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GEODESIC-LENGTH FUNCTIONS AND THE

WEIL-PETERSSON CURVATURE TENSOR

Scott A. Wolpert

Abstract

An expansion is developed for the Weil-Petersson Riemann cur-
vature tensor in the thin region of the Teichmüller and moduli
spaces. The tensor is evaluated on the gradients of geodesic-
lengths for disjoint geodesics. A precise lower bound for sectional
curvature in terms of the surface systole is presented. The curva-
ture tensor expansion is applied to establish continuity properties
at the frontier strata of the augmented Teichmüller space. The
curvature tensor has the asymptotic product structure already
observed for the metric and covariant derivative. The product
structure is combined with the earlier negative sectional curva-
ture results to establish a classification of asymptotic flats. Fur-
thermore, tangent subspaces of more than half the dimension of
Teichmüller space contain sections with a definite amount of nega-
tive curvature. Proofs combine estimates for uniformization group
exponential-distance sums and potential theory bounds.

1. Introduction

Let T be the Teichmüller space of marked genus g, n-punctured
Riemann surfaces with hyperbolic metrics. Associated to the hyper-
bolic metrics on Riemann surfaces are the Weil-Petersson (WP) Kähler
metric and geodesic-length functions on T . The WP metric is incom-
plete. The metric completion is the augmented Teichmüller space T
[Abi77, Ber74, Mas76, Wp10]. The completion is a CAT (0) metric
space - a simply connected, complete metric space with non positive
curvature geometry [DW03, Wp03, Yam04].

In recent works, a collection of authors have applied curvature expan-
sions to establish significant properties for WP geometry. In a series of
papers [LSY04, LSY05a, LSY05b, LSY08a, LSY08b], Liu-Sun-Yau
have effectively used the negative of the Ricci form as a general Kähler
comparison metric. The authors show that, except for WP, the canoni-
cal metrics for T are bi Lipschitz equivalent. In particular the canonical
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metrics are complete. They further show that the WP metric is Mum-
ford good for the logarithmic polar cotangent bundle for the Deligne-
Mumford compactification of the moduli space of Riemann surfaces; the
Chern currents computed from the metric are closed and represent the
Chern classes on the compactification. They also show that the complete
Kähler-Einstein metric is Mumford good and has bounded geometry. A
Gauss-Bonnet theorem for the metrics is established and they find that
the logarithmic polar cotangent bundle is Mumford stable with respect
to its first Chern class.

Burns-Masur-Wilkinson show that the WP geodesic flow for the unit
tangent bundle (defined almost everywhere) for the moduli space M of
Riemann surfaces is ergodic with finite, positive metric entropy
[BMW10]. The authors follow the general Hopf approach in the form
of Pesin theory and study Birkhoff averages along the leaves of the stable
and unstable foliations of the flow. In particular they use the Katok-
Strelcyn result [KSLP86] on the existence and absolute continuity of
stable and unstable manifolds for singular non uniformly hyperbolic sys-
tems. The authors combine our expansions for the metric and curvature
tensor evaluated on gradients of geodesic-length functions to show that
for a trajectory segment, the first derivative of geodesic flow is bounded
in terms of a reciprocal power of the distance of the trajectory segment
to the boundary of T ⊂ T . The authors use McMullen’s Quasi Fuch-
sian Reciprocity [McM00] to similarly bound the second derivative of
geodesic flow.

Cavendish-Parlier consider the WP diameter of the moduli space M
and show for large genus that the ratio diam(M)/

√
g is bounded above

by a constant multiple of log g and below by a positive constant [CPar].
The authors further find for genus fixed and a large number of punctures
that the ratio diam(M)/

√
n tends to a positive limit, independent of

the genus. To obtain a diameter upper bound, they refine Brock’s quasi
isometry of (T , dWP ) to the pants graph PG [Bro03]. The refinement
involves the bound [Wp03] for distance to a stratum of T in terms
of geodesic-lengths and the diastole of a hyperbolic surface. They also
refine the pants graph PG by adding diagonals for multi dimensional
cubes. They then solve the asymptotic combinatorial problem of finding
an upper bound for the diameter of the quotient of PG by the mapping
class group. To obtain a diameter lower bound, they combine geodesic
convexity and the product structure of strata. Cavendish-Parlier show
that the refined pants graph models WP geometry on a scale comparable
to the diameter.

Our purpose is to give an expansion for the WP Riemann curvature
tensor in the thin region of the Teichmüller and moduli spaces. Un-
derstanding is facilitated by introducing an explicit complex frame for
the tangent bundle. We consider the curvature tensor evaluated on the
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gradients λα = grad ℓ
1/2
α of roots of geodesic-lengths ℓα. The general

approach was used in [Wp08] to obtain expansions for the metric and
in [Wp08, Wp09] to obtain expansions for the Levi-Civita connection
D. The expansion for the WP Hermitian form (expansion (7) in Section
5) is

〈〈λα, λβ〉〉 =
δαβ
4π

+ O(ℓ3/2α ℓ
3/2
β )

for α, β simple closed geodesics, coinciding or disjoint, where given
c0 > 0, the remainder term constant is uniform for ℓα, ℓβ ≤ c0. We
combine a method for estimating uniformization group sums and po-
tential theory estimates to obtain expansions for the quantities for the
curvature tensor. In general our expansions are uniform in surface de-
pendence and independent of topological type.

The curvature operator is the commutator of covariant differentiation

R(U, V )W = DUDVW − DVDUW −D[U,V ]W.

The Riemann curvature tensor 〈R(U, V )W,X〉 is defined on tangent
spaces. Tangent spaces T can be complexified by tensoring with the
complex numbers. Bochner discovered general symmetries of the curva-
ture tensor for a Kähler metric [Boc47]. In particular the complexified
tensor has a block form relative to the tangent space decomposition
C ⊗ T = T 1,0 ⊕ T 0,1 into holomorphic and non holomorphic type. The
complexified tensor is determined by its T 1,0 × T 1,0 × T 1,0 × T 1,0 evalu-
ation. We consider the complexified tensor. For a pants decomposition
P, a maximal collection of disjoint simple closed geodesics, we consider

the gradients {λα}α∈P , λα = grad ℓ
1/2
α . The pants root-length gradi-

ents provide a global frame for the tangent bundle T 1,0T [Wp82]. We
establish the following results in Theorem 15 and Corollary 16.

Theorem. The WP curvature tensor evaluation for the root-length
gradient for a simple closed geodesic satisfies

R(λα, λα, λα, λα) =
3

16π3ℓα
+ O(ℓα),

and

R(λα, λα, , ) =
3|〈〈λα, 〉〉|2

πℓα
+ O(ℓα‖ ‖2WP ).

For simple closed geodesics, disjoint or coinciding, with at most pairs
coinciding, the curvature tensor evaluation R(λα, λβ , λγ , λδ) is bounded

as O((ℓαℓβℓγℓδ)
1/2).

The root-length holomorphic sectional curvature satisfies

K(λα) =
−3

πℓα
+ O(ℓα)

and given ǫ > 0, there is a positive constant cg,n,ǫ such that for the
systole Λ(R) of a surface, the sectional curvatures at R ∈ T are bounded
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below by
−3− ǫ

πΛ(R)
− cg,n,ǫ.

For α, β disjoint with ℓα, ℓβ ≤ ǫ, the sections spanned by (J)λα, (J)λβ
have curvature bounded as O(ǫ4). For c0 positive, the remainder term
constants are uniform in the surface R and independent of the topological
type for ℓα, ℓβ , ℓγ , ℓδ ≤ c0.

An open question is to find a precise upper bound for sectional curva-
tures in terms of the surface systole.

The augmented Teichmüller space T is described in terms of Fenchel-
Nielsen coordinates (ℓα, ϑα)α∈P , P a pants decomposition, and the
Chabauty topology for PSL(2;R) representations. The partial com-
pactification is introduced by extending the range of the Fenchel-Nielsen
parameters. For a length coordinate ℓα equal to zero, the angle ϑα is
not defined and in place of a geodesic α on the surface, there appears
a pair of cusps. The new points describe unions of hyperbolic sur-
faces, noded Riemann surfaces, with components and formal pairings of
cusps, nodes. The genus of a union of hyperbolic surfaces is defined by
the relation Total area = 2π(2g − 2 + n). For a disjoint collection of
geodesics σ ⊂ P, the σ-null stratum is the locus of noded Riemann
surfaces T (σ) = {R a union | ℓα(R) = 0 iff α ∈ σ}. The partial
compactification is T = T ∪σ T (σ) for the union over all homotopi-
cally distinct disjoint collections of geodesics. Neighborhood bases for
points of T (σ) ⊂ T are specified by the condition that for each pants
decomposition P, σ ⊂ P, the projection ((ℓβ , ϑβ), ℓα) : T ∪ T (σ) →
∏

β∈P−σ(R+ × R)×∏

α∈σ(R≥0) is continuous.

The formulas for the metric [DW03, Mas76, Wp08], covariant de-
rivative [Wp08, Wp09] and curvature tensor display the asymptotic
product structure

∏

α∈σ

spanC{λα} ×
∏

R♮∈ parts♯(σ)

T 1,0T (R♮),

for an extension of the tangent bundle over T (σ), where parts♯(σ) are
the components of the σ-complement, that are not thrice-punctured
spheres, for the surfaces represented in T (σ). Evaluations involving
more than a single factor of the product tend to zero approaching T (σ).
Evaluations for a single factor tend to evaluations for either the stan-
dard metric for opening a node or for a lower dimensional Teichmüller
space. The structure is formal since T is not a complex manifold and
the corresponding extension of the vector bundle of holomorphic qua-
dratic differentials over M is not the cotangent bundle, but the log-
arithmic polar cotangent bundle [HM98]. Nevertheless the product
structure applies for limits of the metric and curvature tensor. The in-
dividual product factors have strictly negative sectional curvature. The
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λα-section is holomorphic with curvature described in the above The-
orem. The earlier general result [Tro86, Wp86] establishes negative
curvature for the Teichmüller spaces T (R♮). Recall for a product of neg-
atively curved manifolds, a zero curvature tangent section has at most
one R-dimensional projection into the tangent space of each factor. We
establish the counterpart for WP. By considering C-sums of the inde-
terminates λγ , γ ∈ P, a germ V is defined for an extension over T (σ) of
the tangent bundle of T . A formal product structure for V is defined by
the present considerations. We establish in Theorem 21 that, except for
the diagonal evaluation, curvature tensor evaluations are continuous at
T (σ). Continuity provides that curvatures near T (σ) can be understood
in terms of evaluations at T (σ). An application is the classification in
Corollary 22.

Corollary. (Classification of asymptotic flats.) Let S be a R-subspace
of the fiber of V over a point of T (σ). The subspace S is a limit of a
sequence of tangent multisections over points of T with all sectional
curvatures tending to zero if and only if the projections of S onto the
factors of the product structure are at most one R-dimensional. The
maximal dimension for S is |σ|+ |parts♯(σ)| ≤ dimC T .

The gradient grad ℓα describes infinitesimal pinching of the length
of α and the corresponding infinitesimal Fenchel-Nielsen twist is tα =
i
2 grad ℓα [Wp82, Wp07]. The flats classification includes the Huang
result [Hua07a] that independent pinchings and twists describe asymp-
totically flat tangent sections. Flat subspaces are an important consid-
eration in global geometry. Gromov defined the rank of a metric space to
be the maximal dimension of a quasi isometric embedding of a Euclidean
space. Brock-Farb [BF06] show that the rank of T in the sense of Gro-
mov is at least ⌊(1 + dimC T )/2⌋. The number m = ⌊(1 + dimC T )/2⌋
is the maximum number of factors for the second product of the as-
ymptotic product structure. Behrstock-Minsky [BM08] show that the
Gromov rank is exactly m. In [Wp03, Section 6] we find that a locally
Euclidean subspace of T has dimension at most m. The above result
provides additional information about rank and asymptotic flats. The
considerations show that beyond asymptotic flats there is a negative
upper bound for sectional curvature, Corollary 23.

Corollary. There exists a negative constant cg,n such that a subspace
S of a tangent space of T with dimR S > dimC T contains a section with
sectional curvature at most cg,n.

Central to our considerations is the space of holomorphic quadratic
differentials Q(R) and the elements representing the differentials of
geodesic-lengths. In Section 3 we discuss that for small geodesic-length,
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the differential for a finite area hyperbolic surface is closely approxi-
mated by the differential for the cyclic cover corresponding to the geo-
desic. The approximation is basic to our analysis. Comparing the WP
and Teichmüller metrics and developing expansions for the WP metric
involves a comparison of norms for Q(R). For ds2 the complete hyper-
bolic metric on R and φ ∈ Q(R), let ‖ϕ‖∞ = sup |ϕ(ds2)−1| and ‖ϕ‖2
be the WP norm. From the analysis for differentials of geodesic-length,
we establish an asymptotic norm comparison in Corollary 11.

Corollary. (Comparison of norms.) Given ǫ > 0, there is a positive
value Λ0, such that for the surface systole Λ(R) ≤ Λ0, the maximal ratio
of L∞ and L2 norms for Q(R) satisfies

(1− ǫ)
( 2

πΛ(R)

)1/2
≤ max

ϕ∈Q(R)

‖ϕ‖∞
‖ϕ‖2

≤ (1 + ǫ)
( 2

πΛ(R)

)1/2
.

2. Preliminaries

We follow the exposition of [Wp09]. Points of the Teichmüller space
T are equivalence classes {(R, ds2, f)} of marked genus g, n-punctured
Riemann surfaces with complete hyperbolic metrics and reference home-
omorphisms f : F → R from a base surface F . Triples are equivalent
provided there is a conformal isomorphism of Riemann surfaces ho-
motopic to the composition of reference homeomorphisms. Basic in-
variants of a hyperbolic metric are the lengths of the unique closed
geodesic representatives of the non peripheral free homotopy classes.
For a non peripheral free homotopy class [α] on F , the length of the
unique geodesic representative for f(α) is the value of the geodesic-
length ℓα at the marked surface. For R with uniformization representa-
tion f∗ : π1(F ) → Γ ⊂ PSL(2;R) and α corresponding to the conjugacy
class of an element A then cosh ℓα/2 = trA/2. Collections of geodesic-
lengths provide local R-coordinates for T , [Bus92, IT92, Wp82].

From Kodaira-Spencer deformation theory the infinitesimal deforma-
tions of a surface R are represented by the Beltrami differentials H(R)
harmonic with respect to the hyperbolic metric, [Ahl61]. Also the
cotangent space of T at R is Q(R) the space of holomorphic quadratic
differentials with at most simple poles at the punctures of R. The holo-
morphic tangent-cotangent pairing is

(µ,ϕ) =

∫

R
µϕ

for µ ∈ H(R) and ϕ ∈ Q(R). Elements of H(R) are symmetric tensors
given as ϕ(ds2)−1 for ϕ ∈ Q(R) and ds2 the hyperbolic metric. The
Weil-Petersson (WP) Hermitian metric and cometric pairings are given
as

〈µ, ν〉 =
∫

R
µν dA and 〈ϕ,ψ〉 =

∫

R
ϕψ(ds2)−1
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for µ, ν ∈ H(R) and ϕ,ψ ∈ Q(R) and dA the hyperbolic area element.
The WP Riemannian metric is ℜ〈 , 〉. The metric is Kähler, non com-
plete, with non pinched negative sectional curvature and determines a
CAT (0) geometry for Teichmüller space, see [Ahl61, Hua07a, Tro92,
Wp03, Wp10] for references and background.

A Riemann surface with hyperbolic metric can be considered as the
union of a thick region where the injectivity radius is bounded below by
a positive constant and a complementary thin region. The totality of
all thick regions of Riemann surfaces of a given topological type forms a
compact set of metric spaces in the Gromov-Hausdorff topology. A thin
region is a disjoint union of collar and cusp regions. We describe basic
properties of collar and cusp regions including bounds for the injectivity
radius and separation of simple geodesics.

We follow Buser’s presentation [Bus92, Chap. 4]. For a geodesic α of
length ℓα on a Riemann surface, the extended collar about the geodesic
is ĉ(α) = {d(p, α) ≤ w(α)} for the width w(α), sinhw(α) sinh ℓα/2 = 1.
The width is given as w(α) = log 4/ℓα + O(ℓ2α) for ℓα small. For H

the upper half plane with hyperbolic distance d( , ), an extended collar
is covered by the region {d(z, iR+) ≤ w(α)} ⊂ H with deck transfor-
mations generated by z → eℓαz. The quotient {d(z, iR+) ≤ w(α)}/
〈z → eℓαz

〉

embeds into the Riemann surface. For z in H, the region
is approximately {ℓα/2 ≤ arg z ≤ π − ℓα/2}. An extended cusp region
is covered by the region {ℑz ≥ 1/2} ⊂ H with deck transformations
generated by z → z + 1. The quotient {ℑz ≥ 1/2}/〈z → z +1〉 embeds
into the Riemann surface. To ensure that uniform bands around bound-
aries embed into the Riemann surface, we will use collars c(α) defined
by covering regions {ℓα ≤ arg z ≤ π − ℓα} and cusp regions defined by
covering regions {ℑz ≥ 1}. Collars are contained in extended collars
and cusp regions are contained in extended cusp regions. The boundary
of a collar c(α) for ℓα bounded and boundary of a cusp region have
length approximately 1.

Theorem 1. For a Riemann surface of genus g with n punctures,
given pairwise disjoint simple closed geodesics α1, . . . , αm, there exist
simple closed geodesics αm+1, . . . , α3g−3+n such that α1, . . . , α3g−3+n are
pairwise disjoint. The extended collars ĉ(αj) about αj, 1 ≤ j ≤ 3g−3+
n, and the extended cusp regions are mutually pairwise disjoint.

On thin the injectivity radius is bounded above and below in terms
of the distance into a collar or cusp region. For a point p of a collar
or cusp region, write inj(p) for the injectivity radius and δ(p) for the
distance to the boundary of the collar or cusp region. The injectivity
radius is bounded as follows, [Wp92, II, Lemma 2.1], [Wp10].
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Lemma 2. (Quantitative Collar and Cusp Lemma.) The product

inj(p) eδ(p) of injectivity radius and exponential distance to the boundary
is bounded above and below by uniform positive constants.

As a general point, we note that the standard consideration for simple
closed geodesics and cusp regions generalizes as follows, [Wp08, Lemma
2.3].

Lemma 3. A simple closed geodesic is either disjoint from the thin
region or is the core of an included collar or crosses an included collar.

As a final point, we note for elements of H(R) that on a cusp re-
gion, magnitude is uniformly bounded in terms of the maximum on the
boundary. A variable for a cusp region is w = e2πiz , |w| ≤ e−π, for z in
H and the cusp represented as above.

Lemma 4. For w the given cusp region variable, a harmonic Bel-
trami differential is bounded as |µ| ≤ |w|((log |w|)/π)2 max|w|=e−π |µ|.

Proof. The hyperbolic metric for a cusp region is ds2 = (|dw|/
|w| log |w|)2. In a cusp region, a harmonic Beltrami differential µ is given
as µ = f(w)(dw/w)2(|w| log |w|/|dw|)2 for f(w) holomorphic and van-
ishing at the origin. Apply the Schwarz Lemma for the disc |w| ≤ e−π,
to find the inequality |f | ≤ eπ|w|max|w|=e−π |f | or equivalently the in-

equality |µ| ≤ eπ|w|(log |w|)2 max|w|=e−π |f |. Finally note the equality

|f | = |µ|/π2 on the boundary. q.e.d.

3. Gradients of geodesic-length functions

Geodesic-length functions are a fundamental tool of Teichmüller the-
ory. A point of the Teichmüller space T (F ) represents a Riemann sur-
face R and an isomorphism of π1(F ) to the deck transformation group
π1(R). For a free homotopy class [α] of a non trivial, non peripheral
closed curve on the reference surface F , the geodesic-length ℓα(R) is the
length of the unique closed geodesic in the corresponding free homotopy
class on R. For the uniformization group Γ conjugated in PSL(2;R)
and a representative α having the imaginary axis I as a component of
its lift with cyclic stabilizer Γα ⊂ Γ, we consider a coset sum.

Definition 5. Associated to the geodesic α is the coset sum

Θα =
2

π

∑

A∈Γα\Γ

A∗
(dz

z

)2
∈ Q(R)

and the harmonic Beltrami differential µα = Θα(ds
2)−1 ∈ H(R).

The differential (dz/z)2 is invariant under the subgroup of PSL(2;R)
stabilizing I and the summands are independent of choices of coset rep-
resentatives. We consider bounds for µα. For z = reiθ ∈ H, the distance
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to the imaginary axis is d(I, z) = log(csc θ + | cot θ|) and consequently

the inverse square exponential-distance e−2d(I,z) is comparable to the
function sin2 θ. Our considerations involve the elementary Beltrami dif-
ferential

ω =
(dz

z

)2
(ds2)−1.

The elementary differential satisfies |ω| = sin2 θ ≤ 4e−2d(α̃,z) for α̃ the
imaginary axis. We recall the basic estimates for Θα and µα, given in
[Wp92, II, Lemmas 2.1 and 2.2], [Wp09, Lemma 4.3].

Proposition 6. The harmonic Beltrami differential µα(p) is bounded

as O(inj(p)−1ℓαe
−d(α,p)) for inj(p) the injectivity radius at p and d(α, p)

the distance of p to the geodesic. On the c(α) collar complement, µα
is bounded as O(ℓ2α). For c0 positive, the remainder term constant is
uniform in the surface R and independent of the topological type for
ℓα ≤ c0.

Proof. We use the distant sum estimate [Wp10, Chapter 8]. By a
mean value estimate the individual terms of the sum Θα are bounded
by integrals over corresponding balls. The sum of integrals over balls is
bounded by the integral over a region containing the balls. We elaborate.
Harmonic Beltrami differentials and the elementary differential satisfy a
mean value estimate on H: given ǫ > 0, |ω(p)| ≤ cǫ

∫

B(p;ǫ) |ω|dA for the

hyperbolic area element. The orbit Ap ∈ H, A ∈ Γα\Γ, is necessarily
contained in the exterior sector {z | d(z,I) ≥ d(p, α)} ⊂ H. The sum is
consequently bounded as follows

∑

A∈Γα\Γ

|A∗ω| ≤
∑

A∈Γα\Γ

cǫ

∫

B(p;ǫ)
|ω|dA ≤ cǫ inj(p)

−1

∫

∪A∈Γα\ΓB(Ap;ǫ)
|ω|dA

where the reciprocal injectivity radius bounds the count of overlapping
balls in H. From the equality |ω| = sin2 θ, the final integrand in polar
coordinates is drdθ/r. The region of integration is represented in the
half annulus Aα = {1 ≤ |z| < eℓα}, since the union is for Γα-cosets. The
region of integration is contained in the exterior sector {z | d(z,I) ≥
d(p, α)}. The distance inequality is equivalent to the inequality θ, π−θ ≤
θ(p), where ed(p,α) = csc θ(p) + cot θ(p). The integral of drdθ/r over
θ, π − θ ≤ θ(p), 1 ≤ r < eℓα is bounded by a constant multiple of

ℓαe
−d(α,p), giving the first conclusion. The injectivity radius is small

on cusp regions and collars of a hyperbolic surface. For p in a cusp
region or a collar other than c(α), the initial segment of a geodesic from
p to α exits the cusp region or second collar and the final segment of
the geodesic crosses the α collar to connect to α. By the Quantitative
Collar and Cusp Lemma, the product inj(p)−1e−d(α,p) is bounded by ℓα,
providing the second conclusion. q.e.d.
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Our considerations involve carefully analyzing holomorphic quadratic
differentials on collars. The Laurent series expansion provides an ap-
proach. For the closed geodesic α having the imaginary axis as a com-
ponent of its lift, the extended collar ĉ(α) is covered by {ℓα/2 ≤ arg z ≤
π − ℓα/2}. The following compares to results on decompositions of dif-
ferentials on annuli developed in [HSS09, Section 4].

Proposition 7. Given the holomorphic quadratic differential φ ∈
Q(R), the coordinate z = reiθ ∈ H, and the elementary Beltrami differ-
ential ω, then on the sector ℓα ≤ θ ≤ π − ℓα,

φ(ds2)−1 = a(α)ω +O
(

(e−2πθ/ℓα + e2π(θ−π)/ℓα)ℓ−2
α sin2 θM

)

for a coefficient a(α) and M = max|z|=ℓα/2,π−ℓα/2 |φ(ds2)−1|. For c0
positive, the remainder term is uniform in the surface R for ℓα ≤ c0.

Proof. The uniformizing map w = exp(2πi log z/ℓα) represents H/Γα

as the annulus {e−2π2/ℓα < |w| < 1}. The quadratic differential φ has a
Laurent series expansion

φ =
(

f+(w) + a0 + f−(w)
)

( 1

w2

)

=
∞
∑

n=−∞

anw
n−2.

The function f+(w) + a0 is holomorphic in |w| < 1 and is given by the
Cauchy Integral of w2φ on a circle |w| = e−π (arg z = −ℓα/2). The main
coefficient a0 is the average of w2φ on the circle. The function f−(w)

is holomorphic in |w| > e−2π2/ℓα and is given by the Cauchy Integral of

w2φ on the circle |w| = eπ−2π2/ℓα

By the elementary estimate for the Cauchy Integral and the Schwarz
Lemma for |w| ≤ e−2π, it follows that |f+(w)| ≤ C|w| max|w|=e−π |w2φ|
for |w| ≤ e−2π and a universal constant. The factor |w|2 can be ab-
sorbed into the constant. Next we consider the hyperbolic metric on
the annulus. The hyperbolic metric for the annulus H/Γα is ds2 =
((ℓα/2π) csc(ℓα/2π log |w|) |dw/w|)2 which is approximately (eπ|dw|/π)2
for |w| = e−π. We combine the considerations for f+ and the hyperbolic
metric to write the final estimate |f+(w)| ≤ C|w| max|w|=e−π |φ(ds2)−1|
for |w| ≤ e−2π.

The estimate for f− follows by a symmetry consideration. The inver-

sion w → 1/we2π
2/ℓα interchanges the annulus boundaries, interchanges

the functions f+, f− and replaces the angle θ = arg z with the angle π−θ.
The final estimate is |f−(w)| ≤ C|we2π2/ℓα | max

|w|=eπ−2π2/ℓα |φ(ds2)−1|
for |w| ≥ e2π−2π2/ℓα follows. Each inequality is multiplied by the abso-

lute value of the elementary differential (dw/w)2(ds2)−1 = −(2π/ℓα)
2ω,

where |ω| = sin2 θ, to obtain the desired intrinsic statement. q.e.d.

We collect prior results to provide a description of pairings with the
geodesic-length differentials dℓα and gradients grad ℓα [Gar75, Rie05,
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Wp08]. An exposition of prior results is provided in Chapters 3 and 8
of [Wp10].

Theorem 8. (Geodesic-length gradients and their pairings.) For a
closed geodesic α and harmonic Beltrami differential µ ∈ H(R), then

ℜ(µ, dℓα) = ℜ
∫

R
µΘα = ℜ 〈µ, µα〉.

For the geodesic α with the standard representation in H and a holo-
morphic quadratic differential φ ∈ Q(R) with Laurent type expansion
φ =

∑

anexp(2πin log z/ℓα) (dz/z)
2 on H, the main coefficient a0 is

given by (µα, φ) = 〈µα, φ(ds2)−1〉 = a0(φ)ℓα. The WP Hermitian pair-
ing of geodesic-length gradients for simple geodesics α, β, coinciding or
disjoint, is positive real-valued and satisfies

Ce
−2ℓ

α̂β ≤ 〈grad ℓα, grad ℓβ〉 −
2

π
ℓαδαβ ≤ C ′ℓ2αℓ

2
β

for the Dirac delta δ∗, and ℓα̂β the length of the shortest non trivial geo-

desic segment connecting α to β. For c0 positive, the positive constants
C,C ′ are uniform in the surface R and independent of the topological
type for ℓα, ℓβ ≤ c0.

Proof. We only sketch the considerations. The statements about
the differential and gradient are Gardiner’s formulas [Gar75]. The re-
maining statements regard gradient pairings. The Fenchel-Nielsen twist
about α is represented by the harmonic Beltrami differential i/2 grad ℓα.
The twist-length cosine formula provides that the pairing is real [Wp10].
The Riera formula expresses the pairing of gradients as a positive infinite
sum

∑

Γα\Γ/Γβ
e−2d, for the square inverse exponential-distance between

components of the lifts of α and β modulo the action of Γ [Rie05]. The
expansion for the pairing is obtained by applying a form of the distant
sum estimate [Wp08]. The lower bound follows by considering the first
term of the sum. q.e.d.

Corollary 9. (Expansions of geodesic-length gradients on collars.)
Given simple geodesics α, β, on a fundamental domain containing the
collar c(α) with the representation {ℓα ≤ arg z = θ ≤ π− ℓα} in H, then

(1) grad ℓα = aα(α)ω + O((e−2πθ/ℓα + e2π(π−θ)/ℓα) sin2 θ)

for the main coefficient aα(α) =
2
π +O(ℓ3α), and for β disjoint from α

(2) grad ℓβ = aβ(α)ω + O((ℓβ/ℓα)
2(e−2πθ/ℓα + e2π(π−θ)/ℓα) sin2 θ)

for the main coefficient aβ(α) = O(ℓαℓ
2
β). The main coefficients aβ(α) =

〈grad ℓβ, grad ℓα〉/ℓα are positive real-valued. For c0 positive, the re-
mainder term is uniform in the surface R and independent of the topo-
logical type for ℓα, ℓβ ≤ c0.
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Proof. The expansions are obtained by combining Proposition 7, The-
orem 8 and noting that sin θ/ℓα has approximately unit magnitude on
the collar boundary. q.e.d.

We introduce the square roots of geodesic-lengths.

Definition 10. The geodesic root-length gradient is λα = grad ℓ
1/2
α .

The Theorem 8 expansion for the WP Riemannian inner product be-
comes

〈λα, λβ〉 =
δαβ
2π

+ O(ℓ3/2α ℓ
3/2
β ).

There is an interpretation of grad ℓ
1/2
α = ℓ

−1/2
α µα/2 as an indicator func-

tion (differential) for the collar c(α). The root-length gradient (2π)1/2λα
has approximately unit norm and as observed in Proposition 7, the gra-

dient is O(ℓ
3/2
α ) on the collar complement. From formula (1) on the

collar c(α), the gradient grad ℓ
1/2
α = ℓ

−1/2
α aα(α)ω/2 + O(ℓ

3/2
α ) is closely

approximated by its main term; by Corollary 9 the remainder is ex-
ponentially small on the core of the collar. Further for a collection of
disjoint simple closed geodesics, since collars are disjoint, the root-length
gradients approximately have disjoint supports. These observations are
used in the proof of Corollary 11 below.

A pants decomposition P is a maximal collection {α1, . . . , α3g−3+n}
of disjoint simple closed geodesics. In [Wp82, Theorem 3.7], it is shown
for a pants decomposition P that the gradients {grad ℓα}α∈P provide a
global C-frame for the vector bundle of harmonic Beltrami differentials

over T . Equivalently, the gradients {grad ℓ1/2α }α∈P and the complex dif-

ferentials {∂ℓ1/2α }α∈P provide global C-frames for their respective vector
bundles over T . Hatcher and Thurston observed that there are only a fi-
nite number of pants decompositions modulo the action of the mapping
class group Mod. To ensure uniform remainder terms in expansions,
we consider bounded pants decompositions. Bers found that there is
a positive constant bg,n such that Teichmüller space is covered by the
bounded pants decomposition regions B(P) = {ℓαj < bg,n, αj ∈ P},
called Bers regions [Bus92]. We will give expansions in terms of Bers
regions.

A hyperbolic metric is described by its set of geodesic-lengths. Basic
behavior of the WP metric can be understood by having a model for
the metric in terms of variations geodesic-lengths. Explicit models are
presented in Theorem 4.3 and Corollaries 4.4 and 4.5 of [Wp08]. We
recall the basic comparison below. Comparing the WP and Teichmüller
metrics, as well as developing expansions for the WP metric involves
comparison of the L∞, L1 and L2 norms for harmonic Beltrami dif-
ferentials or equivalently for holomorphic quadratic differentials. For
µ ∈ H(R) then µ = ϕ(ds2)−1 and the mapping µ 7→ ϕ of H(R) to Q(R)
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is an isometry for each norm. An asymptotic decomposition and anal-
ysis of concentration of holomorphic quadratic differentials in terms of
the L1 norm is given in [HSS09, Sections 4 and 5]. The authors use
the analysis to study iteration limits for exponential type maps of the
complex plane. We consider the L∞ to L2 comparison forH(R). A com-
parison is an ingredient in the work of Liu-Sun-Yau [LSY04, Lemma
4.3]. The norm comparison is an ingredient in the work of Burns-Masur-
Wilkinson [BMW10, Section 5.1] on the geodesic flow. The comparison
is basic for the Teo approach for lower bounds for curvature [Teo09,
Proposition 3.1]; also see Theorem 14 below and the remarks on the Teo
bounds. The comparison is used to study the covariant derivatives of
the gradient of geodesic-length in [Wp09]. The Axelsson-Schumacher
bound for the Hessian of geodesic-length is presented in terms of the
L∞ norm [AS10]; relating the bound to WP length involves the ratio
of norms. We give the comparison of norms in terms of the surface
systole Λ(R), the shortest length for a closed geodesic on R.

Corollary 11. (Comparison of norms.) On a Bers region B(P),

the WP Hermitian pairing is uniformly comparable to
∑

α∈P |∂ℓ1/2α |2.
Equivalently on a Bers region, the norms ‖∑α∈P a

αλα‖2WP and
∑

α∈P |aα|2 are uniformly comparable. Given ǫ > 0, there is a posi-
tive value Λ0, such that for the surface systole Λ(R) ≤ Λ0, the maximal
ratio of L∞ and L2 norms for H(R) satisfies

(1− ǫ)
( 2

πΛ(R)

)1/2
≤ max

µ∈H(R)

‖µ‖∞
‖µ‖WP

≤ (1 + ǫ)
( 2

πΛ(R)

)1/2
.

The maximal ratio is approximately realized for the gradient of the short-
est geodesic-length.

Proof. The first comparison is established in [Wp08, Theorem 4.3].
The argument combines the linear independence of geodesic-lengths for
a pants decomposition and the limiting of geodesic root-lengths to a
(2π)−1/2-multiple of an orthonormal frame for lengths small. It is also
established in the proof that on a Bers region the matrix of main coef-
ficients

A =
(

aα(β)ℓ
−1/2
α ℓ

1/2
β

)

α,β∈P
=

(

4〈λα, λβ〉
)

α,β∈P

varies in a compact set in GL(R). The pairing formula

2∂ℓ
1/2
β

(

∑

α∈P

aαλα

)

=
∑

α∈P

aαaα(β)ℓ
−1/2
α ℓ

1/2
β

provides that the Hermitian forms of the second stated comparison differ
by conjugation by A; the second pair of norms are comparable.

To consider the L∞ norm, we choose a sufficiently small positive
constant c0 and consider the set σ of disjoint geodesics α with ℓα ≤ c0.
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A harmonic Beltrami differential is given as a unique linear combination

µ =
∑

α∈σ

aαλα + µ0, for µ0 ⊥ grad ℓα, α ∈ σ.

By Theorem 8, for the collars c(α), α ∈ σ, the main coefficients of µ0
vanish and from Proposition 7, the maximum of |µ0| on the collars is
bounded in terms of the maximum on the boundary. By Lemma 4, the
maximum on a cusp region is bounded in terms of the maximum on the
boundary. The maximum of |µ0| is bounded in terms of the maximum
on the complement of the collars and cusp regions. The complement
R′ of the collars and cusp regions has injectivity radius bounded below
by c0/2. Harmonic Beltrami differentials satisfy a mean value estimate:
given ǫ > 0, |ν(p)| ≤ cǫ

∫

B(p;ǫ) |ν|dA for the hyperbolic area element.

On the region R′, the maximum is bounded in terms of the L1 norm
for a ball of diameter c0, and the L1 norm is bounded in terms of the
L2 norm for the ball. In brief, ‖µ0‖∞ is bounded by c1‖µ0‖WP for a
suitable constant depending on the choice of c0.

By Proposition 7 and Corollary 9, on a β ∈ σ collar, the harmonic
Beltrami differential µ satisfies for coefficients a = (aα)α∈σ

µ =
∑

α∈σ

aαaα(β) sin
2 θ/2ℓ1/2α + O((e−θ/ℓβ + e(θ−π)/ℓβ )‖a‖‖µ‖WP ),

and the WP norm for the surface satisfies

‖µ‖2WP = ‖
∑

α∈σ

aαλα‖2WP + ‖µ0‖2WP .

Modulo an overall O(e−1/c0) approximation, from the expansion, we
can consider for the surface systole sufficiently small, that the ratio of
norms is maximized for µ0 = 0, and that the |µ| maximum occurs on

a geodesic β ∈ σ. From Theorem 8, the matrix (aα(β)/2ℓ
1/2
α ) is given

as diagonal with entries 1/πℓ
1/2
α and a remainder of O(c

5/2
0 ), while the

matrix (〈λα, λβ〉) is given as the 1/2π multiple of the identity and a

remainder of O(c30). Modulo an O(c
5/2
0 ) approximation, we consider

only the matrix leading terms. The ratio of contributions of leading
terms is maximized for µ = λα′ , for ℓα′ the surface systole, the shortest
geodesic-length. The value is (2/πℓα′)1/2. q.e.d.

Gradients of bounded geodesic-length functions are approximately
determined by point evaluation on the geodesics of a bounded pants
decomposition as follows. In the direction of the imaginary axis, the el-
ementary differential is given as ω = (idy/iy)2(ds2)−1 = 1. By Corollary
9, for geodesics α, β simple, disjoint, for the standard collar representa-
tion, the gradient of ℓα is given as grad ℓα = 2/π + O(ℓ3α) along α and
as grad ℓα = O(ℓ2αℓβ) along β. For a bounded pants decomposition, the
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geodesic-length gradients approximately diagonalize point evaluation on
the geodesics.

By Proposition 7 and Theorem 8, holomorphic quadratic differentials
in grad ℓ⊥α ⊂ Q(R) also have their Lp, 1 ≤ p ≤ ∞, norms on the collar
c(α) bounded by the supremum norms on the collar boundary. This
property can be combined with convergence of hyperbolic metrics to
bound holomorphic quadratic differentials and their pairings on degen-
erating families of Riemann surfaces. In particular for ℓα tending to
zero on a family, the spaces grad ℓ⊥α limit to the holomorphic quadratic
differentials with finite Lp norm in a neighborhood of the resulting cusp
pair.

4. Green’s functions for the operator ∆ = −2(D − 2)−1

The deformation equation for a hyperbolic metric involves the La-
place-Beltrami operator D acting on L2(R). In particular the lin-
earization of the constant curvature −1 equation involves the operator
−(D − 2). Starting from a harmonic Beltrami differential, solving for
the deformed hyperbolic metric involves the operator ∆ = −2(D−2)−1.
The WP curvature tensor is given in terms of harmonic Beltrami differ-
entials and the operator ∆. Accordingly the operator plays an important
role in the works [Jos91, JP92, Sch86, Siu86, Teo09, Tra92, Wl89,
Wl09, Wp86, Wp90]. Wolf organizes the deformation calculation in
a different manner, in effect using the Jacobians of harmonic maps for
evaluation of the operator [Wl89]. Huang uses the approach of Wolf to
evaluate the operator [Hua05, Hua07a, Hua07b]. Schumacher orga-
nizes the deformation calculation in a different manner [AS10, Sch93].
He considers on the total space of a deformation family, the Chern form
of the fiberwise Kähler-Einstein (hyperbolic) metric. He finds that the
negative Chern form is positive definite and observes that the horizon-
tal lift of a deformation field is the corresponding harmonic Beltrami
differential; the description does not involve potential theory. In his ap-
proach the operator ∆ plays a secondary role. Liu-Sun-Yau follow the
Schumacher approach; their work involves only limited consideration of
the potential theory of −(D − 2) [LSY04, LSY05a, LSY08a]. We
consider the basic potential theory for the operator.

The Laplace-Beltrami operator is essentially self-adjoint acting on
L2(R). The integration by parts formula

∫

R
fDg dA = −

∫

R
∇f∇g dA

provides that the spectrum of D is non positive and that ∆ is a bounded
operator acting on L2(R) with unit norm. The maximum principle for
the equation (D − 2)f = g provides that 2maxR |f | ≤ maxR |g|, for
g continuous, vanishing at any cusps. By a general argument, f also
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vanishes at any cusps. At a maximum p of f , then Df(p) ≤ 0 and
consequently 2f(p) ≤ −g(p); at a minimum q of f then Df(q) ≥ 0
and 2f(q) ≥ −g(q) (if f(q) is negative the inequality for the absolute
value follows). A consequence is that ∆ is a bounded operator on C0(R)
with at most unit norm; the equation ∆1 = 1 and an approximation
provide that the norm is unity. The inequalities also provide that f is
non negative if g is non positive.

We present the standard properties of the operator [GT01, Wel08].

Theorem 12. (Properties of ∆.) The operator is self-adjoint, posi-
tive and bounded on L2(R). The operator is bounded on C0(R) with unit
norm. The operator has a positive symmetric integral kernel Green’s
function G.

The Green’s function is given by a uniformization group sum

G(z, z0) =
∑

A∈Γ

−2Q2(d(z,Az0))

for Q2 an associated Legendre function, and d( , ) hyperbolic distance
on H [Fay77]. The summand −2Q2 is the Green’s function for the
operator ∆ acting on functions small at infinity on H. The summand
has a logarithmic singularity at the origin and satisfies −Q2 ≈ e−2d( , )

at large distance.

Proposition 13. (The distant sum estimate.) On the Riemann sur-
face R the Green’s function is bounded as

G(z, z0) ≤ C inj(z0)
−1e−dR(z,z0)

where for c0 positive, the constant C is uniform in the surface R for
dR(z, z0) ≥ c0.

Proof. The elementary Green’s function satisfies a mean value esti-
mate

−Q2(z, z0) ≤ cǫ

∫

B(z0;ǫ)
−Q2(z, w)dA

for d(z, z0) > ǫ. The inequalities are formally the same as for estimating
the series Θα,

∑

A∈Γ

−2Q2 ≤
∑

A∈Γ

cǫ

∫

B(Az0;ǫ)
−Q2dA ≤ cǫ inj(z0)

−1

∫

∪A∈ΓB(Az0;ǫ)
−Q2dA.

For the basepoint z ∈ H, let δ = d(z, ) be distance from the base-
point. The integrand satisfies −Q2 ≈ e−2δ; the area element satisfies
dA ≈ eδdθdδ for θ the angle about the basepoint. The union of balls is
necessarily contained in the ball complement H−B(z; dR(z, z0)−ǫ). The
integral of −Q2dA over the ball complement is bounded by Ce−dR(z,z0),
as desired. q.e.d.
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Analyzing the WP curvature tensor involves understanding the con-
tribution of ∆µαµβ on a collar c(η). Following the Collar Principle
[Wp10, Chapter 8, Section 2], the main contribution is expected from
the rotationally invariant on a collar main term of µαµβ; given the ex-
ponential factor in the remainder term of Corollary 9, the main term
is approximately the product of main terms of the individual geodesic-
length gradients. We consider the main term.

Consider the geodesic η having the imaginary axis as a component
of its lift to H and the polar coordinate z = reiθ on H. A rotationally
invariant function on the collar, lifts to a function of the single variable θ.
The rotationally invariant component of (D− 2) is the one-dimensional

operator (Dθ − 2) = sin2 θ d2

dθ2 − 2. The operator is essentially self-

adjoint on L2(0, π) for the measure csc2 θdθ. The function u(θ) = 1 −
θ cot θ is positive on (0, π), vanishes to second order at zero, and satisfies
(Dθ − 2)u = 0. The Green’s function for (Dθ − 2) is determined by
the conditions: (Dθ − 2)G(θ, θ0) = 0, θ 6= θ0; G(θ, θ0) vanishes at the
interval endpoints; G(θ, θ0) is continuous with a unit jump discontinuity
in d

dθG(θ, θ0) at θ = θ0. The one-dimensional Green’s function is given
as

G(θ, θ0) =
−1

π

{

u(θ)u(π − θ0), θ ≤ θ0

u(π − θ)u(θ0), θ0 ≤ θ.

For rotationally invariant functions g on a collar, the analysis of (Dθ −
2)−1g can be effected in terms of integrals of G. In Section 6 we use a
different approach based on the general properties of Theorem 12, the
estimate of Proposition 6, and the simple equation

(3) (Dθ − 2) sin2 θ = −4 sin4 θ.

In particular for the elementary Beltrami differential ω, we formally
have the equation

2∆ωω = 2∆sin4 θ = sin2 θ.

5. The curvature tensor

Bochner discovered general symmetries of the Riemann curvature ten-
sor with respect to the complex structure J for a Kähler metric [Boc47].
The symmetries are revealed by complexifying the tensor and decom-
posing by tangent type. The curvature operator is the commutator of
covariant differentiation

R(U, V )W = DUDVW − DVDUW −D[U,V ]W.

The curvature tensor 〈R(U, V )W,X〉 is defined on tangent spaces T .
Tangent spaces are complexified by tensoring with the complex numbers
C. The complexification is decomposed into tangents of holomorphic
and anti holomorphic type C ⊗ T = T 1,0 ⊕ T 0,1, by considering the



338 S.A. WOLPERT

±i-eigenspaces of J . Complex conjugation provides a natural complex
anti linear isomorphism T 0,1 = T 1,0. Real tangent directions are given
as sums Z ⊕ Z for Z in T 1,0. A general tensor is extended to the
complexification by complex linearity. Bochner found for Kähler metrics
that the complexified curvature tensor has a block form relative to the
tangent type decomposition. The only non zero curvature evaluations
are for T 1,0×T 1,0×T 1,0×T 1,0 and the conjugate space, with the latter
evaluation simply the conjugate of the former evaluation. In brief for a
Kähler metric, the Riemann curvature tensor is fully determined by the
evaluations Rαβγδ.

We follow Bochner’s exposition [Boc47]. Riemannian geometry for-
mulas are presented in terms of the complexification. In particular,
for the local holomorphic coordinate (z1, . . . , zn), formal variables ti,
1 ≤ i ≤ 2n, range over {z1, . . . , zn; z1, . . . , zn}. The Riemannian metric
is given as

ds2 =
∑

i,j∈{1,...,n;1,...,n}

gijdtidtj = 2
∑

α,β∈{1,...,n}

gαβdzαdzβ ,

where
∑

α,β gαβdzαdzβ is the Hermitian form for holomorphic type tan-

gents. By convention, Roman indices h, i, j, k vary over {1, . . . , n; 1, . . . ,
n}, while Greek indices α, β, γ, δ vary over {1, . . . , n}. A two-dimensional
surface element is given in the form

ti = aix + biy

or equivalently

zα = aαx + bαy, zα = aαx + bαy,

for x, y real parameters and complex arrays (a1, . . . , an), (b1, . . . , bn),
linearly independent over R. The Riemannian sectional curvature of
the surface element is

(4)

∑

h,i,j,kRh,i,j,ka
hbiajbk

∑

h,i,j,k(ghjgik − ghkgij)ahbiajbk

for the complexified tensor. A holomorphic surface element is given in
the simple form

zα = aαz

for z a complex parameter and (a1, . . . , an) a non zero complex array.
The Riemannian sectional curvature of the holomorphic surface element
is

(5)
−2

∑

α,β,γ,δ Rαβγδa
αaβaγaδ

∑

α,β,γ,δ(gαβgγδ + gγβgαδ)a
αaβaγaδ

for the complexified tensor. An example of the setup is provided by the
upper half plane H with hyperbolic metric. For the complex variable z,
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the Hermitian form for T 1,0
H is |dz|2/2(ℑz)2 with Riemannian sectional

curvature −1.
The holomorphic cotangent space at the point R of Teichmüller space

is represented by the holomorphic quadratic differentials Q(R). In the
investigation of WP distance and geodesic-length functions [BMW10,
DW03, Mas76, Rie05, Wl09, Wp03, Wp08, Wp09, Wp10] the
WP Riemannian cometric is given by the real part of the Petersson
product for Q(R). Following the Bochner setup, the Hermitian form
corresponding to the WP Riemannian pairing is one-half the Petersson
Hermitian form. The original calculation of the curvature tensor is for
the Petersson Hermitian form [Wp86, see Definition 2.6 and Theorem
4.2]. Consistent with the investigation of WP distance and geodesic-
length functions, the WP curvature tensor corresponding to one-half
the Petersson Hermitian form is

(6) R(µ, ν, ρ, σ) =
1

2

∫

R
µν∆ρσ dA +

1

2

∫

R
µσ∆ρν dA,

for harmonic Beltrami differentials µ, ν, ρ, σ ∈ H(R) [Wp86].
We first review some results about the sectional curvatures. A col-

lection of authors have studied the curvature [Ahl62, GGHar, Hua05,
Hua07a,Hua07b, Jos91, JP92, LSY04, LSY05a, LSY08a,Roy75,
Sch93, Sch86, Sch08, Siu86, Teo09, Tra92, Tro86, Tro92, Wp86,
Wp90]. Representative curvature bounds are presented below for the
above normalization. We write χ(R) for the Euler characteristic of the
surface, and dim T for the complex dimension of the Teichmüller space.
We write Λ(R) for the systole of the surface, the shortest length for a
closed geodesic. The minimal injectivity radius for the complement of
standard cusp regions is realized as either one half the surface systole
or as unity on the boundary of a cusp region.

Theorem 14. (WP curvature bounds.) The sectional curvature is
negative, [Tro86, Wp86]. The holomorphic and Ricci curvatures are
bounded above by 2(πχ(R))−1 [Roy75, Wp86]. The scalar curvature is
bounded above by 2(dim T )2(πχ(R))−1, [Wp86]. Given Λ0 > 0, there
is a positive constant C, independent of topological type, such that at
R ∈ T with Λ(R) ≥ Λ0, sectional curvatures are bounded below by
−C [Hua07b]. For dim T > 1, there are positive constants C, C ′,
depending on the topological type, such that at R ∈ T , sectional curva-
tures are as large as −CΛ(R) (Huang has withdrawn his statement of a
general upper bound for sectional curvatures) and sectional curvatures
are bounded below by −C ′(Λ(R))−1, [Hua07a]. There is a universal
function c(Λ) of the surface systole, such that the sectional and Ricci
curvatures are bounded below by −c(Λ(R))2, and the scalar curvature
is bounded below by − dim T c(Λ(R))2 [Teo09, Proposition 3.4]. The
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universal function satisfies for Λ small, c(Λ) ≈ 81/2(π1/2Λ)−1, [Teo09,
Proposition 3.4 and formula (3.7)].

To simplify and make explicit the WP metric and curvature tensor,
we use the gradients of geodesic-length functions. For a pants decom-
position P, a maximal collection of disjoint simple closed geodesics, the
gradients {grad ℓα}α∈P provide a global C-frame for T 1,0T . The root-

length gradients {λα}α∈P , λα = grad ℓ
1/2
α , provide a global C-frame that

limits to an orthogonal frame for vanishing lengths. To provide uniform
remainder terms, we use bounded pants decomposition regions, Bers
regions. In particular the WP metric is described on T by considering
expansions for bounded pants decompositions. The expansion for the
Hermitian form on T 1,0T (one-half the Petersson Hermitian form) is

(7) 〈〈λα, λβ〉〉 =
δαβ
4π

+ O(ℓ3/2α ℓ
3/2
β )

for α, β simple geodesics, coinciding or disjoint, and given c0 > 0, the re-
mainder term constant is uniform for ℓα, ℓβ ≤ c0. We have the following
for the curvature tensor.

Theorem 15. The WP curvature tensor evaluation for the root-
length gradient for a simple closed geodesic satisfies

R(λα, λα, λα, λα) =
3

16π3ℓα
+ O(ℓα),

and

R(λα, λα, , ) =
3|〈〈λα, 〉〉|2

πℓα
+ O(ℓα‖ ‖2WP ).

For simple closed geodesics, disjoint or coinciding, with at most pairs co-
inciding, the curvature tensor evaluation R(λα, λβ, λγ , λδ) is bounded as

O((ℓαℓβℓγℓδ)
1/2). Furthermore for α, β disjoint with ℓα, ℓβ ≤ ǫ, the eval-

uations R(λα, λα, λβ, λβ) and R(λα, λβ , λα, λβ) are bounded as O(ǫ4).
For c0 positive, the remainder term constants are uniform in the sur-
face R and independent of the topological type for ℓα, ℓβ, ℓγ , ℓδ ≤ c0.

Theorem 15 is established in the next section in the form of Theorem
19.

Corollary 16. The root-length holomorphic sectional curvature sat-
isfies

K(λα) =
−3

πℓα
+ O(ℓα).

Given ǫ > 0, there is a positive constant cg,n,ǫ such that for the surface
systole Λ(R), the sectional curvatures at R ∈ T are bounded below by

−3− ǫ

πΛ(R)
− cg,n,ǫ.
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For α, β disjoint with ℓα, ℓβ ≤ ǫ, the sections spanned by (J)λα, (J)λβ
have curvature bounded as O(ǫ4). For α, β, γ, δ simple closed geodesics,
disjoint or coinciding, not all the same, the evaluation R(λα, λβ, λγ , λδ)

is bounded as O((ℓαℓβℓγℓδ)
1/6). For c0 positive, the remainder term

constants are uniform in the surface R and independent of the topological
type for ℓα, ℓβ , ℓγ , ℓδ ≤ c0.

Proof. The holomorphic curvature expansion follows for the single
index value α evaluation from formula (5), expansion (7) and the first
expansion of Theorem 15. The curvature bound for the span of (J)λα,
(J)λβ follows immediately from (4), the approximate orthogonality of
the tangents and the corresponding statement of the theorem. We
next consider the general O(ℓ1/6) bound. Theorem 19 is presented for
geodesic-length gradients; to obtain bounds for root-length gradients

λ∗ = grad ℓ
1/2
∗ , we divide by 2ℓ

1/2
∗ . For exactly three geodesics coincid-

ing, the Theorem 19 leading term for Iαααβ has magnitude O(ℓ
1/2
α ℓ

3/2
β )

from Theorem 8, while for at most pairs coinciding, Iαβδγ is bounded

as O((ℓαℓβℓγℓδ)
1/2). The O(ℓ1/6) bound follows.

To establish the general sectional curvature lower bound, we choose a
bounded pants decomposition P, and consider a general two-dimensional
section by writing µ(a) =

∑

α∈P a
αλα, µ(b) =

∑

α∈P b
αλα for a basis.

We assume the basis is orthogonal ℜ〈〈µ(a), µ(b)〉〉 = 0. The sectional
curvature is given by formula (4). We consider a lower bound. The
denominator for sectional curvature is

4〈〈µ(a), µ(a)〉〉〈〈µ(b), µ(b)〉〉 − 2ℑ〈〈µ(a), µ(b)〉〉2 ,
and the Cauchy-Schwarz inequality provides a lower bound of
2‖µ(a)‖2‖µ(b)‖2. We noted in Corollary 11 that the WP Hermitian
norm ‖µ(a)‖ and Euclidean Hermitian norm ‖a‖ are uniformly compa-
rable. We consider the numerator for sectional curvature. The bounds
for the non diagonal evaluations and remainder bound for the diagonal
evaluations provide an expansion of the numerator

2ℜ
∑

α∈P

3

16π3ℓα
(aαbα)2 + Og,n(‖a‖2‖b‖2),

where the remainder term constant depends only on the Bers constant.
The remainder provides a uniformly bounded contribution to the sec-
tional curvature. We proceed and consider the explicit sum. The min-
imum of the sum is negative, realized for bα = iaα. To bound the
sectional curvature, we use the lower bound 2‖µ(a)‖2‖µ(b)‖2 for the
denominator and bound the two norms from below. Given δ > 0, use
expansion (7) to bound the contributions of cross terms, to show that

∥

∥

∑

α∈P

aαλα
∥

∥

2
=

∥

∥

∑

ℓα<δ

aαλα
∥

∥

2
+

∥

∥

∑

ℓα≥δ

aαλα
∥

∥

2
+ O(δ‖a‖2),
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where the remainder is bounded by C ′δ‖a‖2 for a suitable positive con-
stant. Given ǫ > 0, for δ > 0 sufficiently small, from expansion (7) the
first term on the right is bounded below by

(1− ǫ)

4π

∑

ℓα<δ

|aα|2.

From the comparability of Hermitian norms, the second sum on the
right is bounded below by

C

4π

∑

ℓα≥δ

|aα|2

for a suitable positive constant. We combine observations to find that

∥

∥

∑

α∈P

aαλα
∥

∥

2 ≥ (1− C ′δ)(1 − ǫ)

4π
|||a|||2,

for |||a|||2 =
∑

ℓα<δ |aα|2 + C
∑

ℓα≥δ |aα|2 and positive constants. The
contribution of the explicit sum to sectional curvature is now bounded
below by

ℜ∑

α∈P
3

πℓα
(aαbα)2

(1− C ′δ)2(1− ǫ)2|||a|||2|||b|||2 ≥
−3

(1− C ′δ)2(1− ǫ)2π
min

{

1

Λ(R)
,

1

C2δ

}

,

the desired final bound. q.e.d.

To study the geometry of the moduli space M(R), McMullen in-
troduced a Kähler hyperbolic metric with Kähler form of the form
ωWP + c

∑

α∈P ∂∂Logℓα [McM00]. He found that the metric is com-
parable to the Teichmüller metric. To study canonical metrics on the
moduli space, including the Teichmüller and complete Kähler-Einstein
metrics, Liu-Sun-Yau used the negative WP Ricci form as a comparison
and reference metric [LSY04, LSY05a, LSY05b, LSY08a, LSY08b].
To understand curvature of canonical metrics, Liu-Sun-Yau also used a
combination of the WP metric and its negative Ricci form. Expansions
for geodesic-length functions and WP curvature enable explicit compar-
isons. We showed in [Wp08] that log ℓα is strictly pluri subharmonic
with

∂∂ log ℓα =
∂ℓα
ℓα

∂ℓα
ℓα

+ O+(ℓα‖ ‖2) =
4|〈〈λα, 〉〉|2

ℓα
+ O+(ℓα‖ ‖2),

for positive remainders, where for c0 positive, the remainder term con-
stant is uniform in R for ℓα ≤ c0. Theorem 15 provides an imme-
diate comparison with R(λα, λα, , ). Ricci curvature is given as a
sum

∑

j R(µj , µj , , ) over a unitary basis of H(R). From the proof of
Corollary 11, for a bounded pants decomposition, the transformation
of {λα}α∈P to unitary bases is given by elements from a bounded set



GEODESIC-LENGTH FUNCTIONS AND WEIL-PETERSSON CURVATURE 343

in GL(R). In particular the Ricci form is uniformly comparable to a
bounded pants decomposition sum

∑

α∈P R(λα, λα, , ).
The Teo general lower bound for sectional and Ricci curvatures is

−2(maxH(R) ‖µ‖∞/‖µ‖WP )
2 [Teo09]. She provides a universal bound

(independent of topological type) for the ratio of norms, with the ratio

bounded as 2/π1/2Λ(R) for small surface systole. The Corollary 11

bound (2/πΛ(R))1/2 for the ratio depends on topological type in the
determination of Λ0, but is optimal in Λ-dependence.

6. Expansion of the curvature tensor

We consider the WP curvature tensor evaluated on geodesic-length
gradients. The contribution to the curvature integral (6) from the thick
subset of the surface R is bounded by applying Proposition 6 and the
supremum bound for ∆ from Theorem 12. The contribution of collars
is found by evaluating main terms in the meridian Fourier series for
functions on a collar and then applying supremum bounds.

We introduce notation to simplify the statements. For a simple closed
geodesic α lifted to the imaginary axis, the polar angle θ of H has an
intrinsic definition θα on a collar c(α), through the distance formula
d(α, p) = log(csc θα(p) + | cot θα(p)|). Let µα be the harmonic Beltrami
differential representing the gradient grad ℓα. On a collar the products
µαµβ and ∆µαµβ have expansions with main terms respectively sin4 θα
and sin2 θα. We now write sinα θ for the restriction of the sine of θα
to the collar c(α); near the collar boundary sinα θ is bounded as O(ℓα).
We begin with the expansion for ∆µαµβ.

Theorem 17. With the above notation, the operator ∆ acting on
pairs of simple geodesic-length gradients has the expansions on R

(8) 2∆µαµα = aα(α)
2 sin2α θ + O(ℓ2α)

and for β disjoint from α,

(9) 2∆µαµβ = aα(α)aβ(α) sin
2
α θ + aα(β)aβ(β) sin

2
β θ + O(ℓ2αℓ

2
β).

For c0 positive, the remainder term constants are uniform in the surface
R for ℓα, ℓβ ≤ c0.

Proof. The collar c(α) is represented with the standard description
in H. The approach is based on analyzing the 0th meridian Fourier
coefficient in the collar. To apply equation (3) for a collar, we choose
a smooth approximate characteristic function χ of R+ with support of
the derivative χ′ contained in (− log 2, 0). The function χ(log(sin θ/ℓα))
is an approximate characteristic function of the collar c(α) in the half
annulus Aα = {1 ≤ |z| < eℓα} for z = reiθ ∈ H. Consider the derivative
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equation

(D − 2)χ sin2 θ

= χ(Dθ − 2) sin2 θ + χ′ sin2 θ (3 cos2 θ − sin2 θ) + χ′′ sin2 θ cos2 θ

= −4χ sin4 θ + O(ℓ2α),

using equation (3) and that the support of χ′, χ′′ are bands about the
collar boundary, where ℓα/2 ≤ sin θ ≤ ℓα.

For the first expansion we subtract the function χaα(α)
2 sin2 θ from

2∆µαµα and consider an equation for the difference on a fundamental
domain in Aα, containing the collar c(α). We find from applying the
above expansion

(10) (D − 2)(2∆µαµα − χaα(α)
2 sin2 θ)

= −4µαµα + 4χaα(α)
2 sin4 θ + O(ℓ2α).

By Proposition 6, on R − c(α) the first term on the right is bounded
as O(ℓ4α). The support of the second term is contained in the collar
c(α). We apply Corollary 9 to bound the sum of the first two terms
on c(α). The exponential-sine remainder term function e−πθ/2ℓ sin θ is
decreasing on the interval (ℓ, π − ℓ) with initial value bounded by ℓ.
The remainder term function is also symmetric with respect to θ →
π − θ. The remainder term of Corollary 9 contribution to −4µαµα +
4χaα(α)

2 sin4 θ is O(e−2πθ/ℓα sin4 θ), which we have is bounded as O(ℓ4α).
In summary, the right hand side of (10) is pointwise bounded as O(ℓ2α).
Expansion (8) follows by applying the operator ∆ to the right hand side
and applying the supremum bound of Theorem 12.

The counterpart of equation (10) for µαµβ is in straightforward no-
tation

(11) (D − 2)
(

2∆µαµβ − χaα(α)aβ(α) sin
2
α θ − χaα(β)aβ(β) sin

2
β θ

)

= −4µαµβ + 4χaα(α)aβ(α) sin
4
α θ + 4χaα(β)aβ(β) sin

4
β θ +O(ℓ2αℓ

2
β),

where from Theorem 8: aα(α), aβ(β) are bounded, aβ(α) is bounded
as O(ℓαℓ

2
β) and aα(β) is bounded as O(ℓ2αℓβ). By Proposition 6, on

R− c(α)− c(β) the first term on the right is O(ℓ2αℓ
2
β). The supports of

the second and third terms on the right are contained in the respective
collars. We again apply Corollary 9 to bound the sum of the terms
on the collars. On c(α) the remainder term contribution is bounded
by O((ℓ2β/ℓ

2
α + aβ(α))(e

−2πθ/ℓα + e2π(θ−π)/ℓα) sin4 θ) and as above the

exponential-sine product is bounded by ℓ4α, leading to the overall bound
of O(ℓ2αℓ

2
β). The contributions on c(β) are similarly bounded. The

desired expansion follows. q.e.d.

The following is a pointwise form of the expansion for the pairing
〈grad ℓα, grad ℓβ〉.
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Corollary 18. With the above notation, the products of geodesic-
length gradients have the expansions on R

µαµα = aα(α)
2 sin4α θ + O(ℓ2α)

and for β disjoint from α,

µαµβ = aα(α)aβ(α) sin
4
α θ + aα(β)aβ(β) sin

4
β θ + O(ℓ2αℓ

2
β).

For β disjoint from α, the product µαµβ is bounded as O(ℓαℓβ). For c0
positive, the remainder term constants are uniform in the surface R for
ℓα, ℓβ ≤ c0.

Proof. The expansions follow from Corollary 9 and the exponential-
sine bound e−πθ/2ℓ sin θ ≤ ℓ on (ℓ, π − ℓ). The general bound for µαµβ
follows from the Theorem 8 bounds for aα and aβ. q.e.d.

A basic calculation is for the variation of the area element by a de-
formation map. Ahlfors found that the first variation of the hyperbolic
area element vanishes for harmonic Beltrami differentials [Ahl61]. The
second variation of the hyperbolic area element is an ingredient in the
calculation of curvature for the WP metric and for the hyperbolic met-
ric on the vertical line bundle of the universal curve [Wp86, Wp90].
The second variation formula for both quasi conformal and harmonic
deformation maps is

d̈A[µ, µ] =
d2(f ǫµ)∗dA

dǫ2

∣

∣

∣

∣

ǫ=0

= 2(−µµ + ∆µµ) dA,

for µ ∈ H(R) [Wl89, Wp86, Wp90]. Theorem 17 and Corollary 18
combine to provide an expansion for the second variation for geodesic-
length gradients

d̈A[µα, µα] = aα(α)
2(sin2α θ − 2 sin4α θ + O(ℓ2α)) dA.

We have the following for the curvature integral.

Theorem 19. For α, β, γ, δ simple closed geodesics, the integral

Iαβγδ =

∫

R
µαµβ∆µγµδ dA

has the symmetries Iαβγδ = Iγδαβ and Iαβγδ = Iβαδγ . The integral for
the geodesics coinciding satisfies

Iαααα =
3

π3
ℓα + O(ℓ3α),

for three geodesics coinciding satisfies

Iαααβ =
3

2π2
〈grad ℓα, grad ℓβ〉 + O(ℓ4αℓ

2
β),

and all, at most pairs of geodesics coinciding, evaluations Iαβγδ are
bounded as O(ℓαℓβℓγℓδ). The integrals Iααββ and Iαβαβ for coinciding
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pairs with ℓα = ℓβ are bounded as O(ℓ6α). For c0 positive, the remainder
term constants are uniform in the surface R for ℓα, ℓβ , ℓγ , ℓδ ≤ c0.

Proof. The first symmetry is a consequence of ∆ being self-adjoint.
The second symmetry is immediate. We develop a general expansion for
the integrand and then consider cases based on the patterns of geodesics.
From Corollary 9 on a collar c(η), we have

µαµβ = aα(η)aβ(η) sin
4
η
θ + O

(

cαβη(e
−2πθ/ℓη + e2π(π−θ)/ℓη ) sin4η θ

)

,

for

cαβη = aα(η)ℓ
2
β/ℓ

2
η + aβ(η)ℓ

2
α/ℓ

2
η + ℓ2αℓ

2
β/ℓ

4
η.

We consider the collar integrals of the product with the terms in the
∆µγµδ expansion of Theorem 17. The leading term of ∆µγµδ is sin2 θ.
The resulting product integral is

∫

c(η)
µαµβ sin

2 θdA

= aα(η)aβ(η)

∫

c(η)
sin6 θdA

+O

(

cαβη

∫

c(η)
(e−2πθ/ℓη + e2π(π−θ)/ℓη ) sin6 θdA

)

.

The collar is c(η) = {1 ≤ r ≤ eℓη , ℓη ≤ θ ≤ π − ℓη} ⊂ H and the
hyperbolic area element is dA = csc2 θ dθdr/r. For the first integral on
the right the θ intervals (0, ℓη) and (π − ℓη, π) are included to find that

∫

c(η)
sin6 θdA =

3π

8
ℓη + O(ℓ6η).

The second integral on the right is symmetric with respect to θ → π−θ.
The inequality sin θ ≤ θ is applied to find that

∫

c(η)
e−2πθ/ℓη sin6 θdA = O(ℓ6η).

We combine these considerations to find that

(12)

∫

c(η)
µαµβ sin

2 θdA =
3π

8
aα(η)aβ(η)ℓη + Oαβη ,

for Oαβη = aα(η)aβ(η)ℓ
6
η + cαβηℓ

6
η. By Theorem 8, the remainder Oαβη

is: O(ℓ4αℓ
2
η) for α = β, η coinciding with α or disjoint, and is O(ℓ2αℓ

2
βℓ

2
η)

for α disjoint from β, η coinciding with one of α, β or not. In all cases
Oαβη is bounded as O(ℓ2αℓ

2
βℓ

2
η). By the same approach the collar integral
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corresponding to the product with the remainder term of ∆µγµδ is

(13)

∫

c(η)
µαµβdA

= aα(η)aβ(η)

∫

c(η)
sin4 θdA

+O

(

cαβη

∫

c(η)
(e−2πθ/ℓη + e2π(π−θ)/ℓη ) sin4 θdA

)

= O
(

aα(η)aβ(η)(ℓη + ℓ4η) + cαβηℓ
4
η

)

= O(aα(η)aβ(η)ℓη) + Oαβη/ℓ
2
η ,

for the same remainder bound Oαβη.
We are ready to combine the expansions and estimates to find the

contributions for the possible patterns of geodesics. In general for the
evaluation of Iαβγδ, the expansions of Theorem 17 for ∆µ∗µ∗ are applied
for the indices γδ and the expansions (12) and (13) for µ∗µ∗ are applied
for the indices αβ.

The main cases αααα and αβαα. Expansion (8) is combined with
expansions (12) and (13) to find the contribution of the collar c(α).
The leading term is

1

2
aα(α)

2

∫

c(α)
µαµβ sin

2 θdA =
3π

16
aα(α)

3aβ(α)ℓα + Oαβα.

The remainder is bounded as O(ℓ4αℓ
2
β). Using expansion (13), the con-

tribution of the remainder term from expansion (8) is bounded as O(ℓ3α)
for α = β and as O(ℓ4αℓ

2
β) for α, β disjoint. The contribution of R− c(α)

is bounded by combining expansion (8) with Proposition 6. The contri-
bution is bounded as O(ℓ4αℓ

2
β). Finally Theorem 8 is applied to evaluate

the product aα(α)
3aβ(α) of coefficients for α and β either coinciding or

disjoint.
The cases β2α2 and βγα2 for α distinct from β, γ. Expansion (8) is

combined with expansions (12) and (13) to find the collar contribution.
The leading term provides an integral

1

2
aα(α)

2

∫

c(α)
µβµγ sin

2 θdA =
3π

16
aα(α)

2aβ(α)aγ(α)ℓα + Oβγα,

which is bounded as O(ℓ2αℓ
2
βℓ

2
γ). The remainder bound from (8) com-

bines with expansion (13) to provide the remaining collar bound. The
contribution of R − c(α) is bounded by combining expansion (8) and
Proposition 6.
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The remaining cases αβαβ, αβαγ and αβγδ. The Corollary 18 bound
that µαµβ, α disjoint from β, is bounded as O(ℓαℓβ) and boundedness
of the operator ∆ in C0 provide the desired bounds. q.e.d.

We remark that in Theorem 17 the remainder terms can be improved
to include a factor of the inverse exponential-distance to the thick sub-
set of R. Specifically the O(ℓ2α) term on the right side of (10) and the
O(ℓ2αℓ

2
β) term on the right side of (11) have compact support in a neigh-

borhood of the collar boundary, where the injectivity radius is bounded
below by a positive constant. To estimate the operator ∆ applied to
the remainders, Proposition 13 is applied with z0 chosen in the remain-
der support. The resulting estimate includes an exponential-distance
factor. The explicit terms on the right hand sides of (10) and (11) are
bounded by the exponential-sine function e−2πθ/ℓα sin4 θ. To estimate
the operator ∆ applied to the explicit terms, Proposition 13 is applied
with z0 corresponding to the variable θ, and the θ integral is estimated
directly. The resulting estimate includes an exponential-distance factor.
The improved form of (8) leads to the improved remainder O(ℓ4α) for
the Iαααα expansion.

7. Continuity of the pairing and curvature tensor

We follow the general exposition of [Wp09, Wp10]. The WP com-
pletion of Teichmüller space is the augmented Teichmüller space T .
The partial compactification T is described in terms of Fenchel-Nielsen
coordinates and in terms of the Chabauty topology for PSL(2;R) rep-
resentations. The strata of T correspond to collections of vanishing
lengths and describe Riemann surfaces with nodes in the sense of Bers,
[Ber74]. We use root-length gradients as a local frame for the tangent
bundle for a neighborhood of a stratum point. The behavior of the pair-
ing for a frame is presented in (7) and the behavior of the connection
for a frame is presented in [Wp09, Theorem 4.6].

The points of the Teichmüller space T are equivalence classes {(R, f)}
of surfaces with reference homeomorphisms f : F → R. The complex
of curves C(F ) is defined as follows. The vertices of C(F ) are the free
homotopy classes of homotopically nontrivial, non peripheral, simple
closed curves on F . An edge of the complex consists of a pair of ho-
motopy classes of disjoint simple closed curves. A k-simplex consists
of k + 1 homotopy classes of mutually disjoint simple closed curves. A
maximal simplex is a pants decomposition. The mapping class group
Mod acts on the complex C(F ).

The Fenchel-Nielsen coordinates for T are given in terms of geodesic-
lengths and lengths of auxiliary geodesic segments, [Abi80, Bus92,
IT92]. A pants decomposition P = {α1, . . . , α3g−3+n} decomposes the
reference surface F into 2g − 2 + n components, each homeomorphic
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to a sphere with a combination of three discs or points removed. A
marked Riemann surface (R, f) is likewise decomposed into pants by
the geodesics representing the elements of P. Each component pants,
relative to its hyperbolic metric, has a combination of three geodesic
boundaries and cusps. For each component pants the shortest geodesic
segments connecting boundaries determine designated points on each
boundary. For each geodesic α in the pants decomposition of R, a pa-
rameter τα is defined as the displacement along the geodesic between
designated points, one for each side of the geodesic. For marked Rie-
mann surfaces close to an initial reference marked Riemann surface, the
displacement τα is the distance between the designated points; in gen-
eral the displacement is the analytic continuation (the lifting) of the
distance measurement. For α in P define the Fenchel-Nielsen angle by
ϑα = 2πτα/ℓα. The Fenchel-Nielsen coordinates for Teichmüller space
for the decomposition P are (ℓα1

, ϑα1
, . . . , ℓα3g−3+n , ϑα3g−3+n). The co-

ordinates provide a real analytic equivalence of T to (R+ × R)3g−3+n,
[Abi80, Bus92, IT92]. Each pants decomposition gives rise to a
Fenchel-Nielsen coordinate system.

A partial compactification is introduced by extending the range of the
Fenchel-Nielsen parameters. The added points correspond to unions of
hyperbolic surfaces with formal pairings of cusps. The interpretation of
length vanishing is the key ingredient. For an ℓα equal to zero, the angle
ϑα is not defined and in place of the geodesic for α there appears a pair of
cusps; the reference map f is now a homeomorphism of F −α to a union
of hyperbolic surfaces (curves parallel to α map to loops encircling the
cusps). The parameter space for a pair (ℓα, ϑα) will be the identification
space R≥0×R/{(0, y) ∼ (0, y′)}. More generally for the pants decompo-
sition P, a frontier set FP is added to the Teichmüller space by extending
the Fenchel-Nielsen parameter ranges: for each α ∈ P, extend the range
of ℓα to include the value 0, with ϑα not defined for ℓα = 0. The points
of FP parameterize unions of Riemann surfaces with each ℓα = 0, α ∈ P,
specifying a pair of cusps. The points of FP are Riemann surfaces with
nodes in the sense of Bers. For a simplex σ ⊂ P, define the σ-null
stratum, a subset of FP , as T (σ) = {R | ℓα(R) = 0 iff α ∈ σ}. Null
strata are given as products of lower dimensional Teichmüller spaces.
The frontier set FP is the union of the σ-null strata for the sub sim-
plices of P. Neighborhood bases for points of FP ⊂ T ∪ FP are spec-
ified by the condition that for each simplex σ ⊂ P the projection
((ℓβ , ϑβ), ℓα) : T ∪ T (σ) → ∏

β /∈σ(R+ × R)×∏

α∈σ(R≥0) is continuous.

For a simplex σ contained in pants decompositions P and P ′ the speci-
fied neighborhood systems for T ∪ T (σ) are equivalent. The augmented
Teichmüller space T = T ∪σ∈C(F ) T (σ) is the resulting stratified topo-

logical space, [Abi77, Ber74]. T is not locally compact since points of
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the frontier do not have relatively compact neighborhoods; the neigh-
borhood bases are unrestricted in the ϑα parameters for α a σ-null. The
action ofMod on T extends to an action by homeomorphisms on T (the
action on T is not properly discontinuous) and the quotient T /Mod is
topologically the compactified moduli space of stable curves, [Abi77,
see Math. Rev.56 #679].

There is an alternate description of the frontier points in terms of
representations of groups and the Chabauty topology. A Riemann sur-
face with punctures and hyperbolic metric is uniformized by a cofinite
subgroup Γ ⊂ PSL(2;R). A puncture corresponds to the Γ-conjugacy
class of a maximal parabolic subgroup. In general a Riemann surface
with labeled punctures corresponds to the PSL(2;R) conjugacy class
of a tuple (Γ, 〈Γ01〉, . . . , 〈Γ0n〉) where 〈Γ0j〉 are the maximal parabolic
classes and a labeling for punctures is a labeling for conjugacy classes.
A Riemann surface with nodes R′ is a finite collection of PSL(2;R)
conjugacy classes of tuples (Γ∗, 〈Γ∗

01〉, . . . , 〈Γ∗
0n∗〉) with a formal pair-

ing of certain maximal parabolic classes. The conjugacy class of a
tuple is called a part of R′. The unpaired maximal parabolic classes
are the punctures of R′ and the genus of R′ is defined by the relation
Total area = 2π(2g−2+n). A cofinite PSL(2;R) injective representa-
tion of the fundamental group of a surface is topologically allowable pro-
vided peripheral elements correspond to peripheral elements. A point of
the Teichmüller space T is given by the PSL(2;R) conjugacy class of a
topologically allowable injective cofinite representation of the fundamen-
tal group π1(F ) → Γ ⊂ PSL(2;R). For a simplex σ, a point of T (σ) is
given by a collection {(Γ∗, 〈Γ∗

01〉, . . . , 〈Γ∗
0n∗〉)} of tuples with: a bijection

between σ and the paired maximal parabolic classes; a bijection be-
tween the components {Fj} of F −σ and the conjugacy classes of parts

(Γj , 〈Γj
01〉, . . . , 〈Γj

0nj 〉) and the PSL(2;R) conjugacy classes of topolog-

ically allowable isomorphisms π1(Fj) → Γj , [Abi77, Ber74]. We are
interested in geodesic-lengths for a sequence of points of T converging
to a point of T (σ). The convergence of hyperbolic metrics provides
that for closed curves of F disjoint from σ, geodesic-lengths converge,
while closed curves with essential σ intersections have geodesic-lengths
tending to infinity, [Ber74, Wp90, Wp10].

We refer to the Chabauty topology to describe the convergence for
the PSL(2;R) representations. Chabauty introduced a topology for
the space of discrete subgroups of a locally compact group, [Cha50]. A
neighborhood of Γ ⊂ PSL(2;R) is specified by a neighborhood U of the
identity in PSL(2;R) and a compact subsetK ⊂ PSL(2;R). A discrete
group Γ′ is in the neighborhood N (Γ, U,K) provided Γ′ ∩K ⊆ ΓU and
Γ∩K ⊆ Γ′U . The sets N (Γ, U,K) provide a neighborhood basis for the
topology. We consider a sequence of points of T converging to a point
of T (σ) corresponding to {(Γ∗, 〈Γ∗

01〉, . . . , 〈Γ∗
0n∗〉)}. Important for the
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present considerations is the following property. Given a sequence of
points of T converging to a point of T (σ) and a component Fj of F −σ,
there exist PSL(2;R) conjugations such that restricted to π1(Fj) the
corresponding representations converge element wise to π1(Fj) → Γj ,
[Har74, Theorem 2].

We consider the geometry of geodesic-length gradients in a neighbor-
hood of an augmentation point of T (σ) ⊂ T [Wp10]. For the following,
we refer to the elements of σ as the short geodesics. In a neighborhood
of a point of T (σ), the WP metric is approximately a product of com-
mon metrics for the short geodesic-lengths and lower dimensional WP
metrics; in particular

〈 , 〉WP = 2π
∑

α∈σ

(dℓ1/2α )2+(dℓ1/2α ◦J)2 + 〈 , 〉WP ;T (σ) +O(d2T (σ)〈 , 〉WP )

for J the complex structure of T and 〈 , 〉WP ;T (σ) the lower dimensional

metric of the stratum. The strata of T are geodesically convex and the
distance to a stratum T (σ) is given as

dT (σ) =

(

2π
∑

α∈σ

ℓα

)1/2

+ O

(

∑

α∈σ

ℓ5/2α

)

.

In [Wp08] we studied the behavior of the covariant derivatives of the
geodesic root-length gradients DUλα and showed that at first-order the
metric continues to behave as an approximate product [Wp09, Theorem
4.6]. In particular for short geodesics α 6= α′, and β a disjoint geodesic,
Dλαλα′ and Dλβ

λα vanish on T (σ). Also for β, β′ disjoint, non short
geodesics, Dλβ

λβ′ converges to its value on the limiting surface. The
formulas involving the complex structure J follow by observing that
the complex structure is parallel with respect to D, since the metric is
Kähler.

We now examine the metric second-order behavior by considering the
curvature tensor. We recall the convention that on T (σ) the pairings
〈〈λα, λβ〉〉 vanish for α in σ and β disjoint and the pairings 〈〈λβ , λβ′〉〉
vanish for geodesics on distinct components (parts) of a limiting noded
Riemann surface. We first recall a basic result [Wp08].

Lemma 20. For a pants decomposition P with subset of short geodes-
ics σ, the pairing of geodesic root-length gradients is continuous in a
neighborhood of a point of T (σ) ⊂ T . The matrix P of pairings for
{λγ}γ∈P determines a germ of a Lipschitz map from T into a complex
linear group GL(C).

We now consider the limiting values for the curvature tensor eval-
uated on the gradients for the pants decomposition P. We introduce
the convention that on T (σ) the following evaluations R(λα, λβ , λδ, λδ)
vanish: for α ∈ σ and at least one of β, γ and δ distinct from α; for
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α, β, γ, δ ∈ P − σ and not all geodesics on the same component of a
Riemann surface with nodes represented in T (σ).

Theorem 21. For a pants decomposition P with subset of short
geodesics σ, the diagonal curvature tensor evaluations for α ∈ σ satisfy
R(λα, λα, λα, λα) = 3(16π3ℓα)

−1 + O(ℓα) and all remaining curvature
evaluations are continuous in a neighborhood of T (σ) ⊂ T .

Proof. For a pants decomposition the curvature evaluations involving
short geodesics are treated in Theorem 19. It only remains to consider
continuity for evaluations for geodesics in P−σ. We choose a neighbor-
hood U in T of p ∈ T (σ) on which the geodesic-lengths ℓβ, β ∈ P − σ,
are bounded away from zero. The Chabauty topology provides that the
geodesic-lengths ℓβ are continuous on U . We consider the curvature ten-
sor evaluated on the geodesic-length gradients. The evaluation is given
by the integral pairing (6). Proposition 6 and Theorem 12 combine to
provide that for β, γ, δ ∈ P − σ, the geodesic-length gradients µβ and
products ∆µγµδ are uniformly bounded on the neighborhood U . Con-
tinuity of the integrals (6) will follow from pointwise convergence of the
integrands. For p corresponding to a noded Riemann surface with a part
R♮ containing geodesics β, γ and δ, we establish pointwise convergence
of µβ and ∆µγµδ on R♮ and convergence to zero for any component of
the complement.

We establish pointwise convergence on R♮. Points in T near p describe
Riemann surfaces with PSL(2;R) representations of designated thick
components close, modulo PSL(2;R) conjugation, to a uniformization
of R♮. Conjugate the representations to be close to the uniformization.
We will decompose the sums for µβ and ∆µγµδ into terms for distance
at most δ0 from a compact set in H and terms for greater distance.
The sum of latter terms will be uniformly bounded by applying the
distant sum estimate as follows. For a Chabauty neighborhood, the
designated thick components are covered by a fixed compact set in H.
The geodesics β, γ and δ have lifts to axes intersecting the fixed compact
set. By the Quantitative Collar and Cusp Lemma and the method
of Proposition 6 for the series Θ∗(ds

2)−1, the absolute sum of terms
at distance at least δ0 from the compact set is bounded as O(e−δ0).
For Chabauty convergence, the bounded number of remaining terms of
the series converge as the representations converge. In summary the
series Θ∗ converge pointwise. The operator ∆ is given by the sum
∑

A∈Γ−2Q2(d(z,Az0)). The individual terms of the sum converge as

the representations converge and the sum is overall bounded in L1. It
follows that the products ∆µγµδ converge pointwise.
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In the case that the limiting Riemann surface with nodes has com-
ponents distinct from R♮, then the union of short geodesics ∪α∈σα sep-
arates the limiting surfaces into multiple components. Principal com-
ponents converge to R♮. A point in a non principal component is at
distance at least the half width log 2/ℓα of the collars c(α), α ∈ σ, from
the principal component. For a non principal component conjugate the
representations to converge. By Proposition 6 and the observation about
distance, on a non principal component the gradients µβ, µγ and µδ have
magnitude O(maxα∈σ ℓα). Similarly by Proposition 13, for points z in
the principal component and z0 in a non principal component, G(z, z0)
also has magnitude O(maxα∈σ ℓα). The estimates for µγ , µδ, combine
with the overall L1 bound for the Green’s function and the given bound
for the Green’s function to provide that the products ∆µγµδ converge
to zero on non principal components.

q.e.d.

The formulas for the metric, covariant derivative and curvature tensor
display an asymptotic product structure for an extension of the tangent
bundle over T (σ)

∏

α∈σ

spanC{λα} ×
∏

R♮∈ parts♯(σ)

T 1,0T (R♮),

where parts♯(σ) is the set of components that are not thrice-punctured
spheres for the noded Riemann surfaces represented in T (σ). The as-
ymptotic product structure for the metric first appeared in [Mas76]
and appears in formula (7); for the covariant derivative the structure is
detailed in [Wp09, Theorem 4.6] and Theorem 21 combined with the
vanishing conventions displays the structure for the curvature tensor.
Evaluations involving more than a single factor tend to zero and eval-
uations for a single factor tend to evaluations for either the standard
metric for opening a node or a lower dimensional Teichmüller space.
The structure is formal since T is not a complex manifold and the cor-
responding extension of the vector bundle of holomorphic quadratic dif-
ferentials over M is not the cotangent bundle, but the logarithmic polar
cotangent bundle [HM98]. Nevertheless the product structure applies
for limits of the metric and curvature tensor along T (σ). The indi-
vidual product factors have strictly negative sectional curvature. The
λα-section is holomorphic with curvature bounded above by Theorem
14, or equivalently bounded above by Corollary 16. The general re-
sult [Tro86, Wp86] establishes negative curvature for the Teichmüller
spaces T (R♮). Recall that for a product of negatively curved manifolds,
a zero curvature tangent section has at most one R-dimensional projec-
tion into the tangent space of each factor. Accordingly, the maximal
dimension of a flat tangent multi section equals the number of product
factors. We establish the counterpart for WP. We continue using pants
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decomposition gradients as a C-frame. By considering C-sums of the
indeterminates λγ , γ ∈ P, a germ V is defined for an extension over T
of the tangent bundle of T . A formal product structure for V is defined

(14)
∏

α∈σ

spanC{λα} ×
∏

Fj∈ parts♯(σ)

spanC{λβ}β∈P, β on Fj

by considering the short geodesics σ and the components {Fj} of the

complement of σ in the base surface F ; parts♯(σ) is now the set of
components not homeomorphic to a sphere minus three disjoint discs.

Corollary 22. (Classification of asymptotic flats.) Let S be a R-
subspace of the fiber of V over a point of T (σ). The subspace S is a
limit of a sequence of tangent multisections over points of T with all
sectional curvatures tending to zero if and only if the projections of S
onto the factors of (14) are at most one R-dimensional. The maximal
dimension for S is |σ|+ |parts♯(σ)| ≤ dimC T .

Proof. We use the C-frame λγ , γ ∈ P, and the definition of V. Sec-
tional curvature is given by formula (4). Evaluation of the denominator
of (4) is continuous and non zero by Lemma 20. As a consequence of
the continuity of evaluations and vanishing of evaluations, approaching
T (σ), the contribution to the numerator of (4) tends to zero for the
evaluations involving more than a single factor of the product (14). In
particular, the numerator is given as separate sums for the factors of the
product and a remainder which vanishes on T (σ). Since the individual
factors have strictly negative sectional curvatures, it follows for a limit
of sections with sectional curvatures tending to zero, that the curvature
contribution for each factor tends to zero. It follows that the projec-
tion of a limit to each factor is one R-dimensional. Consider then the
converse. Since a frame is given, a subspace of a fiber determines a sub
bundle. A consequence of the continuity of evaluations and at most one
R-dimensional projections is that the sub bundle sectional curvatures
tend to zero approaching the limit fiber. The dimension conclusion is
immediate. q.e.d.

Understanding approximately flat subspaces is an important consid-
eration for global geometry. The rank in the sense of Gromov is the max-
imal dimension of a quasi-flat subspace, a quasi-isometric embedding of
a Euclidean space. Brock-Farb find that the rank is one if dimC T ≤ 2
and in general is at least the maximum m = ⌊(1 + dimC T )/2⌋ of
|parts♯(σ)| taken over simplices in the curve complex [BF06]. Brock-
Farb [BF06], Behrstock [Beh06] and Aramayona [Ara06] apply con-
siderations to show that Teichmüller space is Gromov hyperbolic in the
rank one case. Behrstock-Minsky find in their work on the asymptotic
cone of the mapping class group that the rank is exactly m [BM08]. In
[Wp08, Section 6] we find that a locally Euclidean subspace of T has
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dimension at most the maximum m. The above corollary provides addi-
tional information on asymptotically flat subspaces and rank. We apply
compactness and the above corollary to show that beyond asymptotic
flats there is a negative upper bound for sectional curvature.

Corollary 23. There exists a negative constant cg,n such that a sub-
space S of a tangent space of T with dimR S > dimC T contains a section
with sectional curvature at most cg,n.

Proof. Consider a tangent subspace S to T and write msc(S) for the
minimal sectional curvature for sections of S. For the set {S} of all
tangent subspaces to T of a given dimension, let c = sup{S}msc(S)
be the supremum of minimal sectional curvatures. The supremum is
finite and non positive since the sectional curvatures of T are nega-
tive. We consider that c is zero. Choose a sequence Sn of tangent
subspaces with msc(Sn) tending to zero. We note that the mapping
class group Mod acts by isometries, the quotient T /Mod is compact
and the germs V provide an extension of the tangent bundle over T .
We can select a subsequence (same notation) of tangent subspaces and
elements γn ∈ Mod such that γnSn converges to S ′, a subspace of a
fiber of the extension V. The sectional curvatures of S ′ are zero. Corol-
lary 22 provides that dimR S ′ ≤ dimC T . The desired conclusion is the
contrapositive statement. q.e.d.
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