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4-MANIFOLDS AND INTERSECTION FORMS
WITH LOCAL COEFFICIENTS

Kim A. Frøyshov

Abstract

We extend Donaldson’s diagonalization theorem to intersection
forms with certain local coefficients, under some constraints. This
provides new examples of non-smoothable topological 4-manifolds.

1. Introduction

A celebrated early theorem of Donaldson [3, 4] says that if the in-
tersection form of a closed, oriented smooth 4-manifold V is negative
definite, then it is standard, i.e., there is a basis for H2(V ;Z)/torsion
with respect to which the form is diagonal. The proof involved a care-
ful study of a certain SU(2)-instanton moduli space over V . Later,
Fintushel and Stern [7] found a simpler proof using SO(3)-instanton
moduli spaces in the case when H1(V ;Z) contains no 2-torsion. (The
assumption on the torsion can be removed by using results from [4]; see
[12].) In either variant of the proof, an essential point is the link be-
tween the intersection form of V and Abelian reducibles in the moduli
spaces, which are represented by connections with stabilizer U(1). In
SO(3)-moduli spaces there is also a second type of reducible—namely,
the twisted reducibles, which are represented by connections with stabi-
lizer Z/2 (among all automorphisms of the SO(3)-bundle). In this paper
we will show that these are related to the intersection forms of V with
certain local coefficients. We use this to partially extend Donaldson’s
theorem to such forms. We will now explain our result in more detail.

We generalize the setup somewhat and consider a compact, con-
nected, oriented, smooth 4-manifold X with boundary Y . Let ℓ → X
be any bundle of infinite cyclic groups. Recall that the set of isomor-
phism classes of such bundles form an Abelian group isomorphic to
H1(X;Z/2). Let H∗(X; ℓ) be the singular cohomology with ℓ as bundle
of coefficients. Since ℓ⊗ℓ = Z, the cup product defines a homomorphism

(1) H2(X; ℓ) ⊗H2(X,Y ; ℓ) → H4(X,Y ;Z) = Z.

Now suppose Y is an integral homology sphere. Then H2(X,Y ; ℓ) =
H2(X; ℓ), and (1) induces a unimodular quadratic form QX,ℓ on
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H2(X; ℓ)/torsion, which we refer to as the intersection form of X with
coefficients in ℓ. When ℓ is trivial, this is of course the usual intersection
form of X. The signature of QX,ℓ is independent of ℓ. As observed in
[18, p. 587], the same holds for the quantity

b0(X; ℓ) − b1(X; ℓ) + b+(X; ℓ),

where bj(X; ℓ) := rankHj(X; ℓ) and b+2 (X; ℓ) denotes the dimension
of a maximal positive subspace for QX,ℓ. For any non-trivial ℓ, one
therefore has

(2) −b1(X; ℓ) + b+(X; ℓ) = 1− b1(X) + b+(X),

where bj(X) := bj(X;Z) and b+(X) := b+(X;Z).
For any Abelian group G, let HF∗(Y ;G) denote the instanton Floer

cohomology group with coefficients in G; see [8, 5]. This is the coho-
mology of a cochain complex CF∗ ⊗ G, where CFq is the free Abelian
group generated by gauge equivalence classes of irreducible (perturbed)
flat SO(3)-connections over Y of index q ∈ Z/8, and the differential
d : CFq → CFq+1 counts instantons over the cylinder R × Y interpo-
lating between two given irreducible flat connections. Counting SO(3)-
instantons over R× Y with trivial flat limit at +∞ yields a homomor-
phism δ : CF4 → Z that satisfies δd = 0 (see [12]) and therefore induces
a homomorphism

δ0 : HF
4(Y ;G) → G.

Before stating the main result of this paper, we need one more defi-
nition:

τ(X) := dimZ/2 [torsion(H1(X;Z))⊗ Z/2]

= b1(X;Z/2) − b1(X),

where bj(X;Z/2) := dimZ/2Hj(X;Z/2).

Theorem 1.1. Let X be any compact, connected, oriented, smooth
4-manifold whose boundary Y is an integral homology sphere, and such
that

(3) τ(X) + b+(X) ≤ 2.

Let ℓ → X be any non-trivial bundle of infinite cyclic groups. If QX,ℓ

is non-standard negative definite and H2(X; ℓ) contains no element of
order 4, then

δ0 : HF
4(Y ;Z/2) → Z/2

is non-zero.

Corollary 1.1. Let V be any closed, connected, oriented, smooth
4-manifold such that

τ(V ) + b+(V ) ≤ 2.
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Let ℓ → V be any non-trivial bundle of infinite cyclic groups such that
QV,ℓ is negative definite and H2(V ; ℓ) contains no element of order 4.
Then QV,ℓ is standard.

Proof. This follows from the theorem by taking X to be the comple-
ment of an open 4-ball in V and recalling that HF∗(S3;Z/2) = 0.

Remarks. (i) Under the hypotheses of the corollary, V cannot be
spin. For in that case the usual intersection form QV would be even
with negative signature, so QV could not be definite by Donaldson’s
theorem. The condition b+(V ) ≤ 2 would then violate a theorem of
Furuta [14].

(ii) If b1(X) = 1 and τ(X) = 0 then H2(X; ℓ) does not even have
any element of order 2; see Proposition 2.1.

(iii) The author does not know whether the theorem holds without
the assumptions on τ(X) + b+(X) and (in general) elements of order 4
in H2(X; ℓ), despite attempts at finding counterexamples.

(iv) The statement of the theorem holds when ℓ is trivial too, and
without the assumption τ(X) ≤ 2. However, we prefer to take that up
in a separate paper.

(v) One reason for the appearance of the term τ+b+ in the theorem is
that this quantity is invariant under surgery on any circle in the interior
of X that represents a non-zero class in H1(X;Z/2); see Lemma 8.1.

Proposition 1.1. Let V be any closed, oriented topological 4-manifold
whose intersection form QV is non-standard negative definite. Suppose
H1(V ;Z) contains no element of order 4. Let either

(i) W = Σ × S2, where Σ is any closed, oriented, connected surface
of genus at least 1, or

(ii) W = Y × S1, where Y is any closed, oriented 3–manifold.

If τ(V ) + τ(W ) + b+(W ) ≤ 2, then V#W does not admit any smooth
structure.

Of course, if W = Σ × S2, then τ(W ) = 0 and b+(W ) = 1, whereas
if W = Y × S1, then τ(W ) = τ(Y ) and b+(W ) = b1(Y ).

Proof. (i) We may assume that V is connected and that QV is nega-
tive definite. Let ℓ→W := Σ×S2 be any non-trivial bundle of infinite
cyclic groups. The exact sequence (4) below yields

torsion(H1(W ; ℓ)) = Z/2, H2(W ; ℓ) = Z/2.

Let ℓ′ → V ′ := V#W be the bundle that corresponds to the trivial
bundle over V and to ℓ over W . Then the group

H1(V
′; ℓ′) = H1(V ;Z)⊕H1(W ; ℓ)

contains no element of order 4. By the universal coefficient theorem (see
(6) below), the same holds for H2(V ′; ℓ′). As for the intersection forms,
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one has

QV ′,ℓ′ = QV ,

so it follows from Corollary 1.1 that V ′ cannot admit any smooth struc-
ture.

(ii) Let ℓ→W := Y ×S1 be the pull-back of the non-trivial Z-bundle
over S1. Using the exact sequence (4) below, one finds that Hk(W ; ℓ)
is a finite group for all k, and that

H1(W ; ℓ) = H1(Y ;Z) / 2H1(Y ;Z) ≈ (Z/2)r

for some r. We can now argue as in (i).

When combined with Freedman’s classification of simply-connected,
closed, oriented topological 4-manifolds [10], this yields many exam-
ples of non-smoothable indefinite 4-manifolds, also with odd intersec-
tion form. In the case of even intersection form, such examples can also
be found using Rochlin’s theorem or Furuta’s theorem.

Note that if V is simply connected and negative definite, say, then
V#CP

2 is smoothable, since by Freedman’s theorem and the classifica-
tion of odd indefinite forms it is homeomorphic to CP

2#(−nCP2) for
some n.

In a slightly different direction, Friedl, Hambleton, Melvin, and Te-
ichner [11] have proved that a certain negative definite closed, oriented
topological 4-manifold V with π1(V ) = Z and b2(V ) = 4 is not smooth-
able by applying Donaldson’s diagonalization theorem to the finite cov-
erings of V . (A survey of related material can be found in [15].)

After some preliminaries in Section 2 on (co)homology with local
coefficients, Section 3 introduces what is probably the main novelty
in the paper as far as gauge theory is concerned: Given any SO(3)-
bundle E → Z, where Z is a smooth, compact manifold, and any loop
γ : S1 → Z, we define a double covering Ξγ → Uγ , where Uγ is a certain
open subset of the orbit space B(E) of all connections in E (of a given
Sobolev type). The subset Uγ contains all irreducible connections as well
as some reducibles, including all Abelian ones. In Section 4 we classify
non-flat twisted reducible instantons over certain 4-manifolds W with
a tubular end. The local structure around these reducibles is described
in Section 5, whereas Abelian reducibles are discussed in Section 6.
Section 7 proves three lemmas on Banach manifolds. Section 8 contains
the proof of the theorem. This begins by reducing the problem to the
case b1(X) = 1 + b+(X) by doing surgery on a suitable collection of
disjoint circles in X. We then study the moduli space Mk of instantons
with trivial limit in a certain SO(3)-bundle over W := X ∪Y (R+ × Y ).
The irreducible part M∗

k is cut down to a 1-manifold using sections of
the real line bundles corresponding to suitable double coverings Ξγ . The
ends of this 1-manifold are associated to twisted reducibles in Mk and
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factorizations over the end of W . Of course, the number of ends must
be zero modulo 2.

The advantage of reducing to the case b1 = 1 + b+ is that then,
generically, all non-flat twisted reducibles in the moduli spaces are iso-
lated. Working directly with the original manifold X would require
dealing with positive-dimensional families of twisted reducibles. This
technically more difficult situation has been studied by Teleman [24].
However, it is not clear to this author whether one can expect stronger
results with such a direct approach.

After this paper was submitted the preprint [20] appeared, which ad-
dresses similar issues for closed 4-manifolds using Seiberg–Witten the-
ory.

Acknowledgement: The author is grateful to the anonymous ref-
eree for the careful reading of the manuscript and many suggestions. He
would also like to thank Ian Hambleton and Bjørn Jahren for helpful
correspondence. This work was supported by a ProDoc grant at the
ETH, Zürich, and by QGM (Centre for Quantum Geometry of Moduli
Spaces) funded by the Danish National Research Foundation.

2. Homology and cohomology with local coefficients

This section contains mostly background material.
(I) This part is concerned with singular (co)homology with local co-

efficients. Let X be any space. For any bundle E → X of discrete
Abelian groups, we denote by C∗(X;E) the singular chain complex of
X with values in E, as defined in [16]. A short exact sequence

0 → E′ → E → E′′ → 0

of morphisms of such bundles induces a short exact sequence of chain
complexes

0 → C∗(X;E′) → C∗(X;E) → C∗(X;E′′) → 0,

which in turn yields a long exact sequence relating the corresponding
homology groups H∗(X; ·). Similar statements hold for the singular
cochain complexes and cohomology groups H∗(X; ·).

Now let p : X̃ → X be any double covering and ℓ→ X the associated
bundle of infinite cyclic groups. Consider the Z

2-bundle

E := X̃ ×
Z/2

Z
2

over X, where 1 ∈ Z/2 acts on X̃ by flipping the sheets of the covering
and on Z

2 by permuting the factors. Then

H∗(X;E ⊗G) = H∗(X̃ ;G)
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for any Abelian group G, and similarly for cohomology. There is a
canonical short exact sequence of bundles

0 → ℓ→ E → Z → 0,

which induces a long exact sequence

(4) · · · → Hk(X; ℓ) → Hk(X̃ ;Z)
p∗
→ Hk(X;Z) → Hk−1(X; ℓ) → · · · .

We will use the notation λ (resp. λ) for ℓ⊗ R thought of as a real line
bundle (resp. a bundle with discrete fibers) over X. By the universal
coefficients theorem (see [22, p. 283]), one has

H∗(X; ℓ) ⊗ R = H∗(X;λ)

in each degree in which H∗(X; ℓ) is finitely generated. There is a canon-

ical isomorphism of bundles R⊕ λ
≈
→ E ⊗ R, which induces an isomor-

phism
H∗(X̃;R) = H∗(X;R) ⊕H∗(X;λ).

The two summands correspond to the ±1 eigenspaces of the endomor-
phism of H∗(X̃ ;R) induced by the involution of X̃ (i.e., the action of
1 ∈ Z/2). If X is a smooth manifold, then H∗(X;λ) can be computed
as the de Rham cohomology associated to the flat bundle λ (see [1]).
When working with de Rham cohomology, it is natural to write bj(X;λ)
instead of bj(X; ℓ), and similarly for b+.

There is also a relationship with mod 2 (co)homology, for arbitrary
X: The short exact sequence

0 → ℓ
·2
→ ℓ→ Z/2 → 0

of bundles gives rise to a long exact sequence

(5) · · · → Hq(X; ℓ)
·2
→ Hq(X; ℓ) → Hq(X;Z/2) → Hq−1(X; ℓ) → · · ·

as well as a similar sequence for cohomology. Furthermore, because ℓ∗ =
ℓ, the universal coefficient theorem yields a split short exact sequence

(6) 0 → Ext(Hq−1(X; ℓ),Z) → Hq(X; ℓ) → Hom(Hq(X; ℓ),Z) → 0.

Proposition 2.1. Let X be any compact manifold (with or without
boundary) such that H1(X;Z/2) = Z/2. Let ℓ → X be any non-trivial
bundle of infinite cyclic groups. Then H1(X; ℓ) is a finite group of odd
order, and hence by (6) the group H2(X; ℓ) contains no 2-torsion.

Proof. Because X is a manifold and ℓ is non-trivial, H0(X; ℓ) = Z/2.
Thus (5) yields an exact sequence

H1(X; ℓ)
·2
→ H1(X; ℓ) → 0.

Since X is a compact manifold, H∗(X; ℓ) is finitely generated; hence
H1(X; ℓ) must be a finite group on which multiplication by 2 is an iso-
morphism.
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We will now state a version of Poincaré duality for local coefficients.
Let X be a closed topological n-manifold and OX → X the orientation
bundle, whose fiber over x ∈ X is

Ox = Hn(X,X\{x};Z).

Let [X] ∈ Hn(X;OX ) be the fundamental class, which is the unique
class whose image in

Hn(X,X\{x};OX ) = Hn(X,X\{x};Ox) = Ox ⊗Ox = Z

is 1 for every x ∈ X. Let R be a commutative ring with identity.

Proposition 2.2. For any closed topological n-manifold X and any
bundle E → X of R-modules, cap product with [X] defines an isomor-
phism

Hp(X;E)
≈
→ Hn−p(X;E ⊗OX)

for every p.

Proof. The proof in [16] for R-oriented X and E = R carries over
with virtually no changes.

Other duality theorems for (co)homology with local coefficients can
be found in [23].

Now suppose X is a closed oriented topological n-manifold and λ→
X a bundle of infinite cyclic groups. Then it follows from Proposi-
tion 2.2 and the universal coefficient theorem (6) (recalling thatH∗(X; ℓ)
is finitely generated) that the intersection form QX,ℓ is unimodular. The
same holds if X has an integral homology sphere as boundary, as one
can see by applying the previous result to the double of X and noting
that the intersection form of the double is the orthogonal sum of the
intersection forms of the two pieces.

(II) In this part we use Čech cohomology. Recall that for any para-
compact space X the first Chern class induces an isomorphism between
the group of isomorphism classes of complex line bundles over X and the
cohomology group H2(X;Z). We will now give a similar interpretation

of H2(X; ℓ). Let X̃, λ be as in (I) and set

K := X̃ ×Z/2 C = R⊕ λ,

where 1 ∈ Z/2 acts on X̃ by flipping the sheets and on C by complex
conjugation. Here C has the Euclidean topology, so that K is a real
vector bundle over X. Since conjugation is a field automorphism, K is
a bundle of fields isomorphic to C. Let K∗ ⊂ K be the subspace of non-
zero vectors thought of as a bundle of multiplicative groups, and let K
and K∗ denote the sheaves of continuous sections of K and K∗, respec-
tively. By aK-line bundle we mean a bundle L→ X such that each fiber
Lx is a 1-dimensional vector space over Kx, and such that these data
satisfy the usual axiom of local triviality. A local trivialization of L over

an open subset U ⊂ X is an isomorphism L|U
≈
→ K|U of K|U -modules.
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An atlas of such local trivializations gives rise to a Čech cocycle with
values in K∗. Standard arguments show that L is classified up to iso-
morphism by the corresponding cohomology class c̃1(L) ∈ H1(X;K∗).
If X is paracompact, then the short exact sequence of sheaves

(7) 0 → ℓ→ K
exp
→ K∗ → 1

yields an isomorphism H1(X;K∗)
≈
→ H2(X; ℓ), and we obtain:

Proposition 2.3. For any paracompact space X, the characteris-
tic class c̃1 induces an isomorphism between the group of isomorphism
classes of K-line bundles and the cohomology group H2(X; ℓ).

Note that Λ2L = λ, so for the first Stiefel–Whitney class one has

w1(L) = w1(λ).

Furthermore, c̃1(L) maps to w2(L) under the homomorphismH2(X; ℓ) →
H2(X;Z/2).

By a Hermitian K-line bundle, we mean a K-line bundle equipped
with a Euclidean metric such that multiplication with any unit vector
in Kx is an orthogonal transformation of Lx, for any x ∈ X.

We now turn to the smooth category. The proof of the following
proposition is similar to that of Proposition 2.3.

Proposition 2.4. For any smooth manifold X, the characteristic
class c̃1 induces an isomorphism between the group of isomorphism classes
of smooth Hermitian K-line bundles and the cohomology group
H2(X; ℓ).

Let L → X be a smooth Hermitian K-line bundle. If A is any
(orthogonal) connection in L, then its curvature FA is a 2-form on X
with values in the bundle so(L) of skew-symmetric endomorphisms of

L. Under the isomorphism λ
≈
→ so(L) (defined by multiplication with

elements from λ), the closed form FA ∈ Ω2(X;λ) represents the image
of −2πc̃1(L) in H

2(X;λ). (One can deduce this last statement from the

known case when ℓ is trivial by pulling A back to X̃ and noting that
H2(X;λ) → H2(X̃ ;R) is injective.)

3. SO(3)-connections and holonomy

Let Z be a connected smooth n-manifold, possibly with boundary,
and E → Z an oriented, Euclidean 3-plane bundle. Fix p > n and
let A be an (orthogonal) Lp

1,loc connection in E. Let ΓA denote the

group of Lp
2,loc automorphisms of E that preserve A. Just as for smooth

connections, ΓA is isomorphic to the centralizer of the holonomy group
Holz(A) ⊂ Aut(Ez) ≈ SO(3) at any point z ∈ Z. Recall that any
positive-dimensional proper closed subgroup of SO(3) is conjugate to
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either U(1) or O(2), and these subgroups have centralizer U(1) and
Z/2, respectively. We will call the connection A

• irreducible if ΓA = {1}, otherwise reducible;
• Abelian if ΓA ≈ U(1);
• twisted reducible if ΓA ≈ Z/2.

Now suppose A is smooth. Then A is reducible if and only if it
preserves a rank 1 subbundle λ ⊂ E. If in addition A is not flat, then
λ is unique (because a non-flat connection A has holonomy close to but
different from 1 around suitable small loops in Z). In that case A is
Abelian if λ is trivial, and twisted reducible otherwise.

Now suppose Z is compact. Let A denote the affine Banach space
consisting of all Lp

1 connections in E and let G be the Banach Lie group
of all Lp

2 automorphisms of E. Then G acts smoothly on A and we
denote the quotient space by B = B(E). It follows easily from the
local slice theorem (see [6, p. 132 and p. 192] and [13, Section 2.5])
that B is a regular topological space. Since B is also second countable,
it is metrizable by the Urysohn metrization theorem [17]. Hence B is
paracompact, and the same holds for any subspace of B.

Let A∗ ⊂ A be the subset of irreducible connections. Then B∗ :=
A∗/G is a Banach manifold. In the proof of the theorem we will take p
to be an even integer, to make sure that B∗ possesses smooth partitions
of unity. (In [19] the existence of smooth partitions of unity is estab-
lished for paracompact Hilbert manifolds. The proof carries over to
paracompact Banach manifolds B modeled on a Banach space (E, ‖ · ‖)
such that ‖ · ‖t is a smooth function on E for some t > 0. This includes
B = B∗ when p is an even integer, with t = p.)

Recall that the Lie group Aut(Ez) ≈ SO(3) has a non-trivial double
covering

(8) Ãut(Ez) → Aut(Ez),

where Ãut(Ez) is isomorphic to the group Sp(1) of unit quaternions.

Let G act on Aut(Ez) by conjugation with u(z) and on Ãut(Ez) by

conjugation with any lift of u(z) to Ãut(Ez). Then the covering map
(8) is G-equivariant. It follows from the local slice theorem thatA∗ → B∗

is a principal G-bundle; hence

(9) A∗ ×G Ãut(Ez) → A∗ ×G Aut(Ez)

is a double covering. Now let γ : S1 → Z be a loop based at z. Pulling
back (9) by the smooth map

B∗ → A∗ ×G Aut(Ez), [A] 7→ [A,Holγ(A)]

yields a double covering of B∗. We will now show that this extends to a
double covering Ξγ → Uγ , where Uγ ⊂ B contains B∗ as well as certain
reducibles.
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Definition 3.1. (i) Let Uγ ⊂ B be the subspace consisting of those

[A] such that there are two points in A ×G Ãut(Ez) lying above
[A,Holγ(A)] ∈ A×G Aut(Ez).

(ii) Let Ξγ ⊂ A×G Ãut(Ez) be the subspace consisting of those [A, g]

such that [A] ∈ Uγ and g ∈ Ãut(Ez) is a lift of Holγ(A).

Remark: Note that [A] ∈ B lies in the complement of Uγ if and only if

there exists a u ∈ ΓA such that u interchanges the two points in Ãut(Ez)
lying above Holγ(A), or equivalently, such that u(z) and Holγ(A) are
both reflections and have perpendicular axes of rotation.

Proposition 3.1. Let [A] ∈ B.

(i) If A is Abelian, then [A] ∈ Uγ.
(ii) Let A be twisted reducible and let λ ⊂ E be the 1-eigenspaces of

the non-trivial element of ΓA. Then [A] ∈ Uγ if and only if γ∗λ is
trivial.

Note that elements of G are of class C1 by the Sobolev embedding
theorem; hence the subbundle λ ⊂ E in (ii) is of class C1.

Proof. (i) If ΓA ≈ U(1), then ΓA is the centralizer of any non-trivial
element x ∈ ΓA with x2 6= 1. Hence Holz(A) ⊂ ΓA, so [A] ∈ Uγ by the
above remark.

(ii) Since A preserves the subbundle λ, the holonomy Holγ(A) acts
as ǫ = ±1 on the fiber λz. Therefore, [A] ∈ Uγ if and only if ǫ = 1, or
equivalently, if γ∗λ is trivial.

Proposition 3.2. Uγ is an open subset of B, and the canonical pro-
jection Ξγ → Uγ is a double covering.

Proof. We give a proof that does not require the local slice theorem.
After choosing a framing of Ez, we can identify the covering (8) with
the adjoint representation Sp(1) → SO(3). Fix A ∈ A with [A] ∈ Uγ

and a lift q ∈ Sp(1) of Holγ(A). For ǫ > 0, set

Pǫ := A+
◦
Dǫ,

where
◦
Dǫ ⊂ Lp

1(Z; so(E)) is the open ǫ-ball about the origin. Let π :
A → B be the projection. This is an open map, since B is the quotient
of A with respect to a group action. Hence π(Pǫ) ⊂ B is an open
neighborhood of [A]. If B ∈ Pǫ with ǫ sufficiently small, then Holγ(B) ·
Holγ(A)

−1 will not be a reflection and so has a unique lift g(B) ∈ Sp(1)
with positive real part. Then

f(B) := g(B)q

is a lift of Holγ(B). A simple convergence argument shows that if ǫ is
sufficiently small and B ∈ Pǫ, u ∈ G are such that u(B) ∈ Pǫ then

f(u(B)) = u · f(B).
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For such ǫ we have π(Pǫ) ⊂ Uγ , and the map [B] 7→ [B, f(B)] is a
continuous section of Ξγ over π(Pǫ). Changing the sign of f yields a
different section and altogether a trivialization of Ξγ over π(Pǫ).

4. Moduli spaces and twisted reducibles

Let W be any oriented, connected, Riemannian 4-manifold with one
cylindrical end R+×Y , where Y is an integral homology sphere. (Thus,
the complement of R+ × Y is compact). Let E → W be an oriented
Euclidean 3-plane bundle. Choose a trivialization of E|R+×Y . For any
non-degenerate flat connection ρ in the product SO(3)-bundle E0 →
Y let M(E, ρ) denote the moduli space of instantons in E that are
asymptotic to ρ over the end. We briefly recall the construction of this
moduli space, following [5, 13]. Choose a smooth reference connection
Aref in E whose restriction to the R+×Y is the pull-back of ρ. Introduce
the space

A = A(E, ρ) := Aref + Lp,w
1 (W ; so(E))

of Sobolev connections, where w is a small exponential weight as in
[13, Subsection 2.1] (which is actually only needed when ρ is reducible).
There is a Banach Lie group G (consisting of certain Lp

2,loc gauge trans-

formations) acting on A, and M(E, ρ) is the subspace of the quotient
space B := A/G consisting of all [A] satisfying F+

A = 0.
If u : Y → SO(3), then the moduli spaces with limits ρ and u(ρ),

respectively, can be identified if u is null-homotopic; otherwise the ex-
pected dimensions of these moduli spaces differ by 4 deg(u). Let RY

denote the space of gauge equivalence classes of flat connections in E0,
and let R∗

Y be the irreducible part of RY . It will be convenient to de-
note a moduli space M(E, ρ) of expected dimension d by Mα,d, where
α = [ρ] ∈ RY . In the particular case when ρ is trivial, however, we
will usually label the moduli space by k = −p1(E, ρ) ∈ H4

c (W ;Z) = Z,
where p1(E, ρ) is the relative Pontryagin class. Note that as ρ varies, k
runs through a set of the form k0 + 4Z, k0 ∈ Z. Thus, Mk will denote
the moduli space with trivial limit and expected dimension

dimMk = 2k − 3δ(W ),

where

(10) δ(W ) := 1− b1(W ) + b+(W ).

If Mk is non-empty, then for every [A] ∈Mk one has

(11) 8π2k =

∫

W
tr(FA ∧ FA) =

∫

W
|F−

A |2 ≥ 0.

After perturbing the Riemannian metric on W in a small ball, we
may assume that there is no [A] ∈ Mk, for any k > 0, such that A
preserves a real line bundle λ ⊂ E with b+(W ;λ) > 0. (This can be
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proved along the same lines as the untwisted case [6, Corollary 4.3.15];
cf. [18, Lemma 2.4].)

For the remainder of this section assume

(12) k > 0, δ(W ) = 0.

Then Mk = Mθ,2k, where θ ∈ RY is the class of trivial connections.

Let M∗
k ,M

red
k ,M tred

k be the subsets of Mk consisting of the irreducible,
reducible, and twisted reducible points, respectively.

Proposition 4.1. There is a canonical bijection between M tred
k and

the set P of equivalence classes of pairs (ℓ, c), where ℓ → W is a non-
trivial bundle of infinite cyclic groups, c ∈ H2(W ; ℓ), and such that for
λ := ℓ⊗R one has

b+(W ; ℓ) = 0, w1(λ)
2 + [c]2 = w2(E), c2 = −k,

where [c]2 denotes the image of c in H2(W ;Z/2).

Here, two such pairs (ℓ, c), (ℓ′, c′) are deemed equivalent if there is an

isomorphism ℓ
≈
→ ℓ′ such that c 7→ c′ under the induced isomorphism

H2(W ; ℓ)
≈
→ H2(W ; ℓ′).

Proof. (i) To define this bijection, let [A] ∈ M tred
k . We may assume

A is smooth. Since A is not flat, it preserves a unique non-trival rank 1
subbundle λ ⊂ E. Let K = R ⊕ λ be the corresponding bundle of
fields as in Section 2. The orthogonal complement L ⊂ E of λ is in
a canonical way a K-line bundle. The module structure is given as
follows: For x ∈W , (a, b) ∈ R⊕ λx, v ∈ Lx set

(13) (a, b) · v := av + b× v,

where b×v is the cross product in the 3-dimensional, oriented, Euclidean
vector space Ex. Let ℓ ⊂ λ denote the lattice of vectors of integer length
and set c := c̃1(L) ∈ H2(W ; ℓ). It is clear that different representatives
A of the same point in M tred

k are mapped to equivalent pairs (ℓ, c).
We now verify that (ℓ, c) has the required properties. By choice of

metric on W , we must have b+(W ; ℓ) = 0. Furthermore,

w2(E) = w2(λ⊕ L) = w1(λ) ∪w1(L) + w2(L) = w1(λ)
2 + [c]2.

Finally, let B denote the connection in L induced by A. Then FB takes
values in λ, and one has

tr(FA ∧ FA) = −2FB ∧ FB ∈ Ω4(W ).

Since FB decays exponentially, we obtain
∫

W
tr(FA ∧ FA) = −2

∫

W
FB ∧ FB = −8π2c2, ;

hence c2 = −k.
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(ii) Now suppose A,A′ ∈ A are smooth connections representing
points inM tred

k , and that the corresponding pairs (ℓ, c), (ℓ′, c′) are equiv-

alent through an isomorphism f : ℓ
≈
→ ℓ′. Let E = λ⊕L and E = λ′⊕L′

be the splittings preserved by A and A′, respectively, and let K,K ′ be
the bundles of fields corresponding to λ, λ′, respectively. Let φ : K → K ′

be the isomorphism induced by f . By means of φ, we turn L′ into an
Hermitian K-line bundle that we denote by L′

φ. It is easy to check

that f∗(c̃1(L
′
φ)) = c̃1(L

′), so by Proposition 2.4 there is an isomorphism

ψ : L → L′
φ of Hermitian K-line bundles. Combining φ|λ and ψ, we

obtain an isomorphism of Euclidean vector bundles

u : E = λ⊕ L → λ′ ⊕ L′ = E.

To see that u preserves orientations, let a ∈ λx and b ∈ Lx be of unit
length. Then (a, b, a× b) is a positive orthonormal basis for Ex. Under
u this is mapped to (φ(a), ψ(b), φ(a) × ψ(b)), which is also a positive
orthonormal basis.

We may assume A and A′ are in temporal gauge. Then L and L′ will
be translationary invariant over the end W+ := R+ × Y with respect
to the chosen trivialization of E|W+ . Let v be the non-trivial element
of ΓA and let A|W+ = d + a, where d denotes the product connection.
Then over the end one has

0 = dAv = dv + av − va.

Since v is translationary invariant over the end and
∫

[t,t+1]×Y
|a|p → 0 as t→ ∞,

we conclude that dv = 0 on W+. The same holds for the non-trivial
element of ΓA′ . Hence

L|W+ =W+ × C, L′|W+ =W+ × C ′

for some 2-dimensional subspaces C,C ′ ⊂ R
3. Now ψ|W+ is given by a

smooth map

ψ̃ :W+ → SO(C,C ′),

where SO(C,C ′) ≈ S1 is one specific component of the space of linear
isometries C → C ′, the component being determined by the isomor-
phism f : ℓ → ℓ′. But every map C → S1 is null-homotopic, since
H1(W+;Z) = 0. We may therefore choose the isomorphism ψ such that

ψ̃ is constant on [1,∞)× Y , say. Then du = 0 on [1,∞)× Y , so u ∈ G.
Set A′′ := u−1(A′) ∈ A.

Recall that the cross product on E defines a canonical isomorphism

E
≈
→ so(E). Under this isomorphism, the difference b := A′′ − A is a

1-form with values in λ. More precisely, b ∈ Lp,w
1 (W ; Λ1⊗λ). Moreover,

FA′′ = FA + db,
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so d+b = 0. Since b1(W ; ℓ) = 0 by (2), there is a section ξ ∈ Lp,w
2 (W ;λ)

such that dξ = b. Set v = exp(ξ). Then v(A′′) = A, so A and A′

represent the same point in M tred
k .

(iii) We will now show that every class [ℓ, c] ∈ P is the image of some
point [A] ∈ M tred

k . Define λ,K in terms of ℓ as in Section 2. Choose
a K-line bundle L → W with c̃1(L) = c. The hypotheses on ℓ, c imply
that λ⊕L and E have the same second Stiefel–Whitney class, and hence
these bundles are isomorphic (see [2, p. 674] and [9, Theorem E.8]); we
will identify them. Since L is trivial over the end of W , there is an
orthogonal connection A′ in E that respects the given splitting and is
flat over the end of W . Since d+ : Ω1(W ;λ) → Ω+(W ;λ) induces a
surjective map Lp,w

1 → Lp,w between Sobolev spaces with a small posi-
tive weight (cf. the proof of [13, Prop. 5.1.2]), there is an a ∈ Lp,w

1 such

that A := A′ + a satisfies F+
A = 0. Clearly, [A] ∈ M tred

k is mapped to
[ℓ, c].

Now fix ℓ → W and let Pℓ be the set of points in P of the form
[ℓ, c]. Suppose Pℓ 6= ∅ (which implies b+(W ; ℓ) = 0) and choose a c
with [ℓ, c] ∈ Pℓ. Let Tℓ be the torsion subgroup of H2(W ; ℓ) and for any
v ∈ H2(W ; ℓ) let v̄ denote the image of v in H2(W ; ℓ)/Tℓ. Set

Pc := {{r, s} ⊂ H2(W ; ℓ)/Tℓ | r · s = 0; r + s = c̄},

where {r, s} means the unordered set.

Proposition 4.2. |Pℓ| = |2Tℓ| · |Pc|.

Here | · | denotes the cardinality of the given set. Note that 2Tℓ has
even order if and only if H2(W ; ℓ) contains an element of order 4.

Proof. Let P̃ℓ be the set of all v ∈ H2(W ; ℓ) such that [ℓ, v] ∈ P . Set

α : P̃ℓ → Pℓ, v 7→ [ℓ, v].

Since the only non-trivial automorphism of ℓ is given by multiplication
by −1, we have

α(v) = α(v′) ⇐⇒ v = ±v′.

Because k 6= 0, it follows that α is two-to-one; hence

|P̃ℓ| = 2|Pℓ|.

Now let P̃c be the set of all ordered pairs (r, s) such that {r, s} ∈ Pc.
Because k 6= 0, one has r 6= s for all such r, s; hence

|P̃c| = 2|Pc|.

It follows from the long exact sequence

(14) · · · → H2(W ; ℓ)
·2
→ H2(W ; ℓ) → H2(W ;Z/2) → · · ·
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(see Section 2) that the map

P̃ℓ → P̃c, v 7→

(
c̄+ v̄

2
,
c̄− v̄

2

)

induces a bijection P̃ℓ/2Tℓ → P̃c, where 2Tℓ acts on P̃ℓ by translation;
hence

|P̃ℓ| = |2Tℓ| · |P̃c|

and the proposition is proved.

5. Local structure around twisted reducibles

We continue the discussion of the previous section, under the assump-
tions (12).

We do not know if the twisted reducibles in Mk are regular points of
Mk for a generic tubular end metric on W (although there is a generic
metric theorem of this kind for closed 4-manifolds; see [18, Lemma 2.4]).
However, regularity of these reducibles can be achieved by a simple local
perturbation of the instanton equation that is similar in spirit to that
used in [3, p. 292]. To describe this perturbation, let Mk ⊂ B = A/G
as in Section 4, and suppose B ∈ A satisfies F+

B = 0 and preserves a
splitting E = λ⊕L, where λ is a non-trivial real line bundle. Then the
non-trivial element of ΓB acts on any fiber of λ⊕L by (a, b) 7→ (a,−b).
For any ǫ > 0 set

S0,ǫ = {a ∈ Lp,w
1 (W ; so(E)) | d∗Ba = 0, ‖a‖Lp,w

1
< ǫ},

where the Sobolev norm is defined in terms of B. This norm is equiva-
lent to the corresponding norm defined by the reference connection Aref

because of the Sobolev embedding Lp
1 ⊂ L∞ in R

4. (Recall that we
are assuming p > 4.) If ǫ is sufficiently small, then Sǫ := B + S0,ǫ is a
local slice to the action of G. This means, first, that there is an open
neighborhood U of 1 ∈ G such that

U × Sǫ → A, (u,A) 7→ u(A)

is a diffeomorphism onto an open subset of A, and second, that the
projection Sǫ/ΓB → B is injective. Then Sǫ/ΓB maps homeomorphi-
cally onto an open neighborhood of [B] in B, and the irreducible part of
Sǫ/ΓB maps diffeomorphically onto an open subset of B∗. The operator

−d∗B + d+B : Ω1 → Ω0 ⊕ Ω+,

acting on forms on W with values in so(E) ≈ E, induces a Fredholm
operator D : Lp,w

1 → Lp,w whose index is the expected dimension of Mk,
i.e., ind(D) = 2k > 0. Therefore, there is a compact operator P such
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that D + P is surjective. We will choose such a P of a particular kind.
To describe this, first note that

(15) D = Dλ ⊕DL,

where Dλ and DL act on forms with values in λ and L, respectively.
Now, Dλ is an isomorphism, because λ is non-trivial and b+(W ;λ) =
δ(W ) = 0. Therefore, D + P is surjective if P is given by

Pa =
r∑

j=1

〈a, φj〉L2 · ωj,

where r is the dimension of the cokernel of DL, and φj ∈ Ω1
c(W ;L),

ωj ∈ Ω+
c (W ;L) are suitably chosen. Choose a smooth function κ :

[0,∞) → [0,∞) such that κ(t) = 1 for t ≤ ǫ/3 and κ(t) = 0 for t ≥ 2ǫ/3.
For any a ∈ S0,ǫ set

p(B + a) := κ(‖a‖Lp,w
1

) · Pa.

Then p is a smooth ΓB-equivariant map Sǫ → Ω+
c (W ; so(E)). Moreover,

p extends uniquely to a smooth G-equivariant map A → Lp,w(W ; Λ+ ⊗
so(E)) that vanishes outside GSǫ. This extension will also be denoted
p.

The perturbed instanton equation that we have in mind is then

(16) F+
A + p(A) = 0,

for A ∈ A. Clearly, the linearization of this equation at B is surjective,
since it restricts to d+B+P on ker d∗B . Note that adding the perturbation
p does not affect the compactness properties of the corresponding moduli
space. If we take ǫ > 0 sufficiently small, then the classification of
twisted reducibles in Proposition 4.1 is also not affected.

More generally, we may add one such local perturbation p for each of
a finite number of twisted reducibles in B. Usually, the perturbations
will be suppressed from notation.

Having resolved the regularity issue, we now describe the local struc-
ture around a regular twisted reducible in Mk.

In the next lemma Z will denote a compact, connected codimension 0
submanifold of W . Consider the double covering Ξγ → Uγ associated
to the bundle E|Z and a loop γ : S1 → Z based at z ∈ Z.

Lemma 5.1. Suppose [B] is a regular point of Mk such that B pre-
serves a non-trivial real line bundle λ ⊂ E. Then under the restriction
map R : M∗

k → Uγ , the pull-back of the double covering Ξγ → Uγ is
trivial over the link of [B] in Mk if and only if γ∗λ is trivial.

The fact that Ξγ → Uγ is a double covering was proved in Propo-

sition 3.2. By the “link” we mean the boundary ∂N ≈ RP
2k−1 of a

compact neighborhood N of [B] in Mk to be constructed in the proof.
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Proof. If γ∗λ is trivial, then [B] ∈ Uγ by Proposition 3.1, so there is
a well-defined restriction map

R̄ :M∗
k ∪ {[B]} → Uγ .

Since Ξγ → Uγ is locally trivial, R̄∗Ξγ is trivial on a neighborhood of
[B].

Now suppose γ∗λ is non-trivial. We may assume B ∈ A is smooth.
Recall that the kernel K of the operator (15) consists entirely of forms
with values in L. Therefore the non-trivial element of ΓB acts as −1 on
K.

For a small r > 0 let Dr ⊂ K be the closed r-ball around the origin
with respect to some ΓB-invariant inner product on K. By the local
slice theorem there is a smooth ΓB–equivariant embedding

Q := B +Dr → A

whose composition with the projection A → B induces a homeomor-
phism of Q/ΓB onto a compact neighborhood N of [B] in Mk.

Let Q̃ → Q be the pull-back of the double covering (8) under Holγ :

Q → Aut(Ez). Since Q is contractible, Q̃ → Q is a trivial double
covering. There is now a commutative diagram

∂Q̃/ΓB → R∗Ξγ

↓ ↓
∂Q/ΓB → M∗

k

where the horizontal maps are the embeddings induced by Q → A.
The image of the bottom map is ∂N , so what we need to show is that
the left-most map is a non-trivial covering. Since γ∗λ is non-trivial,
h := Holγ(B) acts as −1 on λz and hence by a reflection on Lz. In a
suitable orthogonal basis for Ez, the two lifts of h ∈ SO(3) to Sp(1) are
±j, and σ acts on Sp(1) by conjugation with i. Since iji−1 = −j, we
see that σ interchanges the two points in Q̃ lying above B. Thus we can
identify Q̃→ Q with

D2k × {±1} → D2k,

where D2k is the unit disk in R
2k and σ acts on D2k×{±1} by (x, t) 7→

(−x,−t). Restricting to ∂D2k = S2k−1 and dividing out by ΓB, we

obtain the usual covering S2k−1 → RP
2k−1, which is non-trivial.

6. Abelian instantons

Let Mk be as in Section 4, assuming (12). In this section we use the
unperturbed instanton equation.

We will need to deal with both reducibles in Mk and reducibles ap-
pearing in weak limits of sequences inMk. Such reducibles are contained
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in the set

M red :=
∐

s≥0

M red
k−4s.

Let Mared and M tred be the subsets of M red consisting of Abelian and
twisted reducibles, respectively. If b+(W ) > 0, then Mared is empty, by
choice of the metric on W . If b+(W ) = 0 (in which case b1(W ) = 1),
then Mared consists of a finite disjoint union of circles. Let Z ⊂ W be
any compact, connected, codimension 0 submanifold and γ a loop in Z.
The restriction map

R :Mared → Uγ ⊂ B(E|Z)

maps each circle S ⊂ Mared onto either a circle or a point, depending
on whether H1(W ;R) → H1(Z;R) is non-zero or not. Moreover, the
double covering Ξγ → Uγ pulls back to a trivial covering of any S if
and only if the class in H1(W ;Z)/torsion represented by γ is divisible
by 2; however, we will make no use of this. Note that different circles
S have disjoint images in B(E|Z), by the unique continuation property
of self-dual closed 2-forms (applied to the curvature forms).

7. Three lemmas on Banach manifolds

The results of this section will be used in Section 8.2 below.

Lemma 7.1. Let B be a smooth (Hausdorff) Banach manifold that
admits smooth partitions of unity. Let L → B be a smooth real 2-plane
bundle. If L admits a continuous non-vanishing section, then it admits
a smooth non-vanishing section.

Proof. Of course, this is well known if B is finite-dimensional (and at
least in that case it holds for bundles of any finite rank). For general B
one can use the following Čech cohomology argument:

Choose a smooth Euclidean metric on L. Set λ := Λ2L and let
K := R ⊕ λ be the associated bundle of fields as in Section 2. Then
L has a canonical structure as a smooth K-line bundle as defined in
(13). Clearly, L is trivial as a smooth (resp. continuous) K-line bun-
dle (meaning L ≈ K) if and only if L admits a non-vanishing smooth
(respectively continuous) section.

Let K∗ and K∗
∞ denote the sheaves of continuous and smooth sections

of K∗, respectively. Then L is determined up to smooth isomorphism
by its class in H1(B;K∗

∞). But the inclusion K∗
∞ → K∗ induces an

isomorphism

H1(B;K∗
∞)

≈
→ H1(B;K∗),

as is easily seen by considering the morphism between the exponential
short exact sequences for K∗

∞ and K∗ (see (7)).
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In the following two lemmas, B will be a metric space and R a com-
pact subspace. The open subspace B∗ := B \ R of B will have the
structure of a smooth Banach manifold admitting smooth partitions of
unity.

Lemma 7.2. Suppose R is a finite set. Let Θ → B be a Euclidean
(real) line bundle. Let Θ|B∗ have the obvious smooth structure. Then
there exists a smooth section of Θ|B∗ that is nowhere zero in B∗∩V for
some neighborhood V of R in B.

Proof. Choose an open neighborhood N of R and a section σ of Θ|N
that has (pointwise) unit length. Then σ is smooth in N ∩B∗. Since B
is a normal space there are disjoint open neighborhoods V, V ′ of R and
B\N , respectively. Using a smooth partition of unity of B∗ subordinate
to the open cover {V ′, B∗ ∩ N}, one can construct a smooth section s
of Θ over B∗ that agrees with σ on B∗ ∩ V . In particular, s is nowhere
zero in B∗ ∩ V .

Lemma 7.3. Suppose R is the disjoint union of three sets,

R = R0 ⊔R1 ⊔R2,

where R1 and R2 are finite sets and R0 is a finite disjoint union of
subspaces each of which is homeomorphic to a circle. For i = 1, 2 let
Θi → B∗ ∪ R0 ∪ Ri be a Euclidean line bundle. Let Θ̂ be the direct
sum of the restrictions of Θ1 and Θ2 to B∗ ∪ R0. Then there exists a
smooth section of Θ̂ over B∗ that is nowhere zero in B∗ ∩ V for some
neighborhood V of R in B.

Proof. Choose pairwise disjoint open sets H0,H1,H2 in B such that
Ri ⊂ Hi for i = 0, 1, 2. It is easy to see that Θ̂|R0

admits a non-vanishing
section σ. Since R0 is compact, we can cover R0 by finitely may open
sets Uj inH0 such that Θ̂|Uj

is trivial for each j. By the Tietze extension

theorem there is a section σj of Θ̂|Uj
that agrees with σ on R0 ∩ Uj .

Patching together the sections σj by means of a partition of unity yields
a section σ̃ of Θ over U := ∪jUj such that σ̃ = σ on R0. Then the locus
N0 where σ̃ 6= 0 is an open neighborhood of R0 in B. By Lemma 7.1
there exists a non-vanishing smooth section s0 of Θ̂ over B∗ ∩N0.

For i = 1, 2 choose a unit length section τi of Θi over some open
neighborhood Ni of Ri in Hi. Combining τi with the zero-section of
Θ3−i yields a smooth non-vanishing section si of Θ̂ over B∗ ∩Ni.

Set N := N0 ∪ N1 ∪ N2, which is an open neighborhood of R in B.
By means of a smooth partion of unity as in the proof of Lemma 7.2
we can then construct a smooth section s of Θ̂|B∗ that agrees with si
in B∗ ∩ V ∩Nj for some neighborhood V of R in N . In particular, s is
nowhere zero in B∗ ∩ V .
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8. Proof of theorem

Assuming the hypotheses of the theorem are satisfied, we will show
that δ0 6= 0.

For any ℓ set Fℓ := H2(X; ℓ)/torsion. If b+(X; ℓ) = 0, let Dℓ ⊂ Fℓ

be the subgroup generated by vectors of square −1. Let F̂ℓ ⊂ Fℓ be the
orthogonal complement of Dℓ, so that

(17) Fℓ = Dℓ ⊕ F̂ℓ.

By assumption there is a non-trivial ℓ such that F̂ℓ 6= 0 and H2(X; ℓ)
contains no element of order 4. Fix such an ℓ. Note that there is a class
x ∈ F̂ℓ with x

2 6≡ 0 mod 4. (Proof: Since F̂ℓ is unimodular, we can find

elements a, b ∈ F̂ℓ with a · b = 1. If a2, b2 ≡ 0 mod 4, then (a+ b)2 ≡ 2
mod 4.) Let k be the smallest (positive) integer 6≡ 0 mod 4 such that

there exists an x ∈ F̂ℓ with x
2 = −k.

8.1. Reduction to δ(X) = 0. By (2) we have δ(X) ≤ 0. We will now
reduce the remaining part of the proof to the case δ(X) = 0.

Lemma 8.1. Let N be any compact, connected oriented smooth 4-
manifold, and let C be any embedded circle in int(N) that represents a
non-zero class in H1(N ;Z/2). Let N ′ be obtained from N by surgery on
C. Then

τ(N ′) + b+(N ′) = τ(N) + b+(N).

Here, τ is the invariant defined just before Theorem 1.1.

Proof. Defining δ(N) as in (10), we have

b1(N ;Z/2) + δ(N) = (b1(N) + τ(N)) + (1− b1(N) + b+(N))

= τ(N) + b+(N) + 1.

Now, b1(N ;Z/2) drops by 1 by surgery on C, whereas δ(N) increases
by 1 by surgery on any circle in int(N). (A highbrow proof of the
latter statement applies the excision principle for indices to the elliptic
operator d∗ + d+ : Ω1 → Ω0 ⊕ Ω+ on some close-up V of N , recalling
that the index of that operator is −δ(V ).)

Every element of H1(X; ℓ) can be represented by an embedded, ori-
ented circle C in the interior of X together with a trivialization of ℓ|C .
Set d := −δ(X) and let X ′ be obtained from X by performing surgery
on a collection of disjoint oriented circles C1, . . . , Cd in int(X) that,

together with a trivialization of ℓ over C̃ := ∪jCj , represent a basis
for H1(X; ℓ)/torsion. Let ℓ′ → X ′ be the bundle obtained by trivially
extending ℓ|X\C̃ . Then b1(X

′; ℓ′) = 0, and there is a canonical isomor-

phism H2(X; ℓ) → H2(X ′; ℓ′) that induces an isomorphism between the
intersection forms. It follows from the long exact sequence

· · · → H1(X; ℓ)
·2
→ H1(X; ℓ) → H1(X;Z/2) → · · ·
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that the circles Cj represent linearly independent classes in H1(X;Z/2),
so by Lemma 8.1 the invariant τ + b+ takes the same value on X and
X ′.

We have shown that X ′, ℓ′ satisfy all the hypotheses of the theorem,
and that ℓ′, k satisfy the same minimality condition as ℓ, k. We may
therefore from now on assume that b1(X; ℓ) = 0 = δ(X). This implies
that

(18) b := b1(X;Z/2) = τ(X) + (b+(X) + 1) ≤ 3,

where we have used assumption (3) of the theorem.

8.2. Choosing the sections. Let W be the result of attaching a half-
infinite cylinder [0,∞)×Y to X. We extend the bundle ℓ→ X to all of
W and, abusing notation, denote the new bundle also by ℓ. Choose a
c ∈ H2(W ; ℓ) whose image in Fℓ lies in F̂ℓ and such that c2 = −k. Define
λ,K in terms of ℓ as in Section 2 and let L→W be a Hermitian K-line
bundle with c̃1(L) = c. Then E := λ ⊕ L is an oriented, Euclidean
3-plane bundle over W .

We will use the same notation for moduli spaces associated to E as
in Section 4. Choose a Riemannian metric on W that is on product
form on the end and which is generic as assumed in the beginning of
Section 4.

Let Mλ
k be the set of all [A] ∈Mk such that A preserves a subbundle

of E isomorphic to λ. After perhaps perturbing the instanton equation
as in Section 5, we may assume that every element of Mλ

k is a regular
point in Mk.

We also add holonomy perturbations over the end ofW corresponding
to a small generic perturbation of the Chern–Simons functional over Y
(which is in general needed to construct the Floer homology of Y ), as
well as small holonomy perturbations obtained from a finite number
of thickened loops in W . (In order not to obscure the main ideas, we
usually ignore holonomy perturbations in this paper.)

Let M#
k be obtained from Mk by deleting the interior of a small

compact neighborhood Nω of every ω ∈Mλ
k , where Nω is as constructed

in the proof of Lemma 5.1. Let M−
k be the irreducible part of M#

k .

We are going to cut down M−
k to a 1-manifold with boundary in the

following way. For i = 1, . . . , 2k−1 let Z ′
i ⊂W be a compact, connected

codimension 0 submanifold and γi : S
1 → Z ′

i a loop. Let Θγi → Uγi be
the real line bundle associated to the double covering Ξγi → Uγi . Let s

′
i

be a smooth section of Θγi over the irreducible part of Uγi and set

M̂k := {ω ∈M−
k | s′i(ω|Z′

i
) = 0 for i = 1, . . . , 2k − 1}.

For generic sections s′i the space M̂k will be a smooth 1-manifold with
boundary (see [21]). We will show that for a suitable choice of loops and

sections the manifold M̂k will have an odd number of boundary points
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and no ends coming from reducibles (i.e., points or circles in M red). We
briefly outline how this will be achieved.

Consider the set

Q := {w ∈ H1(W ;Z/2) | (γi)
∗w 6= 0 for i = 1, . . . , 2k − 1}.

If w1(λ) ∈ Q then, as we will see in Section 8.3, M̂k will have an odd
number of boundary points. If w1(λ) is the unique point in Q, then

the sections s′i can be chosen so that M̂k has no ends associated to
twisted reducibles in Mk. Note that |Q| = 1 is indeed possible, since
b ≤ 3 ≤ 2k − 1.

To avoid ends of M̂k associated to circles inMared, we choose Z ′
2j−1 =

Z ′
2j for j = 1, . . . , k − 1 and exploit the fact that the direct sum of two

real line bundles admits a non-vanishing section over any circle (see
Lemma 7.3); furthermore, we take the Zj := Z ′

2j−1, j = 1, . . . , k to be
disjoint.

Finally, to arrange, in addition, that there are no ends in M̂k coming
from twisted reducibles in lower strata Mℓ, ℓ < k, we rotate the classes
represented by the γi in a suitable way.

We now make precise the choice of loops and sections. Choose a basis
{e1, . . . , eb} for H1(W ;Z/2) such that 〈eh, w1(λ)〉 = 1 for each h. Also
choose

• disjoint compact, connected, codimension 0 submanifoldsZ1, . . . , Zk

of W ,
• two loops γ2j−1, γ2j in Zj for j = 1, . . . , k − 1,
• a loop γ2k−1 in Zk

such that γi represents eh when i ≡ h mod b. For instance, Zk may be
a closed tubular neighborhood of an embedded circle in W , whereas for
j = 1, . . . , k− 1 one can take Zj to be an internal connected sum of two
such tubular neighourhoods.

We will write Ui,Ξi,Bj instead of Uγi ,Ξγi ,B(E|Zj
). Let B∗

j denote the
irreducible part of Bj. Let Θi → Ui be the real line bundle associated
to the double covering Ξi → Ui.

For j = 1, . . . , k − 1 let Rj ⊂ Bj be the image of M red under the
restriction map. We have observed that Rj is the disjoint union of
finitely many circles and a finite set. Note that, by Lemma 3.1, all
these circles are contained in U2j−1 ∩ U2j . Let Θ̂j be the direct sum
of the restrictions of Θ2j−1 and Θ2j to B∗

j . Let sj be a generic smooth

section of Θ̂j that is nowhere zero on B∗
j ∩Vj for some neighborhood Vj

of the compact set Rj ∩ (U2j−1∪U2j) in Bj. The existence of sections of
this kind follows from Lemma 7.3. (The fact that Bj is metrizable was
pointed out in Section 3.)

Let Rk ⊂ Bk be the image of M tred under the restriction map. Let sk
be a generic smooth section of Θ2k−1 over B∗

k that is nowhere zero on



4-MANIFOLDS AND INTERSECTION FORMS 255

B∗
k ∩ Vk for some neighborhood Vk of Rk ∩ U2k−1 in Bk. The existence

of sections of this kind follows from Lemma 7.2.

8.3. Ends and boundary points. Set

M̂k := {ω ∈M−
k | sj(ω|Zj

) = 0 for j = 1, . . . , k}.

Modulo 2 the number of boundary points of the smooth 1-manifold M̂k

is

(19) #∂M̂k ≡
∑

ω

〈[∂Nω], e(Θω)〉 ≡ |Pℓ| ≡ 1 mod 2,

where e denotes the Euler class with coefficients in Z/2 and Θω is the
direct sum of the pull-backs of the line bundles Θ1, . . . ,Θ2k−1 to the
boundary ∂Nω ≈ RP

2k−1 of Nω.
To prove the second congruence in (19), note that Θi pulls back to

a non-trivial bundle over each ∂Nω by Lemma 5.1. Since the Euler
class is multiplicative under finite direct sums, we conclude that each
term in the sum in (19) is 1. The last congruence in (19) follows from
Proposition 4.2 because |Pc| = 1 by the minimality property of k, and
|2Tℓ| is odd since by assumptionH2(W ; ℓ) contains no element of order 4.

It remains to determine the ends of M̂k. For any moduli space Mα,d

with α irreducible, set

M̂α,d := {ω ∈Mα,d | sj(ω|Zj
) = 0 for j = 1, . . . , k}.

Proposition 8.1. Any sequence in M̂k has a subsequence which ei-
ther converges in M̂k or chain-converges to an element of

M̂α,2k−1 × M̌(α, θ)

for some α ∈ R∗
Y , where M(α, θ) is the one-dimensional moduli space

over R× Y with limits α at −∞ and θ at ∞, and M̌ :=M/R.

Proof of proposition: Let {[An]} be a sequence in M̂k. After passing
to a subsequence, we may assume that {[An]} chain-converges weakly
in the sense of [5]. Let ([A], x1, . . . , xq) be the weak limit over W , where
[A] ∈ Mα,d, α ∈ RY , and x1, . . . , xq ∈ W , q ≥ 0. We are going to show
that A must be irreducible. First, we establish the following lemma.

Lemma 8.2. If A is reducible, then there is a j ∈ {1, . . . , k} with the
following two properties:

(i) Zj contains none of the points x1, . . . , xq.
(ii) [A|Zj

] ∈ Vj .

Proof of lemma: If A is reducible, then [A] ∈ M red
k−4s for some non-

negative integer s. Observe that

(20) q ≤ s <
k

4
< k − 1.
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The second inequality holds because k − 4s ≥ 0 by (11) and we have
chosen k 6≡ 0 mod 4. Hence there is certainly a j < k satisfying (i).

Case 1: A Abelian. Then (ii) is satisfied for any j < k, so the lemma
holds in this case.

Case 2: A twisted reducible. Let E = λ′ ⊕ L′ be the splitting
preserved by A, where λ′ is a non-trivial real line bundle.

Case 2a: λ′ ≈ λ. We will show that this cannot occur. Let ℓ′ ⊂ λ′ be
the lattice of vectors of integer length and set c′ := c̃1(L

′) ∈ H2(W ; ℓ′).

Choose an isomorphism f : ℓ′
≈
→ ℓ and set ζ := f∗c

′ ∈ H2(W ; ℓ).
Since [ζ]2 = [c′]2 = [c]2 (the last equality by Proposition 4.1), it follows
from the exact sequence (14) that there is an x ∈ H2(W ; ℓ) such that
ζ = c+ 2x. For any v ∈ H2(W ; ℓ) let v̄ be the image of v in Fℓ and let

v̂ be the component of v̄ in F̂ℓ with respect to the splitting (17). Since

c̄ ∈ F̂ℓ by assumption, we have ζ̂ = c̄ + 2x̂, so (ζ̂)2 ≡ c2 = −k 6≡ 0

mod 4. Hence −(ζ̂)2 ≥ k by the minimality of k, so

k − 4s = −ζ2 ≥ −(ζ̂)2 ≥ k.

Thus, s = 0 and [A] ∈Mk. It follows that the sequence {[An]} converges

in Mk (see [5]). Since M#
k is a closed subset of Mk, we must have

[A] ∈M#
k . This is a contradiction, since M#

k was obtained from Mk by
deleting neighborhoods of all twisted reducibles preserving a line bundle
isomorphic to λ.

Case 2b: λ′ 6≈ λ. Then b ≥ 2.
Case 2b1: b = 2. Then for h = 1 or 2 we have

1 = 〈eh, w1(λ) + w1(λ
′)〉 = 1 + 〈eh, w1(λ

′)〉,

so 〈eh, w1(λ
′)〉 = 0. As observed in the beginning of the proof, we can

find a j < k satisfying (i). For i = 2j − 1 or 2j the loop γi represents
eh, in which case (γi)

∗λ′ is trivial. This in turn implies [A|Zj
] ∈ Ui by

Proposition 3.1, so [A|Zj
] ∈ Vj .

Case 2b2: b = 3. Set

m :=

[
k − 1

3

]
.

Case 2b2a: m = 0. Then k ≤ 3, so q = 0 by (20). The same
argument as in the case b = 2 shows that (γi)

∗λ′ is trivial for some
i ∈ {1, 2, 3}; hence [A|Zj

] ∈ Vj for j = 1 or 2.
Case 2b2b: m ≥ 1. Choose h with 〈eh, w1(λ

′)〉 = 0. Then for at
least 2m integers j ∈ {1, . . . , k − 1} one of the loops γ2j−1 or γ2j will
represent eh, in which case (ii) holds. Because

q <
k

4
< 2m,

one can choose j such that (i) holds as well.
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Lemma 8.3. A is irreducible.

Proof of lemma: Assume to the contrary that A were reducible, and
let j satisfy the two properties of Lemma 8.2. Then

[An|Zj
] → [A|Zj

] in Bj as n→ ∞.

But Vj is open, so for sufficently large n we have [An|Zj
] ∈ B∗

j ∩ Vj and

therefore sj(An|Zj
) 6= 0. This contradicts [An] ∈ M̂k and the lemma is

proved.
We can now complete the proof of the proposition. First suppose

[A] ∈ Mk, which implies q = 0. Then {[An]} converges in Mk, so

[A] ∈M#
k . But [A] is irreducible, so [A] ∈ M̂k.

Now suppose [A] 6∈Mk. Then

(21) d ≤ min(2k − 1, 2k − 8q).

Set

J := {j ∈ {1, . . . , k − 1} |Zj contains none of the points x1, . . . , xq}.

Then sj(A|Zj
) = 0 for every j ∈ J . Since the sections sj are generic,

we must have 2|J | ≤ d, where |J | denotes the cardinality of the set J .
Combining this with (21) yields

2|J | ≤ 2k − 8q.

Setting t := k − 1− |J |, we deduce

4q ≤ t+ 1 ≤ q + 1,

so q = 0. Hence sj(A|Zj
) = 0 for j = 1, . . . , k, so d ≥ 2k−1. Combining

this with (21), we obtain d = 2k − 1. This is only possible when α is
irreducible, so the proposition is proved.

We can now complete the proof of the theorem. An argument similar
to the proof of Proposition 8.1 shows that M̂α,2k−1 is compact, hence a
finite set (since it is 0–dimensional). By gluing theory, the number of

ends of M̂k is δh, where

h :=
∑

α

[#M̂α,2k−1]α ∈ CF4(Y )⊗ Z/2.

The proof of the proposition applied to moduli spaces Mβ,2k with β
irreducible shows that h is a cocycle.

Since the 1-manifold M̂k has an odd number of boundary points, it
must also have an odd number of ends, so δ0([h]) = 1.
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