

We will need small twists of the slope µ(F) defined with respect to
the nef and big invertible sheaf ωY (S) in 0.1. So we will decompose the
slope in a linear combination of different slopes and we will deform the
coefficients a little bit. In particular, as in [La04], we will compare the
Harder-Narasimhan filtrations for small twists of slopes.

On the non-singular projective variety Y of dimension n consider
n− 1-tuples of R-divisors

D(ι) = (D
(ι)
1 , . . . ,D

(ι)
n−1),

for ι = 1, . . . ,m. The collection of those divisors will be denoted byD(•).
Given two such tuples D(•) and D′(•) we define the sum componentwise,
hence

D(•) +D′(•) =
[
(D

(ι)
1 +D

′(ι)
1 , . . . ,D

(ι)
n−1 +D

′(ι)
n−1); ι = 1, . . . ,m

]
.
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Definition 4.1. We call D(•) a semi-polarization if the R-divisors

D
(ι)
j are nef for ι = 1, . . . ,m and for j = 1, . . . , n− 1 and if the intersec-

tion cycle

(D(ι))n−1 := D
(ι)
1 . · · · .D(ι)

n−1

is not numerically trivial for ι = 1, . . . ,m.

For a coherent torsion free sheaf F on Y and for each ι ∈ {1, . . . ,m}
one defines the slope

µD(ι)(F) = c1(F).(D(ι))n−1

rk(F) ,

and adding up
(4.1)

µD(•)(F) = µ[D(1),...,D(m)](F) =
m∑

ι=1

µD(ι)(F) =
m∑

ι=1

c1(F).(D(ι))n−1

rk(F) .

In the sequel we will assume that D(•) is a semi-polarization, and we fix
a torsion free coherent sheaf F on Y . If there is no ambiguity, we write
µ′ in this Section instead of µD(1),...,D(m) , and we reserve the notion µ

for the special case where the slope is taken with respect to ωY (S).
Given an exact sequence of torsion free coherent sheaves

0 −−→ F ′ −−→ F −−→ F ′′ −−→ 0,

an easy calculation shows that

(4.2) µ′(F) = rk(F ′)

rk(F) µ
′(F ′) +

rk(F ′′)

rk(F) µ
′(F ′′).

In order to define ‘stability’ for locally free or torsion free coherent
sheaves one has to take care of boundary divisors of slope zero, i.e. of

prime divisors D with µ′(OY (D)) = 0. Since the divisors D
(ι)
j are nef,

this is equivalent to the condition D.(D(ι))n−1 = 0, for ι = 1, . . . ,m.

Definition 4.2. Keeping the notations introduced above, let F and
G be two coherent torsion free sheaves on Y .

a. A subsheaf G of F is µ′-equivalent to F , if F/G is a torsion
sheaf and if c1(F) − c1(G) is the class of an effective divisor D

with µ′(OY (D)) = 0, or equivalently with D.(D(ι))n−1 = 0, for
ι = 1, . . . ,m. We call µ′-equivalence the equivalence relation on
coherent sheaves generated by µ-equivalent inclusions.

b. A morphism G → F is surjective up to µ′-equivalence, if its image
is µ′-equivalent to F .

c. G ⊂ F is saturated, if F/G is torsion free.
d. F is µ′-stable, if µ′(G) < µ′(F) for all non-trivial subsheaves G of
F with rk(G) < rk(F).
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e. F is µ′-semistable, if µ′(G) ≤ µ′(F) for all non-trivial subsheaves
G of F .

f. F is µ′-polystable if it is the direct sum of µ′-stable sheaves of the
same slope.

g. A saturated subsheaf G of F is called a maximal destabilizing sub-
sheaf, if for all subsheaves E of F one has µ′(E) ≤ µ′(G) and if the
equality implies that E ⊂ G.

We will give a nicer description of the relation ‘µ-equivalence’ in a
special case at the beginning of Section 5.
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Lemma 4.3.

1. If F is µ′-stable and if G ⊂ F is a subsheaf with µ′(G) = µ′(F)
then F and G are µ′-equivalent.

2. A µ′-polystable sheaf F is µ′-semistable.
3. In particular, if H is invertible, then

⊕H is µ′-semistable.

Proof. If G is a subsheaf of F with rk(G) = rk(F) then c1(F)−c1(G) is
an effective divisor D. Since all the D

(ι)
j are nef, one findsD.(D(ι))n−1 ≥

0 and hence µ′(G) ≤ µ′(F). This implies 2) in case that F is µ′-stable.
For µ′-polystable sheaves 2) follows by induction on the number of

direct factors, and 3) is an example for the statement in 2).
If F is µ′-stable and µ′(G) = µ′(F), then by definition rk(F) = rk(G),

hence D.(D(ι))n−1 = 0 as claimed in 1). q.e.d.

Later the divisors D
(ι)
i will correspond to the determinant of the µ-

polystable direct factors Ωj of Ω
1
Y (log S) in the decomposition 1.1, each

one occurring as often as the rank of Ωj, except the one corresponding
to the upper index ι. For one ι we will multiply in 4.1 µD(ι) by a factor
1 + ǫ.

We consider in this section a more general and more flexible set-up
than needed in the sequel, hoping that it might be of use in a different
context. We choose a second tuple

H(ι) = (H
(ι)
1 , . . . ,H

(ι)
n−1)

of nef R-divisors, for ι = 1, . . . ,m, and the polynomial

µ′
t(F) = µD(•)+t·H(•)(F) =

m∑

ι=1

c1(F).(D(ι) + t ·H(ι))n−1

rk(F) .

Of course one has µ′
0(F) = µ′(F). The cycle (D(ι) + t ·H(ι))n−1 can be

written as

D
(ι)
1 . · · · .D(ι)

n−1 +
∑

I∈I

tn−|I|−1 ·D(ι)
i1
. · · · .D(ι)

i|I|
.H

(ι)
j1

. · · · .H(ι)
jn−1−|I|

where the sum is taken over the set I of ordered subsets

I = {i1, . . . , i|I|} of {1, . . . , n− 1}
of cardinality |I| < n−1, and where {j1, . . . , jjn−1−|I|

} is the complement

of I in {1, . . . , n − 1}, again as an ordered set. For a coherent sheaf G
one has

µ′
t(F) − µ′

t(G) = µ′(F) − µ′(G) +
∑

I

tn−|I|−1 · (µ′I(F)− µ′I(G)),
(4.3)

with µ′I(G) =
m∑

ι=1

c1(G).D(ι)
i1
. · · · .D(ι)

i|I|
.H

(ι)
j1

. · · · .H(ι)
jn−1−|I|

rk(G) .(4.4)
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Lemma 4.4. For a coherent sheaf F of rank r consider the sets

S = {µ′(G); G ⊂ F} ⊂ R and

S =

{
µ′
t(G) =

n−1∑

ν=0

aν · tν ; G ⊂ F
}
⊂ R[t].

Then

i. the set S is discrete and bounded from above.
ii. There exists some ǫ0 > 0 and some ‘maximal’ element G(t) ∈ S,

such that for all F (t) ∈ S with F (t) 6= G(t) one has G(ǫ) > F (ǫ)
for 0 < ǫ ≤ ǫ0.

Proof. Let S′ be the set of all coefficients occurring in F (t) ∈ S. We
will first show, that the set S′ is discrete and bounded from above. Since
S ⊂ S′, this implies i).

For H invertible and sufficiently ample F∨⊗H is generated by global
sections. Hence F is embedded in

⊕H. Then under the projection
to suitable factors, any subsheaf G ⊂ F of rank r′ is isomorphic to a

subsheaf of
⊕r′ H and c1(G) = r · c1(H) −D for some effective divisor

D.
Since the divisors D

(ι)
j and H

(ι)
j are all nef, the intersection of the

1-dimensional cycles

D
(ι)
i1
. · · · .D(ι)

i|I|
.H

(ι)
j1

. · · · .H(ι)
jn−1−|I|

in 4.4 with any divisor is a non-negative multiple of a fixed real number,
So one may write

m∑

ι=1

(D(ι) + t ·H(ι))n−1 =
n−1∑

ν=0

(
∑

µ

αν,µCµ,ν

)
tν

for αµ,ν ∈ R and for linear combinations Cµ,ν of curves with D.Cµ,ν ≥ 0
for all effective divisors D. Then −S′ is discrete, as a subset of the union
of translates of finite many copies of

⋃

ν

∑

µ

αµ,ν · N.

Moreover S′ it is bounded above by the maximal coefficient c of µ′
t(H).

On the set S consider the lexicographical order. So
∑n−1

ν=0 aν · tν <∑n−1
ν=0 bν · tν if aν = bν for ν < j and if aj < bj . Obviously S contains a

maximal element G(t) =
∑n−1

ν=0 bν · tν for this order.
Choose ǫ0 ∈ (0, 1) to be a real number with

1√
ǫ0
≥ sup

c∈S





n−1∑

ν=j+1

(c− bν)t
ν−j−1; t ∈ [0, 1], j = 1, . . . , r − 1



 ,

and such that for ν = 0, . . . , r one has [bν −
√
ǫ0, bν +

√
ǫ0] ∩ S′ = {bν}.
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Since G(t) > F (t), for some j and for 0 < ǫ ≤ ǫ0 one finds

G(ǫ)− F (ǫ) =
n−1∑

ν=j

(bν − aν) · ǫν ≥

ǫj ·
(
(bj − aj)+ ǫ ·

n−1∑

ν=j+1

(bν − c) · ǫν−j−1

)
> ǫj ·

(√
ǫ0 − ǫ · 1√

ǫ0

)
≥ 0.

q.e.d.

We will consider next values of the polynomials F (t) ∈ S for small
ǫ ∈ R≥0.

Definition 4.5. For ǫ ∈ R≥0 consider a filtration 0 = G0 ⊂ G1 ⊂
· · · ⊂ Gℓ = F with Gα/Gα−1 torsion free and µ′

ǫ-semistable, for α =
1, . . . , ℓ, and with
(4.5)

µ′
ǫ,max(F) = µ′

ǫ(G1) ≥ µ′
ǫ(G2/G1) ≥ · · · ≥ µ′

ǫ(Gℓ/Gℓ−1) = µ′
ǫ,min(F).

The filtration is called a µ′
ǫ-Harder-Narasimhan filtration if the inequal-

ities in (4.5) are all strict, and it is called a weak µ′
ǫ-Jordan-Hölder

filtration if µ′
ǫ,max(F) = µ′

ǫ,min(F).
Lemma 4.6. Let F be a coherent torsion free sheaf on Y .

a. For all ǫ ≥ 0 there exists a Harder-Narasimhan filtration

G0 = 0 ⊂ G1 ⊂ · · · ⊂ Gℓ = F
of F with respect to µ′

ǫ and this filtration is unique.
b. There exists some ǫ0 > 0 such that the filtration in a) is indepen-

dent of ǫ for ǫ0 ≥ ǫ > 0.
c. If F is µ′-stable, then for some ǫ0 > 0 and for all ǫ0 ≥ ǫ ≥ 0 the

sheaf F is µ′
ǫ-semistable.

Proof. For ǫ > 0 we apply Lemma 4.4, ii). For the polynomial G(t),
given there, choose a subsheaf G ⊂ F with G(t) = µ′

t(G), for all t ∈ R.
Moreover for 0 < ǫ ≤ ǫ0 the slope µ′

ǫ(G) = G(ǫ) is maximal among
the possible slopes of subsheaves of F . This allows to assume that G is
saturated. If there are several subsheaves of F with the same slope, we
choose a saturated one of maximal rank.

If for E ⊂ F one has µ′
ǫ(E) = µ′

ǫ(G), then by 4.2 the slope of E ⊕ G is
µ′
ǫ(G). The maximality of the slope of G implies µ′

ǫ(E ∩ G) ≤ µ′
ǫ(G) and

µ′
ǫ(E + G) ≤ µ′

ǫ(G). By 4.2 this is only possible if µ′
ǫ(E + G) = µ′

ǫ(G).
Then the maximality of the rank of G implies that rk(E + G) = rk(G),
and E ⊂ G.

So G is a maximal destabilizing subsheaf of F , and it is independent
of ǫ ∈ (0, ǫ0]. The existence and uniqueness of a µ′

ǫ-Harder-Narasimhan
filtration follows by induction on the rank. Here of course we have to
lower ǫ0 in each step.
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For ǫ = 0 the existence and uniqueness of the Harder-Narasimhan
filtration follows by the same argument, replacing the reference to part
ii) of Lemma 4.4 by the one to part i).

Assume now that F is µ′-stable and consider the Harder-Narasimhan
filtration in a). Then

µ′(G1) = lim
ǫ→0

µ′
ǫ(G1) ≥ lim

ǫ→0
µ′
ǫ(F) = µ′(F).

By assumption, F is stable, with respect to µ′, hence G1 = F , and ℓ = 1.
q.e.d.

Although this will not be used in the sequel, let us state a strengthening
of the last part of Lemma 4.6.

Addendum 4.7. For ǫ0 sufficiently small, the sheaf F in part c) is
µ′
ǫ-stable for all ǫ0 ≥ ǫ ≥ 0.

Proof. Part i) of Lemma 4.4 and the µ′-stability of F imply that

γ = Inf{µ′(F) − µ′(G); rk(G) < rk(F)} > 0.

Let us return to the slopes µ′I introduced in 4.3 and 4.4. By part a) of
Lemma 4.6 there exists a Harder-Narasimhan filtration

GI0 = 0 ⊂ GI1 ⊂ · · · ⊂ GIℓI = F
with respect to µ′I . In particular for G ⊂ F one has µ′I(G) ≤ µ′I(GI1 ).

Choose ǫ0 > 0 such that for 0 < ǫ ≤ ǫ0, and for all I ∈ I with
|I| < n− 1 one has

1

|I|+ 1
· γ ≥ ǫn−|I|−1 ·

(
µ′I(GI1)− µ′I(F)

)

For a subsheaf G ⊂ F of strictly smaller rank one finds

µ′I(F)− µ′I(G) ≥ µ′I(F)− µ′I(GI1 ),
and thereby

µ′
ǫ(F) − µ′

ǫ(G) ≥ γ +
∑

I∈I

ǫn−1−|I| · (µ′I(F)− µ′I(G)) ≥

γ +
∑

I∈I

ǫn−1−|I| · (µ′I(F)− µ′I(GI1 )) ≥ γ − |I|
|I|+ 1

· γ > 0.

q.e.d.

Corollary 4.8. Assume in Lemma 4.6 that F is µ′-semistable. Then
there exists a weak µ′-Jordan-Hölder filtration

G0 = 0 ⊂ G1 ⊂ · · · ⊂ Gℓ = F
and some ǫ0 > 0 such that for all ǫ ∈ (0, ǫ0] the filtration G• is a µ′

ǫ-
Harder-Narasimhan-filtration.
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Proof. The filtration G•, constructed Lemma 4.6, b), is a µ′
ǫ-Harder-

Narasimhan filtration for all 0 < ǫ ≤ ǫ0. Taking the limit of the slopes
for µ′

ǫ one obtains

µ′
max(F) = µ′(G1) ≥ µ′(G2/G1) ≥ · · · ≥ µ′(Gℓ/Gℓ−1) = µ′

min(F),
and since F is µ′-semistable, those are all equalities. q.e.d.

5. Splittings of Higgs bundles

The negativity of kernels of Higgs bundles provide a well-known cri-
terion for the orthogonal complement of a subbundle K of E1,0 to be a
holomorphic subbundle: It suffices to show that the slope of the coker-
nel Q with respect to the canonical polarization is zero. In this section
we extend this to a criterion that zero slope with respect to canoni-
cal semi-polarizations implies – best that one can expect – vanishing
of ∂/∂z-derivatives of the orthogonal splitting map Q → E1,0 in the
corresponding directions.

Assume again that Y is non-singular, that U ⊂ Y the complement of
a normal crossing divisor S, and that the positivity conditions stated as
Assumptions 1.1 hold true. Then one has the decomposition (see 1.1)

Ω1
Y (logS) = Ω1 ⊕ · · · ⊕ Ωs

as a direct sum of µ-stable subsheaves Ωi of rank ni.

Lemma and Definition 5.1.

i. The µ-stable direct factors Ωi and their determinants det(Ωi) are
nef. The cycles c1(Ωi)

ni+1 are numerically trivial.
ii. For ν1, . . . , νs with ν1 + · · · + νs = n the product c1(Ω1)

ν1 . · · · .
c1(Ωs)

νs is a positive multiple of c1(ωY (S))
n, if νι = nι for ι =

1, . . . , s. Otherwise it is zero.
iii. c1(Ω1)

n1 . · · · .c1(Ωs)
ns > 0.

iv. Let D be an effective Q divisor. Then D.c1(ωY (S))
n−1 = 0 if and

only if

D.c1(Ω1)
ν1 . · · · .c1(Ωs)

νs = 0

for all ν1, . . . , νs with ν1 + · · ·+ νs = n− 1.
v. Let NS0 denote the subspace of the Neron-Severi group NS(Y )Q

of Y which is generated by all prime divisors D satisfying the
equivalent conditions in iv). Then all effective divisors B with
class in NS0 is supported in S.

vi. If for some α ∈ Q one has c1(Ωi)− α · c1(Ωj) ∈ NS0 then i = j.

Proof. Parts i), ii), iii) and vi) have been shown in [VZ07, Lemmata
1.6 and 1.9]. Part iv) follows from the nefness of det(Ωi). For v) consider
a prime divisor D whose support meets U . Since ωY (S) is nef and ample
with respect to U , the restriction ωY (S)|D is nef and big, and hence
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D.c1(ωY (S))
n−1 > 0. So the nefness of ωY (S) implies that none of the

components of B in v) can meet U . q.e.d.

Using the notations from Section 4 consider m = 1 and the tuple D(1)

where all divisors are D
(1)
j = KY + S for some canonical divisor KY .

Then the slope µD(1)(F), considered there, is equal to µ(F). Using

Lemma 5.1 the µ-equivalence, as given by Definition 4.2, can be made
more precise. Recall that we define two torsion free coherent sheaves G
and F to be µ-equivalent, if there is a chain of µ-equivalent inclusions

G = G1 →֒ F1 ←֓ G2 →֒ F2 ←֓ · · · · · · →֒ Fℓ−1 ←֓ Gℓ →֒ Fℓ = F .
Addendum 5.2. Let τ : U ′ → Y be the complement of all prime

divisors D ≤ S with D ∈ NS0. Let F and G be torsion free coherent
sheaves on Y .

vii. Assume that G is a subsheaf of F which is µ-equivalent to F . Then
c1(F) − c1(G) lies in the subspace NS0, defined in Lemma 5.1 v),
and G|U ′ → F|U ′ is an isomorphism. In particular this holds if
G →֒ F is an inclusion of µ-semistable sheaves of the same slope
and rank.

viii. The following conditions are equivalent:
a. G and F are µ-equivalent.
b. There exists an isomorphism τ∗G → τ∗F .
c. There exists an effective divisor B ∈ NS0 with G ⊂ F⊗OY (B).

ix. Let θ : G → F be a morphism of µ-semistable sheaves of the same
slope, and let Im′(θ) denote the saturated image, i.e. the kernel of

F −−→ (F/Im(θ))/torsion.

Then Im′(θ) is a µ-semistable subsheaf of F of slope µ(F), and
the inclusion Im(θ) →֒ Im′(θ) is an isomorphism over U ′.

Proof. Part vii) follows directly from the definition of µ-equivalence
in 4.2 and from the definition of NS0 in Lemma and Definition 5.1. As
a consequence, in viii) the condition a) implies b).

On the other hand, given an isomorphism τ∗G ∼= τ∗F , hence τ∗τ∗G ∼=
τ∗τ

∗F , one finds effective divisors B and B′, both supported in Y \U ′,
with

G →֒ G ⊗ OY (B
′) = F ⊗OY (B) ←֓ F .

In particular b) implies c). Finally, since B ∈ NS0 one finds that c)
implies a).

For part ix) one just has to remark that the nefness of ωY (S) implies
that

µ(G) ≤ µ(Im(θ)) ≤ µ(Im′(θ)) ≤ µ(F).
q.e.d.
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Example and Definition 5.3. Let F be a µ-semistable torsion free
coherent sheaf. As for slopes defined by polarizations (e.g. [HL97, page
23]) one finds for semi-polarizations a maximal µ-polystable subsheaf
Soc(F) = G1 ⊕ · · · ⊕ Gℓ of slope µ(F). Remark that in general the
saturated hull of Soc(F) is no longer µ-polystable, but for some effective
divisor B ∈ NS0 it will be contained in the µ-polystable sheaf (G1⊕· · ·⊕
Gℓ)⊗OY (B), and both are µ-equivalent.

In Section 7 we will need the cosocle Cosoc(F) of F , defined as the
dual of the socle of F∨. In down to earth terms this is the largest µ-
polystable sheaf of slope µ(F) for which there exists a morphism θ :
F → Cosoc(F), surjective over some open set.

In the sequel we consider again an irreducible polarized complex varia-
tion of Hodge structures V of weight 1 with unipotent monodromy at
infinity and with Higgs bundle

(
E = E1,0 ⊕ E0,1, θ : E1,0 → E0,1 ⊗ Ω1

Y (log S)
)
.

We assume that V is non-unitary, hence that θ 6= 0.
Recall that a Higgs subsheaf (G, θ|G) of a Higgs bundle (E, θ) is a

subsheaf with θ(G) ⊂ G ⊗ Ω1
Y (log S). Correspondingly a torsion free

Higgs quotient sheaf is of the form Q = E/G, where G is saturated and
a Higgs subsheaf. By [VZ07, Proposition 2.4] one obtains as a corollary
of Simpson’s correspondence:

Lemma 5.4. Let D(ι) be a finite system of n − 1-tuples of nef R-
divisors. Let (E, θ) be the Higgs bundle of a complex polarized variation
of Hodge structures with unipotent monodromy at infinity. Then:

i. µD(•)(G) ≤ 0 for all Higgs subsheaves G.
ii. µD(•)(Q) ≥ 0 for all torsion free Higgs quotient sheaves Q.
iii. If for one ι and for all j the divisors D

(ι)
j are ample with respect

to U , then the following conditions are equivalent for a saturated
Higgs subsheaf G of E and for Q = E/G:
1. µD(•)(G) = 0.

2. µD(•)(Q) = 0.

3. G is a direct factor of the Higgs bundle E.

Let us write Di for a divisor with OY (Di) = det(Ωi) and consider for

ι = 1, . . . , s the tuple D̃
(ι)

(5.1)
(

nι−1︷ ︸︸ ︷
Dι, . . . ,Dι,

n1︷ ︸︸ ︷
D1, . . . ,D1, . . .

nι−1︷ ︸︸ ︷
Dι−1, . . . ,Dι−1,

nι+1︷ ︸︸ ︷
Dι+1, . . . ,Dι+1, . . . ,

ns︷ ︸︸ ︷
Ds, . . . ,Ds).
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For some binomial coefficients one can write

µ(F) =
s∑

ι=1

αι · µ
D̃

(ι)(F).

To get rid of the αι we replace D̃
(ι)

by the tuple D(ι) obtained by

multiplying each of the divisors in D̃
(ι)

by n−1
√
αι. So for the intersection

cycle one gets

(D(ι))n−1 = αι · (D̃
(ι)
)n−1

and one finds

(5.2) µD(ι)(F) = αι · µ
D̃

(ι)(F) and µ(F) =
s∑

ι=1

µD(ι)(F) = µD•(F).

Remark that µD(ι)(Ωi) 6= 0 if and only if ι = i.

Properties 5.5.

1. If the local system V is irreducible and non-unitary there exists
some ι with µD(ι)(E1,0) > 0.

2. If L is an invertible sheaf, nef and big, then for all j one has
µD(j)(L) > 0.

Proof. For part 1) remark that Lemma 5.4, ii) and iii) imply that
µ(E1,0) > 0. For 2) recall that for ν ≫ 1 the sheaf Lν ⊗ Ω−1

j has a

section with divisor Γ. Since the Dj are all nef, µD(j)(OY (Γ)) ≥ 0 and

hence

ν · µD(j)(L) ≥ αjc1(Ω1)
n1 . · · · .c1(Ωs)

ns > 0.

q.e.d.

Next we consider a small twist of µ by choosing for ǫ ≥ 0

µ{ι}
ǫ (F) = ǫ · µD(ι)(F) + µ(F).

For s > 1 none of the divisors D
(ι)
j is ample. So we are not allowed to

apply part iii) of Lemma 5.4 to the slope µD(ι) .

For µ
{ι}
ǫ things are better. For a for a Higgs subbundle G of E the first

part of Lemma 5.4 only implies that µD(ι)(G) ≤ 0. Since µ(G) ≤ 0 the

equality µ
{ι}
ǫ (G) = 0 can only hold for ǫ > 0 if µ(G) = µD(ι)(G) = 0. This

implies that the saturated hull of G in E is a direct factor, contradicting

the irreducibility of V. So rk(G) < rk(E) implies that µ
{ι}
ǫ (G) < 0.

As we will show in Section 6.1 the same holds for the slopes µD(ι) if

the universal covering Ũ is a bounded symmetric domain. Without this
information, one just has the following criterion.
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Proposition 5.6. Let

0 −−→ K −−→ E1,0 −−→ Q −−→ 0

be an exact sequence, and let s : Q → E1,0 be the orthogonal complement
of K. Assume that for some ι the slope µD(ι)(Q) = 0. Then

a. The composition

Q s−−→ E1,0 θ−−→ E0,1 ⊗ Ω1
Y (log S)

prι−−→ E0,1 ⊗ Ωι

is zero.
b. s : Q → E1,0 is holomorphic in the direction Ωι.

Remark that a priori s is a C∞ map. So part b) of the Proposition

needs some explanation. Recall that we have the decomposition Ũ =
M1 × · · · ×Ms, corresponding to the decomposition of Ω1

Y (log S) in µ-
stable direct factors. Write n0 = 0, again ni = rk(Ωi) = dim(Mi) and

mi =
∑i

j=0 nj.
Given a point y ∈ U let us choose a local coordinate system z1, . . . , zn

in a neighborhood of y such that π∗(zmi−1+1), . . . , π
∗(zmi

) are coordi-
nates on Mi.

Definition 5.7. The inclusion s : Q → E1,0 is holomorphic in the
direction Ωι if its image is invariant under the action of ∂/∂z̄k on E1,0

for k = mι−1 + 1, . . . ,mι.

Proof of Proposition 5.6. We assume ι = 1. Locally, in some open set
W ⊂ U choose complex coordinates z1, . . . , zn as above and unitary
frames of E1,0 and E0,1. That is, choose C∞-sections e1, . . . , eℓ of E

1,0

and f1, . . . , fℓ′ of E0,1 orthogonal with respect to the scalar product
h(·, ·) coming from the Hodge metric, and such that e1, . . . , ek generate
K while ek+1, . . . , eℓ generate s(Q). Write the Higgs field θ in these
coordinates as

θ(eα) =

n∑

i=1

ℓ′∑

β=1

θiα,βfβdzi.

By [Gr70, Theorem 5.2] the curvature R of the metric connection ∇h

on E1,0 is given by

(5.3) RE1,0 = θ ∧ θ∗ =
n∑

i,j=1

(RE1,0)i,jdzi ∧ z̄j ,

where

(RE1,0)
i,j
α,β =

ℓ′∑

γ=1

θiα,γθ
i
β,γ .

For the subbundle K ⊂ E1,0 the composition

b : K −−→ E1,0 ∇h−−→ E1,0 ⊗ Ω1
U −−→ Q⊗ Ω1

U
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of the metric connection and the quotient is called second fundamental
form. Taking complex conjugates we obtain a map

c : K̄ ∼= K∨ −−→ Q̄ ⊗ Ω0,1
U
∼= Q∨ ⊗ Ω0,1

U .

Both maps are only C∞. We write the map c in coordinates

c(eα) =

n∑

i=1

k∑

β=1

ciα,βeβdzi.

By [Gr70, Theorem 5.2] the curvature of the metric connection on Q
is given by

RQ = (θs) ∧ (θs)∗ + c ∧ c∗ =

n∑

i,j=1

(RQ)
i,jdzi ∧ z̄j , where

(RQ)
i,j
α,β =

ℓ′∑

γ=1

θiα,γθ
i
β,γ +

k∑

γ=1

ciα,γc
i
β,γ , for α, β ∈ {k + 1, . . . , ℓ}.

(5.4)

We conclude that for all i, the matrices (RQ)
i,i are positive semi-definite.

Moreover their traces are zero if and only if θiα,β = 0 and ciα,β = 0 for

all α, β ∈ {k + 1, . . . , ℓ}.
We write R(Ωi) for the curvature of det(Ωi). By Lemma 5.1 ii) and

after rescaling zi by suitable constants we may assume that over W

R(Ωi) = dzmj−1+1 ∧ dz̄mj−1+1 + · · ·+ dzmj
∧ dz̄mj

,

keeping the convention m0 = n0 = 0. Then

R(Ω1)
n1−1 ∧R(Ω2)

n2 ∧ · · · ∧R(Ωs)
ns =

n1∑

i=1

Ci ·
∧

j 6=i

dzj ∧ dz̄j ,

for some binomial coefficients Ci > 0. The hypothesis µD(1)(Q) = 0 is

equivalent to

0 =

(√−1
2π

)
·
∫

U
tr(RQ) ∧R(Ω1)

n1−1 ∧R(Ω2)
n2 ∧ · · · ∧R(Ωs)

ns .

Since tr(RQ) and all the R(Ωi) are positive semidefinite, the integral
has to be zero on all open sets, in particular on W . We deduce

0 =

∫

W




n∑

i,j=1

tr(RQ)
i,jdzi ∧ dz̄j


 ∧




n1∑

i=1

Ci ·
∧

j 6=i

dzj ∧ dz̄j




=

∫

W
Ci tr(RQ)

i,i
n∧

j=1

dzj ∧ dz̄j .

(5.5)
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Hence tr(RQ)
i,i = 0 for all i and we obtain the vanishing on U of the

composition prι ◦ θ ◦ s as claimed in a) and of all ciα,β . Since the (0, 1)-

part of the metric connection ∇h is ∂̄, the vanishing of ciα,β is what is

claimed in b). Since the sheaves Ωι, E
1,0 and E0,1 are locally free, both

vanishing statements extend to the whole of Y . q.e.d.

6. Purity of Higgs bundles with Arakelov equality

In this section we will prove Theorem 0.3. So keeping the assumptions
from Section 5 we will assume in addition that V is non-unitary and that
it satisfies the Arakelov equality

µ(V) = µ(E1,0)− µ(E0,1) = µ(Ω1
Y (log S)).

By [VZ07, Theorem 1] we know that E1,0 and E0,1 are both µ-semi-
stable. We keep the notations from the last section. In particular as
in 5.1 and 5.2 we define tuples D(ι) of divisors for ι = 1, . . . , s with
µ = µD(•) . Moreover

µ{ι}
ǫ = µ+ ǫ · µD(ι)

denotes a small perturbation of the slope µ. First we show that this is
the slope associated with a small perturbation of the original collection
of divisors by a suitable collection of nef divisors, as studied in Section 4.

Lemma 6.1. For some tuples of nef R-divisors H(i) one has

µ{ι}
ǫ = µD(•)+ǫ·H(•) .

Proof. There are several choices for the H(i). In the description of

the tuple of divisors D̃
(ι)

in 5.1 denote the first entry by Dℓ. Then the
first entry in D(ι) is n−1

√
αι · Dℓ. Here ℓ = ι, if nι > 1, or some other

index in case that nι = 1.

Then choose the tuples of R-divisors H(•) with H
(i)
j = 0 for i =

1, . . . , s and for j = 1, . . . , n − 1, except for H
(ι)
1 which is chosen to be

n−1
√
αι ·Dℓ. This implies that D(i) + ǫ ·H(i) = D(i) for i 6= ι, whereas

(D(ι) + ǫH(ι))n−1 = (1 + ǫ) · (D(ι))n−1.

So for a sheaf F one finds

µD(•)+ǫ·H(•)(F) =
s∑

i=1

µD(i)+ǫ·H(i)(F) = (1+ǫ)·µD(ι)(F)+
∑

i 6=ι

µD(i)(F)

= ǫ · µD(ι)(F) +
s∑

i=1

µD(i)(F) = ǫ · µD(ι)(F) + µD(•)(F) = µ{ι}
ǫ (F).

q.e.d.
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By Corollary 4.8 one finds a filtration G(ι)• of E1,0 and some ǫ0 > 0 such

that G(ι)• is a µ
{ι}
ǫ -Harder-Narasimhan filtration of E1,0, for all ǫ ∈ (0, ǫ0],

and a weak µ-Jordan-Hölder filtration. Of course we may choose ǫ0 to
be independent of ι.

So the quotient sheaves G(ι)i /G(ι)i−1 are µ
{ι}
ǫ -semistable for all ǫ ∈ [0, ǫ0],

however not necessarily µD(ι)-semistable.

Lemma 6.2. Let F be a µ-stable subsheaf of E1,0 with µ(F) =
µ(E1,0). Then F is pure of type ι for some ι ∈ {1, . . . , s}. Moreover,
each subsheaf F ′ of E1,0 which is isomorphic to F is pure of the same
type ι.

Recall from Definition 1.4 that F is pure of type ι if the restriction
θ|F of the Higgs field factors like

F θι−−→ E0,1 ⊗ Ωι
⊂−−→ E0,1 ⊗ Ω1

Y (log S).

Equivalently, writing Ti for the dual of Ωi and θ∨i for the composite

E1,0 ⊗ Ti

θ⊗idTi−−−−→ E0,1 ⊗ Ωi ⊗ Ti
contraction−−−−−−−→ E0,1,

one requires θ∨i (F ⊗Ti) to be zero for i 6= ι. Since V is non-unitary this
is only possible if θ∨ι (F ⊗ Tι) 6= 0.

Proof of Lemma 6.2. Assume that F ′ ∼= F and that for some i 6= i′ one
has

θ∨i (F ⊗ Ti) 6= 0 and θ∨i′ (F ′ ⊗ Ti′) 6= 0.

We will write Bi and Bi′ for the saturated hull of those images. The
Arakelov equality implies that θ∨i and θ∨i′ are morphisms between µ-
semistable sheaves of the same slope, hence µ(Bι) = µ(F) + µ(Tι) for
ι = i, i′.

The sheaves F and Tι are µ-stable. By Lemma 4.6 for ǫ > 0, suf-

ficiently small, and for all j the sheaves F and Tι are µ
{j}
ǫ -semistable.

Hence F ⊗ Tι is µ
{j}
ǫ -semistable, and consequently,

µ{j}
ǫ (Bι) ≥ µ{j}

ǫ (F) + µ{j}
ǫ (Tι) and µD(j)(Bι) ≥ µD(j)(F) + µD(j)(Tι).

For ι = i and j 6= i one obtains

0 ≥ µD(j)(Bi) ≥ µD(j)(F) + µD(j)(Ti) = µD(j)(F),

and for ι = i′ 6= k

0 ≥ µD(k)(Bi′) ≥ µD(k)(F) + µD(k)(Ti′) = µD(k)(F ′) = µD(k)(F).

Then i 6= i′ implies that µD(j)(F) ≤ 0 for all j, hence µ(F) ≤ 0. Since

V is non-unitary and since µ(F) = µ(E1,0) this contradicts part iii) of
Lemma 5.4. q.e.d.
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Let us define

(6.1) K(ι) = Ker
(
E1,0 −−→ E0,1 ⊗ Ω1

Y (log S) −−→ E0,1 ⊗
⊕

j 6=ι

Ωj

)
.

Corollary 6.3. There exists some ι with K(ι) 6= 0.

Proof. Choose a direct factor F of the socle of E1,0, hence a µ-stable
subsheaf F ⊂ E1,0 with µ(F) = µ(E1,0). Then by Lemma 6.2 the

bundle F is contained in K(ι) for some ι. q.e.d.

Lemma 6.4. Assume that V is pure of type ι, hence that E1,0 = K(ι).
Then for all j 6= ι one has µD(j)(E1,0) = 0.

Proof. If E1,0 = K(ι), the saturated image Bι of
θ∨ι : E1,0 ⊗ Tι −−→ E0,1

has to be non-zero. θ∨ι is a map of µ-semistable sheaves of the same
slope, hence µ(Bι) = µ(E1,0)− µ(Ωι). For ǫ sufficiently small E1,0 ⊗ Tι

is µ
{j}
ǫ -semistable, and

µ{j}
ǫ (Bι) ≥ µ{j}

ǫ (E1,0)− µ{j}
ǫ (Ωι).

Then for j 6= ι one finds

µD(j)(Bι) ≥ µD(j)(E1,0)− µD(j)(Ωι) = µD(j)(E1,0),

which by Lemma 5.4 can neither be positive, nor negative, hence it must
be zero. q.e.d.

A similar argument will be used to obtain a stronger statement, which
finally will lead to a contradiction, except if E1,0 = K(ι) for some ι.

Lemma 6.5. Let ℓ be the length of the filtration G(ι)• .

a. Then G(ι)ℓ−1 ⊂ K(ι).

b. If K(ι) 6= E1,0 then µD(ι)(G(ι)ℓ /G(ι)ℓ−1) = 0.

Proof. Let ν ∈ {1, . . . , ℓ+1} be the largest number with G(ι)ν−1 ⊂ K(ι).

If ν = ℓ + 1 then E1,0 = G(ι)ℓ = K(ι) and there is nothing to show. So

let us assume that ν ≤ ℓ, or equivalently that K(ι) 6= E1,0.

For all j 6= ι the restriction of θ∨j to G(ι)ν induces a morphism

(6.2) G(ι)ν /G(ι)ν−1 ⊗ Tj −−→ E0,1,

and by assumption for at least one j 6= ι this morphism is non-zero. So
we will fix such an index j and assume in the sequel that the saturated
image Bj of θ∨j |G(ι)

ν
is non-zero.
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Since G(ι)• is a weak µ-Jordan Hölder filtration, the morphism in (6.2)
is a morphism between µ-semistable sheaves of the same slope, non-zero
by assumption. Then

µ(G(ι)ν /G(ι)ν−1 ⊗ Tj) = µ(E1,0) + µ(Tj) = µ(E0,1) = µ(Bj).
Since j 6= ι

µD(ι)(G(ι)ν /G(ι)ν−1 ⊗ Tj) = µD(ι)(G(ι)ν /G(ι)ν−1), and hence

µ{ι}
ǫ (G(ι)ν /G(ι)ν−1 ⊗ Tj) = ǫ · µD(ι)(G(ι)ν /G(ι)ν−1) + µ(Bj).

For 0 < ǫ ≤ ǫ0 the sheaf G(ι)ν /G(ι)ν−1⊗Tj is µ
{ι}
ǫ -semistable, which implies

that

(6.3) ǫ · µD(ι)(Bj) + µ(Bj) = µ{ι}
ǫ (Bj) ≥ ǫ · µD(ι)(G(ι)ν /G(ι)ν−1) + µ(Bj).

By the choice of G(ι)• as a µ
{ι}
ǫ -Harder-Narasimhan filtration one has an

inequality

(6.4) µ{ι}
ǫ (G(ι)ℓ /G(ι)ℓ−1) ≤ µ{ι}

ǫ (G(ι)ν /G(ι)ν−1),

with equality if and only if ν = ℓ. Since G(ι)• is a weak µ-Jordan-

Hölder filtration the slope µ(G(ι)ν /G(ι)ν−1) is independent of ν. So the
inequality 6.4 carries over to one for the slope µD(ι) . As we have seen

in Lemma 5.4, i) one has µD(ι)(Bj) ≤ 0, so rewriting the inequalities 6.3

and 6.4 one gets

(6.5) µD(ι)(G(ι)ℓ /G(ι)ℓ−1) ≤ µD(ι)(G(ι)ν /G(ι)ν−1) ≤ 0.

Lemma 5.4, ii) implies however that µD(ι)(G(ι)ℓ /G(ι)ℓ−1) ≥ 0. So both

inequalities in 6.5 are equalities and b) holds true. Moreover 6.4 is an
equality, hence ν = ℓ, as claimed in a). q.e.d.

Corollary 6.6. If in Lemma 6.5 the sheaf Q = E1,0/K(ι) is non-zero,

it is µ and µ
{ι}
ǫ -semistable. One has

µ{ι}
ǫ (Q) = µ(Q) = µ(E1,0) = µ(E0,1) + µ(Ω1

Y (log S)),

and hence µD(ι)(Q) = 0.

Proof. Since K(ι) as the kernel of a morphism between µ-semistable
sheaves of the same slope is µ-semistable, Q has the same property.

By Lemma 6.5, b) the slope µD(ι)(G(ι)ℓ /G(ι)ℓ−1) = 0. Since G(ι)• is a weak

µ-Jordan-Hölder filtration and a µ
{ι}
ǫ -Harder-Narasimhan filtration, for

all 0 ≤ ǫ ≤ ǫ0 the quotient G(ι)ℓ /G(ι)ℓ−1 is µ
{ι}
ǫ -semistable and has slope

µ{ι}
ǫ (G(ι)ℓ /G(ι)ℓ−1) = µ(G(ι)ℓ /G(ι)ℓ−1) = µ(E1,0).
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For j 6= ι the sheaf Ωj is µ
{ι}
ǫ -stable of slope µ

{ι}
ǫ (Ωj) = µ(Ωj) =

µ(Ω1
Y (logS)), hence

G(ι)ℓ /G(ι)ℓ−1 ⊗
⊕

j 6=ι

Tj

is again µ
{ι}
ǫ -semistable of slope µ(E0,1).

Let B be the saturated image of G(ι)ℓ /G(ι)ℓ−1 ⊗
⊕

j 6=ι Tj in E0,1. Then

µ(B) = µ(E0,1) and µ
{ι}
ǫ (B) ≥ µ(E0,1).

On the other hand Lemma 5.4 implies that µD(ι)(B) ≤ 0, hence

µ
{ι}
ǫ (B) = µ(E0,1). So B as a quotient of a µ

{ι}
ǫ -semistable sheaf of

the same slope has to be µ
{ι}
ǫ -semistable of slope

µ(E0,1) = µ{ι}
ǫ

(
G(ι)ℓ /G(ι)ℓ−1 ⊗

⊕

j 6=ι

Tj

)
.

Since Q = E1,0/K(ι) is a subsheaf of B ⊗⊕j 6=ιΩj one finds

µ{ι}
ǫ (Q) ≤ µ{ι}

ǫ

(
B ⊗

⊕

j 6=ι

Ωj

)
= µ(E0,1),

and since it is a quotient of G(ι)ℓ /G(ι)ℓ−1 one has µ
{ι}
ǫ (Q) ≥ µ(E0,1). One

obtains the equality of slopes in Corollary 6.6. Finally Q as a subsheaf

of a µ
{ι}
ǫ -semistable sheaf of the same slope is itself µ

{ι}
ǫ -semistable.

q.e.d.

Proof of Theorem 0.3. Renumbering the factors we will assume that
K(1) 6= 0, and we will write

Ω =

s⊕

j=2

Ωj and T = Ω∨.

So K(1) is the kernel of the composition

E1,0 −−→ E0,1 ⊗ Ω1
Y (log S)

pr−−→ E0,1 ⊗ Ω.

Let K1 be the kernel of

E1,0 −−→ E0,1 ⊗ Ω1
Y (log S)

pr1−−→ E0,1 ⊗ Ω1.

Claim 6.7. E1,0 is the direct sum K(1) ⊕K1.

Proof. As a consequence of Corollary 6.6 the sheaf Q = E1,0/K(1) sat-
isfies µD(1)(Q) = 0. So Proposition 5.6, a), tells us that the orthogonal

complement s(Q) is contained in K1.

The intersection of K(1) and K1 lies in the kernel of θ. Hence it is
zero and the induced map K1 → Q is injective. On the other hand

Q s−−→ E1,0 −−→ Q
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factors through K1 → Q, and the latter must be surjective. This implies
that

E1,0 = K(1) ⊕K1.

q.e.d.

Let B(1) and B1 be the saturated images of

E1,0 ⊗ T −−→ E0,1 and E1,0 ⊗ T1 −−→ E0,1,

respectively.

Claim 6.8. B(1) ∩ B1 = 0.

Proof. Dualizing the exact sequences

0 −−→ B(1) −−→ E0,1 −−→ C(1) = E0,1/B(1) −−→ 0

and 0 −−→ B1 −−→ E0,1 −−→ C1 = E0,1/B1 −−→ 0

one obtains that

C(1)∨ = Ker(E0,1∨ τ−−→ B(1)∨) and C∨1 = Ker(E0,1∨ τ1−−→ B∨1 ).
The dual Higgs bundle E∨ has E0,1∨ as subsheaf of bidegree (1, 0) and

E0,1∨ is of bidegree (0, 1). The composite

E0,1∨ τ−−→ B(1)∨ ⊂−−→ E1,0∨ ⊗ Ω and E0,1∨ τ1−−→ B∨1
⊂−−→ E1,0∨ ⊗ Ω1

are the components of the dual Higgs field. Applying Claim 6.7 to E∨

one obtains a decomposition E0,1∨ = C(1)∨⊕C∨1 , hence E0,1 ∼= C(1)⊕C1
and B(1) ∩ B1 = 0. q.e.d.

So one obtains a direct sum decomposition of Higgs bundles

(E, θ) =
(
K(1) ⊕ B(1), θ(1) = θ|K(1)

)
⊕
(
K1 ⊕ B1, θ1 = θ|K1

)

corresponding to a decomposition V = V(1) ⊕ V1. The irreducibility of
V and the assumption K(1) 6= 0 imply V1 = 0, hence K1 = 0. q.e.d.

6.1. Using superrigidity. As mentioned in the introduction, the pu-
rity of the Higgs fields in Theorem 0.3 follows from the Margulis Su-
perrigidity Theorem, without using the Arakelov equality, provided all
the direct µ-stable factors of Ω1

Y (log S) are of type C. We will show
below, that for variations of Hodge structures of weight 1 it is sufficient
to assume that the universal covering Ũ of U is a bounded symmetric
domain. In different terms, if Ωi is of type B we suppose that it satisfies
the Yau-equality

2(ni+1) ·c2(Ωi).c1(Ωi)
ni−2.c1(ωY (S))

n−ni = ni ·c1(Ωi)
ni .c1(ωY (S))

n−ni

([Ya93], see also [VZ07, Theorem 1.4]).
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Proposition 6.9. Suppose that Ũ is a bounded symmetric domain
and that V is an irreducible complex polarized variation of Hodge struc-
tures of weight 1 with unipotent monodromy at infinity. Then the associ-
ated Higgs bundle (E1,0⊕E0,1, θ) is pure of type ι for some ι ∈ {1, . . . , s}.

Sketch of the proof. By assumption U = Γ\Ũ is the quotient of a boun-

ded symmetric domain Ũ = M1×· · · ×Ms by a lattice Γ. We can write
Mi = Gi/Ki as quotient of a real, non-compact, simple Lie group by a
maximal compact subgroup.

Assume first that U = U1 × U2. By [VZ05, Proposition 3.3] an
irreducible local system on V is of the form pr∗1V1⊗pr∗2V2, for irreducible
local systems Vi on Ui with Higgs bundles (Ei, θi). Since V is a variation
of Hodge structures of weight 1, one of those, say V2 has to have weight
zero, hence it must be unitary.

Then the Higgs field on U factors through E0,1 ⊗ Ω1
U1
. By induction

on the dimension we may assume that V1 is pure of type ι for some ι
with Mι a factor of Ũ1. So the same holds true for V.

Hence we may assume that U is irreducible, or even that

(6.6) no finite étale covering of U is a product of proper subvarieties.

By [Zi84] § 2.2, replacing Γ by a subgroup of finite index, hence re-
placing U by a finite unramified cover, there is a partition of {1, . . . , s}
into subsets Ik such that Γ =

∏
k Γk and Γk is an irreducible lattice in∏

i∈Ik
Gi. Here irreducible means that for any N ⊂ ∏i∈Ik

Gi a normal

subgroup, Γk is dense in
∏

i∈Ik
Gi/N . The condition (6.6) is equivalent

to the irreducibility of Γ, so I1 = {1, . . . , s}.
If s = 1 or if V is unitary, the statement of the proposition is triv-

ial. Otherwise, G :=
∏s

i=1 Gi is of real rank ≥ 2 and the conditions
of Margulis’ superrigidity theorem (e.g. [Zi84, Theorem 5.1.2 ii)]) are
met. As consequence, the homomorphism Γ → Sp(V,Q), where V is a
fibre of V and where Q is the symplectic form on V , factors through
a representation ρ : G → Sp(V,Q). Since the Gi are simple, we can
repeat the argument used in the proof of [VZ05, Proposition 3.3] in the
product case: ρ is a tensor product of representations, all of which but
one have weight 0. q.e.d.

Corollary 6.10. Under the assumptions made in Proposition 6.9 let
Q 6= 0 be a quotient of E1,0 with µD(i)(Q) = 0, for some i ∈ {1, . . . , s}.
Then Q = E1,0.

Proof. By Proposition 6.9 V is pure of type ι for some ι. On the other
hand Proposition 5.6 implies that the orthogonal complement of Q lies
in the kernel of the composite

E1,0 θ−−→ E0,1 ⊗ Ω1
Y (log S)

pri−−→ E0,1 ⊗ Ωi.
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Since θ is injective and factors through E0,1⊗Ωι this implies that i = ι
and we assume that both are 1.

Now one argues as in the proof of Proposition 5.6. The metric connec-
tion ∇h is zero in directions not contained in M1, hence in the equation
(5.3) one finds that (RE1,0)i,j = 0 as soon as i > n1 or j > n1. Sim-
ilarly ciα,β = 0 for i > n1, and hence the equation (5.4) implies that

(RQ)
i,j
α,β = 0 for i > n1 or j > n1. One has again

µD(j)(Q) =
(√−1

2π

)
·
∫

U
tr(RQ) ∧R(Ω1)

nj−1 ∧R(Ω1)
n1 ∧ · · ·

∧R(Ωj−1)
nj−1 ∧R(Ωj+1)

nj+1 ∧ · · · ∧R(Ωs)
ns .

As in equation (5.5) this is the same as

∫

W




n∑

i,j=1

tr(RQ)
i,jdzi ∧ dz̄j


 ∧




nj∑

i=nj−1+1

Ci ·
∧

j 6=i

dzj ∧ dz̄j


 .

For j > 1 this is zero, hence µ(Q) = 0 and one can apply Lemma 5.4.
q.e.d.

7. Stability of Higgs bundles, lengths of iterated Higgs fields

and splitting of the tangent map

In this section we prove Theorem 0.2, the numerical characterization
of Shimura varieties, the equivalent numerical and geometrical charac-
terizations of ball quotients stated as Addendum 7.20, the Corollary 7.22
and we finish the proof of Proposition 0.1. Moreover we recall the proof
of Corollary 1.3, essentially contained in [VZ07, Section 5].

As usual we assume that U has a non-singular projective compactifi-
cation Y with boundary S = Y \U a normal crossing divisor, satisfying
the Assumptions 1.1. In addition, replacing U by an étale covering, we
will assume as in Section 2.2 that the family f : A→ U is induced by a
generically finite morphism ϕ : U → Ag to a fine moduli scheme Ag of
polarized abelian varieties with a suitable level structure.

So we consider again an irreducible non-unitary complex polarized
variation of Hodge structures V on U , satisfying the Arakelov equality,
and with unipotent local monodromy operators at infinity.

By Theorem 0.3, the logarithmic Higgs bundle (E = E1,0 ⊕ E0,1, θ)
of V is pure of type ι, i.e. the Higgs field factors through E0,1⊗Ωι. We
write ℓ = rk(E1,0) and ℓ′ = rk(E0,1), and nι denotes rk(Ωι) = dim(Mι).
The Arakelov equality says that

µ(E1,0)− µ(E0,1) = µ(Ω1
Y (log S)) = µ(Ωι).
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Since c1(E
1,0)+c1(E

0,1) = 0 and hence ℓ ·µ(E1,0)+ ℓ′ ·µ(E0,1) = 0, one
can restate the Arakelov equality as

(7.1)
ℓ+ ℓ′

ℓ′
· µ(E1,0) = µ(Ωι).

Let us formulate two easy consequences of the Arakelov equality.

Lemma 7.1. Assume that each irreducible non-unitary C-subvaria-
tion of Hodge structures of R1f∗CA satisfies the Arakelov equality. Then:

1) If ϕ is generically finite, then for each direct factor Ωι of Ω
1
Y (log S)

there exists at least one non-unitary local subsystem V which is
pure of type ι.

2) If ϕ(U) is non-singular, then ϕ : U → ϕ(U) is étale.

Proof. Let F 1,0 be the (1, 0)-part in the Hodge filtration of R1f∗CA.
Since U is generically finite over Ag the sheaf det(f∗Ω

1
X/Y ) = f∗ωX/Y is

big. Since it is nef, using the slopes introduced in Section 6, one finds
by the Property 5.5 2) that

µD(ι)(f∗ωX/Y ) = g · µD(ι)(f∗Ω
1
X/Y ) = g · µD(ι)(F 1,0) > 0

for all ι. Consider an irreducible complex polarized subvariation of
Hodge structures V with Higgs bundle (E1,0 ⊕ E0,1, θ). If V is unitary
µD(j)(E1,0) = 0 for all j. Otherwise by Theorem 0.3 V is pure of type

i = i(V). Lemma 6.4 implies that µD(j)(E1,0) = 0 for j 6= i(V).

Given ι, the inequality µD(ι)(F 1,0) > 0 implies that there exist direct

factors E1,0 with µD(ι)(E1,0) > 0. For the corresponding irreducible

subvariations V of R1f∗CA one finds ι = i(V).
For the second statement we choose a nonsingular compactification Z

and a normal crossing divisor Σ ⊂ Z with ϕ(U) = Z \Σ. Let us choose
a blowing up δ : Y ′ → Y with centers in S such that S′ = δ∗(S) is again
a normal crossing divisor, and such that ϕ extends to ϕ : Y ′ → Z. By
the Arakelov equality the image I of τ̂ : F 1,0 ⊗ F 0,1∨ → Ω1

Y (log S) has
the same slope as Ω1

Y (log S). Since the second sheaf is µ-polystable,
I is a subsheaf of a direct sum of certain direct factors of Ω1

Y (log S)
and both are µ-equivalent. The first part of Lemma 7.1 implies that all
direct factors occur, hence I →֒ Ω1

Y (log S) is an isomorphism over some
open set U ′. The part viii) of Addendum 5.2 allows to choose U ′ = U .

Since Ag is a fine moduli scheme, the Higgs bundle is the pullback of
the Higgs bundle on ϕ(U). Hence δ∗(τ̂) factors through

ϕ∗Ω1
Z(log Σ) −→ Ω1

Y ′(log S′)

with image in δ∗Ω1
Y (log S) ⊂ Ω1

Y ′(log S′). Since the last inclusion is an
isomorphism over U , the surjectivity of the Higgs field on U implies the
morphism ϕ is unramified on U . q.e.d.
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Let us return to the Higgs bundle
∧ℓ(E, θ) introduced in (1.5) and to the

Higgs subbundle 〈det(E1,0)〉 generated by det(E1,0). From now on we

will write 〈det(E1,0)〉 for the saturated Higgs subbundle of
∧ℓ(E, θ). So

〈det(E1,0)〉ℓ−m,m denotes the saturated hull of the image of the induced
map

θ(m)∨ : det(E1,0)⊗ Sm(T ) −−→ Eℓ−m,m =

ℓ−m∧
(E1,0)⊗

m∧
E0,1.

Note that by this change of notation we neither change the slopes, nor
the length

ς(E) = ς((E, θ)) = Max{ m ∈ N; 〈det(E1,0)〉ℓ−m,m 6= 0}.
So the next Lemma implies Corollary 1.3.

Lemma 7.2. Assume that Ωι is of type A or B, hence that Sm(Ωι)
is µ-stable for all m. Then the Arakelov equality implies that

(7.2) Min{ℓ, ℓ′} ≥ ς(E) ≥ ℓ · ℓ′ · (nι + 1)

(ℓ+ ℓ′) · nι
.

The right hand side of 7.2 is an equality if and only if 〈det(E1,0)〉 is a

direct factor of
∧ℓ(E, θ).

Proof. For 0 ≤ m ≤ ς = ς(E) the sheaf 〈det(E1,0)〉ℓ−m,m is a µ-stable
sheaf of slope

(ℓ−m) · µ(E1,0) +m · µ(E0,1) = ℓ · µ(E1,0)−m · µ(Ω1
Y (log S)) =(

ℓ · ℓ′
ℓ+ ℓ′

−m

)
· µ(Ω1

Y (log S)),

and of rank
(
nι+m−1

m

)
. The degree of this sheaf with respect to the

polarization ωY (S) is non-positive, hence

(7.3) 0 ≥ µ(〈det(E1,0)〉)
µ(Ω1

Y (log S))
=

ς∑

m=0

(
nι +m− 1

m

)
·
(

ℓ · ℓ′
ℓ+ ℓ′

−m

)
=

(
ℓ · ℓ′

nι · (ℓ+ ℓ′)
− ς

nι + 1

)
· (ς + 1) ·

(
ς + nι

ς + 1

)
,

and one obtains the second inequality stated in 7.2. This is an equality
if and only if (7.3) is an equality. By Simpson’s correspondence for
polystable Higgs bundles the latter holds if and only if 〈det(E1,0)〉 is a
Higgs direct factor of

∧ℓ(E, θ). The first inequality in 7.2 is obvious,
since Eℓ−m,m is zero for m ≥ Min{ℓ, ℓ′}. q.e.d.

We now distinguish three cases, according to the type of the bounded
symmetric domain attached to Ωι.
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7.1. Type A: Ωι is invertible. This case is easy to understand. Let
us recall the arguments used already in [VZ07]. The Arakelov equality
and Lemma 5.4 imply that

(7.4) E1,0 −−→ E0,1 ⊗ Ωι,

is injective and surjective on some open dense subscheme. So ℓ = ℓ′ and
the inequality (7.2) implies that ς((E, θ)) = ℓ.

Both sides in (7.4) are µ-semistable of the same slope, and they are
µ-equivalent. A µ-stable subsheaf F of E1,0 of slope µ(E1,0) generates
a Higgs subbundle F ⊕ F ⊗ Tι, whose first Chern class is zero. So the
irreducibility implies that F = E1,0 and we can state:

Proposition 7.3. If Ωι is invertible, then the Arakelov equality (7.1)
implies that E1,0 and E0,1 are both µ-stable of the same rank, that

ς((E, θ)) = ℓ and that 〈det(E1,0)〉 is a direct factor of
∧ℓ(E, θ).

7.2. Type B: Sm(Ωι) stable for all m and not invertible. In this

case we do not know whether the factor Mι of the universal covering Ũ
corresponding to Ωι is a bounded domain, and the Arakelov equality just
implies that certain numerical and stability conditions are equivalent.

Proposition 7.4. Let V be an irreducible non-unitary complex polar-
ized variation of Hodge structures of weight 1, pure of type A or B, with
unipotent local monodromy at infinity, and with Higgs bundle (E, θ).
Assume that V satisfies the Arakelov equality. Consider the following
conditions:

a. E1,0 and E0,1 are µ-stable.
b. E1,0∨ ⊗ E0,1 is µ-polystable.
c. The saturated image of Tι → Hom(E1,0, E0,1) is a direct factor of

the sheaf Hom(E1,0, E0,1).
d. The Higgs bundle 〈det(E1,0)〉 is a direct factor of the Higgs bundle∧ℓ(E, θ).
e. µ(〈det(E1,0)〉) = 0.

f. ς((E, θ)) = ℓ·ℓ′·(nι+1)
(ℓ+ℓ′)·nι

.

Then:

i. The conditions c), d), e), and f) are equivalent and they imply
that Mι is a complex ball of dimension nι.

ii. The condition b) implies c).
iii. Whenever the condition (⋆) is satisfied, for example if U is pro-

jective or of dimension one, a) implies b).

If V is pure of type A, we know that the conditions a), d), and
f) automatically hold true. Nevertheless we included this case in the
statement , since we will later refer to the equivalence between c) and
f).



A CHARACTERIZATION OF SHIMURA VARIETIES 119

Proof of Proposition 7.4. The stability of E1,0 implies the one for E1,0∨,
and hence b) follows from a) and from (⋆).

For part ii) remark that the Arakelov equality says that

µ(Tι) = µ(Hom(E1,0, E0,1)).

So c) is a consequence of b).
By Simpson’s correspondence d) and e) are equivalent, and the nu-

merical condition in f) is equivalent to d) by Lemma 7.2. So for i) it
remains to verify the equivalence of c) and d).

Claim 7.5. The condition d) implies c).

Proof. The inclusion 〈det(E1,0)〉ℓ−1,1 → Eℓ−1,1 is given by Tι →
Hom(E1,0, E0,1), tensorized with det(E1,0). So Condition d) implies
that the saturated image of 〈det(E1,0)〉ℓ−1,1 is a direct factor of Eℓ−1,1 =

E1,0∨ ⊗ E0,1 ⊗ det(E1,0), hence that c) holds. q.e.d.

Remark 7.6. The implication ‘c) implies d)’ has been claimed in
[VZ07, page 327] in a more special situation. There however, as pointed
out by the referee of the present article, the argument is not com-
plete. We did not verify that the image of Φm+1 ◦ θℓ−m,m really lies
in 〈det(E1,0)〉ℓ−m,m. This can easily be done, using Claim 7.7 below
and the property (∗∗) on page 294 of [VZ07]. Here, without using the
last condition, we will work out the argument in details without further
reference to [VZ07].

Let us write

Eℓ−m,m =

ℓ−m∧
(E1,0)⊗

m∧
(E0,1) ∼=

m∧
(E1,0∨)⊗

m∧
(E0,1)⊗ det(E1,0).

Using the right hand isomorphism we will regard Eℓ−m,m as a subsheaf
of

Sm(E1,0∨ ⊗ E0,1)⊗ det(E1,0).

Then the dual Higgs field θ∨ℓ−m,m : Eℓ−m,m⊗Tι → Eℓ−m−1,m+1 is given
by a quotient of the multiplication map

Sm(E1,0∨ ⊗ E0,1)⊗ (E1,0∨ ⊗ E0,1) −−→ Sm+1(E1,0∨ ⊗ E0,1).

tensored with det(E1,0) and restricted to Eℓ−m,m ⊗ Tι. Since the slope
is additive for tensor products µ(Eℓ−m,m) is equal to (ℓ−m) ·µ(E1,0)+
m · µ(E0,1). The Arakelov equality implies that

(7.5) µ(Eℓ−m,m) = m · µ(Tι) + ℓ · µ(E1,0) = m · µ(Tι) + µ(det(E1,0)).

Claim 7.7. Let V be a µ-semistable subsheaf of Eℓ−m,m of slope of
µ(Eℓ−m,m). Assume that for some b > 0 there exists a morphism

Eℓ−m−1,m+1 −−→ Sm+1(Tι)
⊕b ⊗ det(E1,0)



120 M. MÖLLER, E. VIEHWEG & K. ZUO

such that the composition

γ′m : V⊗Tι
⊂−−→ Eℓ−m,m⊗Tι −−→ Eℓ−m−1,m+1 −−→ Sm+1(Tι)

⊕b⊗det(E1,0)

is surjective up to µ-equivalence, as defined in Definition 4.2. Then
there exists a morphism

Eℓ−m,m → Sm(Tι)
⊕b ⊗ det(E1,0),

whose restriction γm : V → Sm(Tι)
⊕b ⊗ det(E1,0) induces γ′m, in the

sense that γ′m is the composite of γm⊗ idTι with the multiplication map

Sm(Tι)
⊕b ⊗ Tι ⊗ det(E1,0) −−→ Sm+1(Tι)

⊕b ⊗ det(E1,0).

In particular γm is again surjective up to µ-equivalence.

Proof. The morphism γ′m is generically surjective, hence one has a
generically surjective morphism

γ′m ⊗ idΩι : V ⊗ Tι ⊗Ωι −−→ Sm+1(Tι)
⊕b ⊗ Ωι ⊗ det(E1,0),

factoring through Eℓ−m,m ⊗ Tι ⊗ Ωι. Restricting to V ⊂ V ⊗ Tι ⊗ Ωι

and composing with the natural contraction map

αm : Sm+1(Tι)
⊕b ⊗ Ωι ⊗ det(E1,0) −−→ Sm(Tι)

⊕b ⊗ det(E1,0)

one gets γm : V
⊂−−→ Eℓ−m,m −−→ Sm(Tι)

⊕b⊗det(E1,0). By construction
γ′m is the restriction of the composition

V ⊗ Tι
⊂−−→ V ⊗ Tι ⊗ Ωι ⊗ Tι

γ′
m⊗idΩι⊗Tι−−−−−−−−→

Sm+1(Tι)
⊕b ⊗ Ωι ⊗ Tι ⊗ det(E1,0) −−→ Sm+1(Tι)

⊕b ⊗ det(E1,0),

where the last arrow is the map idSm+1(Tι)⊕b ⊗α⊗ iddet(E1,0) and where
α : Tι ⊗ Ωι → OY denotes again the contraction map. The last of the
morphisms is up to the tensor product with the identity on det(E1,0) a
direct sum of morphisms factoring like

Sm+1(Tι)⊗ Ωι ⊗ Tι
αm⊗idTι−−−−−−→ Sm(Tι)⊗ Tι

mult−−−→ Sm+1(Tι).

So one obtains γ′m as the composite of γm with the multiplication
map. In particular γm is the direct sum of non-zero morphisms and
the stability of Sm(Tι) implies that the image of γm is µ-equivalent to
Sm(Tι)

⊕b ⊗ det(E1,0). q.e.d.

Let us return to the notations introduced in the first part of Section 5. In
particular NS0 denotes the subgroup of the Neron-Severi group NS(Y )Q
generated by prime-divisors D with µ(OY (D)) = 0, and U ′ is the com-
plement of those prime-divisors.

Let us write S ′ℓ−m,m for the cosocle of Eℓ−m,m. As remarked in the
Example and Definition 5.3 it is a µ-polystable sheaf of slope µ(Eℓ−m,m)
of maximal rank, for which there exists a morphism θ : Eℓ−m,m →
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S ′ℓ−m,m, which is surjective over some open set. Using parts vii) and
ix) of the Addendum 5.2 one finds that θ is surjective over U ′.

Let Sℓ−m,m be the direct sum of all direct factors of S ′ℓ−m,m, which
are µ-equivalent to the µ-stable sheaf Sm(Tι)⊗ det(E1,0). Remark that
Sℓ−m,m is not unique. By Addendum 5.2 vii) we may choose an effective
divisor Bm ∈ NS0 such that for some bm

Sm(Tι)
⊕bm ⊗ det(E1,0) →֒ Sℓ−m,m = Sm(Tι)

⊕bm ⊗ det(E1,0)⊗OY (Bm).

In particular both sheaves are µ-equivalent. Let us denote the induced
morphism by βm : Eℓ−m,m → Sℓ−m,m.

As a next step, we will show by induction on m, that for a suitable
choice of the divisors Bm the dual Higgs field θ∨ℓ−m,m defines a morphism

Sℓ−m,m → Sℓ−m−1,m+1. The induction step is given by:

Claim 7.8. We assume that c) holds (and of course the Arakelov
equality). Then choosing the effective divisor Bm+1 ∈ NS0 and hence
Sℓ−m−1,m+1 large enough, there exists a commutative diagram

(7.6)

Eℓ−m,m ⊗ Tι
βm⊗idTι−−−−−→ Sℓ−m,m ⊗ Tι

θ∨
ℓ−m,m

y
yτ∨

Eℓ−m−1,m+1 βm+1−−−−→ Sℓ−m−1,m+1.

The morphism τ∨ has an explicit description. For simplicity we just
formulate this on the open subscheme U ′. Part vii) of Addendum 5.2 al-
lows to extend this description to the boundary, perhaps after replacing
Bm+1 by a larger divisor in NS0.

Claim 7.9. For some morphism τ ′m : Sm(Tι)
⊕bm → Sm(Tι)

⊕bm+1 the
morphism τ∨|U ′ is the composite of τ ′m⊗ idTι |U ′ and the direct product
of bm+1 copies of the multiplication map Sm(Tι)⊗Tι|U ′ → Sm+1(Tι)|U ′ .

Proof of the Claims 7.8 and 7.9. By the Arakelov equality, as restated
in 7.5 and by the choice of the sheaves Sℓ−•,• the four sheaves in 7.6 all
have the same slope and they are all µ-semistable. By Addendum 5.2
for each of the morphisms the image coincides with the saturated image
over the open set U ′. In particular the restriction of βm and βm+1 to
U ′ is surjective.

Writing Vm for the kernel of βm, hence Vm⊗Tι for the one of βm⊗idTι ,
consider the image I of Vm ⊗ Tι under θ∨ℓ−m,m. We claim that I is
contained in Vm+1.

If not βm+1 ◦ θ∨ℓ−m,m(Vm ⊗ Tι) is a non-zero subsheaf of Sℓ−m−1,m+1.

By Addendum 5.2, ix) its saturated hull is a µ-semistable subsheaf of
Sℓ−m−1,m+1. Since both are of the same slope, and since the second
one is µ-polystable, the saturated image has to be a direct factor, hence
isomorphic to Sm+1(Tι)

b ⊗ det(E1,0)⊗OY (Bm+1) for some b > 0.
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By Claim 7.7 one obtains a morphismEℓ−m,m → Sm(Tι)
b⊗det(E1,0)⊗

OY (Bm+1) whose restriction to Vm is non-zero. Obviously this contra-
dicts the definition of Sℓ−m−1,m+1 as a maximal µ-polystable quotient
and of Vm as the kernel of βm.

The restriction of βm ⊗ idTι to U ′ is surjective. Since θ∨ℓ−m,m(I) ⊂
Vm+1, the morphism τ∨ exists on U ′, and enlarging Bm+1 it extends to
Y .

In order to get the explicit description stated in Claim 7.9, we ap-
ply Claim 7.7 to V = Eℓ−m,m. The image of γ′m = βm+1 ◦ θ∨ℓ−m,m is

a µ-semistable subsheaf of the µ-polystable sheaf Sℓ−m−1,m+1, hence
µ-equivalent to a direct factor of the form Sm+1(Tι)

⊕b ⊗ det(E1,0).
Claim 7.7 implies that for some

γm : Eℓ−m,m → Sm(Tι)
⊕b ⊗ det(E1,0)

the morphism βm+1 ◦ θ∨ℓ−m,m is the composite of γm ⊗ idTι with the

multiplication map. Since γm factors through the cosocle S ′ℓ−m,m and
hence through Sℓ−m,m, one finds the morphism τ ′m. q.e.d.

Recall that 〈det(E1,0)〉 is the saturated subsheaf of Eℓ−m,m which is
generated by det(E1,0). If non-zero 〈det(E1,0)〉ℓ−m,m contains Sm(Tι)⊗
det(E1,0) and both are µ-equivalent. As a next step we will show that
〈det(E1,0)〉ℓ−m,m|U ′ is a direct factor of Eℓ−m,m|U ′ .

Claim 7.10. Assume c). Then the composite

〈det(E1,0)〉ℓ−m,m ⊂−−→ Eℓ−m,m βm−−→ Sℓ−m,m

is injective and defines a splitting of the inclusion 〈det(E1,0)〉ℓ−m,m|U ′ ⊂
Eℓ−m,m|U ′ .

Proof. If 〈det(E1,0)〉ℓ−m,m = 0 there is nothing to show. Otherwise
by the equality 7.5 µ(〈det(E1,0)〉ℓ−m,m) = µ(Eℓ−m,m) and by part ix)
of the Addendum 5.2 〈det(E1,0)〉ℓ−m,m is a µ-semistable subsheaf of
Eℓ−m,m, containing Sm(Tι)⊗ det(E1,0) as a µ-equivalent subsheaf.

Recall that Tι is a direct factor of E1,0∨ ⊗ E0,1, and hence Sm(Tι) a

direct factor of Sm(E1,0∨⊗E0,1). This sheaf also contains
∧m(E1,0∨)⊗∧m(E0,1) as a direct factor. Writing

Sm(E1,0∨ ⊗ E0,1) =
m∧
(E1,0∨)⊗

m∧
(E0,1)⊕Rm,

consider the image of Sm(Tι) under the projection Sm(E1,0∨⊗E0,1)→
Rm. If this is zero we are done. If not one has an injection

α′ : Sm(Tι)⊕ Sm(Tι) −−→
m∧
(E1,0∨)⊗

m∧
(E0,1)⊕Rm,
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where the first factor maps to
∧m(E1,0∨) ⊗ ∧m(E0,1) and the second

one to Rm. For both factors the composite with the projection

m∧
(E1,0∨)⊗

m∧
(E0,1)⊕Rm −→ Sm(Tι)

is non-zero, hence by µ-semistability it is surjective up to µ-equivalence.
So α′ splits, and Sm(Tι) as the image of the composite of α′ with the

projection to
∧m(E1,0∨)⊗∧m(E0,1), splits as well.

Since 〈det(E1,0)〉ℓ−m,m|U ′ is by definition the image of the bundle
Sm(Tι)⊗ det(E1,0)|U ′ in

Eℓ−m,m|U ′ =

m∧
(E1,0∨)⊗

m∧
(E0,1)⊗ det(E1,0)|U ′ ,

it is a direct factor, hence its image in the cosocle is non-zero. By the
choice of Sℓ−m,m we are done. q.e.d.

Claim 7.11. The condition c) implies d).

Proof. Writing τ for the composite of τ∨ ⊗ Ωι with the contraction to
Sℓ−m−1,m+1 one obtains by Claim 7.8 a Higgs bundle

(S, τ) =
( ℓ⊕

m=0

Sℓ−m,m,
ℓ−1⊕

m=0

(
Sℓ−m,m τ−−→ Sℓ−m,m ⊗ Ωι

))

together with a map of Higgs bundles

(7.7)

ℓ∧
(E, θ) =

( ℓ⊕

m=0

Eℓ−m,m, θ
) β−−→ (S, τ).

For ς = ς((E, θ)) the sheaf

〈det(E1,0)〉 =
ς⊕

m=0

〈det(E1,0)〉ℓ−m,m =

ℓ⊕

m=0

〈det(E1,0)〉ℓ−m,m

is a Higgs subbundle of the left hand side of 7.7, hence its saturated
image

( ˜〈det(E1,0)〉, τ | ˜〈det(E1,0)〉
)

in the right hand side is a Higgs subbundle of (S, τ). By Claim 7.10 the
induced map

〈det(E1,0)〉ℓ−m,m −−→ ˜〈det(E1,0)〉
ℓ−m,m

is injective and both sheaves are µ-equivalent. Since 〈det(E1,0)〉ℓ−m,m is

µ-stable, ˜〈det(E1,0)〉
ℓ−m,m

is µ-equivalent to a direct factor of Sℓ−m,m

that we denote by ̂〈det(E1,0)〉
ℓ−m,m

. By the explicit description of τ∨

in Claim 7.9 the Higgs field τ respects the splitting, and one obtains
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a quotient Higgs bundle ̂〈det(E1,0)〉 of (S, τ), hence of
∧ℓ(E, θ). Since

〈det(E1,0)〉 is a sub-Higgs bundle Lemma 5.4 implies that

µ(〈det(E1,0)〉) ≤ 0,

and since ̂〈det(E1,0)〉 is a quotient-Higgs bundle, µ( ̂〈det(E1,0)〉) ≥ 0. So
the µ-equivalence of all direct factors implies that

µ(〈det(E1,0)〉) = µ( ̂〈det(E1,0)〉) = 0.

Using Lemma 5.4 again one finds that 〈det(E1,0)〉 splits as a Higgs

subbundle of
∧ℓ(E, θ). q.e.d.

To finish the proof of Proposition 7.4 it remains to verify:

Claim 7.12. The splitting in d) implies that Mι is an nι-dimensional
complex ball.

Proof. (See also [VZ07, Section 5]) The Higgs bundle 〈det(E1,0)〉
splits as a sub-Higgs bundle of

∧ℓE, hence it is itself a Higgs bundle aris-
ing from a local system. In particular the Chern classes c1(〈det(E1,0)〉)
and c2(〈det(E1,0)〉) are zero.

Assume for a moment that there exists an invertible sheaf L with
det(E1,0) = Lℓ, and consider the Higgs bundle

(
F = F 1,0 ⊕ F 0,1 = L ⊕ L ⊗ Tι,L → L⊗ Tι ⊗Ωι

)
.

Then Sℓ(F ) is a Higgs bundle with Lℓ⊗Sm(Tι) in bidegree (ℓ−m,m),
hence isomorphic to 〈det(E1,0)〉. The first Chern class of 〈det(E1,0)〉 is
zero, hence c1(F ) as well. On the other hand,

c1(F ) = c1(L) + nι · c1(L)− c1(Ωι) =
nι + 1

ℓ
c1(E

1,0)− c1(Ωι),

and c1(L) =
1

nι + 1
c1(Ωι). For the second Chern class it is easier to

calculate the discriminant

∆(F) = 2 · rk(F) · c2(F)− (rk(F)− 1) · c1(F)2.
By [VZ07, Lemma 3.3], a), the discriminant is invariant under tensor
products with invertible sheaves, hence ∆(L ⊕ L ⊗ Tι) = ∆(OY ⊕ Tι).

Since c1(〈det(E1,0)〉)2 = c2(〈det(E1,0)〉) = 0, as a consequence one
finds ∆(〈det(E1,0)〉) = 0, and [VZ07, Lemma 3.3] implies that ∆(F ) =
0, hence

(7.8) 0 = ∆(OY ⊕ Tι) = 2 · (nι + 1) · c2(Tι)− nι · c1(Tι)
2.

In general on may choose a finite covering σ : Y ′ → Y such that
σ∗(det(E1,0) = L′ℓ for some invertible sheaf L′. Repeating the cal-
culations of Chern classes with Tι replaced by T ′

ι = σ∗(Tι) one obtains
that 2 · (nι + 1) · c2(T ′

ι )− nι · c1(T ′
ι )

2 = 0 and again (7.8) holds true.
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By Yau’s Uniformization Theorem, recalled in [VZ07, Theorem 1.4],
(7.8) implies that Mι is a complex ball. q.e.d.

The Proposition 7.4 gives a numerical condition on the length of the
wedge product of the Higgs field which, together with the Arakelov
equality, implies that Mι is a complex ball. A similar condition holds
automatically for local systems which are pure of type A. This is not
surprising, since in this case the corresponding factor Mι automatically
is a 1-dimensional ball.

In slight abuse of notation we say that a local system V is given
by a wedge product of the standard representation of SU(1, n), if the
representation defining V factors through one of the standard wedge
product representations (e.g. [Sa80], p. 461)

k∧
: SU(1, n)→ SU

((
n

k − 1

)
,

(
n
k

))

and if, moreover, the period map for V factors through the (totally

geodesic) embedding of symmetric spaces attached to
∧k. In different

terms, for k = 1 the corresponding Higgs field is given by

E1,0 = ω
− 1

ni+1

i ⊗ Ωi, E0,1 = ω
− 1

ni+1

i

and

θ = id : ω
− 1

ni+1

i ⊗ Ωi −−→ ω
− 1

ni+1

i ⊗Ωi,

where ω
− 1

ni+1

i stands for an invertible sheaf, whose (ni + 1)-st power is
det(Ωi).

Proposition 7.13. Let V be an irreducible complex polarized varia-
tion of Hodge structures of weight 1, pure of type ι, with unipotent local
monodromy at infinity, and with Higgs bundle (E, θ). Assume that Ωι

is of type A or B, and that the saturated image of Tι →Hom(E1,0, E0,1)
splits.

Then V is the tensor product of a unitary representation with a wedge
product of the standard representation of SU(1, n). In particular the

period map τ : Ũ →M ′ factors as the projection Ũ →Mι and a totally
geodesic embedding Mι →M ′.

Proof. Proposition 7.4, i) implies that Mι is a complex ball.
Before we proceed, we fix some notation. For a simply connected

complex space we denote by Aut(M) the group of biholomorphic self-
mappings of M . This coincides with the definition in Section 3 if M is
a hermitian symmetric domain. We write, as usual, Ũ =

∏
k Mk and

fix origins ok in all Mk. Let Gk := Aut(Mk), Kk := Stab(ok). Thus for
hermitian symmetric domains Mk we have hence Mk = Gk/Kk.
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Let τ : Ũ → M ′ be the period map for the bundle V. In M ′ fix an
origin o′, let G′ := Aut(M ′) ∼= SU(ℓ, ℓ′), and let K ′ := Stab(o′). By

the purity of the Higgs bundle, τ factors as the projection Ũ → Mι

composed with a map τ1 : Mι →M ′.
The next claim derives the second statement from the main hypoth-

esis. Remember that, since the splitting Tι → Hom(E1,0, E0,1) comes
from a splitting of Higgs bundles, it is orthogonal for the Hodge metric,
hence for the Kähler metric.

Claim 7.14. Let τ1 : Mι → M ′ = G′/K ′ be a holomorphic map
to a hermitian symmetric domains. Assume that τ∗1TM ′ = TMι ⊕ R is
a holomorphic splitting, orthogonal with respect to the Kähler metric
on M ′. Then Mι → M ′ is a totally geodesic embedding and Mι a
symmetric domain.

Proof. (From a letter by N. Mok.) First, the splitting condition on
τ∗1TM ′ implies that τ1 is locally an embedding. Second, we check that
the image τ1(Mι) is totally geodesic in M ′. This is again a local condi-
tion. By [He62, Theorem I.14.5] it suffices to check that the splitting
TM ′ |τ1(Mι) = TM ⊕R is preserved under parallel transport.

Take any local holomorphic sections s of TMι and t of R. Then 〈s, t〉 =
0 with respect to the Hermitian inner product. The derivative of t with
respect to a (1, 0) vector is orthogonal to s because s is holomorphic and
because 〈·, ·〉 is Hermitian bilinear. Since s and t are arbitrary, it follows
that R is invariant under differentiation in the (1, 0) direction. But since
R is a holomorphic subbundle, it is invariant under differentiation in the
(0, 1)-direction. As a consequence R is parallel, and hence its orthogonal
complement TMι is parallel, too.

Finally, since M ′ is a global symmetric domain, it has geodesic sym-
metries at each point of τ1(Mι). Since τ1(Mι) is totally geodesic in
M ′, these are geodesic symmetries of τ1(Mι). Consequently, τ1(Mι) is
a global symmetric domain and τ1 is (globally) an embedding. q.e.d.

We continue with the proof of Proposition 7.13 and let

B := {ϕ ∈ Aut(M ′) : ϕ(τ1(Mι)) = τ1(Mι)} ⊂ G′.

In the next step we deduce from Claim 7.14 that τ1(Mι) = B/KB, where
KB is a maximal compact subgroup. The first observation is:

Claim 7.15. The embedding τ1 : Mι → M ′ is induced by a homo-
morphism from τ̃1 : Gι → G′ that factors through B.

Proof. As explained in [Sa65, §1.1] or [Sa80, II §2], the geodesic
holomorphic embedding Mι → M ′ is induced by a local isomorphism
Gι → G′ and hence a homomorphism of Lie algebras Lie(Gι)→ Lie(G′).

This induces a homomorphism τ̂1 : G̃ι → G′ from the universal covering
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G̃ι of Gι. It remains to show that τ̂1 factors through Gι, then the
factorization through B is obvious from the definition.

It suffices to exhibit a factorization of τ̂1 on the R-valued points. Since

Gι(R) ⊂ Gι(C) ∼= Sl(1 + n)(C),

and since Sl(1+n)(C) is simply connected, this factorization is obvious.
q.e.d.

By this claim, the natural map res : B → Aut(Mι) ∼= G induces a
surjection B/KB →Mι. This map is also injective, since elements in B
preserve Mι. Consequently, the kernel Υ of res is a compact subgroup.
By Claim 7.15 again, this kernel is a direct factor. In fact, the kernel
is a maximal direct factor, since Gι = Aut(Mι) does not contain direct
compact factors. We deduce that given the choice of origins, the product
decomposition B ∼= Gι ×Υ is canonical.

By definition of a period map, τ is equivariant with respect to the
action of π1(U) via

ρ1 : π1(U) −−→ Aut(Ũ ) and ρ2 : π1(U) −−→ Aut(M ′) ∼= G′

on domain and range.
The image of ρ2 lies in B by definition. The usual argument with

Schur’s Lemma (e.g. Proposition 5.9 or [VZ05] Proposition 3.3) im-
plies that ρ2 is a tensor product of a unitary representation and of a
representation that factors through τ̃ι : Gι → B → G′.

The last step in the proof of Proposition 7.13 is to exploit that there
are not many possibilities for τ̃1 that give rise to a holomorphic totally
geodesic embedding of hermitian symmetric domains.

Claim 7.16. The representation Gι → B → G′ is a wedge product
of the standard representation.

Proof. In order to match the hypothesis of [Sa80] precisely, we should
postcompose the map τ̃1 : Gι → G′ by a natural inclusion of G′ into
the symplectic group. By the table p. 461 and Proposition 1 in [Sa80],
incl◦τ̃1 is a direct sum of wedge products of the standard representations.
This direct sum has only one summand, since V was reducible otherwise.

q.e.d.

In order to prove the missing part v) of Proposition 0.1 we will use:

Proposition 7.17. Assume that U is the quotient of a bounded sym-
metric domain by an arithmetic group. Assume that Ωι is of type A
or B, that Mι is the complex ball SU(1, n)/K and that V is the tensor
product of a unitary representation with a wedge product of the standard
representation of SU(1, n).

1. Then V satisfies the Arakelov equality.



128 M. MÖLLER, E. VIEHWEG & K. ZUO

2. Let Y ′ be a Mumford compactification. Writing (E′, θ′) for the
Higgs bundle of V on Y ′, the sheaves E′1,0 and E′0,1 are µ-stable
and E′1,0∨ ⊗ E′0,1 is µ-polystable.

Proof. Let Y ′, S′ be a Mumford compactification (see Section 3).
The bundles E′1,0 and E′0,1 are irreducible homogeneous bundles as
in Lemma 3.8, case an and q = 1, given by the wedge products of the
standard representation of U(n). The same arguments as in the proof
of the first parts of Proposition 0.1 now imply 1) and 2).

By Lemma 3.7 the Arakelov equality on a Mumford compactifica-
tion implies the one on any compactification, satisfying the positivity
statement in Assumption 1.1. q.e.d.

7.3. Type C: Sm(Ωι) is µ-unstable for some m > 1. Yau’s Uni-
formization Theorem, recalled in [VZ07, Theorem 1.4], implies that
Mι is a bounded symmetric domain of rank greater than one. Using
the characteristic subvarieties, introduced by Mok presumably one can
write down an explicit formula for ς(V). However we do not need this,
since in this case the superrigidity theorems apply. Recall the notations
introduced at the beginning of the proof of Proposition 7.13.

Proposition 7.18. If V is pure of type ι, The period map factors as
the projection Ũ →Mι and a totally geodesic embedding Mι →M ′.

Proof. Purity of V implies that the period map factors through the
projection to Mι. In the case we treat, Mι has rank greater than one,
hence the metric rigidity theorems of Mok and their generalizations due
to To apply. More precisely, let h be the pullback the restriction of the
Bergman-metric on M ′ to Mι. By purity and since M ′ is a bounded
symmetric domain of non-compact type, h descends to a metric of semi-
negative curvature on the bundle (Ωι)

∨ on U . Thus the hypothesis of
[Mk89, Theorem 4] are met, if one takes into account the arguments of
To ([To89, Corollary 2] and the subsequent remark) to extend from U
compact to U of finite volume. We conclude that up, to a constant mul-
tiple, h is the Bergman-metric on Mι and Mι → M ′ a totally geodesic
embedding. q.e.d.

Lemma 7.19. Let U → Ag be a generically finite map with Ũ =∏
Mi. Suppose that all for all irreducible summands V the period map

τ(V) is either constant or the composition τ(V) = τj ◦ pi(V) of a projec-
tion and a totally geodesic embedding of Mi(V) to the period domain of

V. Then the universal covering map τ : Ũ → Ãg is a totally geodesic
embedding.

Proof. By Lemma 7.1 the hypothesis ‘generically finite’ implies that
for each i there is at least one non-unitary summand V with i = i(V).
The universal covering map is, by definition, the product of the τ(V)
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composed with a block diagonal embedding
∏

j M
′
j → Ãg. Since the

latter is totally geodesic for the Bergman metric, the claim follows from
the hypothesis on the τ(V). q.e.d.

We can now start the proof of the main theorems and its refinements.

Proof of Proposition 0.1. Parts i)–iv) have been verified at the end of
Section 3. By assumption f : A→ U is a Kuga fibre space, V is pure of
type i = i(V), and Ωi is of type B. In particular the assumption made
in Proposition 7.17 hold, and on a suitable compactification the sheaf
E1,0∨ ⊗ E0,1 is µ-polystable. So Proposition 7.4 implies that

ς((E, θ)) =
ℓ · ℓ′ · (ni + 1)

(ℓ+ ℓ′) · ni
.

Of course this equality is independent of the compactification. q.e.d.

Proof of Theorem 0.2. If for some étale covering τ : U ′ → U the pull-
back family f ′ : A′ → U ′ is a Kuga fibre space, then the two conditions
1) and 2) on U are equivalent to the same conditions on U ′. So we may
as well assume that f : A → U is itself a Kuga fibre space. If V is
a non-unitary irreducible subvariation of Hodge structures in R1f∗CA,
then part ii) of Proposition 0.1 gives the Arakelov equality, and part i)
implies that V is pure of type i = i(V).

If Ωi is of type A or C, there is nothing to verify in 2). If Ωi is of
type B, Part v) of Proposition 0.1 shows that

ς(V) = ς((E, θ)) = ς((E, θi)) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

Assume now that the conditions 1) and 2) in Theorem 0.2, b) hold.
Since ϕ is generically finite, by the first part of Lemma 7.1 one finds
for each direct factor Ω1

ι of ΩY (log S) some non-unitary subvariation of
Hodge structures V, which is pure of type ι.

If Ωι is of type C, we find that the map Ũ → M ′ to the period
domain M ′ of V factors as the projection Ũ →Mι and a totally geodesic
embedding Mι →M ′.

By Proposition 7.13 the same holds if Ωι is of type A, or if it is of
type B and if the condition 2) Theorem 0.2 holds.

So all the hypothesis of the Lemma 7.19 are met and Ũ → Ãg is a
totally geodesic embedding, hence by Theorem 2.3 there exists a Kuga
fibre space f ′ : A′ → U ′ such that the image of U ′ in Ag coincides with
the image ϕ(U). In particular this image is non singular. By the second
part of Lemma 7.1 ϕ : U → ϕ(U) is étale, and replacing U ′ by an étale
covering we may assume that U ′ dominates U .

Finally the last statement in Theorem 0.2 follows from Corollary 2.4.
q.e.d.
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Addendum 7.20. Consider as in Theorem 0.2 an irreducible com-
plex polarized subvariation of Hodge structures V of R1f∗CA with Higgs
bundle (E, θ). Assume that V is non-unitary and satisfies the Arakelov
equality. Consider the following conditions for i = i(V):

α. E1,0 and E0,1 are µ-stable.

β. The kernel of the natural map Hom(E0,1, E1,0) → Ωi is a direct
factor of Hom(E0,1, E1,0).

γ. ς(V) =
rk(E1,0) · rk(E0,1) · (ni + 1)

rk(E) · ni
.

δ. Mi is the complex ball SU(1, ni)/K, and V is the tensor product
of a unitary representation with a wedge product of the standard
representation of SU(1, ni).

η. Let M ′ denote the period domain for V. Then the period map
factors as the projection Ũ →Mi and a totally geodesic embedding
Mi →M ′.

Then, depending on the type of Ωi, the following holds:

I. If Ωi is of type A, then α), β), γ), δ) and η) hold true.
II. If Ωi is of type C, then η) holds true.
III. If Ωi is of type B, then the conditions β) and γ) are equivalent.

They imply the conditions δ) and η).

Proof. Part I) is Proposition 7.3, if one uses in addition the equiv-
alence between f) and c) in Proposition 7.4 and the Proposition 7.13.
Part II) is just repeating the conclusion of Proposition 7.18.

For Part III) remark first that the equivalence of the conditions β)
and γ) is part of Proposition 7.4. By Proposition 7.13 β) implies δ) and
η). q.e.d.

Since the Arakelov equality says that the slopes of Hom(E0,1, E1,0)
and of Ωi coincide, the ampleness of ωY (S) implies (⋆) and thus shows
that α) implies β). Since δ) implies α) we can state the following corol-
lary.

Corollary 7.21. In the Addendum 7.20 one has:

IV. If ωY (S) is ample, for example if U is projective or if dim(U) = 1,
and if Ωi is of type B, then the conditions α), β), γ) and δ) are
equivalent and imply η).

Without referring to the ampleness or to Yau’s conjecture one still
has the following.

Corollary 7.22. Assume in Theorem 0.2 and in Addendum 7.20 that
the Arakelov equality and the condition η) hold for all non-unitary sub-
variations V of R1f∗CA. Then there exists an étale covering τ : U ′ → U
with U ′ a quotient of a bounded symmetric domain by an arithmetic
group. Moreover on a Mumford compactification of U ′ the conditions
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α), β), δ), and γ) are equivalent for all irreducible non-unitary subvari-
ations V′ of τ∗R1f∗CA which are of type B.

Proof of Corollary 7.22. Since we assumed that U → Ag is generically
finite and that the condition η) in Addendum 7.20 holds for all irre-
ducible non-unitary subvariations of Hodge structures, the argument
used at the end of the proof of Theorem 0.2 shows that the pullback
f ′ : A′ → U ′ of f : A→ U to some étale covering U ′ of U is a Kuga fibre
space. Hence there exists a Mumford compactification Y ′. The condi-
tion δ) allows to apply Proposition 7.17, 2) to obtain the conditions α)
and β) q.e.d.

8. The Arakelov equality and the Mumford-Tate group

We keep the assumption that U is the complement of a normal cross-
ing divisor S in a non-singular projective variety Y , that Ω1

Y (log S) is
nef, and that ωY (S) is ample with respect to U . Let f : A→ U be a fam-
ily of polarized abelian varieties such that R1f∗CA has unipotent local
monodromies at infinity, and such that the induced morphism U → Ag

is generically finite.
If each irreducible subvariation of Hodge structures of R1f∗CA is

either unitary or it satisfies the Arakelov equality and if in addition
the second condition in Theorem 0.2 holds, we have shown in the last
section that the induced morphism U → Ag is totally geodesic. By
Moonen’s Theorem 2.3 we know that U is the base of a Kuga fibre
space, and that it is the translate of a Shimura variety of Hodge type.
In particular this implies that the monodromy group Mon0 of R1f∗CA is
normalized by the complex structure, hence by the derived Hodge group
MT(R1f∗CA)

der. In this section we will verify the last property as a
direct consequence of the Arakelov equality, without using the second
condition in Theorem 0.2, and we will determine the invariant cycles
under Mon0 explicitly. The final statement is given in Corollary 8.15.

In the first part of this section we will consider arbitrary complex
polarized variations of Hodge structures V of weight k on U , with
unipotent local monodromy around the components of S, and we will

write (E =
⊕k

m=0 E
k−m,m, θ) for the Higgs bundle. For k > 1 and

dim(U) > 1 there is not yet any concept of Arakelov inequality where
maximality has as nice consequences as in weight one. We thus start
with an ad hoc definition of what should be the maximal case and show
that this condition is satisfied for some variations of Hodge structures
derived from variations of Hodge structures of weight one with Arakelov
equality.

Definition 8.1. The Higgs bundle (E, θ) (or the variation of Hodge
structures V) satisfies the Arakelov condition if there exist integers
mmin ≤ mmax with
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i. Ek−m,m 6= 0 if and only if mmin ≤ m ≤ mmax.
ii. For mmin ≤ m < mmax the morphism θk−m,m = θ|Ek−m,m is non-

zero.
iii. For mmin ≤ m ≤ mmax the sheaves Ek−m,m are µ-semistable of

slope

(8.1) µ(Ek−m,m) = µ(Ek−mmin,mmin)− (m−mmin) · µ(Ω1
Y (log S)).

Lemma 8.2.

1. If V is unitary and irreducible, it satisfies the Arakelov condition.
2. If k = 1, if V is irreducible and if both, E1,0 and E0,1 are non-zero,

then V satisfies the Arakelov condition if and only if the Arakelov
equality holds.

3. If V satisfies the Arakelov condition, then the same holds true for
its complex conjugate V∨.

Proof. Simpson correspondence implies in 1) that E is concentrated
in one bidegree, whereas in 2) it implies that the Higgs field is non-zero.
Then 1) and 2) are just reformulations of the definition. 3) is obvious,
since the polarization (as indicated by the notation) allows to identify
V∨ with the dual local system. q.e.d.

Lemma 8.3. Consider for i = 1, . . . , s polarized C-variations of
Hodge structures Vi with unipotent local monodromy at infinity and with
Higgs bundles

(
Ei =

ki⊕

m=0

Eki−m,m
i , θi

)
.

If the Arakelov condition holds for all the Vi, it also holds for the local
system V = V1 ⊗ · · · ⊗ Vs and for each irreducible direct factor V′ of
V1 ⊗ · · · ⊗ Vs.

Proof. Let (E, θ) denote again the Higgs bundle of V. In order to
show that V satisfies the Arakelov condition we may assume by induc-

tion that s = 2. Write m
(i)
min and m

(i)
max for the integers with Eki−ℓi,ℓi

i 6= 0

for m
(i)
min ≤ ℓi ≤ m

(i)
max. Then for k = k1 + k2

Ek−r,r =
⊕

ℓ1+ℓ2=r

Ek1−ℓ1,ℓ1
1 ⊗ Ek2−ℓ2,ℓ2

2 6= 0,

if and only if mmin = m
(1)
min + m

(2)
min ≤ r ≤ mmax = m

(1)
max + m

(2)
max. In

addition, if mmin ≤ mmax − 1 then r = ℓ1 + ℓ2 for some ℓi with either

ℓ1 < m
(1)
max or ℓ2 < m

(2)
max. In the first case, for example, part of the

Higgs field is given by the tensor product of the Higgs field θi|Ek1−ℓ1,ℓ1
1

with the identity on Ek2−ℓ2,ℓ2
2 , hence non-zero.
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The equation 8.1 tells us that as the tensor product of µ-semistable

sheaves Ek1−ℓ1,ℓ1
1 ⊗ Ek2−ℓ2,ℓ2

2 is µ-semistable of slope

µ(E
k1−m

(1)
min,m

(1)
min

1 ) + µ(E
k2−m

(2)
min,m

(2)
min

2 )

−(ℓ1 + ℓ2 −m
(1)
min −m

(2)
min) · µ(Ω1

Y (log S)).
(8.2)

So Ek−m,m is µ-semistable of slope µ(Ek−mmin,mmin) − (m − mmin) ·
µ(Ω1

Y (logS)), if non-zero.
For the last part, let (E′, θ′) denote the Higgs bundle of the irreducible

subvariation of Hodge structures V′. We choose m′
min and m′

max to be

the smallest and largest integer with E′k−m′
min,m

′
min and E′k−m′

max,m
′
max

non-zero. By Simpson’s correspondence (E′, θ′) can not be a direct sum
of two Higgs bundles, hence θ′

E′k−m,m 6= 0 for m′
min ≤ m ≤ m′

max − 1.
Finally, the µ-semistability as well as the equation 8.2 carry over to
direct factors of (E, θ). q.e.d.

Lemma 8.4. Let V be a complex polarized variation of Hodge struc-
tures V of weight k, with unipotent local monodromy around the compo-
nents of S, and satisfying the Arakelov condition.

a. There is a unique m such that each unitary local subsystem U of
V is concentrated in bidegree (k −m,m). In particular all global
sections s ∈ H0(U,V) are of bidegree (k −m,m).

b. If V is defined over R, hence of the form VR⊗R C, then k is even
and m = k

2 .

Proof. Obviously b) follows from a) using Lemma 8.2, 3).
By [De87] in a) the local system U is a subvariation of Hodge struc-

tures, in particular the corresponding Higgs bundle (F, 0) is a direct
factor of (E, θ). So F p,q has to be a direct factor of Ep,q, in par-
ticular it is again µ-semistable of slope µ(Ep,q). Since U is unitary
µ(F p,q) = µ(Ep,q) = 0 and since µ(Ω1

Y (log S)) > 0 the equation 8.1
implies that this is only possible for one tuple (p, q).

For the last part of a) one takes for U the trivial sub-local system
generated by H0(U,V). q.e.d.

In the sequel we consider a Q-variation of Hodge structures WQ =
R1f∗QA with unipotent monodromy at infinity, induced by a family of
polarized abelian varieties f : A → U . So WQ is polarized of weight 1
and concentrated in bidegrees (1, 0) and (0, 1). For Q ⊂ K we will write
WK = WQ ⊗K and W = WC.

Lemma 8.5. There exists a totally real number field K such that:

1. One has a decomposition of variations of Hodge structures

WK = W1K ⊕ · · · ⊕WℓK with WiK = V′
iK ⊗K HiK ,

orthogonal with respect to the polarization.
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2. V′
iR = V′

iK ⊗K R is irreducible for i = 1, . . . , ℓ.
3. Hom(V′

iR,V
′
j R) is a skew field for i = j and is zero otherwise.

4. For each i the decomposition in 1) satisfies one of the following
conditions:
a. V′

iK is a polarized K-variation of Hodge structures of weight
1 and HiK a trivial K-Hodge structure, i.e. a K-vector space
regarded as a Hodge structure concentrated in bidegree (0, 0).

b. HiK a K-Hodge structure of weight 1 and V′
iK is a polarizable

variation of Hodge structures concentrated in bidegree (0, 0) and
unitary.

For subsequent use we label the direct factors in Lemma 8.5 such that
for some ℓ2 and for 1 ≤ i ≤ ℓ2 the condition a) holds true, whereas for
ℓ2 < i ≤ ℓ one has the condition b).

Proof of Lemma 8.5. By [De87, Proposition 1.12] W decomposes as a
direct sum of irreducibleC-subvariations of Hodge structures. Replacing
the direct factors V which are not invariant under complex conjugation
by V ⊕ V∨, one obtains a decomposition of VR as a direct sum of ir-
reducible polarized R-subvariations of Hodge structures. As shown in
[VZ07, Lemma 9.4], for example, such a decomposition is induced by
one which is defined over some totally real number field K, and it can
be chosen to be orthogonal with respect to the polarization. The ir-
reducibility implies that Hom(V′

iR,V
′
j R) is a skew field if and only if

V′
iR
∼= V′

j R.
Of course we may write the direct sum of all direct factors, isomorphic

to some V′
iK in the form V′

iK ⊗K HiK , for some K vector space HiK .
As in [De87, Proposition 1.13] or in [De71, Theorem 4.4.8] one defines
a Hodge structure on HiK .

In 4) the bidegrees of V′
iK and HiK have to add up to (1, 0) and

(0, 1). If HiK is concentrated in bidegree (0, 0) the variation of Hodge
structures WiK is just a direct sum of the V′

iK , again orthogonal with
respect to the polarization, and one obtains case a). Otherwise V′

iK has
to be concentrated in bidegree (0, 0). Since it is polarizable, it has to
be unitary. q.e.d.

Beside of the totally real number field K in Lemma 8.5 we fix as in
Subsection 2.3 a very general point y ∈ U . If a variation of Hodge
structures is denoted by a boldface letter, the restriction to the base
point y ∈ U will be denoted by the same letter, not in boldface, so WiK

and V ′
iK will denote the fibres at y of WiK and V′

iK , respectively.
As in [An92], one can extend the definition of the Hodge and Mum-

ford-Tate group to an arbitrary polarized K-Hodge structureWK . Since
the decomposition in Lemma 8.5 is defined over a real number field and
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orthogonal, the complex structure factors through

ϕ0 : S
1 −−→

ℓ×
i=1

Sp(WiK ⊗K R, Q|WiK
) ⊂ Sp(WK ⊗K R, Q).

In a similar way the morphism h : ResC/RGm → Gl(WK ⊗K R) factors
through

h : ResC/RGm −−→
ℓ×

i=1
Gl(WiK ⊗K R) ⊂ Gl(WK ⊗K R).

Hence for the Mumford-Tate group MT(WK), defined as the smallest
K-algebraic subgroup of Gl(WK) whose extension to R contains the
image of h, one has an inclusion

(8.3) MT(WK) ⊂
ℓ×

i=1
MT(WiK).

By [An92] and [De82] the group MT(WK) is reductive, and by [An92,
Lemma 2, a)] it can again be defined as the largestK-algebraic subgroup
of the linear group Gl(WK), which leaves all K-Hodge cycles invariant,
hence all elements

η ∈
[
W⊗m

K ⊗W∨⊗m′

K

]0,0
.

The decomposition Gl(V ′
i K)×Gl(HiK) ⊂ Gl(WiK) allows to define

Gmov
K =

ℓ×
i=1

Gl(V ′
iK)× {idHiK

} ⊂
ℓ×

i=1
Gl(WiK) ⊂ Gl(WK).

Addendum 8.6. Keeping the notations introduced in Lemma 8.5
one has

5. There exists a Q-algebraic subgroup Gmov
Q of Gl(WQ) with Gmov

Q ⊗
K = Gmov

K . Moreover Gmov
Q is independent of K.

Proof. On may assume that WQ is irreducible over Q. Obviously, if
K ′ is a totally real extension of K, then Gmov

K ′ = Gmov
K ⊗ K ′. So one

may also assume that K is a Galois extension of Q with Galois group
Γ.

Let Γ′ ⊂ Γ be the subgroup consisting of all γ for which WiK is
isomorphic to the conjugate Wγ

iK under γ. In particular, V′
iK
∼= V′γ

iK .
So the action of γ on WiK is trivial on the first factor V′

iK , and it

leaves Gl(V ′
iK)× {idHiK

} invariant. Since V′
j K = V′δ

iK for some δ ∈ Γ,

unique up to multiplication with Γ′, the group Gmov
K is invariant under

conjugation by Γ, hence it is defined over Q and, as said already, it is
independent of K. q.e.d.

As in [De71, Lemma 4.4.9] the polarization Q|WiK
is the tensor prod-

uct of two forms Q′
i and Qi on V′

iK and HiK , respectively, one be-
ing antisymmetric, the other symmetric. This allows to distinguish in
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Lemma 8.5, 4,b) two sub-cases:

We say that WiK is of type b1 if Q′
i is antisymmetric and of type b2

if Qi is antisymmetric. In the second case HiK is a polarized Hodge
structure, and we can talk about its Mumford-Tate group.

Lemma 8.7.

a. In case a) of Lemma 8.5, 4), i.e. for i = 1, . . . , ℓ2, one has

MT(WiK) = MT(ViK)× {idHiK
}.

b. In Lemma 8.5, 4.b) one finds:

1. In case b1, i.e. for symmetric Qi, one has an inclusion

MT(WiK) ⊂ {idViK
} × SO(HiK).

In particular, for dim(HiK) = 2, the group MT(WiK) is commu-
tative.

2. In case b2, i.e. if Qi is antisymmetric, one has

MT(WiK) = {idViK
} ×MT(HiK).

3. If Qi is antisymmetric or if Qi is symmetric and dim(HiK) > 2,
there exists a non-zero antisymmetric endomorphism of WiK of
bidegree (−1, 1).

Proof. Consider a non-trivial element

η ∈
[
W⊗m

iK ⊗K W∨⊗m′

iK

]0,0
=
[
V ′⊗m
iK ⊗K V ′∨⊗m′

iK ⊗K H⊗m
iK ⊗K H∨⊗m′

iK

]0,0
.

So m = m′ and η can be written as

η =
∑

ι

γι⊗hι, with γι ∈ V ′⊗m
iK ⊗V′∨⊗m

iK and hι ∈ H⊗m
iK ⊗H∨⊗m

iK .

For i ≤ ℓ2 all the hι are of bidegree (0, 0). Then η is pure of bidegree
(0, 0) if and only if this holds for γι ⊗ hι for each ι, or equivalently,
if γι is a Hodge cycle. Altogether MT(WiK) and MT(V ′

iK) × {idHiK
}

are two reductive groups leaving the same cycles invariant. By [De82,
Proposition 3.1 (c)] they coincide.

If i > ℓ2, the sections γι are all of bidegree (0, 0). So again η is of bide-
gree (0, 0) if and only if the same holds for the elements hι. Let Γ be the
largest subgroup of Sp(HiK , Qi) which leaves all tensors h of bidegree
(0, 0) invariant. Then γι⊗ hι is invariant under {idViK

} ×Γ if and only
if it is invariant under MT(WiK). Again by [De82, Proposition 3.1 (c)]
both groups coincide.

In case b2 the vector space HiK , together with Qi, is a polarized
variation of Hodge structures, and Γ is the Mumford-Tate group of
HiK .

In case b1 one has Γ ⊂ SO(HiK). Since O(2,K) is commutative one
obtains the second part of b.1).
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For the third part of b) assume first that Qi is symmetric. Then
dim(HiK) = µ is even and for µ ≥ 4 the elements of SO(µ,K) generate
the matrix algebra M(µ,K). So one finds an antisymmetric endomor-
phism of V ′

iK ⊗HiK of bidegree (−1, 1).
For Qi antisymmetric there are obviously antisymmetric endomor-

phisms of HiK of bidegree (−1, 1). The product with the identity of
V′
iK gives the endomorphism we are looking for. q.e.d.

To compare the Mumford-Tate group with the monodromy group in case
a) of Lemma 8.5 one needs some additional hypothesis on the variation
of Hodge structures, in our case the Arakelov equality. By [De87,
Proposition 1.12] the variations of Hodge structures V′

i = V′
iK ⊗K C

can be written as a direct sum of irreducible polarized C-variations of
Hodge structures. We distinguish two sub-cases.

Type a1. V′
i is an irreducible C-variation of Hodge structures. This

implies in particular that V′
i is isomorphic to its complex conjugate

V′∨
i , and that V′

i is not unitary. In fact, if V′
i were unitary, it would

decompose in two non-trivial subsystems, one of bidegree (1, 0) and the
other of bidegree (0, 1), contradicting the irreducibility.

Claim 8.8. Assume that WiK is of type a1, and that it satisfies the
Arakelov equality. Then all global sections

η ∈ H0
(
Y,W⊗m

iK ⊗K W∨⊗m′

iK

)

are of bidegree (m−m′,m−m′).

Proof. The Arakelov equality implies that V′
i satisfies the Arakelov

condition. Since Hi is a K-vector space concentrated in bidegree (0, 0),
the same holds true for Wi = V′

i ⊗ Hi. So the Claim follows from
Lemma 8.4. q.e.d.

Type a2. V′
i is the direct sum of two irreducible factors Vi and V∨

i ,
dual to each other and interchanged by complex conjugation. Remark
that we allow Vi and V∨

i to be unitary. If not, they satisfy the Arakelov
equality. Hence by Lemma 8.3 the two variations of Hodge structures
Vi, V∨

i as well as their tensor product with Hi will satisfy the Arakelov
condition and Lemma 8.4 implies:

Claim 8.9. Assume that WiK is of type a2, and either unitary or
with Arakelov equality. Then there exist p and q such that all global
sections

η ∈ H0
(
Y, (ViK ⊗K HiK)⊗m ⊗K (ViK ⊗K HiK)∨⊗m′)

are of bidegree (p, q), and all global sections

η ∈ H0
(
Y, (V∨

iK ⊗K HiK)⊗m ⊗K (V∨
iK ⊗K HiK)∨⊗m′)

are of bidegree (q, p). Moreover one has p+ q = m−m′.
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Claim 8.10. For WiK of type a2 the Mumford-Tate group respects
the decomposition of V′

i, i.e. up to conjugation

MT(WiK)⊗K C ⊂ Gl(Vi ⊗Hi)×Gl(V ∨
i ⊗Hi).

Proof. The decomposition in a direct sum can be defined over an
imaginary quadratic extension K(

√
b) of K, say with ι as a generator

of the Galois group. So the Mumford-Tate group acts trivially on ι-
invariant global sections of End(Wi). Applying this to idVi⊗Hi

+idV ∨
i ⊗Hi

and to
√
b · (idVi⊗Hi

− idV ∨
i ⊗Hi

) one obtains the claim. q.e.d.

Definition 8.11. Let Gmov
Q be the group defined in Addendum 8.6.

Then we define the moving part of the Mumford-Tate group as

MTmov(WQ) = MT(WQ)∩Gmov
Q and MTmov(WK) = MT(WK)∩Gmov

K .

Correspondingly we write for any of the components WiK in Lemma 8.5

MTmov(WiK) = MT(WiK) ∩
(
Gl(ViK)× {idHiK

}
)
.

Lemma 8.7 allows to evaluate the moving part of the Mumford-Tate
group. In case a), i.e. for i = 1, . . . , ℓ2 one finds

MTmov(WiK) = MT(WiK) = MT(V ′
i K)× {idHiK

},
whereas in case b) MTmov(WiK) is trivial. By (8.3)

(8.4)

MTmov(WK) = MT(WK) ∩
( ℓ2×

i=1
Gl(V ′

i K)× {idHiK
}
)

⊂
ℓ2×
i=1

MTmov(WiK).

To give a definition of MTmov(WQ) in terms of complex structures we
define
(8.5)

hmov : ResC/RGm −−→
ℓ×

i=1
Gl(WiK ⊗K R)

proj−−→
ℓ2×
i=1

Gl(WiK ⊗K R).

Lemma 8.12.

i. MTmov(WQ) is a normal subgroup of MT(WQ).
ii. MTmov(WK) is the smallest K-algebraic subgroup HK of Gl(WK),

for which HK ⊗K R contains the image of hmov.
iii. MTmov(WQ) is the smallest Q-algebraic subgroup HQ of Gl(WQ)

with

MTmov(WK) ⊂ HQ ⊗K.

iv. MTmov(WQ) is the smallest Q-algebraic subgroup HQ of Gl(WQ),
for which HQ ⊗ R contains the image of hmov.
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Proof. We may assume again that WQ is irreducible an that K is
Galois over Q with Galois group Γ.

Part ii) follows from 8.4 and from the definition of MT(WiK), and
part iv) follows from ii) and iii).

To verify part iii) remark that MT(WQ) is the smallest Q-algebraic
subgroup of Gl(WQ) whose extension to K contains MT(WK). By 8.4

MTmov(WK) = MT(WK) ∩GK = MT(WK) ∩ (GQ ⊗K).

Taking conjugates with σ ∈ Γ one finds that

MTmov(WK)σ = MT(WK)σ ∩ (GQ ⊗K).

For the smallest Q algebraic subgroup HQ of Gl(WQ) with the property
MTmov(WK) ⊂ HQ⊗K the extension HQ⊗K of scalars is the product
over all conjugates of MTmov(WK), hence it is equal to (MT(WQ) ⊗
K) ∩ (GQ ⊗K) and one obtains iii).

Obviously Gmov
K is normal in

ℓ×
i=1

Gl(WiK). The latter contains the

group MT(WK) and all its conjugates under Γ. So MTmov(WQ)⊗K is
a normal subgroup of MT(WQ)⊗K and i) holds true. q.e.d.

Lemma 8.7 implies that MTmov(WiK)der = MT(WiK)der in case a)
and in case b1), provided dim(HiK) = 2. In the remaining cases by
Lemma 8.7, b.3) there exists a non-zero antisymmetric endomorphism
of WiK , which by [Fa83] implies non-rigidity. So we can state:

Lemma 8.13. Assume that WQ is a rigid polarized variation of
Hodge structures of weight 1. Then for all i one has MTmov(WiK)der =
MT(WiK)der and hence MTmov(WQ)

der = MT(WQ)
der.

Recall that WQ is the variation of Hodge structures of a polarized
family of abelian varieties f : A→ U , and that WK and WQ are the re-
strictions of WK and WQ to a very general point y ∈ U . So MT(WQ)

der

is compatible with parallel transport and, following the usual conven-
tion, we write MT(WQ) instead of MT(WQ) and MTmov(WQ) instead
of MTmov(WQ) For L = Q or L = K we consider the monodromy group
Mon(WL), defined as the smallest L-algebraic subgroup of Gl(WL) which
contains the image of the monodromy representation. As usual the up-
per Index 0 refers to the connected component of the identity. By
[De82] (see also [An92] or [Mo98]) we know that the connected com-
ponent Mon0(f) = Mon0(WQ) is a normal subgroup of the derived
subgroup MT(WQ)

der.

Proposition 8.14. Keeping the notations introduced in Lemma 8.5,
assume that each irreducible direct factor of W = WQ ⊗ C is either
unitary or satisfies the Arakelov equality. Then

MTmov(WK)der ⊂ Mon0(WK).
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Before proving Proposition 8.14 let us state and prove the corollary
we are heading for.

Corollary 8.15. Let Y be a non-singular projective variety, and let
U ⊂ Y be the complement of a normal crossing divisor S. Assume
that Ω1

Y (log S) is nef and that ωY (S) is ample with respect to U . Let
f : A → U be a family of polarized abelian varieties with unipotent
local monodromy at infinity and such that for WQ = R1f∗QA each non-
unitary irreducible subvariation of Hodge structures of W = WQ ⊗ C
satisfies the Arakelov equality. Then

(8.6) MTmov(WQ)
der = Mon0(WQ) = MT(WQ)

der ∩Gmov
Q .

In particular Mon0(WQ) is normalized by MT(WQ)
der.

If f : A→ U is rigid one finds that Mon0(WQ) = MT(WQ)
der.

Proof. Choose the totally real number fieldK according to Lemma 8.5.
Obviously Mon0(WK) is contained in Mon0(WQ)⊗K, hence by Propo-
sition 8.14 one has an inclusion

MTmov(WK)der ⊂ Mon0(WQ)⊗K.

Extending the coefficients to R one finds by Lemma 8.12, ii) that the
group Mon0(WQ) ⊗ R contains the image of the moving part of the
complex structure hmov, as defined in 8.5. By part iv) of Lemma 8.12
one gets MTmov(WQ)

der ⊂ Mon0(WQ). By [De82] one knows that
Mon0(WQ) ⊂ MT(WQ)

der. Since obviously Mon0(WQ) ⊂ Gmov
Q , one

obtains 8.6. The normality of MTmov(WQ)
der ⊂ MT(WQ)

der follows
from Lemma 8.12, i). Finally the last part of Corollary 8.15 is a conse-
quence of 8.6, using Lemma 8.13. q.e.d.

Using the notations from Section 2.1, we choose V = H1(f−1(y),Q) for
the very general point y ∈ U and the induced symmetric bilinear form
Q.

Since Mon0(WQ) = MTmov(R1f∗QA)
der is normalized by the group

MT(R1f∗QA)
der, hence by the complex structure ϕ0 as well, one obtains

Kuga fibre spaces over

Xmov = X (MTmov(WW)der, id, ϕ0) ⊂ X = X (MT(WQ)
der, id, ϕ0).

By [Mu66] and [Mu69] X is the moduli space of abelian varieties
whose Mumford-Tate group is contained in MT(R1f∗QA). So the family
f : A → U induces a morphism U → X , perhaps after replacing U by
an étale covering. Since ϕ : U → Ag is generically finite over its image,
the morphism U → X has the same property.

Assume in Corollary 8.15 that f : A→ U is rigid, and that dim(U) ≥
dimX . The rigidity implies by Corollary 8.15 that MTmov(WQ)

der =
MT(WQ)

der, and hence that Xmov = X is a Shimura variety of Hodge
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type. Since ϕ is generically finite over its image, ϕ : U → X is dominant,
hence X = ϕ(U). By Lemma 7.1, (2) ϕ : U → X is étale.

The same argument applies for non-rigid families if one knows that
ϕ factors through Xmov and if dim(U) ≥ dimXmov. So we can state:

Lemma 8.16. Assume in Corollary 8.15 that the induced morphism
ϕ : U → Ag factors through Xmov and that dim(U) ≥ dim(Xmov). Then
(replacing U by an étale covering, if necessary) ϕ : U → Xmov is finite,
étale, and surjective.

In particular this holds true if f : A → U is rigid, hence Xmov = X
and if dim(U) ≥ dim(X ).

Example 8.17. Assume in Corollary 8.15 that the universal covering
Ũ is a bounded symmetric domain, and that WQ is the uniformizing lo-

cal system. So Ũ is isomorphic to Mon0(WQ)⊗R, divided by a maximal
compact subgroup.

Assume either that f : A→ U is rigid, or that the morphism ϕ̃ from
Ũ to the Siegel upper halfspace Ãg is induced by a homomorphism

Mon0(WQ)⊗ R→ Sp(2g,R).

Then the assumptions in Lemma 8.16 hold true.
In fact, in both cases we know that ϕ̃ : Ũ → Ãg factors through

Xmov. Moreover the real dimension of Ũ is equal to the dimension of
the quotient of Mon0(WQ)⊗R by a maximal compact subgroup, hence
equal to 2 · dim(Xmov).

Remark 8.18. Without any assumption on rigidity Theorem 2.3
gives the existence of a Shimura variety of Hodge type X1 × X2 such
that U = X1×{b}. Using the notations introduced above, X = X1×X2

and Xmov = X1 × {b}. By deforming b to a point a with complex
multiplication one gets a Shimura variety of Hodge type X1 × {a}.

As we have seen the non-rigidity comes from the existence of direct
factors of type b1 with dim(HiK) ≥ 4 or of type b2. Passing from b to
a corresponds to a modification of the Hodge structure HiK in such a
way, that MT(WiK)/MTmov(WiK) becomes commutative.

Proof of Proposition 8.14. We will apply arguments, similar to the ones
used in the proof of [VZ07, Proposition 10.3]. By [Si92, Lemma 4.4]
Mon0(WK) is reductive, hence by [De82, Proposition 3.1 (c)] there is
no larger subgroup of Gl(WK) which leaves all elements ηy ∈W⊗m

K ⊗K

W∨⊗m′

K invariant, which are invariant under Mon0(WK). If we ver-

ify that all elements ηy ∈ W⊗m
K ⊗K W∨⊗m′

K which are invariant under

Mon0(WK) are invariant under MTmov(WK)der, we get the inclusion

MTmov(WK)der ⊂ Mon0(WK).

If ηy is invariant under Mon0(WK), one may replace U by an étale cover
and assume that ηy is invariant under the monodromy representation,
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hence it is the restriction of a global section

η ∈ H0
(
Y,W⊗m

K ⊗K W∨⊗m′

K

)
.

Since K is a totally real number field, W∨
K is isomorphic to WK , hence

det(WK)2 is trivial. Up to a shift of the bigrading, W∨
K can be identified

with

rk(WK)−1∧
WK ⊗K det(WK)−1 =

rk(WK)−1∧
WK ⊗K det(WK),

so we may as well consider sections of

(8.7)

η ∈ H0
(
Y,W⊗k

K

)
=
⊕

I′

H0
(
Y,

ℓ⊗

i=1

W⊗κi

iK

)

=
⊕

I′

H0
(
Y,

ℓ⊗

i=1

V′⊗κi

iK

)
⊗K

ℓ⊗

i=1

H⊗κi

iK ,

where I ′ is the set of tuples κ = (κ1, . . . , κℓ) with
∑ℓ

i=1 κi = k, so
η =

∑
I′ ηκ. Each component of η in this direct sum decomposition

is again invariant under Mon0(WK). So we may as well assume that
η = ηκ0 for a fixed tuple κ0 = (κ01, . . . , κ

0
ℓ ) and that

ηκ0 = γκ0⊗hκ0 with γκ0 ∈ H0
(
Y,

ℓ⊗

i=1

V
′⊗κ0

i

iK

)
and hκ0 ∈

ℓ⊗

i=1

H
⊗κ0

i

iK .

Recall that by our choice of the indices we are in case a) of Lemma 8.5, 4)
for i = 1, . . . , ℓ2. Let us rearrange the indices in such a way, that
i = 1, . . . , ℓ1 the local system V′

i = V′
iK ⊗K C remains irreducible (type

a1), whereas for i = ℓ1 + 1, . . . , ℓ2 it decomposes (type a2).
Choose a Galois extension L of K with Galois group Γ, such that the

local systems V′
i L decompose as a direct sum of two subsystems Vi L

and V∨
i L for i = ℓ1 +1, . . . , ℓ2. By abuse of notation we will drop the L,

hence i stands for i L.
Consider the set I of tuples of natural numbers

k = (k1, . . . , kℓ1 , kℓ1+1, k
′
ℓ1+1, . . . , kℓ2 , k

′
ℓ2 , kℓ2+1, . . . , kℓ), with

ki = κ0i for i ∈ {1, . . . , ℓ1} ∪ {ℓ2 + 1, . . . , ℓ} and

ki + k′i = κ0i for i ∈ {ℓ1 + 1, . . . , ℓ2}.

Then H0
(
Y,
⊗ℓ

i=1 V
′⊗κ0

i

iK

)
⊗K L decomposes as

⊕

I

H0
(
Y,

ℓ1⊗

i=1

V′⊗ki
i ⊗

ℓ2⊗

i=ℓ1+1

(
V⊗ki
i ⊗ V

∨⊗k′i
i

) ℓ⊗

i=ℓ2+1

V′⊗ki
i

)
.
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Remark that the local systems V′
i and Vi occurring in this decompo-

sition all satisfy the Arakelov condition. Hence γ = γκ0 and η = ηκ0

decompose as

γ =
∑

I

γk and η =
∑

I

γk ⊗ hκ0

where by Lemma 8.4

γk ∈
⊕

I

H0
(
Y,

ℓ1⊗

i=1

V′⊗ki
i ⊗

ℓ2⊗

i=ℓ1+1

(
V⊗ki
i ⊗ V

∨⊗k′i
i

)
⊗

ℓ⊗

i=ℓ2+1

V′⊗ki
i

)

is pure of some bidegree (pk, qk).
The Galois group Γ acts on the decomposition, and since η and h =

hκ0 are defined over K the group Γ permutes the components γk. The
sum over the conjugates of a fixed γk will again be defined over K, and
by abuse of notations, replacing I by a subset, we can assume that I
consists of one Γ-orbit.

If for some k ∈ I one has pk 6= qk then γk is not defined over R, and
its complex conjugate is of the form γk′ for some k′ ∈ I. In particular
p =

∑
I pk =

∑
I qk, and hence the wedge product ρ =

∧
I γk is pure

of bidegree (p, p) and defined over L. Since wedge products are direct
factor of some tensor product, ρ is a section in

H0
(
Y,

ν⊗( ℓ1⊗

i=1

V′⊗ki
i ⊗

ℓ2⊗

i=ℓ1+1

(
V⊗ki
i ⊗ V

∨⊗k′i
i

)
⊗

ℓ⊗

i=ℓ2+1

V′⊗ki
i

))
.

The Galois group Γ of L over K permutes the different components γk,
hence it acts on ρ by a character χ : Γ→ {±1}. So for some β ∈ L the
cycle β · ρ is invariant under Γ. Choosing

h′ ∈
ν⊗ ℓ⊗

i=1

H⊗κi

iK

of bidegree (p′, p′) one obtains a Hodge cycle

β · ρ⊗ h′ ∈ H0
(
Y,W⊗k·ν

K

)
.

So β · ρ ⊗ h′ is invariant under MT(WK)der hence under the subgroup
MTmov(WK)der as well. This group acts trivially on h′, hence β ·ρ has to
be invariant under MTmov(WK)der, where we consider the identification

Gmov
K =

ℓ×
i=0

Gl(V ′
i K)× {idHiK

} ∼=
ℓ×

i=0
Gl(V ′

iK).

This implies that the subspace J = 〈γk; k ∈ I〉L ⊂ of

⊕

I

H0
(
Y,

ℓ1⊗

i=1

V′⊗ki
i ⊗

ℓ2⊗

i=ℓ1+1

(
V⊗ki
i ⊗ V

∨⊗k′i
i

)
⊗

ℓ⊗

i=ℓ2+1

V′⊗ki
i

)
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is invariant under the action of MTmov(WK)der ⊗ L. Since

MTmov(WK)der ⊂
( ℓ×

i=0
Gl(V ′

iK)× {idHiK
}
)

and since we have seen in Claim 8.10 that MT(WiK)der⊗KC respects the
decomposition V′

iK⊗KC = Vi⊕V∨
i , the action of MTmov(WK)der⊗K L

leaves for each k ∈ I the subspaces

〈γk〉L = J ∩H0
(
Y,

ℓ1⊗

i=1

V′⊗ki
i ⊗

ℓ2⊗

i=ℓ1+1

(
V⊗ki
i ⊗ V

∨⊗k′i
i

)
⊗

ℓ⊗

i=ℓ2+1

V′⊗ki
i

)

invariant. So one obtains a homomorphism

MTmov(WK)der ⊗K L −−→ Gl(〈γk〉L) = L∗,

necessarily trivial. In particular, the class γk is invariant under the

group MTmov(WK)der ⊗K L.
Since both

∑
k γk and η =

∑
I γk ⊗ hκ0 are defined over K, they are

invariant under MTmov(WK)der, as claimed. q.e.d.

9. Variations of Hodge structures of low rank

In this section we will discuss the ‘complexity condition’ 2) in Theo-
rem 0.2, b) for C-variations of Hodge structures of low rank.

Assumptions 9.1. The C-variation of Hodge structures V is non
unitary, irreducible with unipotent monodromy at infinity and it satis-
fies the Arakelov equality. By Theorem 0.3 V is pure for some i, and
we assume that Ωi is of type A or B. We write Ω, T , and n for Ωi, its
dual, and its rank and M for the corresponding factor of the universal
covering Ũ . As usual (E = E1,0 ⊕ E0,1, θ) denotes the Higgs bundle of
V, the Hodge numbers are ℓ = rk(E1,0) and ℓ′ = rk(E0,1), hence the
period map is given by a morphism M → SU(ℓ, ℓ′).

We will assume moreover, that ωY (S) is ample or that the following
strengthening of the condition (⋆) holds.

Condition 9.2.

i. If F and G are two µ-stable torsion free coherent sheaves, then
F ⊗ G is µ-polystable.

ii. If F is a µ-stable torsion free coherent sheaf, then F admits an
admissible Hermite-Einstein metric, as defined in [BS94].

The Condition 9.2 will allow to apply [VZ07, Lemma 2.7], saying
that the Higgs field θ respects the socle filtration. In particular, the
µ-polystability of E1,0 will imply the µ-polystability of E1,0 ⊗ T , hence
the µ-polystability of E0,1.

Lemma 9.3. If ωY (S) is ample, then the Condition 9.2 hold true.
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Proof. In [BS94] it is shown, that a reflexive sheaf on a compact
Kähler manifold admits an admissible Hermite-Einstein metric if and
only if it is µ-polystable. Part i) follows from the fact, that a tensor
product of two admissible Hermite-Einstein metrics is again admissi-
ble Hermite-Einstein. In fact, in [BS94] admissibility of metrics hi
on bundles Vi asks for two conditions. First, the curvatures Fi should
be square integrable and second their traces ΛFi should be uniformly
bounded. The curvature of h1 ⊗ h2 is F1 ⊗ Id2 + Id1 ⊗ F2. Thus, if hi
are admissible, so is h1 ⊗ h2, and the claim follows. q.e.d.

Recall that by 7.2 the length ς(V) = ς((E, θ)) of the Higgs subbundle∧ℓ(E, θ) satisfies

(9.1) Min{ℓ, ℓ′} ≥ ς(V) ≥ ℓ · ℓ′ · (n+ 1)

(ℓ+ ℓ′) · n .

Since V irreducible, by Addendum 7.20, III) the bundle E1,0 is µ-stable
if and only if the right hand side of 9.1 is an equality. Since (9.1) is
symmetric in ℓ and ℓ′, in order to verify the equality in certain cases,
we are allowed to replace V by V∨ and assume that ℓ ≤ ℓ′. One obtains:

Property 9.4. The irreducibility of V implies that n · ℓ ≥ ℓ′ ≥ ℓ. If
ℓ′ = n · ℓ the numerical condition 2) in Theorem 0.2 holds, hence the
right hand side of 9.1 is an equality. In particular this is the case for
n = 1, as said already in Lemma 7.3.

Example 9.5. Assume ℓ = 1. Since E1,0 is invertible, E0,1 is the
saturated hull of the µ-stable sheaf E1,0 ⊗ T , hence of rank ℓ′ = n, and
(9.1) is an equality.

Lemma 9.6. The Hodge bundle E1,0 can not have a torsion free µ-
stable quotient sheaf V with µ(V) = µ(E1,0), such that V⊗T is µ-stable.

Proof. Obviously ii) is a special case of i). Assume there exists a
torsion free µ-stable quotient sheaf V with µ(V) = µ(E1,0), such that
V ⊗ T is µ-stable. To be allowed to replace V by its reflexive hull, we
only assume that there is a morphism E1,0 → V which is surjective on
some open dense subscheme and that µ(V) = µ(E1,0).

In order to keep notations consistent with [VZ07, Section 2], we will
first study the dual situation, hence a subbundle V ′ of E0,1. Recall that
the socle S1(F) of a coherent sheaf F is the smallest saturated subsheaf
containing all µ-polystable subsheaves of F of slope µ(F). By [VZ07,
Lemma 2.7] the Property 9.2, i) implies that the Higgs field θ respects
the socle, in particular for V ′ ⊂ S1(E0,1) the preimage θ−1(V ′ ⊗ Ω) is
contained in S(E1,0). Since (E, θ) is the Higgs bundle of an irreducible
variation of Hodge structures, θ−1(V ′⊗Ω) 6= 0. In fact, θ∨ : E1,0⊗T →
E0,1 is surjective, since the cokernel would be a Higgs subbundle of
(E, θ) of degree zero.
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So θ−1(V ′⊗Ω) is a non-trivial subsheaf of the socle, hence µ-polystable.
The µ-stability of V ′⊗Ω implies that θ−1(V ′⊗Ω) contains a direct factor
which is µ-equivalent to V ′ ⊗ Ω.

Applying this to the cosocle S ′(E1,0), i.e. to the dual of S(E1,0∨)
one finds a quotient sheaf of E0,1 which is µ-equivalent to V ⊗ T . So
(E, θ) has a quotient Higgs bundle whose reflexive hull is isomorphic to
Q = V ⊕ V ⊗ T . Lemma 5.4, ii), applied to Q = V ⊕ V ⊗ T , and the
Arakelov equality imply that

0 ≤ µ(Q)rk(Q) = rk(V) · µ(V) + rk(V) · n · (µ(V) − µ(Ω)) =

rk(V) · (µ(E1,0)+n · (µ(E1,0)−µ(Ω))) = rk(V) · (µ(E1,0)+n ·µ(E0,1)).

On the other hand, the property 9.4 implies that

0 = ℓ · µ(E1,0) + ℓ′ · µ(E1,0) ≥ ℓ · (µ(E1,0) + n · µ(E1,0)),

hence that µ(Q) = 0. Since V is irreducible, (E, θ) can not have a Higgs
subbundle of degree zero, a contradiction. q.e.d.

Example 9.7. If ℓ = 2 and if the µ-semistable sheaf E1,0 was not µ-
stable, one would find an invertible quotient, contradicting Lemma 9.6,
ii).

Hence E1,0 is µ-stable, and the right hand side of (9.1) is an equality.
Since Min{ℓ, ℓ′} = 2 the only solution is ℓ′ = 2 · n and ς(V) = 2.

Next we will consider the case of a rank two quotient of E1,0. To this
aim, we have to analyze the holonomy group:

Lemma 9.8. Let V be a µ-stable torsion free quotient sheaf of E1,0

of rank two with µ(V) = µ(E1,0). Then n = 2 and for some invertible
sheaf N one has an isomorphism V∨∨ ∼= T ⊗N .

Proof. By Lemma 9.6, ii) V has to be µ-stable. Moreover, since the
assumptions are compatible with replacing U by an étale covering, V
remains µ-stable under pullback to such a covering. By Lemma 9.6, i)
the sheaf V ⊗ T can not be µ-stable. So in order to finish the proof of
the Lemma 9.8 it just remains to verify:

Claim 9.9. Let V be a rank 2 torsion free sheaf on Y , whose pullback
to any integral proper étale covering remains µ-stable. If V ⊗ T is not
µ-stable, then n = 2 and V∨∨ ∼= T ⊗N .

Proof. For a sheaf V of rank two, the only irreducible Schur functors
are of the form {k − a, a}, for a ≤ k

2 . By [FH91], 6.9 on p. 79, one has

S{k−a,a}(V) =
{

S{k−2a}(V) = Sk−2a(V)⊗ det(V)a if 2a < k
S{a,a}(V) = det(V)a if 2a = k

.

Claim 9.10. The sheaves Sm(V) (and Sm(T )) are µ-stable, for all m.
Moreover, the holonomy group of Sm(T ) with respect to the Hermite-
Einstein metric is the full group U(n).
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Proof. Otherwise, the holonomy group with respect to the Hermitian-
Einstein metric on Sm(V) (or on Sm(T )) is not irreducible. Note that
the holonomy group of the tensor product of Hermitian vector bundles is
just the tensor product of the holonomy groups of the different factors.

Consequently, a non-trivial splitting of Sm(V) (resp. of Sm(T )) forces
the holonomy group of V (resp. of T ) with respect to the Hermite-
Einstein metric to be strictly smaller than U(2) (resp. smaller than
U(n)).

It is known that a proper subgroup of U(2) is a semi-product of the
torus with Z2. So one obtains a splitting of V on some étale double
cover.

For T we use instead [Ya93] (see also [VZ07, Section 1]), saying that
the holonomy group of T is U(n). q.e.d.

Let us continue the proof of Claim 9.9. Assume that V ⊗ T contains
a subsheaf N of the same slope and of rank r < 2 · rk(T ) = 2 · n.
Since V ⊗ T is µ-polystable, N is a direct factor. Replacing N by its
complement in V ⊗ T , if necessary, we may assume that r ≤ n.

By taking the r-th wedge product one obtains an inclusion of L =∧rN into
∧r(V ⊗ T ), and both sheaves have the same slope. Here and

later on, the wedge products of a torsion free sheaf is the reflexive hull
of the corresponding wedge product on the open set, where the sheaf is
locally free.

By [FH91, p. 80], for example, one has a decomposition

r∧
(V ⊗ T ) =

⊕
Sλ(V)⊗ Sλ′(T )

where the sum is taken over all partitions λ of r with at most 2 rows
and n columns and where λ′ is the partition complementary to λ. The
rank one subsheaf L of

∧r(V ⊗ T ) must inject to Sλ(V) ⊗ Sλ′(T ) for
some λ. Again both sheaves are µ-semistable of slope µ(L). Moreover,
for λ = {a, a} the rank of Sλ′(T ) is strictly larger than one, and the
Claim 9.10 implies that neither Sλ(V) nor Sλ′(T ) can be invertible.

Let us assume that n = 2. If r = 2, the only possibilities for λ are
{2, 0} or {1, 1}. In the first case Sλ(V) = det(V), and in the second case
Sλ′(T ) = det(T ). So both are excluded.

IfN is a subbundle of rank one, we obtain a non-trivial map N⊗Ω→
V. Since both sheaves are µ-stable of the same slope this must be an
isomorphism on some dense open subset, and since Ω = T ⊗ det(Ω) we
are done.

So assume from now on that n ≥ 3. A non-zero projection of L to
some Schur functor L → Sλ(V) ⊗ Sλ′(T ) gives again rise to a non-zero
map

Sλ(V)∨ ⊗ L −−→ Sλ′(T )
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between µ-polystable bundles of rank strictly larger than 1 and of the
same slope. Claim 9.10 implies that this is an isomorphism.

Hence the holonomy group of Sλ′(T ) with respect to the Hermitian-
Yang-Mills connection is isomorphic to the holonomy group of Sλ(V)∨,
up to twisting by scalars. Holonomy groups are compatible with Schur
functors, so the Sλ-representation of the holonomy group of V is isomor-
phic to Sλ′ applied to the holonomy group of TY , which by Claim 9.10
is U(n).

Since S′λ is not the determinant representation, this representation
is almost faithful (with the kernel contained in the subgroup of scalar
matrices). Since the holonomy group of V is U(2), it is too small to
contain an almost faithful representation of U(n) for n ≥ 3 one obtains
a contradiction. So n must be two, and we handled this case already.

q.e.d.

Example 9.11. If ℓ = 3 and if n ≥ 3, then the right hand side of
(9.1) is an equality, hence

3 ≥ ς(V) =
3 · ℓ′ · (n+ 1)

(3 + ℓ′) · n > 1.

For ς(V) = 3 one finds ℓ′ = n · ℓ. For ς(V) = 2 the only possibility is
n = ℓ′ = 3.

Proof. If E1,0 is not µ-stable, it has a torsion free quotient sheaf V of
slope µ(E1,0), either of rank one or of rank two. Both cases have been
excluded, by the Lemmata 9.6 and 9.8.

For ς = ς(V) the equality implies that ℓ′ = ς·3·n
(3−ς)·n+3 . For ς = 1 there

is no solution in Z≥3, and for ς = 2 the only solutions are (ℓ′, n) =
(3, 3), (4, 6) or (5, 15). To exclude the last two cases, consider the non-
trivial map

S2(T )⊗ det(E1,0)
τ (2)−−→ E1,0 ⊗

2∧
(E0,1).

Since both sides have the same slope, τ (2) must be injective. However
the inequality

(n+ 1) · n
2

≤ ℓ · ℓ
′ · (ℓ′ − 1)

2
.

is violated for (ℓ′, n) = (4, 6) or (5, 15). q.e.d.

Example 9.12. For n = 2 the right hand side of (9.1) is an equality,
except possibly for ℓ′ = 5.

Proof. The inequality (9.1) says that

3 ≥ ς(V) ≥ 3 · ℓ′ · 3
(3 + ℓ′) · 2 .
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Since ℓ′ ≥ 3 the right hand side is strictly larger than 2, hence ς(V) = 3,
and the morphism

det(E1,0)⊗ S3(T )
τ (3)−−→

3∧
(E0,1)

is non-zero. Since both sides have the same slope, for ℓ′ = 3 this con-
tradicts the stability of S3(T ). For ℓ′ = 4 the saturated image of τ (3)

is
∧3(E0,1). Hence the latter and E0,1 are both µ-stable. The com-

patibility of the Higgs field with the socle filtration implies that E1,0

is µ-stable, and hence the right hand side of (9.1) must be an equality.
Obviously this is a contradiction. q.e.d.

Altogether we verified:

Proposition 9.13. Under the Assumptions 9.1 the numerical condi-
tion 2) in Theorem 0.2, b) holds in the following cases:

1. n = 1.
2. n = 2, ℓ ≤ 3, ℓ ≤ ℓ′ and ℓ′ 6= 5.
3. n ≥ 3, ℓ ≤ 3, and ℓ ≤ ℓ′.
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de construction de modèles canoniques, Proc. Symp. Pure Math. 33 part II
(1979), 247–289.

[De82] P. Deligne, Hodge cycles on abelian varieties, (Notes by J. S. Milne),
Springer Lecture Notes in Math. 900 (1982), 9–100.
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