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SURFACES WITH PARALLEL MEAN CURVATURE

VECTOR IN COMPLEX SPACE FORMS

Dorel Fetcu

Abstract

We consider surfaces with parallel mean curvature vector (pmc
surfaces) in complex space forms and introduce a holomorphic
differential on such surfaces. When the complex dimension of
the ambient space is equal to two we find a second holomorphic
differential and then determine those pmc surfaces on which both
differentials vanish. We also provide a reduction of codimension
theorem and prove a non-existence result for pmc 2-spheres in
complex space forms.

1. Introduction

Sixty years ago, H. Hopf was the first to use a quadratic form in
order to study surfaces immersed in a 3-dimensional Euclidean space.
He proved, in 1951, that any such surface which is homeomorphic to a
sphere and has constant mean curvature is actually isometric to a round
sphere (see [13]). This result was extended by S.-S. Chern to surfaces
immersed in 3-dimensional space forms (see [8]) and by U. Abresch
and H. Rosenberg to surfaces in simply connected, homogeneous 3-
dimensional Riemannian manifolds, whose group of isometries has di-
mension 4 (see [1, 2]). Very recently, H. Alencar, M. do Carmo and
R. Tribuzy have made the next step by obtaining Hopf-type results
in spaces with dimension higher than 3, namely in product spaces
Mn(c) × R, where Mn(c) is a simply connected n-dimensional space
form with constant sectional curvature c 6= 0 (see [3, 4]). They have
considered the case of surfaces with parallel mean curvature vector, as
a natural generalization of those with constant mean curvature in a 3-
dimensional ambient space. We also have to mention a recent paper of
F. Torralbo and F. Urbano, which is devoted to the study of surfaces
with parallel mean curvature vector in S

2 × S
2 and H

2 ×H
2.

Minimal surfaces and surfaces with parallel mean curvature vector
in complex space forms have been also a well studied subject in the
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last two decades (see, for example, [5, 7, 9, 10, 12, 15, 16, 17, 18]).
In all these papers the Kähler angle proved to play a decisive role in
understanding the geometry of immersed surfaces in a complex space
form, and, in several of them, important results were obtained when
this angle was supposed to be constant (see [5, 16, 18]).

The main goal of our paper is to obtain some characterization re-
sults concerning surfaces with parallel mean curvature vector in com-
plex space forms by using as a principal tool holomorphic quadratic
forms defined on these surfaces. The paper is organized as follows. In
Section 2 we introduce a quadratic form Q on surfaces of an arbitrary
complex space form and prove that its (2, 0)-part is holomorphic when
the mean curvature vector of the surface is parallel. In Section 3 we
work in the complex space forms with complex dimension equal to 2
and find another quadratic form Q′ with holomorphic (2, 0)-part. Then
we determine surfaces with parallel mean curvature vector on which
both (2, 0)-part of Q and (2, 0)-part of Q′ vanish. As a by-product we
reobtain a result in [12]. More precisely, we prove that a 2-sphere can
be immersed as a surface with parallel mean curvature vector only in
a flat complex space form and it is a round sphere in a hyperplane in
C
2. In Section 4 we deal with surfaces in C

n with parallel mean cur-
vature vector, and we prove that the (2, 0)-part of Q vanishes on such
a surface if and only if it is pseudo-umbilical. The main result of Sec-
tion 5 is a reduction theorem, which states that a surface in a complex
space form, with parallel mean curvature vector, either is totally real
and pseudo-umbilical or it is not pseudo-umbilical and lies in a complex
space form with complex dimension less or equal to 5. The last Section
is devoted to the study of the 2-spheres with parallel mean curvature
vector and constant Kähler angle. We prove that there are no non-
pseudo-umbilical such spheres in a complex space form with constant
holomorphic sectional curvature ρ 6= 0.

Acknowledgements. The author wants to thank Professor Harold
Rosenberg for suggesting this subject, useful comments and discussions
and constant encouragement, and the IMPA in Rio de Janeiro for pro-
viding a very stimulative work environment during the preparation of
this paper.

2. A quadratic form

Let Σ2 be an immersed surface in Nn(ρ), where N is a complex space
form with complex dimension n, complex structure (J, 〈, 〉), and with
constant holomorphic sectional curvature ρ; which is either CPn(ρ), or
C
n, or CHn(ρ), as ρ > 0, ρ = 0, and ρ < 0, respectively. Let us define

a quadratic form Q on Σ2 by

Q(X,Y ) = 8|H|2〈σ(X,Y ),H〉+ 3ρ〈JX,H〉〈JY,H〉,
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where σ is the second fundamental form of the surface and H is its mean
curvature vector field. Assume that H is parallel in the normal bundle
of Σ2, i.e. ∇⊥H = 0, the normal connection ∇⊥ being defined by the
equation of Weingarten

∇N
XV = −AV X +∇⊥

XV,

for any vector field X tangent to Σ2 and any vector field V normal to
the surface, where ∇N is the Levi-Civita connection on N and A is the
shape operator.

We shall prove that the (2, 0)-part of Q is holomorphic. In order to do
that, let us first consider the isothermal coordinates (u, v) on Σ2. Then
ds2 = λ2(du2+dv2) and define z = u+iv, z̄ = u−iv, dz = 1√

2
(du+idv),

dz̄ = 1√
2
(du− idv) and

Z =
1√
2

( ∂

∂u
− i

∂

∂v

)
, Z̄ =

1√
2

( ∂

∂u
+ i

∂

∂v

)
.

We also have 〈Z, Z̄〉 = 〈 ∂
∂u

, ∂
∂u

〉 = 〈 ∂
∂v
, ∂
∂v
〉 = λ2.

In the following we shall calculate

Z̄(Q(Z,Z)) = Z̄(8|H|2〈σ(Z,Z),H〉 + 3ρ〈JZ,H〉2).

First, we get

Z̄(〈σ(Z,Z),H〉) = 〈∇N
Z̄
σ(Z,Z),H〉 + 〈σ(Z,Z),∇N

Z̄
H〉

= 〈∇⊥
Z̄
σ(Z,Z),H〉 + 〈σ(Z,Z),∇⊥

Z̄
H〉

= 〈(∇⊥
Z̄
σ)(Z,Z),H〉 + 〈σ(Z,Z),∇⊥

Z̄
H〉,

where we have used that

(∇⊥
Z̄
σ)(Z,Z) = ∇⊥

Z̄
σ(Z,Z)− 2σ(∇Z̄Z,Z) = ∇⊥

Z̄
σ(Z,Z)

since, from the definition of the connection ∇ on the surface, we easily
get ∇Z̄Z = 0.

Now, from the Codazzi equation, we obtain
(2.1)

Z̄(〈σ(Z,Z),H〉) = 〈(∇⊥
Zσ)(Z̄, Z),H〉 + 〈(RN (Z̄, Z)Z)⊥,H〉

+〈σ(Z,Z),∇⊥
Z̄
H〉

= 〈(∇⊥
Zσ)(Z̄, Z),H〉 + 〈RN (Z̄, Z)Z,H〉

+〈σ(Z,Z),∇⊥
Z̄
H〉.
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From the expression of the curvature tensor field of N

RN (U, V )W = ρ
4{〈V,W 〉U − 〈U,W 〉V + 〈JV,W 〉JU

−〈JU,W 〉JV + 2〈JV,U〉JW},

it follows

(2.2) 〈RN (Z̄, Z)Z,H〉 = 3ρ

4
〈Z̄, JZ〉〈H,JZ〉.

We also have the following

Lemma 2.1.

(2.3) 〈(∇⊥
Zσ)(Z̄, Z),H〉 = 〈Z̄, Z〉〈∇⊥

ZH,H〉.

Proof. By using the definition of (∇⊥
Zσ)(Z̄, Z) one obtains

(∇⊥
Zσ)(Z̄, Z) = ∇⊥

Zσ(Z̄, Z)− σ(∇ZZ̄, Z)− σ(Z̄,∇ZZ)

= ∇⊥
Zσ(Z̄, Z)− σ(Z̄,∇ZZ)

since ∇ZZ̄ = 0.
Next, let us consider the unit vector fields e1 and e2 corresponding to

∂
∂u

and ∂
∂v
, respectively, and E = 1√

2
(e1 − ie2). Then we have Z = λE

and

σ(Z̄, Z) =
λ2

2
σ(e1− ie2, e1+ ie2) =

λ2

2
(σ(e1, e1)+σ(e2, e2)) = 〈Z̄, Z〉H.

Since ∇ZZ is tangent it follows that ∇ZZ = aZ + bZ̄ and then
0 = 〈∇ZZ,Z〉 = bλ2, where we have used the fact that 〈Z,Z〉 = 0, and
a = 1

λ2 〈∇ZZ, Z̄〉.
In conclusion

〈(∇⊥
Zσ)(Z̄, Z),H〉 = 〈∇N

Z (〈Z̄, Z〉H),H〉 − 〈∇ZZ, Z̄〉〈H,H〉

= 〈∇ZZ̄, Z〉〈H,H〉 + 〈∇ZZ, Z̄〉〈H,H〉

+〈Z̄, Z〉〈∇⊥
ZH,H〉 − 〈∇ZZ, Z̄〉〈H,H〉

= 〈Z̄, Z〉〈∇⊥
ZH,H〉.

q.e.d.

Lemma 2.2.

(2.4) Z̄(〈JZ,H〉2) = 2〈JZ,H〉〈(JZ)⊥,∇⊥
Z̄
H〉 − 2|H|2〈Z̄, JZ〉〈JZ,H〉
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Proof. From the definitions of the Kähler structure and of the Levi-
Civita connection we have

Z̄(〈JZ,H〉2) = 2〈JZ,H〉{〈∇N
Z̄
JZ,H〉+ 〈JZ,∇N

Z̄
H〉}

= 2〈JZ,H〉{〈Z̄ , Z〉〈JH,H〉 − 〈(JZ)⊤, AHZ̄〉

+〈(JZ)⊥,∇⊥
Z̄
H〉}

= 2〈JZ,H〉{〈(JZ)⊥,∇⊥
Z̄
H〉 − 〈σ((JZ)⊤, Z̄),H〉}

= 2〈JZ,H〉{〈(JZ)⊥,∇⊥
Z̄
H〉 − 〈JZ, Z̄〉|H|2},

where we have used ∇N
Z̄
Z = σ(Z̄, Z) = 〈Z̄, Z〉H, as we have seen in the

proof of the previous Lemma, and (JZ)⊤ = 1
λ2 〈JZ, Z̄〉Z, that can be

easily checked. q.e.d.

Replacing (2.2), (2.3) and (2.4) into (2.1) we obtain that Z̄(Q(Z,Z))
vanishes and then we come to the conclusion that

Proposition 2.3. If Σ2 is an immersed surface in a complex space

form Nn(ρ), with parallel mean curvature vector field, then the (2, 0)-
part of the quadratic form Q, defined on Σ2 by

Q(X,Y ) = 8|H|2〈σ(X,Y ),H〉+ 3ρ〈JX,H〉〈JY,H〉,
is holomorphic.

3. Quadratic forms and 2-spheres in 2-dimensional complex

space forms

In this section we shall define a new quadratic form on a surface Σ2

immersed in a complex space form N2(ρ), with parallel mean curvature
vector field H 6= 0, and prove that its (2, 0)-part is holomorphic. Then,
by using these two quadratic forms, we shall classify the 2-spheres with
nonzero parallel mean curvature vector.

3.1. Another quadratic form. Let us consider an oriented orthonor-
mal local frame {ẽ1, ẽ2} on the surface and denote by θ the Kähler angle
function defined by 〈Jẽ1, ẽ2〉 = cos θ. The immersion x : Σ2 → N is said
to be holomorphic if cos θ = 1, anti-holomorphic if cos θ = −1, and to-
tally real if cos θ = 0. In the following we shall assume that x is neither
holomorphic or anti-holomorphic.

Next, we take e3 = − H
|H| and let e4 be the unique unit normal vector

field orthogonal to e3 compatible with the orientation of Σ2 in N . Since
e3 is parallel in the normal bundle so is e4, and, as the Kähler angle is
independent of the choice of the orthonormal frame on the surface (see,
for example, [9]), we have 〈Je4, e3〉 = cos θ.
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Now, we can consider the vector fields

e1 = cot θe3 −
1

sin θ
Je4, e2 =

1

sin θ
Je3 + cot θe4

tangent to the surface and get an orthonormal frame field {e1, e2, e3, e4}
adapted to Σ2 in N .

We define a quadratic form Q′ on Σ2 by

Q′(X,Y ) = 8i|H|〈σ(X,Y ), e4〉+ 3ρ〈JX, e4〉〈JY, e4〉

and again consider the isothermal coordinates (u, v) on Σ2 and the tan-
gent complex vector fields Z and Z̄. In the same way as in the case of
Q, using the Codazzi equation, the fact that H and e4 are parallel and
the expression of the curvature tensor field of N , we get

(3.1) Z̄(〈σ(Z,Z), e4〉) =
3ρ

4
〈Z̄, JZ〉〈JZ, e4〉.

On the other hand, we have

Z̄(〈JZ, e4〉2) = 2〈JZ, e4〉{〈∇N
Z̄
JZ, e4〉+ 〈JZ,∇N

Z̄
e4〉}

= 2〈JZ, e4〉{〈Z̄, Z〉〈JH, e4〉 − 〈(JZ)⊤, Ae4 Z̄〉}

= −2|H|〈JZ, e4〉〈Z̄, Z〉〈Je3, e4〉

−2〈JZ, e4〉〈σ((JZ)⊤, Z̄), e4〉

= 2|H|〈JZ, e4〉〈Z̄, Z〉 cos θ − 2〈JZ, e4〉〈JZ, Z̄〉〈H, e4〉

= 2|H|〈JZ, e4〉〈Z̄, Z〉 cos θ,

where we have used

∇N
Z̄
Z = σ(Z̄, Z) = 〈Z̄, Z〉H, (JZ)⊤ =

1

λ2
〈JZ, Z̄〉Z

and 〈Je4, e3〉 = cos θ. We have

〈Z̄, JZ〉 = −i〈Z̄, Z〉〈e1, Je2〉 = i〈Z̄, Z〉 cos θ,

and, therefore, one obtains

(3.2) Z̄(〈JZ, e4〉2) = −2i|H|〈Z̄, JZ〉〈JZ, e4〉.

Hence, from (3.1) and (3.2), one obtains Z̄(Q′(Z,Z)) = 0, which means
that the (2, 0)-part of the quadratic form Q′ is holomorphic.
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3.2. 2-spheres in 2-dimensional complex space forms. In order
to classify the 2-spheres in 2-dimensional complex space forms, we shall
need a result of T. Ogata in [16], which we will briefly recall in the
following (see also [12] and [15]). Consider a surface Σ2 isometrically
immersed in a complex space form N2(ρ), with parallel mean curva-
ture vector field H 6= 0. Using the frame field on N2(ρ) adapted to
Σ2, defined above, and considering isothermal coordinates (u, v) on the
surface, Ogata proved that there exist complex-valued functions a and
c on Σ2 such that θ, λ, a and c satisfy

(3.3)





∂θ
∂z

= λ(a+ b)
∂λ
∂z̄

= −|λ|2(ā− b) cot θ
∂a
∂z̄

= λ̄
(
2|a|2 − 2ab+ 3ρ sin2 θ

8

)
cot θ

∂c
∂z

= 2λ(a− b)c cot θ

|c|2 = |a|2 + ρ(3 sin2 θ−2)
8

where z = u+ iv and |H| = 2b; and also the converse: if ρ is a real con-
stant, b a positive constant, Σ2 a 2-dimensional Riemannian manifold,
and there exist some functions θ, a and c on Σ2 satisfying (3.3), then
there is an isometric immersion of Σ2 into N2(ρ) with parallel mean
curvature vector field of length equal to 2b and with the Kähler angle θ.
The second fundamental form of Σ2 in N w.r.t. {e1, e2, e3, e4} is given
by

σ3 =




−2b−ℜ(ā+ c) −ℑ(ā+ c)

−ℑ(ā+ c) −2b+ ℜ(ā+ c)




and

σ4 =




ℑ(ā− c) −ℜ(ā− c)

−ℜ(ā− c) −ℑ(ā− c)




and the Gaussian curvature of Σ2 is K = 4b2 − 4|c|2 + ρ
2 (see also [12]).

Assume now that the (2, 0)-part of Q and the (2, 0)-part of Q′ van-
ish on the surface Σ2. It follows, from the expression of the second
fundamental form, that c̄+ a ∈ R, c̄− a ∈ R and

32b(c̄ + a)− 3ρ sin2 θ = 0, 32b(c̄ − a) + 3ρ sin2 θ = 0.

Therefore c = 0 and a = 3ρ sin2 θ
32b and, from the fifth equation of (3.3),

it follows

(3.4) 9ρ2 sin4 θ + 128ρb2(3 sin2 θ − 2) = 0.

We have to split the study of this equation in two cases. First, if ρ = 0
then the above equation holds and a = 0. Next, if ρ 6= 0, we get that
function θ is a constant. This, together with the first equation of (3.3),

leads to a = 3ρ sin2 θ
32b = −b. By replacing in equation (3.4) we obtain
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ρ = −12b2 and then sin2 θ = 8
9 . We note that in both cases the Gaussian

curvature of Σ2 is given by K = 4b2 + ρ
2 = constant (see [12]). Thus,

by using Theorem 1.1 in [12], we have just proved that

Theorem 3.1. If the (2, 0)-part of Q and the (2, 0)-part of Q′ vanish
on a surface Σ2 isometrically immersed in a complex space form N2(ρ),
with parallel mean curvature vector field of length 2b > 0, then either

1) N2(ρ) = CH2(−12b2) and Σ2 is the slant surface in [6, Theorem
3(2)];

2) N2(ρ) = C
2 and Σ2 is a part of a round sphere in a hyperplane in

C
2.

Since the Gaussian curvature K is nonnegative only in the second
case of the Theorem, we have also reobtained the following result of S.
Hirakawa in [12].

Corollary 3.2. If S
2 is an isometrically immersed sphere in a 2-

dimensional complex space form, with nonzero parallel mean curvature

vector, then it is a round sphere in a hyperplane in C
2.

4. A remark on pmc 2-spheres in C
n

Proposition 4.1. Let Σ2 be an isometrically immersed surface in

C
n, with nonzero parallel mean curvature vector. Then the (2, 0)-part

of the quadratic form Q vanishes on Σ2 if and only if the surface is

pseudo-umbilical, i.e. AH = |H|2 I.
Proof. It can be easily seen that if Σ2 is pseudo-umbilical then the

(2, 0)-part of Q vanishes and, therefore, we have to prove only the ne-
cessity.

From Q(Z,Z) = 〈Z,Z̄〉2
2 Q(e1 − ie2, e1 − ie2) = 0 it follows

〈σ(e1, e1)− σ(e2, e2),H〉 = 0

and

〈σ(e1, e2),H〉 = 0.

But, since 〈σ(e1, e1) + σ(e2, e2),H〉 = 2|H|2, we obtain, for each i ∈
{1, 2},

〈AHei, ei〉 = 〈σ(ei, ei),H〉 = |H|2.
Therefore AH = |H|2 I, i.e. Σ2 is pseudo-umbilical. q.e.d.

S.-T. Yau proved, in [21, Theorem 4], that if Σ2 is a surface with
parallel mean curvature vector H in a manifold N with constant sec-
tional curvature, then either Σ2 is a minimal surface of an umbilical
hypersurface of N or Σ2 lies in a 3-dimensional umbilical submanifold
of N with constant mean curvature, as H is an umbilical direction or
the second fundamental form of Σ2 can be diagonalized simultaneously.
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We note that, in the first case, the mean curvature vector field of Σ2 in
C
n is orthogonal to the hypersurface.
Applying this result, together with Proposition 4.1, to the 2-spheres

in C
n, and using the Gauss equation of a hypersurface in C

n, we get

Proposition 4.2. If S2 is an isometrically immersed sphere in C
n,

with nonzero parallel mean curvature vector field H, then it is a minimal

surface of a hypersphere S
2n−1(|H|) ⊂ C

n.

5. Reduction of codimension

Let x : Σ2 → Nn(ρ), n ≥ 3, ρ 6= 0, be an isometric immersion of a
surface Σ2 in a complex space form, with parallel mean curvature vector
field H 6= 0.

Lemma 5.1. For any vector V normal to Σ2, which is also orthogo-

nal to JTΣ2 and to JH, we have [AH , AV ] = 0, i.e. AH commutes with

AV .

Proof. The statement follows easily, from the Ricci equation

〈R⊥(X,Y )H,V 〉 = 〈[AH , AV ]X,Y 〉+ 〈RN (X,Y )H,V 〉,
since

〈RN (X,Y )H,V 〉 = ρ
4{〈JY,H〉〈JX, V 〉 − 〈JX,H〉〈JY, V 〉

+2〈JY,X〉〈JH, V 〉}

= 0

and R⊥(X,Y )H = 0. q.e.d.

Remark 5.2. If n = 3 and H ⊥ JTΣ2 do not hold simultaneously,
then there exists at least one normal vector V as in Lemma 5.1. This can
be proved by using the basis of the tangent space TN along Σ2 defined
in [17], which construction we shall briefly explain in the following. Let
us consider a local orthonormal frame {e1, e2} of vector fields tangent
to Σ2. Since we have assumed that H 6= 0 it follows that Σ2 is not
holomorphic or antiholomorphic, which means that cos2 θ = 1 only at
isolated points, and we shall work in the open dense set of points where
cos2 θ 6= 1, where θ is the Kähler angle function. The next step is to
define two normal vectors by

e3 = − cot θe1 −
1

sin θ
Je2 and e4 =

1

sin θ
Je1 − cot θe2.

Thus {e1, e2, e3, e4} is an orthonormal basis in span{e1, e2, Je1, Je2}.
Moreover, we can set

ẽ1 = cos
(θ
2

)
e1 + sin

(θ
2

)
e3, ẽ2 = cos

(θ
2

)
e2 + sin

(θ
2

)
e4
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ẽ3 = sin
(θ
2

)
e1 − cos

(θ
2

)
e3, ẽ4 = − sin

(θ
2

)
e2 + cos

(θ
2

)
e4

and obtain a J-canonical basis of span{e1, e2, Je1, Je2}, i.e. Jẽ2i−1 =
ẽ2i. Finally, let us consider a J-basis of TN along Σ2, of the form
{ẽ1, ẽ2, ẽ3, ẽ4, ẽ5, ẽ6 = Jẽ5, . . . , ẽ2n−1, ẽ2n = Jẽ2n−1}. Now, three situa-
tions can occur:

1) H ∈ (JTΣ2)⊥, and then ẽ5 ⊥ JTΣ2 and ẽ5 ⊥ JH, where we have
denoted by (JTΣ2)⊥ = {(JX)⊥ : X tangent to Σ2};

2) H ⊥ JTΣ2, and then, if we choose ẽ5 = H and ẽ6 = JH, we have
ẽ7 ⊥ JTΣ2 and ẽ7 ⊥ JH (obviously, this case can occur only if
n > 3);

3) H /∈ (JTΣ2)⊥ and H is not orthogonal to JTΣ2. In this case we
may consider the vector u, the projection of H on the comple-
mentary space of (JTΣ2)⊥ in TN (along Σ2) and set ẽ5 = u

|u| . It

follows that ẽ5 ⊥ JTΣ2 and ẽ5 ⊥ JH.

If n = 3 and H ⊥ JTΣ2 it is easy to see that

〈RN (X,Y )H, e3〉 = 〈RN (X,Y )H, e4〉 = 0

for any vector fieldsX and Y tangent to Σ2, and then that AH commutes
with Ae3 and Ae4 .

Conclusively, we get the following

Corollary 5.3. Either H is an umbilical direction or there exists

a basis that diagonalizes simultaneously AH and AV , for all normal

vectors satisfying V ⊥ JH, if n = 3 and H ⊥ JTΣ2, or the conditions

in Lemma 5.1, otherwise.

Lemma 5.4. Assume that H is nowhere an umbilical direction. Then

there exists a parallel subbundle of the normal bundle which contains the

image of the second fundamental form σ and has dimension less or equal

to 8.

Proof. We consider the following subbundle L of the normal bundle

L = span{Imσ ∪ (J Imσ)⊥ ∪ (JTΣ2)⊥},
and we will show that L is parallel.

First, we shall prove that, if V is orthogonal to L, then ∇⊥
ei
V is

orthogonal to JTΣ2 and to JH, where {e1, e2} is an orthonormal frame
w.r.t. which we have 〈σ(e1, e2), V 〉 = 〈σ(e1, e2),H〉 = 0. Indeed, we get

〈(JH)⊥,∇⊥
ei
V 〉 = 〈(JH)⊥,∇N

ei
V 〉 = −〈∇N

ei
(JH)⊥, V 〉

= −〈∇N
ei
JH, V 〉+ 〈∇N

ei
(JH)⊤, V 〉

= 〈JAHei, V 〉+ 〈σ(ei, (JH)⊤), V 〉

= 0
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and
〈(Jej)⊥,∇⊥

ei
V 〉 = −〈∇N

ei
(Jej)

⊥, V 〉

= −〈∇N
ei
Jej , V 〉+ 〈∇N

ei
(Jej)

⊤, V 〉

= −〈J∇eiej , V 〉 − 〈Jσ(ei, ej), V 〉

+〈σ(ei, (Jej)⊤), V 〉

= 0.

Next, we shall prove that if a normal subbundle S is orthogonal to
L, then so is ∇⊥S, i.e.

〈σ(ei, ej),∇⊥
ek
V 〉 = 0, 〈Jσ(ei, ej),∇⊥

ek
V 〉 = 0 and 〈Jei,∇⊥

ek
V 〉 = 0

for any V ∈ S and i, j, k ∈ {1, 2}. Since we have just proved the last
property, it remains only to verify the first two of them.

We denote Aijk = 〈∇⊥
ek
σ(ei, ej), V 〉 and, since σ is symmetric, we

have Aijk = Ajik. We also obtain Aijk = −〈σ(ei, ej),∇⊥
ek
V 〉, since V is

orthogonal to L. We get

〈(∇⊥
ek
σ)(ei, ej), V 〉 = 〈∇⊥

ek
σ(ei, ej), V 〉 − 〈σ(∇ekei, ej), V 〉

−〈σ(ei,∇ekej), V 〉

= 〈∇⊥
ek
σ(ei, ej), V 〉,

and, from the Codazzi equation,

〈(∇⊥
ek
σ)(ei, ej), V 〉 = 〈(∇⊥

ei
σ)(ek, ej) + (RN (ek, ei)ej)

⊥, V 〉

= 〈(∇⊥
ej
σ)(ek, ei) + (RN (ek, ej)ei)

⊥, V 〉

= 〈(∇⊥
ei
σ)(ek, ej), V 〉 = 〈(∇⊥

ej
σ)(ek, ei), V 〉.

We have just proved that Aijk = Akji = Aikj.

Next, since ∇⊥
ek
V is orthogonal to JTΣ2 and to JH, it follows that

the frame field {e1, e2} diagonalizes A∇⊥
ek

V and we get

Aijk = −〈σ(ei, ej),∇⊥
ek
V 〉 = −〈ei, A∇⊥

ek
V ej〉 = 0

for any i 6= j. Hence, we have obtained that Aijk = 0 if two indices are
different from each other.

Finally, we only have to prove that Aiii = 0. Indeed, we have

Aiii = −〈σ(ei, ei),∇⊥
ei
V 〉 = −〈2H,∇⊥

ei
V 〉+ 〈σ(ej , ej),∇⊥

ei
V 〉

= 〈2∇⊥
ei
H,V 〉 −Ajji = 0.
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It is easy to see that if V is orthogonal to L, then JV is normal and
orthogonal to L. It follows that

〈(Jσ(ei, ej))⊥,∇⊥
ek
V 〉 = −〈∇N

ek
(Jσ(ei, ej))

⊥, V 〉

= −〈∇N
ek
Jσ(ei, ej), V 〉

+〈∇N
ek
(Jσ(ei, ej))

⊤, V 〉

= 〈JAσ(ei,ej)ek, V 〉 − 〈J∇⊥
ek
σ(ei, ej), V 〉

+〈σ(ek, (Jσ(ei, ej))⊤), V 〉

= 〈∇⊥
ek
σ(ei, ej), JV 〉 = 0.

Thus, we come to the conclusion that the subbundle L is parallel.
q.e.d.

When H is umbilical we can use the quadratic form Q to prove the
following

Lemma 5.5. Let Σ2 be an immersed surface in a complex space form

Nn(ρ), ρ 6= 0, with nonzero parallel mean curvature vector H. If H is an

umbilical direction everywhere, then Σ2 is a totally real pseudo-umbilical

surface of N .

Proof. Since H is umbilical it follows that 〈σ(Z,Z),H〉 = 0, which
implies that Σ2 is pseudo-umbilical and that Q(Z,Z) = 3ρ〈JZ,H〉2.

Next, as the (2, 0)-part of Q is holomorphic, we have Z̄(Q(Z,Z)) = 0,
and further

0 = Z̄(〈JZ,H〉2) = −2|H|2〈JZ,H〉〈JZ, Z̄〉,
as we have seen in a previous section. Hence, 〈JZ, Z̄〉 = 0 or 〈JZ,H〉 =
0. Assume that the set of zeroes of 〈JZ, Z̄〉 = 0 is not the entire
Σ2. Then, by analyticity, it is a closed set without interior points and
its complement is an open dense set in Σ2. In this last set we have
〈JZ,H〉 = 0 and then, since H is parallel and Σ2 is pseudo-umbilical,

0 = Z̄(〈JZ,H〉) = 〈J∇N
Z̄
Z,H〉+ 〈JZ,∇N

Z̄
H〉

= −〈Z̄, Z〉〈JH,H〉 − 〈JZ,AH Z̄〉

= −|H|2〈JZ, Z̄〉,
which means that Σ2 is also totally real. q.e.d.

Remark 5.6. Some kind of a converse result was obtained by B.–Y.
Chen and K. Ogiue since they proved in [7] that if a unit normal vector
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field to a 2-sphere, immersed in a complex space form as a totally real
surface, is parallel and isoperimetric, then it is umbilical.

Remark 5.7. In [19] N. Sato proved that, if M is a pseudo-umbilical
submanifold of a complex projective space CPn(ρ), with nonzero par-
allel mean curvature vector field, then it is a totally real submanifold.
Moreover, the mean curvature vector field H is orthogonal to JTM .
Therefore, if M is a surface, it follows that the (2, 0)-part of Q vanishes
on M .

Remark 5.8. In order to show that only the two situations exposed
in Lemma 5.4 and Lemma 5.5 can occur, we shall use an argument
similar to that in Remark 5 in [4]. Thus, since the map p ∈ Σ2 →
(AH − µ I)(p), where µ is a constant, is analytic, it follows that if H is
an umbilical direction, then this either holds on Σ2 or only for a closed
set without interior points. In this second case H is not an umbilical
direction in an open dense set, and then Lemma 5.4 holds on this set.
By continuity it holds on Σ2.

By using Lemma 5.4 and Lemma 5.5 we can state

Proposition 5.9. Either H is everywhere an umbilical direction, and

Σ2 is a totally real pseudo-umbilical surface of N , or H is nowhere an

umbilical direction, and there exists a subbundle of the normal bundle

that is parallel, contains the image of the second fundamental form and

its dimension is less or equal to 8.

Now, from Proposition 5.9 and a result of J. H. Eschenburg and R.
Tribuzy [11, Theorem 2], it follows

Theorem 5.10. Let Σ2 be an isometrically immersed surface in a

complex space form Nn(ρ), n ≥ 3, ρ 6= 0, with nonzero parallel mean

curvature vector. Then, one of the following holds:

1) Σ2 is a totally real pseudo-umbilical surface of Nn(ρ), or
2) Σ2 is not pseudo-umbilical and it lies in a complex space form

N r(ρ), where r ≤ 5.

Remark 5.11. The case when ρ = 0 is solved by Theorem 4 in [21].

Remark 5.12. We have seen (Remark 5.6) that if Σ2 is a totally
real 2-sphere then it is pseudo-umbilical and therefore the second case
of the previous Theorem cannot occur for such surfaces.

6. 2-spheres with constant Kähler angle in complex space

forms

This section is devoted to the study of immersed surfaces Σ2 in a
complex space form Nn(ρ), n ≥ 3, ρ 6= 0, with nonzero non-umbilical
parallel mean curvature vector H and constant Kähler angle, on which
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the (2, 0)-part of Q vanishes. We shall compute the Laplacian of the
function |AH |2 for such a surface and show that there are no 2-spheres
with these properties.

Let {e1, e2} be an orthonormal frame on Σ2 such that H ⊥ Je1. The
fact that the (2, 0)-part of the quadratic form Q vanishes can be written
as
(6.1){

8|H|2〈σ(e1, e1)− σ(e2, e2),H〉 = −3ρ(〈Je1,H〉2 − 〈Je2,H〉2)
8|H|2〈σ(e1, e2),H〉 = 3ρ〈Je1,H〉〈Je2,H〉,

and, from the second equation, we see that 〈σ(e1, e2),H〉 = 0. It follows
that the frame {e1, e2} diagonalizes simultaneously AH and AV , for all
normal vectors V as in Corollary 5.3, since we are in the second case of
Theorem 5.10.

Next, since Σ2 is not holomorphic or anti-holomorphic, we have that
cos θ 6= ±1 on an open dense set and then we can consider again the
normal vectors

e3 = − cot θe1 −
1

sin θ
Je2 and e4 =

1

sin θ
Je1 − cot θe2

and get an orthonormal frame {e1, e2, e3, e4} in span{e1, e2, Je1, Je2},
where θ is the Kähler angle on Σ2.

It is easy to see that if H ⊥ JTΣ2 it results that the surface is
pseudo-umbilical, which is a contradiction.

On the other hand, if we assume that H ∈ span{e3, e4} it follows
H = ±|H|e3, since Je1 ⊥ H, and then e3 is parallel. Also, since
all normal vectors but e4 verify conditions in Corollary 5.3 we have
σ(e1, e2) ‖ e4. By using these facts and the expression of e3 we obtain
that σ(ei, ej) ∈ span{e3, e4} for i, j ∈ {1, 2}, and then dimL = 2, where
L is the subbundle in Lemma 5.4. Therefore, again by the meaning of
Theorem 2 in [11], we get that Σ2 lies in a complex space form N2(ρ),
which case was studied earlier in this paper.

In the following, we shall assume that H /∈ span{e3, e4}, and, as we
also know that H is not orthogonal to JTΣ2, one obtains that the mean
curvature vector can be written as

H = |H|(cos βe3 + sin βe5)

where β is a real-valued function defined locally on Σ2 and e5 is a unit
normal vector field such that e5 ⊥ JTΣ2. We consider the orthonormal
frame field {e1, e2, e3, e4, e5, e6 = Je5, . . . , e2n−1, e2n = Je2n−1} on N
and its dual frame {θi}2ni=1. These are well defined at the points of Σ2

where sin(2β) 6= 0, which, due to our assumptions, form an open dense
set in Σ2. The structure equations of the surface are

dφ = −iθ12 ∧ φ and dθ12 = − i

2
Kφ ∧ φ̄,
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where φ = θ1 + iθ2, the real 1-form θ12 is the connection form of the
Riemannian metric on Σ2 and K is the Gaussian curvature.

A result of T. Ogata in [17], together withH ⊥ ei for any i ≥ 4, i 6= 5,
implies that, w.r.t. the above orthonormal frame, the components of the
second fundamental form are given by

σ3 =




|H| cos β −ℜ(ā+ c) −ℑ(ā+ c)

−ℑ(ā+ c) |H| cos β + ℜ(ā+ c)




σ4 =




ℑ(ā− c) −ℜ(ā− c)

−ℜ(ā− c) −ℑ(ā− c)




σ5 =




|H| sin β −ℜ(ā3 + c3) −ℑ(ā3 + c3)

−ℑ(ā3 + c3) |H| sin β + ℜ(ā3 + c3)




σ6 =




ℑ(ā3 − c3) −ℜ(ā3 − c3)

−ℜ(ā3 − c3) −ℑ(ā3 − c3)




and

σ2α−1 =




−ℜ(āα + cα) −ℑ(āα + cα)

−ℑ(āα + cα) ℜ(āα + cα)




σ2α =




ℑ(āα − cα) −ℜ(āα − cα)

−ℜ(āα − cα) −ℑ(āα − cα)




where a, c, aα, cα, with α ∈ {3, . . . , n}, are complex-valued functions
defined locally on the surface Σ2. We note that, since σ(e1, e2) ⊥ H and
σ(e1, e2) ⊥ e5, it follows σ(e1, e2) ⊥ e3. Moreover, since σ(e1, e2) ⊥ ei
for any i ∈ {1, . . . , 2n} \ {4, 6}, we have ā + c ∈ R, ā3 + c3 ∈ R and
aα = cα for any α ≥ 4.

In the same paper [17], amongst others, the author computed the
differential of the Kähler angle function θ for a minimal surface. In the
same way, this time for our surface, we get

dθ =
(
a− |H|

2
cos β

)
φ+

(
ā− |H|

2
cos β

)
φ̄.

The next step is to determine the connection form θ12 and the differ-
ential of the function β, by using the property of H being parallel. We
have

(6.2) ∇⊥
ei
H = (− sin βe3+cos βe5)dβ(ei)+cos β∇⊥

ei
e3+sin β∇⊥

ei
e5 = 0
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for i ∈ {1, 2}, and then

cos β〈∇N
ei
e3, e4〉+ sin β〈∇N

ei
e3, e4〉 = 0, i ∈ {1, 2}

from where, by using the expressions of e3 in the first term, of e4 in the
second one and of the second fundamental form of Σ2, we get

θ12(e1) = cot θℑ(ā− c)− tan β

sin θ
ℑ(ā3 − c3)

θ12(e2) = −|H| cot θ
cos β

− 2 cot θℜa+ tan β
(
tan

(θ
2

)
ℜa3 − cot

(θ
2

)
ℜc3

)

and finally θ12 = f1φ+ f̄1φ̄, where

(6.3) f1 =
i

2

(
|H| cot θ

cos β
+2cot θa− tanβ

sin θ
(a3−c̄3)+cot θ tan β(a3+c̄3)

)
.

Now, from equation (6.2), we also obtain

dβ(ei) + 〈∇N
ei
e3, e5〉 = 0, i ∈ {1, 2}

and then, replacing e3 by its expression and also using the expression
of the second fundamental form, we get

dβ(e1) = |H| cot θ sinβ + tan
(θ
2

)
ℜa3 − cot

(θ
2

)
ℜc3

and

dβ(e2) =
1

sin θ
ℑ(ā3 − c3).

Hence the differential of β is given by dβ = f2φ+ f̄2φ̄, where

(6.4) f2 =
1

2

(
|H| cot θ sin β +

1

sin θ
(a3 − c̄3)− cot θ(a3 + c̄3)

)
.

We note that if the Kähler angle θ is constant, then a = ā = |H|
2 cos β,

and, from (6.3), it results
(6.5)

f1 =
i

2

{
|H| cot θ

(
cos β+

1

cos β

)
− tan β

sin θ
(a3− c̄3)+cot θ tan β(a3+ c̄3)

}
.

Let us now return to the first equation of (6.1), which can be rewritten
as

µ1 − µ2 =
3

8
ρ sin2 θ cos2 β,

where AHei = µiei. Since µ1 + µ2 = 2|H|2 we have µ1 = |H|2 +
3
16ρ sin

2 θ cos2 β and µ2 = |H|2 − 3
16ρ sin

2 θ cos2 β. Thus

(6.6) |AH |2 = µ2
1 + µ2

2 = 2|H|4 + 9

128
ρ2 sin4 θ cos4 β.

In the following, we shall assume that the Kähler angle of the surface
Σ2 is constant and then the Laplacian of |AH |2 is given by

∆|AH |2 = 9

128
ρ2 sin4 θ∆(cos4 β).
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In order to compute the Laplacian of cos4 β we need the following
formula, obtained by using (6.4) and (6.5),

d(cos4 β) = −4 sin β cos3 βdβ = −4 sin β cos3 β(f2φ+ f̄2φ̄)

= −4 cos4 β
{(

if1 + |H| cot θcos β

)
φ+

(
− if̄1 + |H| cot θcos β

)
φ̄
}
.

We also have ddc(cos4 β) = i
2(∆(cos4 β))φ ∧ φ̄ and

dc(cos4 β) = −4i cos4 β
{(

− if̄1 + |H| cot θ
cos β

)
φ̄−

(
if1 + |H| cot θ

cos β

)
φ
}
.

After a straightforward computation, we get

∆(cos4 β) = 4 cos4 β
(
K + 4|f1|2 + 12

∣∣∣if1 + |H| cot θ
cos β

∣∣∣
2)

and then

∆|AH |2 = 9

32
ρ2 sin4 θ cos4 β

(
K + 4|f1|2 + 12

∣∣∣if1 + |H| cot θ
cos β

∣∣∣
2)

.

Assume now that Σ2 is complete and has nonnegative Gaussian curva-
ture. It follows, from a result of A. Huber in [14], that Σ2 is parabolic.
Then, from the above formula, we get that |AH |2 is a subharmonic
function, and, since |AH |2 is bounded (due to (6.6)), it results K = 0,
which, together with the Gauss-Bonnet Theorem, leads to the following
non-existence result.

Theorem 6.1. There are no 2-spheres with nonzero non-umbilical

parallel mean curvature vector and constant Kähler angle in a non-flat

complex space form.
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