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INSTANTONS, CONCORDANCE, AND WHITEHEAD

DOUBLING

Matthew Hedden & Paul Kirk

Abstract

We use moduli spaces of instantons and Chern-Simons invari-
ants of flat connections to prove that the Whitehead doubles of
(2, 2n − 1) torus knots are independent in the smooth knot con-
cordance group; that is, they freely generate a subgroup of infinite
rank.

1. Introduction

Call two knots in the 3-sphere concordant if they arise as the bound-
ary of a smooth and properly embedded cylinder in the 3-sphere times
an interval. Concordance is clearly an equivalence relation. Modulo
this relation, the set of knots forms an abelian group C, with the role
of addition played by connected sum and inverse given by considering
the mirror image, with reversed orientation. This concordance group
is a much studied object, well motivated by its role as a gateway into
the mysterious world of 4-dimensional topology. Indeed, even in this
relative situation of studying 3-dimensional manifolds in relation to the
4-dimensional manifolds they bound, one can observe the distinction be-
tween the smooth and topological categories in dimension four. More-
over, the group structure afforded by passing to concordance paves a
clearer path through the often intractable field of knot theory.

Our results focus on a particular satellite operation, (positive, un-
twisted) Whitehead doubling, and its effect on the concordance group,
see Figure 1 and Section 3.1 for a definition. Our motivation comes
from the following conjecture. To state it recall that a knot is slice if it
is concordant to the unknot or, equivalently, if it bounds a smooth and
properly embedded disk in the 4-ball.

Conjecture [22]: The Whitehead double of a knot K is slice if and
only if K is slice.
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This conjecture has received considerable attention in the 30 years
since it was stated. Part of this interest is explained by the fact that it is
resoundingly false in the topological category. To understand this, note
that one can define topological concordance and sliceness by considering
flat embeddings; that is, topological embeddings of a cylinder times a
disk. In this context, Freedman’s results on 4-dimensional surgery the-
ory show that the untwisted Whitehead double of any knot (and, more
generally, any knot with Alexander polynomial one) is topologically slice
[10]. In contrast, it was first observed by Akbulut [1] that Donaldson’s
theorem on the diagonalizability of definite intersection forms for closed
smooth 4-manifolds implies that the Whitehead double of the trefoil
is not smoothly slice. Thus the conjecture highlights the remarkable
distinction between the categories.

Figure 1. D(T2,3), the positive untwisted Whitehead
double of the right-handed trefoil, the (2,3) torus knot.

Since the initial example, our knowledge of the conjecture in the
smooth setting has considerably expanded [5, 2, 44, 45, 31, 33, 16].
These results have all been aimed at extending the family of knots for
which the conjecture holds. With the exception of some recent proofs of
prior results using Rasmussen’s concordance invariant, all efforts have
relied on the analytic techniques of gauge theory or Floer homology. To
date, the widest class of knots for which the conjecture holds are those
whose Ozsváth-Szabó concordance invariant is positive [37, 16]. This
class includes, for instance, the Whitehead double of any of its members,
so the iterated doubles of any knot in this family are not slice.

The purpose of this article is to begin investigation into a general-
ization of the conjecture. To state it, observe that one direction of the
conjecture is clear: if a knot is slice, then its Whitehead double is also
slice. Indeed, given a concordance between knots K and J , the White-
head doubles of K and J will be concordant by a cylinder which “follows
along” the original cylinder. This shows that Whitehead doubling, or
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any satellite operation, induces a function

D : C → C,
from the concordance group to itself. Although far from a homomor-
phism, one can ask about the structure of this function. In particular,
the conjecture is equivalent to the statement “D−1(0) = 0.”

Let us call a set of knots independent if every N element subset gen-
erates a free abelian subgroup of C of rank N . We can generalize the
conjecture above.

Conjecture: Whitehead doubling preserves independence in the con-
cordance group.

A natural test case for the conjecture is provided by positive torus
knots. These knots can be seen to be independent by way of classical
signature invariants [29].

Our primary result verifies the conjecture for an infinite collection of
torus knots.

Theorem 1. The Whitehead doubles of the (2, 2n − 1) torus knots,
where n = 2, 3, · · · ∞ are independent in the smooth concordance group.

In fact, our technique proves a stronger result. Namely, we obtain
independence of Whitehead doubles of the (pi, qi) torus knots for any
sequence {(pi, qi)}∞i=1 of pairs of relatively prime integers satisfying

pnqn(2pnqn − 1) > pn−1qn−1(4pn−1qn−1 − 1).

See Theorem 4.5 for the precise statement.
As the title suggests, the proof of the theorem takes place in the

context of gauge theory, and makes use of a slice obstruction coming
from the topology of moduli spaces of instantons for SO(3) bundles
over 4-manifolds. In the presence of a homology ball bounded by the
branched covers of a collection of Whitehead doubles, we will construct
a non-empty moduli space of instantons with an odd number of singular
points. Each singular point has a neighborhood homeomorphic to (0, 1],
from which it follows that the moduli space is a 1-manifold with an odd
number of boundary components. If a certain numerical invariant of
the branched covers, the minimal Chern-Simons invariant of flat SO(3)
connections, is large enough, it follows that the moduli space is compact,
hence contradicting the existence of the putative homology ball. The
numerology of the torus knots involved in our theorem is explained by
our calculations of the corresponding growth rate of the minimal Chern-
Simons invariant.

Computing Chern-Simons invariants of flat connections on 3-mani-
folds requires knowledge of the flat moduli space of the 3-manifold.
Theorem 4.1, which is of independent interest, accomplishes this in the
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case at hand. It states that the moduli space of flat SU(2) connec-
tions (or, equivalently, the space of conjugacy classes of SU(2) repre-
sentations of the fundamental group) of the 2-fold branched cover of a
Whitehead double has a particularly simple structure. Note that the
2-fold branched cover of S3 branched over the Whitehead double of K
is built out of three pieces, the 2-fold branched cover of a tubular neigh-
borhood of K branched over Whitehead double of its core, and two
copies of the complement of K.

Theorem 4.1. Let D(K) be the Whitehead double of a knot K, and
let Σ(D(K)) denote the 2-fold branched cover of the 3-sphere, branched
over D(K). Then every SU(2) representation of π1(Σ(D(K))) restricts
to an abelian representation on the 2-fold branched cover of the tubular
neighborhood of K, branched over the Whitehead double of its core.

To put Theorem 1 in context, we should point out that infinite gen-
eration of the subgroup of C generated by topologically slice knots was
proved by Endo using similar obstructions [9]. More recently, this sub-
group was shown to admit an infinitely generated quotient [20]. Almost
nothing was known, however, regarding independence of doubled knots,
though it follows from work of Manolescu-Owens [33] and Livingston
[30] that the span of Whitehead doubles contains a free abelian group
of rank 2. This result uses Heegaard Floer theory, and we find it sur-
prising that despite the many successes of these invariants, Theorem 1
seems out of reach to these more modern techniques. This complemen-
tary nature of the two schools of gauge theory seems quite striking, and
motivates further study.

It is also interesting to compare our results with recent work of
Cochran, Harvey, and Leidy [6], who consider the effect of various satel-
lite operations on the topological concordance group. In particular,
they conjecture that many such operations are injective, and use them
to prove infinite generation of many of the quotients in the Cochran,
Orr, Teichner filtration of the topological concordance group [8]. Of
course by Freedman’s theorem, Whitehead doubling induces the zero
map on the topological concordance group, so our theorem is in a dif-
ferent realm entirely. In fact, Theorem 1 provides the first example of a
satellite operation whose image in C has infinite rank, but whose image
in the topological concordance group has finite rank (zero). The tech-
niques and tools developed here can be viewed as a first step towards
a systematic probing of the structure of the smooth concordance group
through satellite operations.

Outline: In the next section, we briefly review the method used to ob-
struct sliceness of linear combinations of Whitehead doubles. While the
obstruction comes from gauge theory, we hope that our exposition will
enable those unfamiliar with this machinery to understand the general
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technique, and will indicate how one may apply it for a variety of further
applications. Of particular interest is Theorem 2.10, which provides a
general criterion for a collection of homology spheres to be independent
in the Z/2-homology cobordism group.

Section 3 is devoted to a topological analysis of the 2-fold branched
covers of Whitehead doubles, with an eye towards implementing the
instanton obstruction. In particular, we analyze the JSJ decomposition
of the 2-fold branched covers, and use this to construct cobordisms from
them to manifolds whose interaction with gauge theory is more easily
understood.

Section 4, the technical heart of the article, uses these results to
prove Theorem 1. A key step here is the computation of the minimal
Chern-Simons invariants of the branched double covers. This step is
arguably the most challenging of the article, and is informed by tech-
niques for analyzing the Chern-Simons invariants of flat connections on
3-manifolds decomposed along tori as developed in [25, 26, 3]. We also
prove Theorem 4.1, which is invaluable in this analysis.

Having proved Theorem 1, we take a step back in Section 5 to compare
our technique with those afforded by more recently discovered invari-
ants, most notably those from Heegaard Floer homology and Khovanov
homology. As mentioned, it seems very difficult to prove our theorem
with these newer invariants, and we discuss reasons for this difficulty
and speculate on the feasibility of an alternate proof.

Acknowledgements. It is our pleasure to thank Chuck Livingston and
Danny Ruberman for their interest, and many helpful conversations.

2. The instanton cobordism obstruction

A useful method for studying concordance is to apply a homomor-
phism from C to a 3-dimensional bordism group, and study the image
of the relevant concordance classes in this latter group. Theorem 1
will be proved in this context, using the well-known observation that
the 2-fold branched cover of a slice knot bounds a 4-manifold with the
Z/2-homology of a 4-ball (see Lemma 3.1 below). Thus to obstruct
sliceness it suffices to obstruct a 3-manifold, the 2-fold branched cover,
from bounding a Z/2-homology ball. To this end, we outline a tech-
nique for showing that a disjoint union of oriented 3-manifolds cannot
bound a negative definite 4-manifold Q with H1(Q;Z/2) = 0. The gen-
eral strategy was developed by Fintushel-Stern [13, 14], and refined by
Furuta [12]. Their work took place in the context of SO(3) gauge the-
ory on pseudofree orbifolds. Building on work of Matić and Ruberman
[34, 42], we recently recast the technique entirely in terms of gauge
theory on manifolds with cylindrical ends [19]. We choose to adopt this
latter perspective throughout.
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2.1. The general idea from a topological perspective. We begin
by describing the argument from a topological perspective, then move
on to briefly describe the gauge theory underpinning the technique.
Our discussion will take place in a somewhat simplified setting, but one
which will be more than sufficient to prove Theorem 1. For more general
obstructions and further details, we refer the reader to [19].

The obstruction results from an interplay between two gauge the-
oretic notions, which we call Property I and Chern-Simons bounds,
respectively. To describe the former, let W be a negative definite 4-
manifold with H1(W ;Z/2) = 0 whose boundary is a rational homology
3-sphere. To a class e ∈ H2(W ;Z) one can associate the SO(3) bundle
over W obtained by stabilizing the unique SO(2) bundle with Euler
class e. Roughly, we say that (W, e) has Property I if the moduli space
of instantons on this SO(3) bundle is positive dimensional and has an
odd number of singular points (see the next section for a more precise
definition). Points in this moduli space are gauge equivalence classes
of solutions to the anti self-dual Yang-Mills equations which limit, near
∂W , to a fixed flat connection determined by e|∂W . A feature of these
equations is that their solutions come equipped with a natural notion
of energy which, for the moduli spaces involved, is given by −e2 ∈ Q.

Here e2 = e · e ∈ Q denotes the square of e under the extended
rational-valued intersection form

H2(W ;Z)×H2(W ;Z)→ Q, x · y = 1
n(x ∪ ñy) ∩ [W,∂W ]

where n is a positive integer and ñy ∈ H2(W,∂W ;Z) is a lift of ny ∈
H2(W ;Z). Note that sinceW is negative definite, −e2 ≥ 0. (See Section
2.6 of [19] for further details.)

The key fact about Property I is that it is preserved under attach-
ing a negative definite cobordism along a boundary component. The
following proposition will be proved in Subsection 2.3.

Proposition 2.1. Suppose (W, e) has Property I and Y ⊂ ∂W is an
integer homology sphere. For a negative definite 4-manifold Q satisfying
H1(Q;Z/2) = 0 and −Y ⊂ ∂Q, let X = Q∪

Y
W and ẽ = 0⊕e ∈ H2(X) ∼=

H2(Q)⊕H2(W ). Then (X, ẽ) has Property I .

Coupled with a compactness criterion for instanton moduli spaces,
Proposition 2.1 gives rise to a cobordism obstruction. In the form we
use, the compactness theorem is a combination of fundamental results
of Uhlenbeck [48], and Floer, Taubes, and Morgan-Mrowka-Ruberman
[15, 47, 35], respectively. Their theorems analyze the way in which a
sequence of instantons in a given moduli space can fail to converge. The
main idea is that any divergent sequence of instantons must take with
it a non-zero amount of energy, and that this energy can be lost in two
ways. The first is through bubbling, a phenomenon which requires 4k
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units of energy, k ∈ N [48]. The second arises from the non-compactness
of the 4-manifold in question (for analytic reasons, infinite cylindrical
ends are added to boundary components of 4-manifolds), and is often
referred to as “energy escaping down an end.” Thus a divergent se-
quence is prohibited if the energy of the instantons in a given moduli
space is small enough to prohibit either of these phenomena.

For the latter issue, the quanta of energy which can escape down an
end are governed by Chern-Simons invariants. To make this precise,
recall that a flat connection γ on an SO(3) bundle over a 3-manifold
Y has a Chern-Simons invariant cs(Y, γ) ∈ R/4Z ∼= (0, 4] (see the next
section for a definition). Given a closed, oriented 3-manifold Y and class
e ∈ H2(Y ;Z) we will consider, as above, the SO(3) vector bundle ob-
tained by stabilizing the SO(2) bundle with Euler class e. This bundle,
which we denote Ee, admits a unique (up to gauge equivalence) reducible
flat connection αe compatible with the given reduction of structure.

Denote by τ(Y, e) the minimum of the differences

cs(Y, γ)− cs(Y, αe) ∈ (0, 4],

where γ ranges over all flat connections on Ee (again, see the next sec-
tion for a more precise definition of τ(Y, e)). We have the following
compactness criterion for our moduli spaces, arising from the fact that
the amount of energy that can escape down an end in a divergent se-
quence must equal cs(Y, γ)− cs(Y, αe) for some γ.

Proposition 2.2. ([19, Proposition 2.9] cf. [48, 15, 47, 35]) Let W
be a negative definite 4-manifold and e ∈ H2(W ). Let M(W, e) be the
moduli space of instantons determined by e. If each component Y ⊂ ∂W
satisfies

(2.1) 0 < −e2 < τ(Y, e|Y ) ≤ 4,

then M(W, e) is compact.

Propositions 2.1 and 2.2 lead immediately to a cobordism obstruction.
Suppose we wish to show that an integer homology 3-sphere Y does not
bound any 4-manifold with the Z/2-homology of a 4-ball. If we know
that Y is diffeomorphic to one boundary component of W , where (W, e)
is a pair satisfying Property I then, according to Proposition 2.1, the
pair (X = Q ∪Y W, ẽ) will satisfy Property I for any putative Z/2-
homology ball Q with −∂Q = Y . This produces a positive dimensional
moduli space M(X, ẽ) with an odd number of singular points. If the
Chern-Simons bound

0 < −ẽ2 = −e2 < τ(M,e|M ) ≤ 4,

is satisfied for each component of ∂W other than Y , it follows from
Proposition 2.2 that M(X, ẽ) is compact. Now the singular points in
M(X, ẽ) have neighborhoods homeomorphic to cones on CPN , where
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2N+1 = dimM(X, ẽ). When N = 2k we immediately have a contradic-
tion, since an odd number of CP 2k’s cannot bound a (2k+1)-manifold.
A refined argument handles the case whenN is odd, but for the purposes
of Theorem 1, we need only the case N = 0; that is, the moduli spaces
used in the proof of our main theorem are 1-manifolds with boundary.
We conclude that no such Q exists.

In the subsequent sections, we turn to a more detailed description
of Property I and the Chern-Simons invariants. In particular, we will
see that the boundary components of a 4-manifold satisfying Property
I are naturally divided into 2 types: those components along which
we can glue negative definite cobordisms while retaining Property I

(Proposition 2.1 indicates that homology spheres fall into this cate-
gory), and those components M satisfying the Chern-Simons bound,
(2.1). This perspective will be quite useful, and leads to a criterion (see
Theorem 2.10) for a collection of homology spheres to be independent
in the homology cobordism group. The challenge of the present article
is to verify that branched double covers of Whitehead doubles of certain
torus knots satisfy this criterion.

Before delving any further into gauge theory, we remark that while
constructing moduli spaces of instantons with special properties may
seem intimidating to the uninitiated, Property I can often be easily
verified using purely topological techniques. Indeed, in addition to its
role in the cobordism obstruction, Proposition 2.1 can also be used
to show that many 3-manifolds form a boundary component of a 4-
manifold satisfying Property I , even if their interaction with gauge
theory is initially obscure; all we must do is find an appropriate cobor-
dism from the 3-manifold in question to a different 3-manifold known
to form one boundary component of a 4-manifold with Property I . In
fact, for the purpose of proving Theorem 1, it will suffice to know that
certain Seifert manifolds are boundary components of 4-manifolds with
Property I , with appropriate Chern-Simons bounds.

Proposition 2.3. ([19, Section 3], c.f. [13]) Let p, q, k > 0, and
gcd(p, q) = 1. There is a pair (X, e) with Property I , where e ∈ H2(X)
satisfies

−e2 = 1
pq(pqk−1) .

The boundary of X is the disjoint union of the Seifert fibered homology
sphere Σ(p, q, pqk − 1) and three lens spaces Yj, j = 1, 2, 3, which satisfy
the Chern-Simons bounds

τ(Y1, e1) ≥ 1
p , τ(Y2, e2) ≥ 1

q , and τ(Y3, e3) ≥ 1
pqk−1

for any classes ei ∈ H2(Yi).

2.2. A bit of gauge theory. In this subsection we fill in some of the
gauge theoretic gaps left by the discussion of the previous subsection.
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Our purpose here is to give a more precise definition of what it means
for a 4-manifold to have Property I , and to describe Chern-Simons
invariants and some of their key features. The treatment will be inten-
tionally terse, and a more detailed exposition is the primary purpose of
the companion article [19]. The discussion here could be viewed as a
guide and summary of [19].

As above, and for the remainder of this section, let W be a negative
definite 4-manifold satisfyingH1(W ;Z/2) = 0. We adopt the convention
that a 4-manifold is negative definite if the cup-square of any non-torsion
cohomology class is a negative multiple of the fundamental class. With
this convention, a 4-manifold with H2(W ;Q) = 0 is negative definite.
Also observe that since H1(W ;Z/2) = 0, being negative definite implies
∂W is a union of rational homology spheres. Thus all 3-manifolds in
our discussion satisfy H1(Y ;Z) = 0.

Given a 4-manifold W we can associate a relative Pontryagin number
to any pair (E,α), where E is an SO(3) bundle over W and α is a flat
connection on E|∂W . To do this, consider a connection A on E which
restricts to to α on the boundary, and define the relative Pontryagin
number p1(E,α) by

p1(E,α) = − 1

8π2

∫

W
Tr(F (A) ∧ F (A)),

where F (A) denotes the curvature 2-form of A. As the notation sug-
gests, this number is independent of the choice of connection extending
α.

A class e ∈ H2(W ;Z) determines the unique SO(2) vector bundle
Le over W with Euler class e. Stabilizing Le by taking a sum with
the trivial 1-dimensional real line bundle ǫ produces an SO(3) vector
bundle, denoted Ee

∼= Le ⊕ ǫ.
Now Le|∂W possesses a flat connection βe which is unique up to gauge

transformation (Lemma 2.10 of [19]). We can stabilize βe by the trivial
connection on ǫ to yield a flat connection on Ee|∂W . We will denote this
stabilized flat connection by αe.

For the pair (Ee, αe) we consider here, p1(Ee, αe) depends only on
(W, e). It can be calculated in terms of the intersection pairing of W :

p1(Ee, αe) = −e2 ∈ Q.

(See Proposition 2.13 of [19] for the identification p1(Ee, αe) = −e2.)

Closely related to p1(E,α) is the relative Chern-Simons invariant.
Given a rational homology 3-sphere Y and class e ∈ H2(Y ;Z), consider
the 4-manifold [0, 1]×Y and the corresponding class (which we continue
to denote by) e ∈ H2([0, 1] × Y ;Z). Let Ee denote the SO(3) bundle
over [0, 1]× Y determined by e, as described above. For any flat SO(3)
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connection γ on Ee|{0}×Y , choose a connection A on Ee whose restriction
to {t} × Y equals γ for t near 0 and equals αe for t near 1. Define

(2.2) cs(Y, γ, αe) = −
1

8π2

∫

[0,1]×Y
Tr(F (A) ∧ F (A)).

The set of values taken modulo 4,

{cs(Y, γ, αe) | γ a flat connection on Ee} ⊂ R/4Z,

is finite, since cs(Y,−, αe) is a locally constant function on the space of
gauge equivalence classes of flat connections on Ee, a space with finitely
many path components. Identifying R/4Z with (0, 4] in the obvious way,
define the minimum relative Chern-Simons invariant τ(Y, e) ∈ (0, 4] by

τ(Y, e) = min{cs(Y, γ, αe) | γ a flat connection on Ee}.
When e = 0 we write τ(Y ) = τ(Y, e).

The Chern-Simons invariant has a useful cobordism property. To
describe it, suppose we have a flat connection γ on an SO(3) bundle E

over a 3-manifold Y . Consider any extension of E to a bundle Ẽ over
some 4-manifold W with ∂W = Y . Then p1(Ẽ, γ) modulo Z depends
only on the pair (Y, γ), and not on our choice of W or the extension of
E. This is a consequence of the fact that the first Pontryagin number
of a bundle over a closed 4-manifold is an integer. In light of this, we
denote p1(Ẽ, γ) modulo 1, by cs(Y, γ). This becomes useful, due to the
obvious equality

cs(Y, γ, αe) = cs(Y, γ)− cs(Y, αe) mod Z.

With care, one can retain mod 4 information, but for our purposes it is
sufficient to estimate cs(Y, γ, αe) and τ(Y, e) modulo Z. In fact, many
of our estimates in Section 4 will come from the following lemma, which
is a simple consequence of the definitions.

Lemma 2.4. Let Y be a rational homology 3-sphere. Suppose that
for every flat connection γ on every SO(3) bundle over Y , cs(Y, γ) is a
rational number whose denominator divides p. Then τ(Y, e) ≥ 1

p for all

e ∈ H2(Y ).

For example, if Y has finite fundamental group of order p, then τ(Y, e) ≥
1
p for all e ∈ H2(Y ).

Having dispatched the Chern-Simons invariants, we turn our atten-
tion to Property I . We would like this to mean that a certain moduli
space of instantons M(W, e) is positive dimensional and has an odd
number of singularities. In order to understand this, we must first un-
derstand the definition ofM(W, e).

For analytic reasons, one attaches ends to W which are isometric to
[0,∞) × ∂W , with corresponding extensions of the bundle Ee|∂W . We
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then have a flat connection αe on the ends [0,∞) × ∂W . The mod-
uli space M(W, e) consists of gauge equivalence classes of instantons
on the bundle Ee which converge exponentially (with respect to appro-
priate Sobolev norms) along the ends to αe. Instantons, by definition,
are connections A on Ee whose curvature satisfies the elliptic partial
differential equation

F (A) = − ∗ F (A).

See Sections 2.1 and 2.3 of [19] for further analytic details and refer-
ences. The exponential decay condition ensures that the integral

− 1

8π2

∫

W∪([0,∞)×∂W )
Tr(F (A) ∧ F (A))

converges and equals p1(Ee, αe).
The natural notion of energy for a connection is given by the (nor-

malized) L2 norm of its curvature

||F (A)||2L2 =
1

8π2

∫

W∪([0,∞)×∂W )
Tr(F (A) ∧ ∗F (A)),

which, for an instanton, satisfies

||F (A)||2L2 = p1(Ee, αe) = −e2.
In particular, we see that the energy of an instanton inM(W, e) depends
only on the bundle Ee which supports it.

For the moduli space to have the requisite properties, it is necessary
to assume that the restriction of the flat connection αe to each com-
ponent Yi ⊂ ∂W is non-degenerate. By definition, this means that the
associated first cohomology group H1(Yi;R

3
αe
) vanishes. This holds, for

instance, when Yi is a rational homology sphere and e|Yi
vanishes. It

also holds for any e if Yi is a lens space. If non-degeneracy holds for
each Yi ⊂ ∂W , we will simply say that αe is non-degenerate.

Calculating the dimension ofM(W, e) amounts to performing an in-
dex calculation for the linearization of the instanton equation. In the
present context, we denote this index by Ind+(W, e). A formula for
Ind+(W, e) is given by Proposition 2.6 of [19]:

(2.3) Ind+(W, e) = −2e2−3+ 1
2

∑

{e|Yi is nontrivial}

(3−hαe (Yi)−ρ(Yi, αe)),

where Y1 ⊔ · · · ⊔Yn = ∂W . The quantities in the summation come from
the boundary terms in the Atiyah-Patodi-Singer theorem, and will be
ignored for our purposes. The key point is that they are only affected by
those components of ∂W on which the flat connection αe is non-trivial,
since hαe(Y ) = 3 and ρ(Y, αe) = 0 if e|Y = 0.

We will consider only the case that −e2 > 0. Then, if Ind+(W, e) >
0, one can perturb the Riemannian metric on W ∪

(
[0,∞) × ∂W

)
to
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ensure that M(W, e) is a smooth manifold away from a finite number
of singular points whose neighborhoods are homeomorphic to a cone on
CPN , where 2N + 1 = Ind+(W, e). In the situations which arise in this
article, N = 0. HenceM(W, e) is a 1-manifold with boundary.

We are now ready to make the following definition.

Definition 2.5. A compact, connected negative definite 4-manifold
W with H1(W ;Z/2) = 0 has Property I with respect to e ∈ H2(W ;Z)
provided that

• The class e satisfies −e2 < 2.
• The reducible flat connection αe on Ee|∂W is non-degenerate.
• Ind+(W, e) > 0.
• The number of singular points ofM(W, e) is odd.

For brevity, we will often say (W, e) satisfies Property I .

The number of singular points of M(W, e) is essentially determined
by the intersection form of W . To see how, let us use the notation
Sing(W, e) for the set of singular points ofM(W, e). Now define the set

C(W, e) =



 e′ ∈ H2(W ;Z)

∥∥∥∥∥∥

e′2 = e2

e′ = e mod 2
e′|Y = ±e|Y for each component Y ⊂ ∂W



 /±1.

Note that C(W, e) is finite since W is negative definite. Proposition 2.15
of [19] shows that there is an injective function

Sing(W, e) →֒ C(W, e).

In light of this, we abuse notation and consider Sing(W, e) as a subset
of C(W, e).

In certain circumstances we can easily conclude that Sing(W, e) =
C(W, e). One such situation occurs if C(W, e) contains a unique element
(necessarily e), and then Sing(W, e) has a unique element as well. An-
other case when a bijection is guaranteed occurs when H1(∂W ;Z/2) =
0. In general, to each e′ ∈ C(W, e) one can associate an obstruction liv-
ing in H1(∂W ;Z/2), whose vanishing ensures that e ∈ Sing(W, e) (see
Theorem 2.16 of [19]). In the next section we prove Proposition 2.1.
The proof shows that if e + 2a ∈ C(W, e) for a class a ∈ H2(W ) that
lifts to a torsion class ã ∈ H2(W,∂W ), then e+ 2a ∈ Sing(W, e).

In general, the question of whether a class e′ ∈ C(W, e) lies in
Sing(W, e) is purely topological. Indeed, e′ ∈ C(W, e) lies in Sing(W, e)
if and only if one can find an SO(2) subbundle

Le′ ⊂ Ee = Le ⊕ ǫ
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such that Le′ has Euler class e
′ and so that the restriction of Le′ to each

boundary component of W coincides with Le as unoriented subbundles.
See Lemma 2.12 of [19] for details.

2.3. Cobordism properties. Having introduced the necessary gauge
theory, we can now be more precise regarding the behavior of Property
I under cobordism, and its role as a cobordism obstruction. We observe
a natural way to partition the boundary components of 4-manifolds,
which we call a cs-partition. This notion leads to Corollary 2.8, a re-
fined version of Proposition 2.1. It also leads to a general independence
criterion, Theorem 2.10, which will be the foundational tool for this
article.

We begin by proving Proposition 2.1. Recall that this result says
Property I is preserved when a 4-manifold W having it is enlarged
by a negative definite 4-manifold Q, attached to ∂W along a homology
sphere. This yields a manifold X = Q ∪

Y
W .

Proof of Proposition 2.1. Assume that (W, e) satisfies Property I . We
wish to show that (X, ẽ) satisfies Property I , with ẽ = 0⊕e ∈ H2(X) ∼=
H2(Q)⊕H2(W ). This involves showing four things, and we begin with
the most challenging; namely, that the number of singular points of
M(X, ẽ) is odd.

Denote the boundary components of W by Y,R1, R2, · · · , Rn, and the
boundary components of Q by −Y, P1, · · · , Pm. Let T =Torsion(H2(Q,
∂Q)). Our assumption that H1(Q;Z/2) = 0 implies H2(Q) has no 2-
torsion and, since H2(Q, ∂Q) injects into H2(Q), that T has odd order.

Our first step is to show that C(X, ẽ) = T × C(W, e). We can de-
compose any ẽ′ ∈ C(X, ẽ) as ẽ′ = 2a + e + 2b, where a ∈ H2(Q) and
b ∈ H2(W ). Note that the splitting of H2(X) which allows this decom-
position is orthogonal with respect to the intersection form, and arises
because Y is a homology sphere. Thus

e2 = ẽ2 = ẽ′2 = 4a · a+ (e+ 2b) · (e+ 2b).

The restriction of 2a to ∂Q equals zero, since its restriction to Pi equals
±ẽ|Pi

= 0, and any class restricts to zero on Y (as it is a homology
sphere). If follows that 2a lifts to H2(Q, ∂Q), and hence a · a ∈ 1

2Z.
Since Q is negative definite, we see that 4a · a is a non-positive even
integer.

On the other hand, since W is negative definite, (e+2b) ·(e+2b) ≤ 0.
Hence

−2 < e2 ≤ 4a2.

This implies a2 = 0, so that a is a torsion class. Thus 2a is a torsion class
lifting toH2(Q, ∂Q). Injectivity ofH2(Q, ∂Q)→ H2(Q) implies that its
lift, which we also denote 2a, is torsion; that is, 2a ∈ T . Moreover, every
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class in T can be uniquely written in the form 2a (since multiplication
by 2 is an automorphism of any odd order group). Since a2 = 0, we
have (e + 2b) · (e + 2b) = e2, implying that e + 2b ∈ C(W, e). Hence
C(X, ẽ) = T × C(W, e), as asserted.

Next we show that Sing(X, ẽ) = T × Sing(W, e). Suppose first that
e′ = (e+ 2b) ∈ Sing(W, e) and choose a class 2a ∈ T ⊂ H2(Q, ∂Q). We
show that 2a+ (e+ 2b) ∈ Sing(X, ẽ).

The bundle Ee = Le⊕ ǫ over W admits an R2 subbundle Le+2b which
coincides with Le (perhaps as unoriented bundles) over the boundary
components Y,R1, · · · , Rn of W . The bundle Le (and hence also Le+2b)
is trivial over Y , since Y is an integer homology sphere. Any trivializa-
tion is unique up to homotopy, since [Y, SO(2)] = H1(Y ) = 0. Choose
a pair of non-vanishing linearly independent sections s1, s2 of Le over Y
and let s3 be the section of the trivial line bundle in Ee = Le ⊕ ǫ. Let
Ẽe be the R3 bundle over X obtained by gluing the trivial R3 bundle
over Q to Ee using the trivialization provided by s1, s2, s3 on Y . Then
Ẽe contains the subbundle L̃e+2b which agrees with Le+2b over W and
is trivial, spanned by s1, s2, over Q.

Choose a closed embedded surface F in the interior of Q representing
a. Since a is a torsion class, F has a neighborhood diffeomorphic to
F × D2. One can alter the section s3 over this neighborhood using a
map D2 → S2 which takes the boundary circle to (0, 0, 1) and wraps
the disk once around S2 ⊂ R3. Call this new (nonvanishing) section
s2a. Then the perpendicular planes to s2a determine an R2 subbundle
of Ẽe which agrees with L̃e+2b outside the neighborhood of F and has
Euler class 2a + e + 2b. We denote it by L2a+(e+2b) ⊂ Ẽe

∼= Eẽ. By

construction, L2a+(e+2b) and L̃e coincide outside the neighborhood of F
and, in particular, on each boundary component of X. Lemma 2.12 of
[19] then shows that 2a+ (e+ 2b) ∈ Sing(X, ẽ).

Conversely, suppose that ẽ′ = 2a+(e+2b) ∈ Sing(X, ẽ) ⊂ T×C(W, e).
Then there is an R2 subbundle Lẽ′ ⊂ Eẽ = Lẽ ⊕ ǫ which coincides with
Lẽ over the boundary components of X. We wish to isotope Lẽ′ slightly
so that it coincides with Lẽ in a neighborhood of Y .

Since Y is an integer homology sphere, the restrictions of Lẽ and
Lẽ′ to Y are trivial bundles. Choose a pair of non-vanishing linearly
independent sections s1, s2 of Lẽ over Y and let s3 be the section of
the trivial line bundle in Eẽ = Lẽ ⊕ ǫ. Similarly choose a pair of non-
vanishing linearly independent sections t1, t2 of Lẽ′ over Y and let t3 be
the section of the trivial line bundle perpendicular to Lẽ′ .

Comparing the trivializations gives a well-defined map f : Y → O(3).
By reversing the sign of t3, if necessary, we can assume f maps to SO(3).
If f is nullhomotopic, then we can use a nullhomotopy to construct a
gauge transformation on a collar neighborhood of Y in X which is the
identity near the boundary. Extending this to the rest of X by the
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identity we arrive at a gauge transformation g : Eẽ → Eẽ which, over
Y , satisfies the desired equality g(Lẽ′) = Lẽ.

A standard argument using the bundle over the double of W obtained
by clutching with f along Y and the identity along the other boundary
components, shows that 4 deg f = e · e− (e+2b) · (e+2b) = 0. Since Y
is an integer homology sphere this implies that f is nullhomotopic.

Thus we may assume that Lẽ′ coincides with Lẽ in a neighborhood of
Y . Restricting now to W and applying Lemma 2.12 of [19] shows that
e+ 2b = ẽ′|W ∈ Sing(W, e).

We conclude that if the number of singular points ofM(W, e) is odd,
then the number of singular points of M(X, ẽ) is also odd, since T is
an odd torsion group.

The remaining aspects of Property I are much simpler to verify.
The energy inequality follows from −ẽ2 = −e2 and the assumption
that (W, e) satisfies Property I . For non-degeneracy, observe that each
boundary component of Q is a rational homology sphere and ẽ|Q = 0.
Thus the reducible flat connection αẽ is trivial on each Pi ⊂ ∂Q, hence
non-degenerate. Non-degeneracy of αẽ on Ri follows from the fact that
αẽ|Ri

= αe|Ri
, and our assumption.

It remains to show Ind+(X, ẽ) > 0. But this follows from the fact
that Ind+(W, e) > 0, and the observation that Ind+(X, ẽ) = Ind+(W, e).
This latter observation, in turn, is an immediate consequence of Equa-
tion 2.3, noting that ẽ2 = e2, and that ẽ restricts to zero on each Pi.
Hence (X, ẽ) has Property I , as desired. q.e.d.

Proposition 2.2 shows that if (W, e) has Property I and Ind+(W, e) =
1, then some boundary component Y of W must satisfy τ(Y, e|Y ) ≤ −e2,
since otherwise M(W, e) would be a compact 1-manifold with an odd
number of boundary points. In fact, if (W, e) has Property I then there
exists Y ⊂ ∂W satisfying τ(Y, e|Y ) ≤ −e2, regardless of the index (see
Theorem 2.17 of [19]).

In combination with Proposition 2.1, this suggests a strategy for ob-
structing the existence of certain 4-manifolds. Roughly speaking, given
a pair (W, e) with Property I , partition the boundary components ofW
into two sets. First, those components Y satisfying the Chern-Simons
bound τ(Y, e|Y ) > −e2 and second, the remaining components, all of
which are integer homology spheres. Now we attach negative definite
4-manifolds to these latter components which, according to Proposi-
tion 2.1, preserves Property I . Continuing in this fashion one builds a
negative definite 4-manifold with a partition of its boundary into homol-
ogy spheres and rational homology spheres satisfying the Chern-Simons
bound. If the remaining homology spheres were to bound a rational ho-
mology punctured ball Q, then gluing the two manifolds together would
yield a 4-manifold satisfying Property I and Chern-Simons bounds on
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all its boundary components. This results in a compact moduli space
with an odd number of singular points, contradicting the existence of
Q.

We introduce some notation to formalize this outline.

Definition 2.6. A triple (W, e, b), where W is a compact 4-manifold
with boundary, e ∈ H2(W ), and 0 < b ∈ R a positive real number, is
said to admit a cs-partition if the boundary of W can be partitioned
into two disjoint sets,

∂W = ∂glW ⊔ ∂csW

in such a manner that

• each component of ∂glW is an integer homology sphere, and
• each component Y ⊂ ∂csW satisfies the Chern-Simons bound
τ(Y, e|Y ) > b.

In general (W, e, b) need not admit any cs-partitions. Moreover, cs-
partitions need not be unique since some homology sphere components
of ∂W could be considered either in ∂glW or ∂csW if their Chern-Simons
invariants satisfy the appropriate bound. Proposition 2.2 implies the
following.

Proposition 2.7. Let (W, e, b) be a triple admitting a cs-partition
with W negative definite, ∂glW empty, 0 < −e2 < 4, and Ind+(W, e)
positive. Then M(W, e) is compact and the cardinality of Sing(W, e) is
even.

Proposition 2.1 has the following corollary.

Corollary 2.8. Suppose (W, e) satisfies Property I and (W, e,−e2)
admits a cs-partition. Suppose that Q is a compact, connected, negative
definite 4-manifold with H1(Q;Z/2) = 0 and suppose (Q, 0,−e2) admits
a cs-partition ∂glQ ⊔ ∂csQ. Finally, suppose Y is an integer homology
sphere such that Y ⊂ ∂glW and −Y ⊂ ∂glQ.

Then (X = Q ∪
Y
W, ẽ) satisfies Property I and (X, ẽ,−e2) admits a

cs-partition with

1) ẽ = 0⊕ e ∈ H2(X),
2) ∂glX = (∂glQ ⊔ ∂glW ) \ Y, and
3) ∂csX = ∂csQ ⊔ ∂csW .

As an illustration of these ideas, we have the following result.

Proposition 2.9. Let Y be an integer homology sphere. Suppose
there is a pair (W, e) with Property I , and (W, e,−e2) admits a cs-
partition with Y = ∂glW . Further suppose that there is a negative def-
inite 4-manifold W ′, and (W ′, 0,−e2) admits a cs-partition with Y =
∂glW . Then no multiple of Y bounds a 4-manifold with the Z/2-homology
of a punctured ball.



INSTANTONS, CONCORDANCE, AND WHITEHEAD DOUBLING 297

Proof. Suppose, to the contrary, that there exists a 4-manifold Q
satisfying H i(Q;Z/2) = 0 for i = 1, 2 and with ∂Q = nY , where nY =
sign(n)Y ⊔· · ·⊔ sign(n)Y denotes the disjoint union of |n| copies of Y or
−Y , with the orientation of Y depending on the sign of n. Note that by
reversing the orientation of Q, if necessary, we may assume that n < 0.

Now to one boundary component of Q attach a copy of W and to the
remaining components attach copies of W ′. This produces a manifold X
satisfying H2(X) ∼= H2(Q)⊕H2(W )⊕n−1

i=1 H2(W ′). Let ẽ = 0⊕ e⊕ 0⊕
0⊕ · · · ⊕ 0 with respect to this decomposition. Induction and Corollary
2.8 imply that (X, ẽ) satisfies Property I and that (X, ẽ,−e2) admits
a cs-partition with ∂glX empty. Proposition 2.7 therefore implies that
M(X, ẽ) is compact with an even number of singular points. But since
(X, ẽ) satisfies Property I , M(X, ẽ) has an odd number of singular
points, a contradiction. q.e.d.

The above proposition is useful in showing that a particular knot has
infinite order in the concordance group. There are many techniques for
proving such a result (see Section 5), but our broader aim is to develop
a practical method to prove that a set of knots are independent. The
following result will be instrumental in accomplishing this goal.

Theorem 2.10. Let {Yi}Mi=1 be a set of oriented integer homology
spheres. For each i, suppose there is a pair (Wi, ei) with Property I and
a negative definite 4-manifold W ′

i , so that (Wi, ei,−e2i ) and (W ′
i , 0,−e2i )

admit cs-partitions with Yi = ∂glWi = ∂glW
′
i . If, after reindexing if

necessary,

−e2i < τ(±Yj) for all j < i,

then no combination

n1Y1 ⊔ n2Y2 ⊔ ... ⊔ nMYM , ni ∈ Z

bounds a 4-manifold with the Z/2-homology of a punctured 4-ball.

Proof. Suppose, to the contrary, that there exists a 4-manifold Q with
the Z/2-homology of a punctured 4-ball and ∂Q = n1Y1 ⊔ n2Y2 ⊔ ... ⊔
nMYM . By reorienting Q if necessary we may assume that nM < 0.

Consider the triple (Q, 0,−e2M ). This admits a cs-partition with
∂glQ = |nM |(−YM ), by our assumption that −e2M < τ(±Yi) for i < M .
Let X be the 4-manifold obtained by gluing WM and (|nM | − 1)W ′

M to
Q along ∂glQ. Let ẽ ∈ H2(X) be the unique class whose restriction to
WM equals eM and whose restriction to Q and each copy of W ′

M equals
zero.

Corollary 2.8 and induction then shows that (X, ẽ) satisfies Property
I and (X, ẽ,−e2M ) admits a cs-partition with ∂glX empty. But since
(X, ẽ) satisfies Property I , M(X, ẽ) has an odd number of singular
points, contradicting Proposition 2.7. q.e.d.
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A

C

Figure 2. The Whitehead link. Identifying S3 \ n(A)
with n(K) allows us to view C as a satellite knot living
in n(K). This satellite is the Whitehead double D(K).

3. The topology of branched covers of Whitehead doubles

Theorem 1 is proved by using the instanton cobordism obstruction to
show that 2-fold branched covers of linear combinations of Whitehead
doubles cannot bound Z/2-homology balls. To apply the obstruction,
it will be useful to understand the 2-fold branched covers of Whitehead
doubles from a topological perspective. We begin by recalling some
background and establishing notation.

3.1. Preliminaries and Notation. We will often work in the context
of oriented manifolds with boundary. Boundaries of all manifolds will
be oriented by the outward normal first convention.

Given an oriented knot K ⊂ S3, let D(K) denote the positive-clasped
untwisted Whitehead double of K. This is a satellite knot of K, defined
as follows. Consider the Whitehead link A ∪ C ⊂ S3, shown in Figure
2. The component labeled A is unknotted, and thus its complement
S3 \ n(A) (we use n(K) throughout to denote an open tubular neigh-
borhood of K) is homeomorphic to a solid torus D2×S1 in such a way
that the meridian of A corresponds to {1} × S1 and the longitude of A
corresponds to ∂D2×{1}. Identify this solid torus with a neighborhood
ofK by a homeomorphism which takes the meridian of A to the (Seifert)
longitude for K and the longitude of A to the meridian for K. Under
this homeomorphism, the image of C becomes a knot D(K) ⊂ S3, the
positive-clasped untwisted Whitehead double of K.

As mentioned in the introduction, the set of oriented knots modulo
the concordance relation forms an abelian group C. Addition in C is
played by connected sum of knots, and the inverse operation corresponds
to taking the reverse mirror image; that is, in a given projection of K we
simultaneously change all crossings (from over to under and vice versa)
and reverse the orientation of K as a 1-manifold. In light of this, we
let −K denote the reverse mirror image of K and K1 +K2 denote the
connected sum of K1 with K2. Thus K1 −K2 means K1 + (−K2).
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In a similar vein, we use the notation M1 +M2 for the oriented con-
nected sum of oriented 3-manifolds, and −M for the manifold M with
its orientation reversed, so that M1−M2 = M1+(−M2). The notation
is motivated by the fact that 3-manifolds, like knots, can be endowed
with group structures if we take into account various cobordism rela-
tions. For our purposes, two oriented 3-manifolds, M1,M2, satisfying
H∗(Mi;Z/2) ∼= H∗(S

3;Z/2) are called Z/2-homology cobordant if there
is a smooth oriented 4-manifold Q satisfying ∂Q = −M1 ⊔ M2 and
H∗(Q;Z/2) ∼= H∗(S

3 × I;Z/2). The set of Z/2-homology cobordism
classes form a group called the Z/2-homology cobordism group, denoted
ΘZ/2.

We will use Σ(K) to denote the 2-fold branched cover of S3, branched
over K. Since the Alexander polynomial of D(K) equals 1, every cyclic
branched cover of D(K) is an integer homology 3-sphere and, in partic-
ular, gives rise to an element in ΘZ/2.

The following well-known lemma obstructs sliceness by studying the
Z/2-homology cobordism class of a knot’s 2-fold branched cover. For a
proof, see [4, Lemma 2].

Lemma 3.1. Let K ⊂ S3 be a knot. Then Σ(K) is a Z/2 homol-
ogy 3-sphere; that is, H∗(Σ(K);Z/2) ∼= H∗(S

3;Z/2). If K is slice,
then Σ(K) = ∂Q, where Q is a Z/2-homology 4-ball, H∗(Q;Z/2) ∼=
H∗(B

4;Z/2).

Note that Σ(−K) = −Σ(K), and Σ(K1 + K2) = Σ(K1) + Σ(K2)
(for the latter statement, the reducing sphere in the branched cover is
obtained as the branched cover of the sphere used in the non-ambient
definition of K1 + K2). Together with the lemma, these observations
show that the 2-fold branched cover operation induces a homomorphism:

Σ : C → ΘZ/2.

As mentioned, we will prove Theorem 1 by showing that the image in
ΘZ/2 of linear combinations of Whitehead doubles are not zero. For this
we have the following corollary of Theorem 2.10.

Corollary 3.2. Let {Ki}Mi=1 be a set of knots. For each i, sup-
pose there is a pair (Wi, ei) with Property I and a negative definite 4-
manifold W ′

i , so that (Wi, ei,−e2i ) and (W ′
i , 0,−e2i ) admit cs-partitions

with Σ(Ki) = ∂glWi = ∂glW
′
i . If

−e2i < τ(±Σ(Kj)) for all j < i,

then {Ki}Mi=1 is independent in C.
Proof. If n1K1# · · ·#nMKM is slice for some ni ∈ Z, then Lemma

3.1 shows that

Σ(n1K1# · · ·#nMKM ) ∼= n1Σ(K1)# · · ·#nM(KM ) = ∂Q,
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where Q is a Z/2-homology ball. There is a natural cobordism from the
connected sum of 3-manifolds to the disjoint union, obtained by attach-
ing 3-handles along the reducing 2-spheres of the prime decomposition.
Attaching this cobordism to the boundary of Q results in a 4-manifold
with the Z/2-homology of a punctured ball, and whose boundary is

n1Σ(K1) ⊔ · · · ⊔ nM(KM ).

Theorem 2.10 yields the result. q.e.d.

3.2. Decomposition of Σ(D(K)) and presentation of π1. This sub-
section has two purposes. The first is to obtain a description of the 2-fold
branched cover of the Whitehead double of K as a union of three simple
pieces: two copies of S3 \ n(K), together with the complement of the
(2, 4) torus link. This decomposition will be used throughout the pa-
per. With an eye towards calculating the Chern-Simons invariants, the
second aim is to find a suitable presentation of the fundamental group
of the (2, 4) torus link complement.

To begin our analysis, note that D(K) can be described in a slightly
different way. Namely, we can construct D(K) by replacing a tubular
neighborhood of the A component of the Whitehead link by S3 \ n(K).
After this identification, the C component represents D(K). To make
this precise, we must specify the way that boundary tori are identified.
To this end, denote the meridian and longitude of K by µK and λK ,
respectively. Similarly, denote the meridian and longitude of the A
component of the Whitehead link by µA and λA. Then the union

S3 \ n(K) ∪
(µK ,λK)=(λA ,µA)

S3 \ n(A)

is homeomorphic to the 3-sphere, and the image of C under this identi-
fication is equivalent to D(K). The notation is meant to indicate that
the two manifolds are glued by a diffeomorphism of their boundary tori
which interchanges meridian-longitude pairs. Using this description of
the Whitehead double, we can easily obtain the following decomposition
of its 2-fold branched cover.

Proposition 3.3. Given a knot K ⊂ S3, the 2-fold branched cover
Σ(D(K)) of S3 branched over D(K) has a decomposition (see Figure 3)

Σ(D(K)) = X1 ∪
T1

Y ∪
T2

X2,

where

1) Xi = S3 \n(K), for i = 1, 2. The framing of ∂Xi is inherited from
the standard meridian-longitude for K, and denoted µKi

, λKi
.

2) Y = S3 \ n(A1 ∪A2), where A1 ∪A2 ⊂ S3 is the (2, 4) torus link,
as in Figure 3.

3) Ti is oriented so that µKi
· λKi

= 1, i = 1, 2.
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4) X1, Y, and X2 are oriented so that ∂X1 = −T1, ∂X2 = −T2,
∂Y = T1 ⊔ T2.

5) The gluing identifications ∂Xi ⊂ ∂Y are specified by

µKi
= µ−2

Ai
λAi

and λKi
= µAi

for i = 1, 2,

where µAi
, λAi

, i = 1, 2 denote the standard meridian-longitude
pairs for A1 ∪A2.

Proof. First, note that the Whitehead link admits an isotopy that
interchanges its components. Figure 4 applies this isotopy to the de-
scription of the Whitehead double which preceded the proposition. Note
that λA appears to acquire two additional meridional twists during the
isotopy; these are added to cancel out the twists coming from the writhe
of the new projection of A.

It is now clear that our description of the 2-fold branched cover of
D(K) holds. Indeed, the manifold presented by Figure 3 has an obvi-
ous Z/2-symmetry; namely, the rotation by π about the axis which is
perpendicular to the plane of the page and which passes through the
central marked point. Forming the quotient of this action produces the
manifold shown in the second part of Figure 4, with C representing the
image of the axis (together with the point at infinity) under the quotient
projection. Since the axis coincides with the fixed set of the rotation,
Figure 3 presents the 2-fold branched cover of Figure 4 branched over C
which, by our previous description, is equivalent to D(K) ⊂ S3. q.e.d.

µA2
= λK2

µK2

A2

A1µA1
= λK1

µK1

π

Figure 3.

When analyzing moduli spaces of flat SO(3) connections, we will need
a presentation of the fundamental group of Y = S3 \n(A1 ∪A2). Recall
that loops in a knot or link diagram are based by connecting them to
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µA = λK

µA = λK

λA = µK

λA = µK
A

AC

C

∼

Figure 4.

a base point lying above the plane of the projection by a straight line
segment. In this way the loops µAi

, λAi
in Figure 3 represent elements

of π1(Y ). Eliminating generators from the Wirtinger presentation yields
the following.

Proposition 3.4. The meridians µA1
and µA2

generate the funda-
mental group of Y . Indeed, we have a presentation:

π1(Y ) = 〈 µA1
, µA2

| [µ−1
A1

, µA2
][µA1

, µ−1
A2

] 〉.
The longitudes can be described in this presentation by

λA1
= µA1

µA2
µ−1
A1

µA2
, λA2

= µA2
µA1

µ−1
A2

µA1
.

Moreover, the loop (µA1
µ−1
A2

)2 lies in the center of π1(Y ).

3.3. Some useful cobordisms. In this subsection, we complete our
topological understanding of the 2-fold branched covers by constructing
negative definite cobordisms from Σ(D(Tp,q)) to certain Seifert fibered
manifolds, Σ(p, q, 2pq − 1). The motivation underlying this construc-
tion is provided by the fact that such a Seifert fibered manifold forms
one boundary component of a 4-manifold with Property I . According
to Proposition 2.1, gluing these latter 4-manifolds to the cobordisms
provided here will verify that Σ(D(Tp,q)) also forms one boundary com-
ponent of a 4-manifold with Property I .

We begin with a useful lemma which is undoubtedly familiar to those
working with the Kirby calculus (similar observations can be found, for
instance, in [7, Lemma 3.4]). In essence, the lemma says that performing
crossing changes to a knot leads to a cobordism (rel boundary) between
knot complements. Keeping track of the sign of the crossings determines
the intersection form of these cobordisms.
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negative positive

Figure 5. Changing a crossing. Outside a ball, two
knots agree. Making a modification in this ball which
passes from left to right is called a negative-to-positive
crossing change.

Lemma 3.5. Let K1,K2 be oriented knots in an oriented homology
3-sphere Σ. Suppose that K1 can be transformed to K2 by p positive-to-
negative and n negative-to-positive crossing changes (see Figure 5).

Then adding 2-handles to [0, 1]×(Σ\n(K1)) produces a cobordism rel
boundary from Σ \ n(K1) to Σ \ n(K2); that is, an oriented 4-manifold
V with boundary decomposing as

∂V = −
(
Σ \ n(K1)

)
∪

{0}×T

(
[0, 1] × T

)
∪

{1}×T

(
Σ \ n(K2)

)
,

where T is the oriented boundary of the neighborhood of K1. This cobor-
dism satisfies

1) There is an isomorphism H1(V ) ∼= Z which extends the linking
number H1(Σ \ n(Ki))→ Z for i = 1, 2.

2) Let H be a 3-manifold satisfying H∗(H;Q) ∼= H∗(S
1×D2;Q) (and

hence ∂H ∼= T ). Then any 4-manifold obtained by gluing [0, 1]×H
to V along [0, 1]×T ⊂ ∂V so that the two boundary components are
rational homology 3-spheres has intersection form 〈−1〉⊕p⊕〈1〉⊕n.

Proof. Attach 2-handles to [0, 1]×Σ along unknotted −1 framed cir-
cles in {1} × Σ which encircle each crossing one wishes to change from
positive to negative, and attach 2-handles to [0, 1] × Σ along unknot-
ted +1 framed circles which encircle each crossing one wishes to change
from negative to positive. Choose the attaching circles to have linking
number zero with K1. Since the handles are attached along unknots,
the resulting 4-manifold W satisfies ∂W = −Σ ⊔ Σ. As K1 lies in
the complement of the attaching regions for the 2-handles, its trace
[0, 1] × K1 is a properly embedded annulus in W which we denote by
F . Let V = W \ n(F ).

Now W is diffeomorphic to the connected sum of [0, 1] × Σ with p
copies of −CP 2 and n copies of CP 2. Hence H1(W ) = 0 and W has
diagonal intersection form 〈−1〉⊕p⊕〈1〉⊕n. SlidingK1 over the 2-handles
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shows that

∂(W,F ) = −(Σ,K1) ⊔ (Σ,K2).

Thus V is a cobordism rel boundary from Σ \ n(K1) to Σ \ n(K2).
The condition that the attaching circles for the 2-handles have linking

number zero with K1 ensures that the annulus F is null-homologous;
that is, [F, ∂F ] = 0 ∈ H2(W,∂W ) ∼= H2(W ). Thus the linking num-
ber H1(V ) = H1(W \ n(F )) → Z extends the linking number H1(Σ \
n(Ki)) → Z for i = 1, 2. Since H1(W ) = 0, the linking number yields
an isomorphism H1(V ) ∼= Z.

The homomorphism H2(W,V ) → H1(V ) is an isomorphism and
H3(W,V ) → H2(V ) is zero. This implies H2(V ) ∼= H2(W ). Since the
generators of H2(W ) can be represented by cycles which miss F (which,
again, follows from the fact the attaching circles for the 2-handles have
zero linking with K1) it follows that V , like W , has intersection form
〈−1〉⊕p ⊕ 〈1〉⊕n. Gluing [0, 1]×H to V along F ×S1 = [0, 1]× T yields
a 4-manifold with intersection form 〈−1〉⊕p ⊕ 〈1〉⊕n, provided that this
gluing does not create any additional second homology. However, the
assumption that the boundary components of the glued manifold are
rational homology spheres implies H2(V ) = H2(([0, 1] ×H) ∪

[0,1]×T
V ).

q.e.d.

Recall that our decomposition of the 2-fold branched cover of D(K)
contains two copies of S3 \ n(K). The previous lemma allows us to
construct cobordisms from these knot complements to a solid torus (the
complement of the unknot) which, in turn, yield cobordisms from D(K)
to simpler manifolds. If K can be unknotted by changing positive cross-
ings, these cobordisms will be negative definite. The following lemma
makes this precise. In the statement, S3

p
q

(K) denotes the result of Dehn

surgery on K with slope p
q .

Lemma 3.6. Suppose K is a knot which can be unknotted by positive-
to-negative crossing changes. Then there is a negative definite 4-mani-
fold N(K) with H1(N(K)) = 0, and

∂N(K) = −Σ(D(K)) ⊔ S3
1

2

(K).

Proof. The hypothesis allows us to use Lemma 3.5 to produce a cobor-
dism rel boundary V (K) between S3 \ n(K) and S3 \ n(U). Thus

∂V (K) = −
(
S3 \ n(K)

)
∪

{0}×T

(
[0, 1] × T

)
∪

{1}×T

(
S3 \ n(U)

)
.

Since only positive crossings were changed, V (K) is negative definite.
The meridian and longitude of K induce an identification of the sub-
manifold [0, 1] × T ⊂ ∂V (K) with [0, 1] × S1 × S1.
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Recall the decomposition of Proposition 3.3 (c.f. Figure 3)

Σ(D(K)) = X1 ∪
T1

Y ∪
T2

X2,

with Xi = S3 \ n(K) and gluing identifications on the boundary tori
specified by µKi

= µ−2
Ai

λAi
and λKi

= µAi
.

In light of this decomposition, let

H = X1 ∪
T1

Y.

Then [0, 1]×H is a (product) rel boundary cobordism from H to itself.
Form the 4-manifold N(K) by gluing [0, 1] × H and V (K) together
along [0, 1]×T2 using the identification indicated above. Then N(K) is
negative definite, with boundary components

∂−(N(K)) = −
(
H ∪

T2

S3 \ n(K)
)
= −

(
H ∪

T2

X2

)
= −Σ(D(K))

and
∂+(N(K)) = H ∪

T2

(S3 \ n(U)).

Since S3 \ n(U) is a solid torus, ∂+(N(K)) is obtained from H by
Dehn filling ∂H = T2 or, equivalently, from X1 ∪T1

(S3 \ n(A1)) by
Dehn surgery on A2. This is the trivial slope (i.e. 1

0) Dehn surgery,

since the longitude λU bounds a disk in S3 \ n(U) and λU is identified
with µA2

.
Therefore,

∂+(N(K)) = X1 ∪
T1

(S3 \ n(A1)).

Note, however, that A1 is also unknotted so S3 \ n(A1) is a solid torus.
Since X1 = S3 \ n(K), it follows that ∂+(N(K)) is a Dehn surgery
on K. To understand which surgery, observe that the longitude λA1

bounds a disk in S3 \ n(A1), so the Dehn surgery is the one for which
λA1

= µ2
A1

µK1
= λ2

K1
µK1

is killed, i.e.

∂+(N(K)) = S3
1

2

(K).

Thus ∂N(K) = −Σ(D(K)) ⊔ S3
1

2

(K), as claimed.

Examining the construction in the proof of Lemma 3.5 shows that
N(K) is obtained from I×Σ(D(K)) by attaching 2-handles, and hence
H1(N(K)) = 0. q.e.d.

Let p, q be a pair of relatively prime positive integers, and denote by
Tp,±q the (p,±q) torus knot. For k > 0, the Seifert fibered homology
sphere −Σ(p, q, pqk∓ 1) is diffeomorphic to S3

1

k

(Tp,±q) as oriented man-

ifolds [36, Proposition 3.1]. In particular, S3
1

k

(Tp,q) = −Σ(p, q, kpq − 1)

for k > 0. Since Tp,q has a projection with all positive crossings, Lemma
3.6 yields the cobordisms promised at the beginning of this subsection
as an immediate corollary.
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Corollary 3.7. Given p, q > 0 relatively prime, there exists a pair
(Wp,q, e) with Property I , with ∂Wp,q the disjoint union of the (oppo-
sitely oriented) 2-fold branched cover of the Whitehead double of Tp,q

and three lens spaces Yi

∂Wp,q = −Σ(D(Tp,q)) ⊔ Y1 ⊔ Y2 ⊔ Y3.

The class e satisfies −e2 = 1
pq(2pq−1) , and the triples (Wp,q, e,

1
pq(2pq−1))

and (Wp,q, 0,
1

pq(2pq−1)) admit a cs-partition with ∂glWp,q = −Σ(D(K)).

Proof. According to Proposition 2.3, there is a pair (X, e) satisfy-
ing Property I such that the boundary of X is the disjoint union of
Σ(p, q, 2pq − 1) and three lens spaces Y1 ⊔ Y2 ⊔ Y3. Moreover, the lens
spaces satisfy the Chern-Simons bounds

τ(Yi, ei) > −e2 = 1
pq(2pq−1) ,

for any classes ei ∈ H2(Yi). Thus (X, e,−e2) and (X, 0,−e2) admit
cs-partitions with

∂glX = Σ(p, q, 2pq − 1) ∂csX = Y1 ⊔ Y2 ⊔ Y3.

Let N(Tp,q) be the negative definite manifold of Lemma 3.6, whose
boundary is

∂N(Tp,q) = −Σ(D(Tp,q)) ⊔ S3
1

2

(Tp,q) = −Σ(D(Tp,q)) ⊔ −Σ(p, q, 2pq − 1).

Gluing N(Tp,q) to X yields a negative definite 4-manifold Wp,q, with
boundary

∂Wp,q = −Σ(D(Tp,q)) ⊔ Y1 ⊔ Y2 ⊔ Y3.

Extend the class e by zero over N(Tp,q). Then Corollary 2.8 implies that

(Wp,q, e) satisfies Property I , and that the triples (Wp,q, e,
1

pq(2pq−1))

and (Wp,q, 0,
1

pq(2pq−1)) admit a cs-partition with ∂glWp,q = −Σ(D(K)).

q.e.d.

4. Chern-Simons invariants and the proof of Theorem 1

In this section we bring together our newfound topological under-
standing of the 2-fold branched covers of Whitehead doubles with the
instanton obstruction developed in Section 2. Before beginning, we
observe that Proposition 2.9 and Corollary 3.7 have an immediate con-
sequence; namely, that the Whitehead double of Tp,q has infinite order
in the smooth knot concordance group when p, q > 0. This result can
be seen by a variety of methods (see, for instance, nearly all the ref-
erences mentioned in the introduction). Proving Theorem 1, however,
is clearly a big leap from this result. It involves studying the interac-
tion between different Whitehead doubles in C. To accomplish this, we
would like to use our independence criterion (Theorem 2.10) or, more
precisely, its corollary (Corollary 3.2). Since Corollary 3.7 has already
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provided the requisite 4-manifolds, it remains to understand the Chern-
Simons invariants of Σ(D(Tp,q)). The present section develops such an
understanding.

4.1. Chern-Simons invariants of Σ(D(K)). We begin in some gen-
erality, analyzing the flat moduli spaces and Chern-Simons invariants
of Σ(D(K)) for an arbitrary knot K. In the next subsection we apply
this analysis to the torus knots at hand.

For any finite CW complex X and compact Lie group G, let χG(X)
denote the space of conjugacy classes of representations π1(X)→ G.

For a knot K ⊂ S3, the moduli space of flat SO(3) connections
on Σ(D(K)) is homeomorphic (in fact analytically isomorphic [11]) to
χSO(3)(Σ(D(K))). Given any Z/2–homology sphere Σ, a simple ob-
struction theory argument shows that the 2-fold cover SU(2)→ SO(3)
induces a bijection between the space χSU(2)(Σ) of conjugacy classes of
SU(2) representations of π1(Σ) and the space χSO(3)(Σ) of conjugacy
classes of SO(3) representations. Indeed, the obstruction to lifting a
representation γ : π1(Σ) → SO(3) to SU(2) lies in H2(Σ;Z/2), which
vanishes since Σ is a Z/2-homology sphere. A similar argument using
the fact that H1(Σ;Z/2) = 0 shows that the lift is unique.

Since Σ(D(K)) is a homology 3-sphere,

χSU(2)(Σ(D(K))) = χSO(3)(Σ(D(K))).

The map BSU(2) → BSO(3) induced by the 2-fold cover SU(2) →
SO(3) takes the first Pontryagin class p1 ∈ H4(BSO(3)) to −4c2 ∈
H4(BSU(2)), where c2 denotes the second Chern class. More gener-
ally, the corresponding identification of Lie algebras a : su(2) → so(3)
satisfies Tr3(a(x)

2) = 4Tr2(x
2), where Trn denotes the trace on n × n

matrices. It follows that the second Chern form of an SU(2) connec-
tion, c2(A) = 1

8π2 Tr2(F (A) ∧ F (A)), and the first Pontryagin form of

the corresponding SO(3) connection, p1(a(A)) = − 1
8π2 Tr3(a(F (A)) ∧

a(F (A))), satisfy c2(A) = −4p1(A). Thus for a Z/2-homology sphere,
the SO(3) Chern-Simons invariant of a representation γ (defined in
terms of the first Pontryagin form) and the SU(2) Chern-Simons invari-
ant (defined in terms of the second Chern form) of its unique lift γ̃ are
related by cs(γ) = −4cs(γ̃).

These observations allow us to work in the technically and notation-
ally simpler context of SU(2) representations. We will identify SU(2)
with the unit quaternions, so that the diagonal maximal torus corre-
sponds to the subgroup of unit complex numbers {eiθ}.

To ensure that the instanton moduli space is compact requires estab-
lishing Chern-Simons bounds, as explained in Section 2. Obtaining an
explicit description of the moduli space of flat SO(3) connections on a
closed 3-manifold sufficient to estimate all Chern-Simons invariants is a
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difficult problem in general, but it turns out that for the 2-fold branched
cover of the Whitehead double of a knot there are essentially only two
kinds of interesting flat connections, as we next explain.

We return once again to the decomposition of Proposition 3.3

Σ(D(K)) = X1 ∪
T1

Y ∪
T2

X2,

with the gluing identifications on the boundary tori specified by µKi
=

µ−2
Ai

λAi
, and λKi

= µAi
.

The space χSU(2)(Σ(D(K))) decomposes into eight subsets as fol-
lows. Given labels x1, y, x2 ∈ {A,N} let χSU(2)(Σ(D(K)))x1yx2

denote
those conjugacy classes of SU(2) representations of π1(Σ(D(K))) whose
restriction to the subgroups π1(X1), π1(Y ), π1(X2) have image (respec-
tively) an abelian or non-abelian subgroup of SU(2).

More precisely, the inclusion of X1 into Σ(D(K)) induces a homomor-
phism on fundamental groups. Composing this with a representation
γ̃ : π1(Σ(D(K))) → SU(2) yields a representation π1(X1) → SU(2)
whose image is either an abelian or non-abelian subgroup of SU(2).
Changing γ̃ within its conjugacy class (or changing the base point) does
not change the type of this image. Thus the label x1 ∈ {A,N} can un-
ambiguously be assigned to the conjugacy class of γ̃. Similar comments
apply to Y and X2.

The following theorem shows that only three of these eight subsets of
χSU(2)(Σ(D(K))) are interesting.

Theorem 4.1. Let K ⊂ S3 be any knot. Then the four subspaces

χSU(2)(Σ(D(K)))ANN χSU(2)(Σ(D(K)))NNA

χSU(2)(Σ(D(K)))ANA χSU(2)(Σ(D(K)))NNN

are empty. The subspace χSU(2)(Σ(D(K)))AAA contains only the trivial
representation.

Thus every non-trivial representation lies in one of

χSU(2)(Σ(D(K)))AAN χSU(2)(Σ(D(K)))NAA χSU(2)(Σ(D(K)))NAN .

The branched covering transformation induces an involution on these
three subsets that exchanges the first two and leaves the third invariant.

Proof. We use the presentation for π1(Y ) derived in Proposition 3.4.
We first show that the restriction of any SU(2) representation of

π1(Σ(D(K))) to π1(Y ) has image an abelian subgroup of SU(2). Sup-
pose to the contrary that there exists a representation γ̃ : π1(Σ(D(K)))
→ SU(2) whose restriction to π1(Y ) has non-abelian image. The cen-
tralizer of any non-abelian subgroup of SU(2) consists only of the center
{±1}. The loop (µA1

µ−1
A2

)2 lies in the center of π1(Y ), and hence is sent
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by γ̃ to ±1. Thus
γ̃(µK1

) = γ̃(µ−2
A1

λA1
) = γ̃(µ−1

A1
µA2

µ−1
A1

µA2
)

= γ̃(µ−1
A1

(µA1
µ−1
A2

)−2µA1
) = ±1.

Since X1 is the complement of a knot in S3, π1(X1) is normally
generated by its meridian µK1

. Therefore γ̃ sends every loop in π1(X1)
to {±1}. In particular, we have

γ̃(λK1
) = γ̃(µA1

) ∈ {±1}
Since both ±1 are central, the fact that π1(Y ) is generated by µA1

and
µA2

, implies that the restriction of γ̃ to π1(Y ) is abelian. This contra-
dicts our assumption, and hence every representation of π1(Σ(D(K)))
restricts to an abelian representation of π1(Y ).

Now suppose that γ̃ ∈ χSU(2)(Σ(D(K)))AAA. We must show that γ̃ is
the trivial representation. We may assume, by conjugating γ̃ if needed,
that the restriction of γ̃ to π1(Y ) takes values in the maximal torus
{eiθ}. In particular, γ̃(µA1

) and γ̃(λA1
) lie in this torus. Thus there

exists an angle θ0 so that γ̃(µ−2
A1

λA1
) = eiθ0 .

Since µK1
= µ−2

A1
λA1

generates H1(X1) and the restriction of γ̃ to

π1(X1) is abelian, the restriction of γ̃ to π1(X1) factors through
H1(X1) = Z〈µK1

〉. Thus every loop in π1(X1) is sent to the subgroup
of the maximal torus generated by eiθ0 . It follows that the restriction
γ̃ : π1(X1) → SU(2) has image in the (same) maximal torus {eiθ}. An
identical argument shows that the restriction of γ̃ to π1(X2) also takes
values in the maximal torus {eiθ}, and so γ̃ itself is an abelian repre-
sentation. Since Σ(D(K)) is a homology sphere, γ̃ must be the trivial
representation.

The last assertion follows from the observation that the 2-fold
branched covering transformation exchanges X1 and X2 and leaves Y
invariant. q.e.d.

Theorem 4.1 now implies the following.

Corollary 4.2. τ(Σ(D(K)) equals the minimum of 4 and the values
of the two functions

−4cs : χSU(2)(Σ(D(K)))NAA → (0, 4]

and
−4cs : χSU(2)(Σ(D(K)))NAN → (0, 4]

Proof. The non-trivial 2-fold branched covering transformation is an
orientation preserving diffeomorphism of Σ(D(K)) which inter-
changes the subspaces χSU(2)(Σ(D(K)))AAN and χSU(2)(Σ(D(K)))NAA.
Hence the Chern-Simons values on χSU(2)(Σ(D(K)))AAN and
χSU(2)(Σ(D(K)))NAA are the same.
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Recall that τ(Σ(D(K)) denotes the minimal SO(3) Chern-Simons
invariant, taken in (0, 4]. Since the trivial connection has Chern-Simons
invariant 4, the assertion follows. q.e.d.

Let θ denote the trivial representation.

Proposition 4.3. There is a bijective correspondence between the
flat moduli spaces

χSU(2)(Σ(D(K)))NAA ←→ χSU(2)(S
3
1

2

(K)) \ {θ}.

This correspondence preserves the Chern-Simons invariants modulo Z.

Proof. Let U ⊂ S3 denote the unknot. Use Lemma 3.5 to construct a
4-dimensional cobordism rel boundary V from S3\n(K2) to S3\n(U) =
S1 ×D2 such that the linking number H1(S

3 \ n(K2)) → Z extends to
an isomorphism H1(V )→ Z.

Since any abelian representation factors through first homology, ev-
ery abelian SU(2) representation of π1(X2) extends uniquely to π1(V )
and, symmetrically, every (necessarily abelian) SU(2) representation
of π1(S

1 × D2) extends uniquely to π1(V ). In other words, extending
over V sets up a 1-1 correspondence between abelian representations of
π1(X2) and π1(S

1 ×D2).
Glue [0, 1] × Y to V to obtain a cobordism rel boundary W from

Y ∪
T2

X2 to Y ∪
T2

(S1 ×D2)

W = ([0, 1] × Y ) ∪
[0,1]×T2

V.

Since π1([0, 1]×Y ) = π1(Y ), extending over W sets up a 1-1 correspon-
dence between SU(2) representations of π1(Y ∪T2

X2) whose restriction
to π1(X2) are abelian and SU(2) representations of π1(Y ∪T2

(S1×D2)).
Notice that Y ∪T2

(S1 ×D2) is again a solid torus, so that any SU(2)
representation of π1(Y ∪T2

(S1 ×D2)) is abelian, and hence its unique
extension to π1(W ) is also abelian.

Repeat the construction, gluing [0, 1]×X1 toW to obtain a cobordism

N = ([0, 1] ×X1) ∪
[0,1]×T1

W = ([0, 1] ×X1) ∪
[0,1]×T1

([0, 1] × Y ) ∪
[0,1]×T2

V

with two boundary components,

∂N− = −
(
X1 ∪

T1

Y ∪
T2

X2

)
= −Σ(D(K))

and

∂N+ = X1 ∪
T1

Y ∪
T2

(S1 ×D2) = X1 ∪
T1

(S1 ×D2) = S3
1

2

(K).

As before, extending over N sets up a 1-1 correspondence between rep-
resentations of π1(Σ(D(K))) whose restriction to π1(X2) (and hence
also π1(Y )) are abelian and representations of π1(S

3
1

2

(K)).
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Every SU(2) representation of S3
1
2

(K) restricts to an abelian represen-

tation on the solid torus S1×D2. Moreover, since S3
1

2

(K) is a homology

sphere, every non-trivial SU(2) representation of π1(S
3
1

2

(K)) necessar-

ily restricts to a non-abelian representation of π1(X1). Thus the above
correspondence induces a well-defined bijection on conjugacy classes

χSU(2)(S
3
1

2

(K)) \ {θ} ←→ χSU(2)(Σ(D(K)))NAA.

Precisely, the correspondence is given by extending a representation
over N , or, in the context of connections, extending a flat connection
over the cobordism N . Since the Chern-Simons invariant is a flat cobor-
dism invariant modulo Z, the correspondence preserves Chern-Simons
invariants modulo Z, as asserted. q.e.d.

4.2. Whitehead doubles of torus knots. The Chern-Simons invari-
ants for the 2-fold branched cover Whitehead doubles of torus knots can
now be estimated.

Theorem 4.4. Let p, q > 0 be relatively prime, and let Tp,q be the
(p, q) torus knot.

1) Suppose γ ∈ χSU(2)(Σ(D(Tp,q)))NAA. Then cs(γ) is a rational
number with denominator dividing 4pq(2pq − 1).

2) Suppose γ ∈ χSU(2)(Σ(D(Tp,q)))NAN . Then cs(γ) is a rational
number with denominator dividing 4pq(4pq − 1).

These statements remain true with the orientation of Σ(D(Tp,q)) re-
versed. Hence

τ(±Σ(D(Tp,q)), θ) ≥
1

pq(4pq − 1)
.

Proof. Proposition 4.3 implies that the values of Chern-Simons in-
variants modulo Z of representations γ̃ ∈ χSU(2)(Σ(D(K)))NAA coin-
cide with the values of Chern-Simons invariants of non-trivial repre-
sentations γ̃ ∈ χSU(2)(S

3
1

2

(K)). When K is a (p, q)-torus knot, then

S3
1

2

(K) = −Σ(p, q, 2pq − 1). The values of Chern-Simons invariants of

flat SU(2) connections on Σ(p, q, 2pq−1) are rational with denominator
dividing 4pq(2pq − 1) ([14], [25, Theorem 5.2], [19, Lemma 3.2]).

This leaves the NAN representations. The Chern-Simons invariants
can be computed explicitly using the torus decomposition approach of
[25, 26]. We give an alternative and simpler argument, which is suffi-
cient to establish the estimate. This argument is inspired by Fintushel-
Stern’s method of computing Chern-Simons invariants of flat SO(3) con-
nections on Seifert fibered homology spheres, and informed by Klassen’s
identification of the representation spaces of torus knots [27].

Consider γ̃ ∈ χSU(2))(Σ(D(K)))NAN . The restriction of γ̃ to X1,
γ̃ : π1(X1) → SU(2), is non-abelian. Since X1 is the (p, q) torus knot
complement, it is Seifert fibered over D2. The regular fiber F1 ⊂ X1
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represents a central element in π1(X1), and since the centralizer of any
non-abelian subgroup of SU(2) is just ±1, F1 is necessarily sent to ±1
by γ̃. Note that F1 can be taken to lie on T1 and is represented by the
loop µpq

K1
λK1

. Hence γ̃(µpq
K1

λK1
) = ±1. The same argument applied to

X2 shows that γ̃(µpq
K2

λK2
) = ±1. Therefore, the composite

γ : π1(Σ(D(K)))
γ̃−→ SU(2)→ SO(3)

sends the loops µpq
K1

λK1
and µpq

K2
λK2

to 1.

The mapping cylinder M1 of the Seifert fibration X1 → D2 is an
orbifold with two singular points: a cone on L(p, q) and a cone on
L(q, p). The boundary of M1 is the Dehn filling of X1 which kills the
regular fiber µpq

K1
λK1

, i.e. pq-surgery on the (p, q) torus knot. Let M◦
1

denote the complement of the neighborhoods of the cone points. A
straightforward calculation shows that the inclusion π1(X1)→ π1(M

◦
1 )

is surjective, with kernel generated by F1. Thus the restriction of γ
to π1(X1) extends to π1(M

◦
1 ). Again, the mirror argument provides a

manifold M◦
2 with boundary the union of L(p, q), L(q, p) and the Dehn

filling of X2 which kills µpq
K2

λK2
, over which γ extends.

Glue M◦
1 , [0, 1]×Y , and M◦

2 together along neighborhoods [0, 1]×T1

and [0, 1] × T2 of their boundaries. This produces a 4-manifold

M = M◦
1 ∪

[0,1]×T1

([0, 1] × Y ) ∪
[0,1]×T2

M◦
2

with boundary

∂M = −Σ(D(K)) ⊔ 2L(p, q) ⊔ 2L(q, p) ⊔ Ŷ

over which γ extends. We denote this extension again by γ:

γ : π1(M)→ SO(3).

Here Ŷ denotes the Dehn filling of the two components of the boundary
of Y in which µpq

K1
λK1

= µ1−2pq
A1

λpq
A1

(by Proposition 3.3) and µpq
K2

λK2
=

µ1−2pq
A2

λpq
A2

are killed. In other words, Ŷ is obtained from the (2, 4) torus

link by performing 1−2pq
pq -surgery on each component.

Notice that the restriction of the representation γ to Ŷ is abelian.
Moreover, H1(Ŷ ) is presented by the 2× 2 matrix

(
1− 2pq 2pq
2pq 1− 2pq

)
.

Thus H1(Ŷ ) = Z/(4pq − 1).
Chern-Simons invariants modulo Z are flat cobordism invariants, and

are additive over disjoint unions, and so

cs(γ,Σ(D(K))) = −4cs(γ̃,Σ(D(K)))

is the sum of five SO(3) Chern-Simons invariants: the four Chern-
Simons invariants of the restriction of γ to the lens spaces, and the
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Chern-Simons invariant of the corresponding abelian representation of
Ŷ .

The Chern-Simons invariant of any abelian SO(3) representation with
finite image on any closed 3-manifold is a rational number with denom-
inator the order of the image. This can be seen by integrating the
Chern-Simons form over a fundamental domain in the corresponding
finite cover. Hence cs(γ,Σ(D(K))) is the sum of five fractions, with
denominators p, q, p, q, 4pq − 1. Thus it is a fraction with denominator
dividing pq(4pq − 1).

Reversing the orientation of a 3-manifold changes the signs of its
Chern-Simons invariants. Renormalizing to place its value in (0, 4] by
adding 4k does not alter the denominator. It follows that these estimates
are valid with either orientation. The last statement is a consequence
of Corollary 4.2. q.e.d.

We can now prove our main result, which includes Theorem 1 of the
introduction.

Theorem 4.5. Let {(pi, qi)}∞i=1 be a sequence of relatively prime in-
tegers satisfying

pnqn(2pnqn − 1) > pn−1qn−1(4pn−1qn−1 − 1),

For example, (pn, qn) = (2, 2n − 1), or (pn, qn) = (n, nkn − 1) where
kn >

√
2kn−1.

Then the positive-clasped untwisted Whitehead doubles {D(Kpi,qi)}∞i=1
of the (pi, qi) torus knots are independent in the smooth concordance
group.

Proof. Corollary 3.7 establishes the existence of 4-manifolds Wi =
Wpi,qi satisfying Property I with respect to classes ei ∈ H2(Wi), with
−e2i = 1

piqi(2piqi−1) . Moreover, the boundary of Wi admits a partition

∂glWi = −Σ(D(Tpi,qi), ∂glWi = Y1,i ⊔ Y2,i ⊔ Y3,i

which is a cs-partition for both (Wi, ei,−e2i ) and (Wi, 0,−e2i ).
Note that

pnqn(2pnqn−1) > pn−1qn−1(4pn−1qn−1−1) > pn−1qn−1(2pn−1qn−1−1)

and hence if 1 ≤ j < i,

piqi(2piqi − 1) ≥ pj+1qj+1(2pj+1qj+1 − 1) > pjqj(4pjqj − 1).

Theorem 4.4 gives the estimate τ(±Σ(Tpj ,qj)) ≥ 1
pjqj(4pjqj−1) , and there-

fore

τ(±Σ(Tpj ,qj)) ≥ 1
pjqi(4pjqj−1) >

1
piqi(2piqi−1) = −e

2
i .

The result now follows from Corollary 3.2 q.e.d.
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5. Comparison with other techniques

Many striking developments have occurred in the twenty-five years
since instantons were first used to study cobordism theory. In this
section we view our results in the light of these advances.

We begin by pointing out that while significant progress has been
made in understanding the topological concordance group, these tech-
niques cannot be brought to bear on the questions addressed here. As
mentioned in the introduction, the Whitehead double of any knot is
topologically slice. Hence any invariant which can prove independence
of Whitehead doubles in the concordance group must be manifestly
smooth.

In this direction, the past decade has seen an explosion of activity in
the study of smooth concordance. The activity has been facilitated by
a wide variety of newly discovered invariants. Broadly speaking, these
invariants come in two flavors; invariants of knots and three-manifolds
defined in the context of Heegaard Floer homology (or several other
conjecturally equivalent theories, e.g. monopole Floer homology), and
invariants of knots derived from Khovanov homology and its generaliza-
tions. The former invariants are analytically defined, while the latter are
defined algebraically in the context of quantum algebra and its categori-
fication. Since both approaches have led to striking new applications,
the reader may be surprised that instantons were the tool of choice in
the problem at hand.

A distinguishing feature of our approach is that, unlike many of the
modern invariants, the instanton moduli spaces used here do not pro-
vide homomorphisms from the concordance group to the integers. When
using homomorphisms to Z to detect independence in C, one needs at
least as many homomorphisms as there are knots in the set whose in-
dependence one would like to establish. Since we consider infinite sets
of Whitehead doubles, a proof of our theorem in such contexts would
necessarily require the computation of an infinite number of invariants
for each knot. In contrast, our proof required essentially two computa-
tions for each knot in the family: first, the verification that the branched
double cover forms one boundary component of a 4-manifold with Prop-
erty I and second, the calculation of a lower bound for the minimal
Chern-Simons invariant.

Despite this, one may still hope that the modern invariants could
prove our theorem, a possibility which we now discuss. Let us first ex-
amine the natural approaches using Khovanov homology. In this realm
one has invariants sn(K), n = 2, ...∞ which are related to smooth 4-
dimensional topology by the inequality

(5.1) |sn(K)| ≤ 2(n − 1)g4(K),
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where g4(K) is the smooth 4-ball genus of K, [43, 50, 32]. Here, s2(K)
is Rasmussen’s invariant [43], defined via Lee’s [28] perturbation of
Khovanov homology [23]; the invariants for n > 2 are defined by simi-
lar techniques applied in the context of Khovanov and Rozansky’s link
homology theory for sln [24]. The remarkable feature of these invari-
ants is that the inequality is sharp for torus knots, thus proving Milnor’s
conjecture through purely combinatorial means. It is expected that, like
s2, each invariant provides a homomorphism sn : C → Z, and one might
hope that this collection of homomorphisms could be used to prove the
independence of Whitehead doubles of torus knots. Unfortunately, this
approach cannot work. The key point is that Whitehead doubles of
torus knots are quasipositive. This means they can be presented as the
closure of a braid which is a product of conjugates of positive half-twists
or, more geometrically, that they arise as the intersection of a smooth
algebraic curve in C2 with the unit-sphere. Equation (5.1) is sharp for
quasipositive knots [41, 46, 49]. Since the Whitehead doubles of torus
knots have 4-genus equal to 1, the collection of invariants {sn(K)} would
therefore be too weak to prove their independence.

A second approach is to make use of the observation that satellite
operations induce functions C → C. Precomposing sn : C → Z with
such a function seems likely to contain very interesting information.
However, examining these invariants for satellites of connected sums of
Whitehead doubles is far beyond the present computational reach.

Having dispensed with the known invariants from quantum algebra,
we turn to invariants defined by Floer homology. The most well-known
of these is the Ozsváth-Szabó concordance invariant, τ(K). This invari-
ant shares several key features of s2(K) but is, in general, distinct from
it [18]. By itself, however, τ can only show that Whitehead doubles
of torus knots generate a free abelian subgroup of rank one, as it is a
homomorphism from C to Z. In fact τ(D(Tp,q)) = 1 for all p, q, since
τ satisfies a genus inequality analogous to (5.1), which is also sharp
for quasipositive knots [17, 30]. Thus we must either find an infinite
collection of additional homomorphisms or use a different approach.

Both avenues may be pursued through the use of the “correction
terms” in Ozsváth-Szabó Floer homology (see [38] for a definition).
These are defined in terms of the grading and module structure on the
Floer homology groups, and provide invariants of Spinc rational homol-
ogy cobordism. As we have seen, by applying topological constructions
to knots, we can obtain maps from the concordance group to various
cobordism groups. Two natural maps are provided by forming branched
covers and performing Dehn surgery. We have already seen the first map
through Lemma 3.1. Indeed, by considering prime power order cyclic
branched covers, we obtain an infinite family of homomorphisms

Σpk : C → ΘZ/p,
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where Σpk denotes the map which takes the concordance class of a knot

to the Z/p-homology cobordism class of its pk-fold branched cyclic cover
(here, p is a prime). One can obtain homomorphisms, δpk : C → ΘZ/p →
Z by considering the correction term of a particular Spinc structure on
these covers [33, 21]. Although we have not calculated these invariants
(except in the case δ2, where they were calculated in [33]), we have
used cobordism arguments similar to those presented here to obtain
bounds which tightly constrain the behavior of δpk(D(Tr,s)). Indeed, it
seems likely that the essential information contained in these invariants
is that of the correction term for +1 surgery on Tr,s. Heuristically, the
fact that the branched cyclic covers of D(Tr,s) decompose along tori
into a standard manifold glued to a number of copies of S3 \ n(Tp,q)
should destroy the chance of independence of the δ invariants applied
to Whitehead doubles. This could be justified rigorously if the (2 + 1)
dimensional TQFT inherent in Floer homology were more computable.
Similar remarks should apply to the concordance invariants derived by
considering τ of satellites.

On the other hand, one could break free from homomorphisms by
applying the correction terms to Dehn surgery on linear combinations
of Whitehead doubles of torus knots. Like the branched covering con-
struction, Dehn surgery provides maps from the concordance group to
cobordism groups. These maps are more like those induced by satellite
constructions, and are not homomorphisms. Unfortunately, this ap-
proach fails, due to the fact that the knot Floer homology invariants of
Whitehead doubles are well-understood [16], together with the fact that
the correction terms of Dehn surgery on a knot are determined by the
knot invariants [39]. For instance, if one considers D(T2,3) − D(T2,7),
the part of the knot Floer homology complex of D(T2,3)#−D(T2,7) rel-
evant to the correction term calculations is identical to the knot Floer
homology complex of T2,3# − T2,3, a slice knot (see [20] for details on
computing correction terms for surgeries on Whitehead doubles). Thus
any concordance information extracted from the correction terms of
Dehn surgeries on D(T2,3)# −D(T2,7) would necessarily be trivial.

Thus it appears that moduli spaces of instantons contain informa-
tion obscured, or perhaps even lost, by the modern invariants. The
key fact seems to be the appearance of SO(3) Chern-Simons invariants
as the units of energy for instantons in the ends of the moduli spaces.
These invariants carry information about the fundamental group which
is presently missing in modern Floer theories or Khovanov homology.
This also underlies the lack of an instanton-free proof of Property P .
For these reasons, we find further study of non-abelian gauge theory
on 3- and 4-manifolds a well-motivated pursuit. Indeed in the realm
of concordance alone, the instanton obstruction provides a powerful
and complementary technique to those afforded by the Khovanov or
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Ozsváth-Szabó theories. In light of this, we feel the technique would be
a valuable addition to the toolbox of anyone interested in the smooth
concordance group.
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