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INVERSE CURVATURE FLOWS IN HYPERBOLIC
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Dedicated to Stefan Hildebrandt on the occasion of his 75th birthday.

Abstract

We consider inverse curvature flows in Hn+1 with star-shaped
initial hypersurfaces and prove that the flows exist for all time,
and that the leaves converge to infinity, become strongly convex
exponentially fast and also more and more totally umbilic. After
an appropriate rescaling the leaves converge in C∞ to a sphere.
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1. Introduction

Curvature flows (driven by extrinsic curvatures) of compact hyper-
surfaces in a Riemannian space generally exist only for a finite time and
then develop a singularity provided the flow is a pure curvature flow
without an additional force term. This phenomenon occurs in the case
of direct flows, which can also be characterized as contracting flows,
cf. [9], as well as for inverse flows, which can also be characterized as
expanding flows, see [10].

In non-compact spaces of constant curvature we can expect that the
inverse flows behave differently than the direct flows, since the inverse
flows of geodesic spheres exist for all time. In [3] we proved that inverse
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488 C. GERHARDT

curvature flows of star-shaped hypersurfaces in Euclidean space exist for
all time, converge to infinity and, after rescaling, converge to spheres.

In this paper we want to prove a similar result in hyperbolic space
Hn+1, n ≥ 2. The initial hypersurface M0 is supposed to be star-shaped
with respect to a given point p ∈ Hn+1, i.e., after introducing geodesic
polar coordinates with center p, M0 can be written as a graph over
a geodesic sphere with center p which we identify topologically with
the standard sphere Sn. Let F be a smooth curvature function, homo-
geneous of degree 1, monotone, and concave, defined in a symmetric,
convex, open cone Γ ⊂ Rn, such that

(1.1) F |Γ > 0 ∧ F |∂Γ = 0.

Then we consider the curvature flow

(1.2) ẋ = −Φν
with initial hypersurface M0, the principal curvatures of which are sup-
posed to lie in the cone Γ ; such a hypersurface is called admissible.
Here, the function Φ is defined by

(1.3) Φ = Φ(r) = −r−1, r > 0,

and Φν stands for

(1.4) Φ(F )ν,

i.e., the flow equation is

(1.5) ẋ =
1

F
ν,

where ν is outward normal.
However, to simplify comparisons with former results and formulas,

and also to make a generalization to more general flows easier, most
results in this paper are formulated, and some are also proved, for a
general smooth real valued function Φ defined on the positive real axis
satisfying

(1.6) Φ̇ > 0 ∧ Φ̈ ≤ 0.

We shall normalize F such that

(1.7) F (1, . . . , 1) = n

and shall also use the same notation F when we assume F to depend
on the second fundamental form hij instead of the principal curvatures.

Sometimes we also use the notation h̆ij for the second fundamental form

of a hypersurface embedded in Hn+1 to distinguish it from the second
fundamental form hij of the same hypersurface viewed as being embed-

ded in Rn+1, which will happen when we parameterize Hn+1 over the
open ball B2(0) ⊂ Rn+1.

We can now state our first result.
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Theorem 1.1. The flow (1.5) with a smooth and admissible initial
hypersurface M0 exists for all time. The flow hypersurfaces in hyperbolic
space converge to infinity, become strongly convex exponentially fast and
also more and more totally umbilic. In fact there holds

(1.8) |h̆ij − δij | ≤ ce−
t
n ,

i.e., the principal curvatures are uniformly bounded and converge expo-
nentially fast to 1.

For a more detailed analysis of the asymptotic behaviour we have
to parameterize Hn+1 over B2(0) ⊂ Rn+1 such that the metric can be
expressed in the form

(1.9)

ds̆2 =
1

(1− 1
4 |x|2)2

dx2

=
1

(1− 1
4r

2)2

{
dr2 + r2σijdx

idxj
}
.

The flow hypersurfaces M(t) can now also be viewed as graphs

(1.10) M(t) = graphu(t, ·)
over Sn in Euclidean space, such that 0 < u < 2, and convergence to
infinity is tantamount to u→ 2. The second fundamental form in Rn+1

is denoted by hij , or simply by A, where we omit the tensor indices.
Then, we can prove:

Theorem 1.2. Let M(t) = graphu(t) be the leaves of the inverse
curvature flow, where F and the initial hypersurface are smooth, then
the estimate

(1.11) ‖DmA‖ ≤ cme−
t
n ∀m ≥ 1

is valid and the functions

(1.12) (u(t, ·)− 2)e
t
n

converge in C∞(Sn) to a strictly negative constant.

Remark 1.3. After publishing a first version of the paper in the
arXiv we learnt that Qi Ding in [1] published a similar result for the
inverse mean curvature flow in Hn+1 even claiming that the rescaled
flow hypersurfaces would converge to a sphere. However, he used a
somewhat crude rescaling, namely,

(1.13)
ŭ

t

and not the finer

(1.14) ŭ− t

n

which we consider.
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The fact that the functions in (1.13) converge to 1
n follows immedi-

ately from the estimate (3.19) on page 493.

2. Definitions and Conventions

The main objective of this section is to state the equations of Gauß,
Codazzi, and Weingarten for hypersurfaces. For greater generality
we shall formulate the governing equations of a hypersurface M in a
semi-riemannian (n+1)-dimensional manifold N , which is either Rie-
mannian or Lorentzian. Geometric quantities in N will be denoted by
(ḡαβ), (R̄αβγδ), etc., and those in M by (gij), (Rijkl), etc. Greek indices
range from 0 to n and Latin from 1 to n; the summation convention is
always used. Generic coordinate systems in N resp. M will be denoted
by (xα) resp. (ξi). Covariant differentiation will simply be indicated
by indices, only in case of possible ambiguity they will be preceded by
a semicolon, i.e., for a function u in N , (uα) will be the gradient and
(uαβ) the Hessian, but e.g., the covariant derivative of the curvature
tensor will be abbreviated by R̄αβγδ;ε. We also point out that

(2.1) R̄αβγδ;i = R̄αβγδ;εx
ε
i

with obvious generalizations to other quantities.
Let M be a spacelike hypersurface, i.e., the induced metric is Rie-

mannian, with a differentiable normal ν. We define the signature of ν,
σ = σ(ν), by

(2.2) σ = ḡαβν
ανβ = 〈ν, ν〉.

In case N is Lorentzian, σ = −1, and ν is time-like.
In local coordinates, (xα) and (ξi), the geometric quantities of the

spacelike hypersurface M are connected through the following equations

(2.3) xαij = −σhijνα

the so-called Gauß formula. Here, and also in the sequel, a covariant
derivative is always a full tensor, i.e.,

(2.4) xαij = xα,ij − Γ kijxαk + Γ̄αβγx
β
i x

γ
j .

The comma indicates ordinary partial derivatives.
In this implicit definition the second fundamental form (hij) is taken

with respect to −σν.
The second equation is the Weingarten equation

(2.5) ναi = hki x
α
k ,

where we remember that ναi is a full tensor.
Finally, we have the Codazzi equation

(2.6) hij;k − hik;j = R̄αβγδν
αxβi x

γ
j x

δ
k
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and the Gauß equation

(2.7) Rijkl = σ{hikhjl − hilhjk}+ R̄αβγδx
α
i x

β
j x

γ
kx

δ
l .

Here, the signature of ν comes into play.
Now, let us assume that N is a topological product R × S0, where

S0 is a compact Riemannian manifold, and that there exists a Gaussian
coordinate system (xα), such that the metric in N has the form

(2.8) ds̄2N = e2ψ
{
σdx0

2
+ σij(x

0, x)dxidxj
}
,

where σij is a Riemannian metric, ψ a function on N , and x an abbre-
viation for the spacelike components (xi),

We also assume that the coordinate system is future oriented, i.e.,
the time coordinate x0 increases on future directed curves. Hence, the
contravariant time-like vector (ξα) = (1, 0, . . . , 0) is future directed as
is its covariant version (ξα) = e2ψ(σ, 0, . . . , 0).

Let M = graphu|S0
be a spacelike hypersurface

(2.9) M = { (x0, x) : x0 = u(x), x ∈ S0 },

then the induced metric has the form

(2.10) gij = e2ψ{σuiuj + σij}

where σij is evaluated at (u, x), and its inverse (gij) = (gij)
−1 can be

expressed as

(2.11) gij = e−2ψ
{
σij − σu

i

v

uj

v

}
,

where (σij) = (σij)
−1 and

(2.12)
ui = σijuj

v2 = 1 + σσijuiuj ≡ 1 + σ|Du|2.

The covariant form of a normal vector of a graph looks like

(2.13) (να) = ±v−1eψ(1,−ui)

and the contravariant version is

(2.14) (να) = ±v−1e−ψ(σ,−ui).

In the Gauß formula (2.3) we are free to choose any of two normals,
but we stipulate that in general we use

(2.15) (να) = v−1e−ψ(σ,−ui).

as normal vector.
Look at the component α = 0 in (2.3), then we obtain

(2.16) e−ψv−1hij = −uij − Γ̄ 0
00uiuj − Γ̄ 0

0iuj − Γ̄ 0
0jui − Γ̄ 0

ij .
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Here, the covariant derivatives a taken with respect to the induced met-
ric of M , and

(2.17) −Γ̄ 0
ij = e−ψh̄ij ,

where (h̄ij) is the second fundamental form of the hypersurfaces {x0 =
const}.

3. First Estimates

Let F ∈ Cm,α(Γ ), m ≥ 4, be a monotone and concave curvature
function, homogeneous of degree 1, and normalized such that

(3.1) F (1, . . . , 1) = n.

We first look at the flow of a geodesic sphere Sr0 . Fix a point p0 ∈
Hn+1 and consider geodesic polar coordinates centered at p0. Then the
hyperbolic metric can be expressed as

(3.2) ds̄2 = dr2 + sinh2 rσij dx
idxj ,

where σij is the canonical metric of Sn.
Geodesic spheres Sr with center in p0 are umbilic and their second

fundamental form is given by

(3.3) h̄ij = coth rḡij ,

where

(3.4) ḡij = sinh2 rσij .

Hence, if we consider an inverse curvature flow (ICF) with initial hy-
persurface Sr0 , then the flow hypersurfaces M(t) will be spheres with
radii r(t) satisfying the scalar curvature flow equation

(3.5) ṙ =
1

F
=

1

n coth r
,

and we deduce further, from

(3.6) coth r dr =
1

n
dt,

(3.7) log sinh r − log sinh r0 =
t

n
,

or equivalently,

(3.8) sinh r = sinh r0e
t
n .

Let us now consider the inverse curvature flow of a star-shaped hy-
persurface M0 which is given as a graph over Sn

(3.9) M0 = graphu0|Sn .
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The flow exists on a maximal time interval [0, T ∗), 0 < T ∗ ≤ ∞, and its
leaves are also graphs

(3.10) M(t) = graphu(t)|Sn ,

which satisfy, besides the original flow equation,

(3.11) ẋ = −Φν =
1

F
ν,

the scalar flow equation

(3.12) u̇ =
ṽ

F
,

where

(3.13) ṽ = v−1, v2 = 1 + |Du|2 = 1 +
1

sinh2 u
σijuiuj ,

where the dot indicates a total time derivative. If we instead consider
a partial time derivate, then we get

(3.14) u̇ ≡ ∂u

∂t
=
v

F
,

cf. [6, p. 98].
Let Sri , i = 1, 2, be geodesic spheres satisfying

(3.15) r1 < u0 < r2,

and let ui, i = 1, 2, be the solutions to the corresponding inverse curva-
ture flows, then this inequality will also be valid for t > 0, i.e.,

(3.16) u1(t) < u(t) < u2(t) ∀ t ∈ [0, T ∗),

in view of the maximum principle, and we conclude:

Lemma 3.1. The solutions M(t) = graphu(t) of the ICF satisfy the
estimates

(3.17) sinh r1 < sinhu(t)e−
t
n < sinh r2 ∀ t ∈ [0, T ∗),

and there exist constants ci, i = 1, 2, such that the function

(3.18) ũ = u− t

n

is uniformly bounded by

(3.19) c1 < ũ(t) < c2 ∀ t ∈ [0, T ∗).

Proof. The inequality (3.17) follows from (3.8) and the parabolic
maximum principle, while (3.19) is due to the trivial estimate

(3.20) 0 < c̃1 ≤ sinh r e−r ≤ c̃2 ∀ 0 < r0 ≤ r

with appropriate constants c̃i. q.e.d.
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Next, we want to derive an a priori estimate for v, or equivalently,
for

(3.21) |Du|2 =
1

sinh2 u
σijuiuj .

Let us write the metric (3.2) in a more general form

(3.22) ds̄2 = dr2 + ϑ2(r)σijdx
idxj .

The second fundamental form of graphu can then be expressed as

(3.23)
hijv

−1 = −uij + h̄ij

= −uij + ϑ̇ϑσij .

Define the metric

(3.24) σ̃ij = ϑ2(u)σij ,

and denote covariant differentiation with respect to this metric by a
semi-colon, then

(3.25) hijv
−1 = −v−2u;ij + ϑ̇ϑσij ,

cf. [6, Lemma 2.7.6], and we conclude further

(3.26)
hij = gikhkj

= v−1ϑ−1
{
−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij

}
,

where σij is the inverse of σij ,

(3.27) ϕ =

∫ u

r0

ϑ−1,

(3.28) ϕi = σikϕk,

and ϕjk are the second covariant derivatives of ϕ with respect to the
metric σij .

Thus, the scalar curvature equation (3.14) can now be expressed as

(3.29) u̇ =
v

F (hij)
,

or equivalently,

(3.30) ϕ̇ = ϑ−1u̇ =
1

F (ϑv−1hij)
≡ 1

F (h̃ij)
,

where

(3.31) h̃ij = v−2
{
−(σik − v−2ϕiϕk)ϕjk + ϑ̇δij

}
.

Let

(3.32) g̃ij = ϕiϕj + σij ,
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then we consider the eigenvalues of

(3.33) h̃ij = g̃ikh̃
k
j

with respect to this metric and we define F ij resp. F ij accordingly

(3.34) F ij =
∂F

∂h̃ij

and

(3.35) F ij =
∂F

∂h̃ji
= g̃jkF

ik.

Note that h̃ij is symmetric, since hij and g̃ij can be diagonalized simul-
taneously. We also emphasize that

(3.36) |Du|2 = σijϕiϕj ≡ |Dϕ|2.

Lemma 3.2. Let u be solution of the scalar curvature equation

(3.37) u̇ =
v

F (hij)
,

then

(3.38) |Du|2 ≤ c.
Moreover, if F is bounded from above

(3.39) F ≤ c0,
then there exists 0 < λ = λ(c0) such that

(3.40) |Du|2 ≤ ce−λt ∀ t ∈ [0, T ∗).

Proof.
”
(3.38)“ In view of (3.36), we may estimate

(3.41) w = 1
2 |Dϕ|

2.

Differentiating equation (3.30) covariantly with respect to

(3.42) ϕkDk

we deduce

(3.43)

ẇ = F−2
{

2v−2Fwiϕ
i + v−2F kl g̃

lrwkr − v−2F kl g̃lrϕikϕir

+ v−2F kl g̃
lr
;iϕ

iϕkr + v−2F kl g̃
lrϕrϕk − v−2F kl g̃lrσkr|Dϕ|2

− 2v−2F kk ϑ̈ϑw
}
,

where covariant derivatives with respect to the metric σij are simply
denoted by indices, if no ambiguities are possible, and by a semi-colon
otherwise. In deriving the previous equation we also used the Ricci
identities and the properties of the Riemann curvature tensor of Sn.

Now, let 0 < T < T ∗ and suppose that

(3.44) sup
QT

w, QT = [0, T ]× Sn,
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is attained at (t0, x0) with t0 > 0. Then the maximum principle implies

(3.45)
0 ≤ v−2

{
− F kl g̃lrϕikϕir + (F kl g̃

lrϕrϕk − F kl g̃lrσkr|Dϕ|2)

− 2F kk sinh2 uw
}
.

The right-hand side, however, is strictly negative, if w > 0, hence t0 > 0
is not possible, since we didn’t assume M0 to be a sphere, and we
conclude

(3.46) w ≤ sup
Sn

w(0).

”
(3.40)“ Now, assume that the original curvature function is uni-

formly bounded

(3.47) F (hij) ≤ c0,

and let 0 < λ be a constant, then

(3.48) w̃ = weλt

satisfies the same equation as w with an additional term

(3.49) λw̃

at the right-hand side.
Applying the maximum principle as before, we deduce, that at a

point (t0, x0), t0 > 0, where w̃ attains a positive maximum, there holds
instead of (3.45)

(3.50) 0 < −2F kk sinh2 u w̃ + λv2F 2(h̃ij)w̃,

but

(3.51) vF (h̃ij) = sinhuF (hij) ≤ sinhu c0,

and hence

(3.52) weλt ≤ sup
Sn

w(0)

for all

(3.53) 0 < λ ≤ 2nc−20 ,

since

(3.54) F kk ≥ n.

q.e.d.
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4. C2-estimates and existence for all time

To prove estimates for hij , we first need an a priori bound for F .

Lemma 4.1. Let M(t) be the leaves of the ICF

(4.1) ẋ = −Φν,
then there exists a positive constant c1 such that

(4.2) 0 < c1 ≤ F ∀ t ∈ [0, T ∗).

Proof. The function Φ, or equivalently −Φ, satisfies the linear para-
bolic equation

(4.3) Φ′ − Φ̇F ijΦij = Φ̇F ijhikh
k
jΦ+KN Φ̇F

ijgijΦ,

when the ambient Riemannian space N is a space of constant curvature
KN , cf. [4, Corollary 3.5].

Another very useful equation is satisfied by a quantity χ which is
defined by

(4.4) χ = vη,

where 0 < η = η(r) is a solution of

(4.5) η̇ = −H̄
n
η;

here r is the radial distance to the center of geodesic polar coordinates
in a spaceform N , and H̄ = H̄(r) is the mean curvature of Sr.

When N = Hn+1, η is given by

(4.6) η =
1

sinh r
,

and

(4.7) χ = vη(u)

then satisfies

(4.8) χ̇− Φ̇F ijχij = −Φ̇F ijhikhkj − 2χ−1Φ̇F ijχiχj + {Φ̇F + Φ}H̄
n
vχ

for a general function Φ. In case of the inverse curvature, the term in
the braces on the right-hand side vanishes.

In view of Lemma 3.1, the function

(4.9) χ̃ = χe
t
n

is uniformly bounded,

(4.10) 0 < c1 ≤ χ̃ ≤ c2 ∀ t ∈ [0, T ∗),

and

(4.11) ˙̃χ− Φ̇F ijχ̃ij = −Φ̇F ijhikhkj χ̃− 2χ̃−1Φ̇F ijχ̃iχ̃j + 1
n χ̃,

when we consider an ICF.
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We claim that

(4.12) w = log(−Φ) + log χ̃ ≤ const

during the evolution, which in turn would prove (4.2).
To derive (4.12) we first fix 0 < T < T ∗ and let

(4.13) (t0, ξ0) ∈ QT = [0, T ]× Sn, t0 > 0,

be such that

(4.14) w(t0, ξ0) = sup
QT

w.

The equations (4.3), (4.11) and the maximum principle then yield in
(t0, ξ0)

(4.15) 0 ≤ −Φ̇F ijgij + 1
n ,

which can only hold, if

(4.16) n ≤ F (t0, ξ0);

hence w is uniformly bounded from above. q.e.d.

Lemma 4.2. During the evolution F is uniformly bounded from
above.

Proof. The function u satisfies the parabolic equation

(4.17)
u̇− Φ̇F ijuij = −Φv−1 + Φ̇Fv−1 − Φ̇F ij h̄ij

= 2Φ̇Fv−1 − Φ̇F ij h̄ij ,

cf. [6, Lemma 3.3.2], and the rescaled function

(4.18) ũ = u− t

n

is uniformly bounded, cf. Lemma 3.1, and there holds

(4.19) ˙̃u− Φ̇F ij ũij = 2Φ̇Fv−1 − Φ̇F ij h̄ij − 1
n .

The lemma will be proved, if we can show

(4.20) w = − log(−Φ) + ũ = logF + ũ ≤ const

during the evolution.
Applying the maximum principle as before, we conclude

(4.21) 0 ≤ 2F−1v−1 − 1
n ,

hence, F has to be bounded, proving the claim. q.e.d.

As an immediate corollary we deduce, in view of Lemma 3.2:

Remark 4.3. |Du|2 satisfies the estimate (3.40), i.e., it decays ex-
ponentially, if T ∗ =∞.
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We are now ready to prove a priori estimates for the principal cur-
vatures κi. The proof will be similar to a corresponding proof in [7,
Theorem 1.4] valid in arbitrary Riemannian spaces. Our former result
cannot be applied directly, since we assumed that the flow stays in a
compact subset and also considered a contracting flow not an expanding
one as we do now.

Lemma 4.4. The principal curvatures of the flow hypersurfaces are
uniformly bounded from above

(4.22) κi ≤ const ∀ 1 ≤ i ≤ n,
and hence, are compactly contained in Γ, in view of the estimate (4.2).

Proof. In a Riemannian space of constant curvature the second fun-
damental forms hij of the flow hypersurfaces M(t) satisfy the evolution
equation

(4.23)
ḣij − Φ̇F klhij;kl = Φ̇F klhkrh

r
kh

i
j + (Φ− Φ̇F )hki hkj + Φ̈FjF

i

+ Φ̇F kl,rshkl;ih
i

rs; +KN

{
(Φ+ Φ̇F )δij − Φ̇F klgklhij

}
cf. [6, Lemma 2.4.3].

Here, the flow is given as an embedding

(4.24) x = x(t, ξ), (t, ξ) ∈ [0, T ∗)× Sn,
and

(4.25) Fi =
∂F

∂ξi
= F klhkl;i.

By assumption, F is monotone and concave. Thus, choosing, in a
given point, coordinates (ξi) such that

(4.26) gij = δij ∧ hij = κiδij ,

and labelling the κi such that

(4.27) κ1 ≤ · · · ≤ κn,
then

(4.28)

F kl,rsηklηrs ≤
∑
k 6=l

F kk − F ll

κk − κl
(ηkl)

2

≤ 2

κn − κ1

n∑
k=1

(Fnn − F kk)(ηnk)2,

and

(4.29) Fnn ≤ · · · ≤ F 11.

For a proof of (4.28) see [7, Lemma 1.1] and of (4.29) [2, Lemma 2].
Let χ̃ be the rescaled function in (4.9) and define

(4.30) χ̂ = χ̃−1,
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then there exists a constant θ > 0 such that

(4.31) 2θ ≤ χ̂.

Next, let ζ, ϕ and w be defined by

(4.32) ζ = sup{hijηiηj : ‖η‖ = 1 },

(4.33) ϕ = − log(χ̂− θ)

and

(4.34) w = log ζ + ϕ+ λũ,

where ũ is the function in (3.18) on page 493 and λ > 0 is supposed to
be large. We claim that w is bounded, if λ is chosen sufficiently large.

Let 0 < T < T ∗, and x0 = x0(t0, ξ0), with 0 < t0 ≤ T , be a point in
M(t0) such that

(4.35) sup
M0

w < sup{ sup
M(t)

w : 0 < t ≤ T } = w(x0).

We then introduce a Riemannian normal coordinate system (ξi) at
x0 ∈M(t0) such that at x0 = x(t0, ξ0) we have

(4.36) gij = δij and ζ = hnn.

Let η̃ = (η̃i) be the contravariant vector field defined by

(4.37) η̃ = (0, . . . , 0, 1),

and set

(4.38) ζ̃ =
hij η̃

iη̃j

gij η̃iη̃j
.

ζ̃ is well defined in neighbourhood of (t0, ξ0).

Now, define w̃ by replacing ζ by ζ̃ in (4.32); then, w̃ assumes its
maximum at (t0, ξ0). Moreover, at (t0, ξ0) we have

(4.39)
˙̃
ζ = ḣnn,

and the spatial derivatives do also coincide; in short, at (t0, ξ0) ζ̃ satisfies
the same differential equation (4.23) as hnn. For the sake of greater
clarity, let us therefore treat hnn like a scalar and pretend that w is
defined by

(4.40) w = log hnn + ϕ+ λũ.
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From equations (4.23), (4.28), (4.11) and (4.19) we infer that in
(t0, ξ0)

(4.41)

0 ≤ −Φ̇F ijhikhkj
θ

χ̂− θ
+ (Φ− Φ̇F )hnn − (Φ+ Φ̇F )(hnn)−1

+ Φ̇FF klgkl + (Φ+ Φ̇F )
H̄

n
v

χ̂

χ̂− θ
+

1

n

χ̂

χ̂− θ

+ λ(−Φ+ Φ̇F )v−1 − λΦ̇F ij h̄ij −
λ

n

+ Φ̇F ij(log hnn)i(log hnn)j − Φ̇F ijϕiϕj

+
2

κn − κ1
Φ̇

n∑
i=1

(Fnn − F ii)(h n
ni; )2(hnn)−1.

There holds

(4.42) F ij h̄ij ≥ c0F ijgij , c0 > 0;

moreover,

(4.43) hni;n = hnn;i,

and

(4.44) Φ+ Φ̇F = 0,

though

(4.45) Φ ≤ 0 ∧ |Φ| ≤ cΦ̇F

would suffice.
We then distinguish two cases.

Case 1. Suppose that

(4.46) κ1 < −ε1κn,

where ε1 > 0 is small, note that the principal curvatures are labelled
according to (4.27). Then, we infer from [5, Lemma 8.3]

(4.47) F ijhkih
k
j ≥ 1

nF
ijgijε

2
1κ

2
n,

and

(4.48) F ijgij ≥ F (1, . . . , 1),

for a proof see e.g., [6, Lemma 2.2.19].
Since Dw = 0,

(4.49) D log hnn = −Dϕ− λDũ,

we obtain

(4.50)
Φ̇F ij(log hnn)i(log hnn)j = Φ̇F ijϕiϕj + 2λΦ̇F ijϕiũj

+ λ2Φ̇F ij ũiũj ,
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where

(4.51) |ϕi| ≤ c|κi|‖Du‖+ c‖Du‖,

as one easily checks.
Hence, we conclude that κn is a priori bounded in this case for any

choice of λ > 0, if we use

(4.52) F ≤ const,

or for λ > 2 otherwise.
Let us remark that

(4.53)
χ̂

χ̂− θ
≤ 2

and

(4.54) F ≤ F (1, . . . , 1)κn = nκn.

Case 2. Suppose that

(4.55) κ1 ≥ −ε1κn,

then the last term in inequality (4.41) can be estimated from above by

(4.56)
2

1 + ε1
Φ̇

n∑
i=1

(Fnn − F ii)(log hnn;i)
2.

The terms in (4.41) containing derivatives of hnn can therefore be
estimated from above by

(4.57)

− 1− ε1
1 + ε1

Φ̇F ij(log hnn)i(log hnn)j +
1

1 + ε1
Φ̇Fnn

n∑
i=1

(log hnn;i)
2

≤ Φ̇Fnn
n∑
i=1

(log hnn;i)
2

= Φ̇Fnn‖Dϕ+ λDũ‖2

= Φ̇Fnn
{
‖Dϕ‖2 + λ2‖Dũ‖2 + 2λ〈Dϕ,Dũ〉

}
.

Hence, we finally deduce

(4.58)
0 ≤ −Φ̇Fnnκ2n

θ

χ̂− θ
− Φ̇Fκn + Φ̇F klgkl(1− λc0) + c

+ λcΦ̇F − λ

n
+ λ2cΦ̇Fnn(1 + κn).
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Thus, we obtain an a priori estimate

(4.59) κn ≤ const,

if λ is chosen large enough. Note that ε1 is only subject to the require-
ment

(4.60) 0 < ε1 < 1.

q.e.d.

As a corollary we can state:

Corollary 4.5. Let the initial hypersurface M0 ∈ Cm+2,α, 4 ≤ m ≤
∞, 0 < α < 1, then the solution of the curvature flow

(4.61) ẋ = −Φν

exists for all time and belongs to the parabolic Hölder space

(4.62) Hm+α,m+α
2 (Q),

while the solution u of the scalar flow belongs to

(4.63) Hm+2+α,m+2+α
2 (Q),

where

(4.64) Q = [0,∞)× Sn.

The norm will still depend on t however due to the present coordinate
system.

Proof. Let us look at the scalar flow equation (3.14) on page 493.
In view of the previous estimates the nonlinear operator is uniformly
elliptic and by assumption also concave, hence we may apply the Krylov-
Safonov estimates yielding uniform Hölder estimates for u̇ and D2u
estimates. Now, the linear theory and the parabolic Schauder estimates
can be applied; for details see e.g. [6, Chapter 2.6] and [8, Section 6].

q.e.d.

5. The conformally flat parametrization

Hyperbolic space is conformally flat such that

(5.1)

ds̄2 =
1

(1− 1
4 |x|2)2

dx2

=
1

(1− 1
4r

2)2
{dr2 + r2σijdx

idxj}

≡ e2ψ{dr2 + r2σijdx
idxj}

after introducing polar coordinates.
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Define the variable τ by

(5.2) dτ =
1

1− 1
4r

2
dr

such that

(5.3) τ = log(2 + r)− log(2− r),
then

(5.4) sinh2 τ =
r2

(1− 1
4r

2)2
,

and we see that τ is the radial distance in hyperbolic space from the
origin of the euclidean ball B2(0).

A star-shaped hypersurface M ⊂ Hn+1 is also star-shaped in Rn+1

under this correspondence.
Let us distinguish geometric quantities in Hn+1 by an additional breve

from the corresponding quantities in Rn+1, e.g., ğαβ, ğij , M = graph ŭ,

h̆ij , ν̆, etc.
Consider a hypersurface

(5.5) M = graph ŭ = graphu,

then

(5.6) ŭ = log(2 + u)− log(2− u)

and

(5.7) ŭi =
1

1− 1
4u

2
ui

and |Dŭ|2 as defined in (3.21) on page 494 can be expressed as

(5.8) |Dŭ|2 = u−2σijuiuj ≡ |Du|2,
hence the term v is identical in both coordinate systems which is also
evident from the invariant definition of v by

(5.9) v−1 = 〈η, ν〉,
where

(5.10) η = Dd

and d is the distance function in hyperbolic space from the origin.
The second fundamental forms are connected through the relation

(5.11)
eψh̆ij = hij + ψαν

αδij

≡ hij + v−1ϑ̃δij ,

where

(5.12) ϑ̃ = 1
2

r

1− 1
4r

2
.
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Let

(5.13) ȟij = hij + v−1ϑ̃gij ,

(5.14) gij = uiuj + u2σij ,

then the curvature flow in Hn+1

(5.15) ẋ = F−1ν̆

can also be viewed as a curvature flow in Rn+1

(5.16) ẋ = F−1ν,

where now F depends on the eigenvalues of ȟij with respect to the
metric gij

(5.17) F = F (ȟij) = F (ȟij).

For the rest of this paper we shall mainly consider the curvature flow
(5.16).

Let us quickly summarize the most important flow equations.
Writing (5.16) slightly more general

(5.18) ẋ = −Φ(F )ν ≡ −Φν

there holds

(5.19) ḣji = Φji + Φhki h
j
k,

cf. [6, Lemma 2.3.3], which will be the main ingredient to derive the
subsequent modified flow equations:

(5.20)
Φ′ − Φ̇F ijΦij = Φ̇F ijhkih

k
jΦ− Φ̇F ijgijrαβνανβϑ̃Φ

− Φ̇F ijgij ˙̃
ϑv−2Φ+ Φ̇F ijgijϑ̃Φku

k,

(5.21) u̇− Φ̇F ijuij = 2v−1F−1 − Φ̇F ijgijϑ̃v−2 − Φ̇F ij h̄ij ,

where we used that

(5.22) Φ(t) = −t−1, t > 0,

here t is just a symbol for a real variable, and where

(5.23) h̄ij = u−1ḡij = uσij

is the second fundamental form of the slices {x0 = u}, i.e., of spheres in
Rn+1 with center in the origin and radius r = u.
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The evolution equation for the second fundamental form looks like

(5.24)

ḣji − Φ̇F
klhji;kl = Φ̇F klhkrh

r
l h
j
i + (Φ− Φ̇F )hikh

kj

+ Φ̈FiF
j + Φ̇F kl,rsȟkl;iȟ

j
rs;

+ Φ̇F klgkl

{
− ϑ̃v−1hrihjr − v−2

˙̃
ϑhji + v−1

˙̃
ϑh̄ikg

kj

− rαβνανβϑ̃hji + ϑ̃urh
r j
i; +

˙̃
ϑhriuru

j +
˙̃
ϑhrjurui

+ rαβx
α
kx

βjhki ϑ̃+ v−1
¨̃
ϑuiu

j + rαβγν
αxβi x

γ
j ϑ̃

+ rαβν
αxβi

˙̃
ϑuj + rαβν

αxβj
˙̃
ϑui

}
.

The function χ is now defined by

(5.25) χ = vu−1

and there holds:

Lemma 5.1. χ satisfies the evolution equation

(5.26)
χ̇− Φ̇F ijχij = −Φ̇F ijhki hkjχ− 2χ−1Φ̇F ijχiχj + {Φ̇F + Φ}χ2

+ Φ̇F ijgij

{
−ϑ̃χ2 + χku

kuθ − χθ̇‖Du‖2u
}
,

where

(5.27) θ(r) = r−1ϑ̃ = 1
2

1

1− 1
4r

2
.

Proof. We consider a general Φ in the curvature flow in Rn+1

(5.28) ẋ = −Φν,

where

(5.29) F = F (ȟij)

and ȟij is defined by (5.13).
For the above flow the normal evolves according to

(5.30) ν̇ = Φkxk,

cf. [6, Lemma 2.3.2].
Using an euclidean coordinate system (xα) in Rn+1 it follows imme-

diately that χ can be expressed as

(5.31) χ = 〈x, ν〉−1,
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and hence

(5.32)

χ̇ = −χ2〈ẋ, ν〉 − χ2〈x, ν̇〉

= Φχ2 − χ2Φkuku

= Φχ2 − χ2Φ̇F ij ȟ k
ij; uku

= Φχ2 − χ2Φ̇F ij
{
h k
ij; uku+ (χ−1θ)ku

kugij

}
= Φχ2 − χ2Φ̇F ijh k

ij; uku

+ Φ̇F ijgij

{
χku

kuθ − χθ̇‖Du‖2u
}
.

Differentiating χ covariantly with respect to ξ = (ξi) we obtain

(5.33) χi = −χ2hki 〈xk, x〉,

(5.34) χij = 2χ−1χiχj − χ2hki;j〈xk, x〉+ hki hkjχ− χ2hij .

Combining (5.32) and (5.34) the result follows immediately due to
the homogeneity of F . q.e.d.

We want to prove that hij is uniformly bounded. However, this result
can only be achieved in several steps.

We observe that in view of the relation (5.11) and the boundedness

of h̆ij

(5.35) hij(1− 1
4u

2)

is uniformly bounded, or equivalently,

(5.36) |hij |e−
t
n ≤ const,

because of (5.4) and (3.17) on page 493.
As a first new step we shall improve (5.36) slightly:

Lemma 5.2. Define λε by

(5.37) λε = 1
n − ε, ε > 0,

where ε is small. Then the principal curvatures κi of the flow hypersur-
faces can be estimated from above by

(5.38) κi ≤ ceλεt,
if ε > 0 is small

(5.39) 0 < ε < ε0.

Proof. Define ζ as in (4.32) on page 500 and let

(5.40) ζ̃ = ζe−λet,

then we claim that

(5.41) w = log ζ̃ + logχ

is uniformly bounded from above, if ε is sufficiently small.
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Let 0 < T <∞ be large and assume that

(5.42) sup
QT

w = w(t0, ξ0)

with

(5.43) 0 < t0 ≤ T.
Arguing as in the proof of Lemma 4.4 on page 499, we may assume

that κn is the largest principal curvature and that w is defined by

(5.44) w = log h̃nn + logχ,

where

(5.45) h̃nn = hnne
−λεt.

We shall suppose that

(5.46) h̃nn(t0, ξ0) >> 1.

Applying the maximum principle we then infer from (5.24) and (5.26)

(5.47)

0 ≤ Φ̇F klgkl
{
− ϑ̃v−1eλεth̃nn − v−2

˙̃
ϑ+ c

˙̃
ϑe−λεt(h̃nn)−1 + cϑ̃

+ c
˙̃
ϑ‖Du‖2 + c

¨̃
ϑ‖Du‖2e−λεt(h̃nn)−1

+ ϑ̃uk(log h̃nn)k + uθuk(logχ)k

}
,

where we used the concavity of F , the properties of Φ and at one point
the vanishing of Dw in (t0, ξ0).

Our assumption that h̃nn is very large implies that t = t0 is very large
and, hence, powers of et will be the dominating terms.

In view of (3.17) on page 493 and (5.4) we have

(5.48) ϑ̃ ∼ ce
t
n ∧ ˙̃

ϑ ∼ ce
2t
n ∧ ¨̃

ϑ ∼ ce
3t
n ,

while

(5.49) ‖Du‖ ≤ ce−λ0t

for some 0 < λ0, cf. the estimate (3.40) on page 495.
The best term inside the braces on the right-hand side of (5.47) is

(5.50) −v−2 ˙̃
ϑ ∼ −ce

2t
n

and the worst is

(5.51) c
¨̃
ϑ‖Du‖2e−λet(h̃nn)−1 ∼ c(h̃nn)−1e

t
n
(2+nε−2nλ0),

hence, choosing

(5.52) ε = 2λ0

we obtain an a priori estimate for h̃nn, since the terms in (5.47) involving

the derivatives of log h̃nn and logχ vanish, for
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(5.53) uθ = ϑ̃ ∧ Dw = 0.

q.e.d.

As a corollary we deduce:

Corollary 5.3. The quantity F = F (ȟij) can be estimated from above
by

(5.54) F ≤ nv−1ϑ̃(1 + ce−2λ0t) ∀ 0 ≤ t <∞.

Proof. This follows at once from (5.13), (5.38), (5.52) and the nor-
malization (3.1) on page 492. q.e.d.

We are now able to improve the decay rate of |Du|.

Lemma 5.4. |Du| satisfies the estimate

(5.55) |Du| ≤ ce−
t
n ∀ 0 ≤ t <∞.

Proof. We look at the scalar flow equation

(5.56) u̇ =
∂u

∂t
=
v

F
,

where F = F (ȟij). Let

(5.57) ϕ = log u,

then

(5.58) hij = gikhkj = v−1u−1
{
−(σik − v−2ϕiϕk)ϕjk + δij

}
,

where all space derivatives are covariant derivatives with respect to σij ,
cf. (3.26) on page 494, but now we are in euclidean space, i.e., the factor
ϑ in (3.22) is equal to

(5.59) ϑ(r) = r.

Hence, we infer from (5.56)

(5.60) ϕ̇ =
1

F (h̃ij)
,

where

(5.61) h̃ij = v−2
{
−(σik − v−2ϕiϕk)ϕjk + ϑδij

}
,

and ϑ is defined by

(5.62) ϑ = ϑ(r) = rϑ̃.

The term

(5.63) w = 1
2 |Dϕ|

2
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then satisfies

(5.64)

ẇ = F−2
{

2v−2Fwiϕ
i + v−2F kl g̃

lrwkr − v−2F kl g̃lrϕikϕir

+ v−2F kl g̃
lr
;iϕ

iϕkr + v−2F kl g̃
lrϕrϕk − v−2F kl g̃lrσkr|Dϕ|2

− 2v−2F kk ϑ̇e
ϕw
}
,

cf. (3.43) on page 495 observing that now ϑ is defined differently and

(5.65) ϑiϕ
i = ϑ̇eϕ|Dϕ|2 = 2ϑ̇eϕw.

The metric g̃ij is defined by

(5.66) g̃ij = ϕiϕj + σij ,

and g̃ij is its inverse.
Let

(5.67) 0 < λ ≤ 2
n

be arbitrary and define

(5.68) w̃ = weλt ∧ ϕ̃i = ϕie
λt
2 .

Now choose 0 < T <∞ and suppose that

(5.69) sup
QT

w, QT = [0, T ]× Sn,

is attained at (t0, x0) with t0 > 0. Then the maximum principle implies

(5.70)
0 ≤ F−2

{
F kl g̃

lrϕ̃rϕ̃k − F kl g̃lrσkr|Dϕ̃|2

− 2F kk ϑ̇e
ϕw̃ + λv2F 2w̃

}
.

By definition

(5.71) h̃ij = v−1u−1ȟij ,

and thus

(5.72) v2F (h̃ij) ≤ u2F 2(ȟij) ≤ u2n2v−2ϑ̃2(1 + ce−2λ0t)2.

On the other hand,

(5.73) 2nϑ̇u = 8nϑ̃2

hence, we obtain an a priori estimate for w̃ provided

(5.74) 0 < λ < 2
n .

To derive an a priori estimate in the limit case

(5.75) λ = 2
n

we define, with a slight abuse of notation,

(5.76) w = w(t) = sup
Sn

w(t, ·) ∧ w̃ = weλt
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with λ = 2t
n ; w is Lipschitz continuous and the maximum principle then

yields, instead of (5.70),

(5.77) ˙̃w ≤ F−2
{
−2F kk ϑ̇e

ϕw̃ + λv2F 2w̃
}

for almost every t > 0. Because of the relations (5.72), (5.73) and the
previous estimates for w we then conclude

(5.78) ˙̃w ≤ ce−δt

for a.e. t > 0 with some δ > 0, completing the proof of the lemma.
q.e.d.

As a corollary we deduce:

Corollary 5.5. The principal curvatures κi of the flow hypersurfaces
are uniformly bounded from above

(5.79) κi ≤ c ∀ 0 ≤ t <∞.

Proof. Choosing in the proof of Lemma 5.2 λε = 0 and applying the
maximum principle we obtain the inequality (5.47) with λε replaced by
0. In view of the estimate (5.55) we then infer an a priori estimate for
κn. q.e.d.

An estimate from below for the κi is much more difficult and requires
two steps.

Lemma 5.6. Let κi, 1 ≤ i ≤ n, be the principal curvatures of the
flow hypersurfaces

(5.80) κ1 ≤ · · · ≤ κn,

and let

(5.81) κ̃i(t) = inf
Sn
κi(t, ξ)(2− u(t, ξ)),

then

(5.82) lim inf
t→∞

κ̃1(t) = 0.

Proof. We argue by contradiction. Suppose that

(5.83) lim inf
t→∞

κ̃1(t) < 0.

Let ϕ be defined by

(5.84)
ϕ = F (2− u) = F (hij + v−1ϑ̃δij)(2− u)

= F (hijvϑ̃
−1 + δij)v

−1ϑ̃(2− u),

then

(5.85) lim
t→∞
|v−1ϑ̃(2− u)|0,Sn = 1
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and (5.83) is equivalent to

(5.86) lim inf
t→∞

inf
Sn
F (2− u) = F (1 + κ̃1, . . . , 1 + κ̃n) < F (1, . . . , 1) = n,

since the non-negative κi are uniformly bounded and F is strictly mono-
tone. Thus, (5.83) implies

(5.87) lim inf
t→∞

inf
Sn
w < log n,

where

(5.88)
w = logϕ− logχ− log 2

= − log(−Φ) + log(2− u)− logχ− log 2,

since

(5.89) lim
t→∞
|− logχ− log 2|0,Sn = 0.

Let ε > 0 be so small such that

(5.90) lim inf
t→∞

inf
Sn
w < (1− 2ε) log n

and let τ be so large such that

(5.91) t ≥ τ ∧ inf
Sn
w(t, ξ) = w(t, ξ0) < (1− ε) log n

implies

(5.92) κ̃1(t) < −ε0 ∧ κ1ϑ̃
−1(t, ξ0) < −ε0

for a fixed 0 < ε0 = ε0(ε). The existence of τ follows from the relations
(5.89) and (5.90).

Define the set

(5.93) Λ = { t : t ≥ τ ∧ inf
Sn
w(t, ·) < (1− ε) log n },

then Λ 6= ∅, since it contains a sequence tk →∞.
We shall now prove

(5.94) Λ = [τ,∞),

and

(5.95) w̃(t) = inf
Sn
w(t, ·)

is (weakly) monotone increasing in [τ,∞), i.e.,

(5.96) w̃(t1) ≤ w̃(t2) ∀ τ ≤ t1 < t2 <∞.
Let T , τ < T <∞, be arbitrary but so large such that

(5.97) Λ ∩ [τ, T ] 6= ∅,
and suppose that

(5.98) inf{w(t, ξ) : τ ≤ t ≤ T, ξ ∈ Sn } = w(t0, ξ0)

with t0 > τ .
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w satisfies the evolution equation

(5.99)

ẇ − Φ̇F ijwij =

Φ̇F ijgijrαβν
ανβϑ̃+ Φ̇F ijgij

˙̃
ϑv−2 − Φ̇F ijgij(log(−Φ))ku

kϑ̃

− Φ̇F ij(log(−Φ))i(log(−Φ))j + Φ̇F ij(log(2− u))i(log(2− u))j

+ Φ̇F ij(logχ)i(logχ)j

+ Φ̇F ijgijϑ̃v
−2(2− u)−1 + Φ̇F ij h̄ij(2− u)−1 − 2v−1ϕ−1

+ Φ̇F ijgij

{
ϑ̃χ− (logχ)ku

kuθ + θ̇‖Du‖2u
}
.

At the point (t0, ξ0) Dw = 0, hence the terms in line two and three
on the right-hand side of (5.99) add up to

(5.100) 2Φ̇F ij(logχ)i(log(2− u))j ,

which in turn is equal to

(5.101) 2Φ̇F ijhiku
kuj(2− u)−1χ−1 ≥ −cΦ̇,

due to the estimates (5.55), (5.36), (5.4) and (3.17) on page 493.
Analogously, we conclude

(5.102)
Φ̇F ijgij

{
−(log(−Φ))ku

kuθ − (logχ)ku
kϑ̃
}

=

Φ̇F ijgij(− log(2− u))ku
k)ϑ̃ ≥ 0,

where we also used

(5.103) uθ = ϑ̃.

Hence, applying the maximum principle we infer from (5.99)

(5.104)
0 ≥ Φ̇F ijgij ˙̃

ϑv−2 + Φ̇F ijgijϑ̃v
−2(2− u)−1 − 2v−1ϕ−1 − cΦ̇

≥ 2δ − ce−
2t
n ≥ δ,

if τ is large enough, with some uniform δ = δ(ε0) > 0; a contradiction.
Thus, we have proved that t0 = τ and therefore

(5.105) w̃(τ) ≤ w̃(t) ∀ τ ≤ t ≤ T.
Since we can replace τ by any t1 ∈ [τ, T ) we conclude

(5.106) w̃(t1) ≤ w̃(t2) ∀ τ ≤ t1 ≤ t2 ≤ T,
and we have proved (5.94) as well as (5.96), since τ < T < ∞ is arbi-
trary.

However, the arguments we used to derive the contradiction in in-
equality (5.104) yield

(5.107) ẇ(t, ξt) ≥ δ > 0 ∀ τ ≤ t <∞,
where

(5.108) inf{w(t, ξ) : ξ ∈ Sn } = w(t, ξt),
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in view of (5.94) and the definition of Λ. The left-hand side of the pre-
ceding equation is the definition of w̃(t), which is Lipschitz continuous
and satisfies for a.e. t > τ

(5.109) ˙̃w(t) = ẇ(t, ξt).

Hence, we deduce

(5.110) ˙̃w(t) ≥ δ

for a.e. t > τ , which is a contradiction, since w̃ is uniformly bounded,
completing the proof of the lemma. q.e.d.

Now, we can prove that the principal curvatures are uniformly
bounded.

Lemma 5.7. The principal curvatures κi, 1 ≤ i ≤ n, are uniformly
bounded during the evolution

(5.111) |κi| ≤ c.

Proof. We shall estimate

(5.112) ϕ = 1
2 |A|

2 = 1
2hijh

ij ,

which satisfies the evolution equation

(5.113) ϕ̇− Φ̇F ijϕij = −Φ̇F klhij;khij;l +
{
ḣji − Φ̇F

klhji;kl

}
hij .

Looking at (5.24) and observing that, in view of the previous estimates,

(5.114) lim
t→∞
|A|e−

t
n = 0

uniformly in ξ ∈ Sn, and, because of the homogeneity of F ,

(5.115) F−1 + |F kl,rs| ≤ ce−
t
n ,

we deduce that the terms

(5.116) −Φ̇F klhij;khij;l − Φ̇F
klgklv

−2 ˙̃
ϑ2ϕ,

which are either explicitly or implicitly contained in the right-hand side
of (5.113), are dominating; they can absorb any bad term such that an
application of the maximum principle gives an a priori estimate for ϕ.

q.e.d.

As a corollary we obtain:

Theorem 5.8. The flow hypersurfaces in hyperbolic space become
strongly convex exponentially fast and also more and more totally um-
bilic. In fact there holds

(5.117) |h̆ij − δij | ≤ ce−
t
n .
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Proof. We infer from (5.11) on page 504

(5.118)
h̆ij − δij = h̆ij −

u

2v
δij +

( u
2v
− 1
)
δij

= hij
u

2ϑ̃
+
( u

2v
− 1
)
δij ,

from which the estimate (5.117) immediately follows, in view of (5.111),
(5.55), (5.4), and (3.17) on page 493. q.e.d.

6. Higher order estimate

Assuming the curvature function F to be smooth, we want to prove
higher order estimates for hij , or equivalently, for u. Since we already
know that hij is uniformly bounded,

(6.1) ġij = −2Φhij

as well as the Riemannian curvature tensor of the induced metric then
are also uniformly bounded.

Let A represent the second fundamental form, where we omit the
tensor indices, then we want to prove

(6.2) ‖DmA‖ ≤ cme−
t
n ∀m ≥ 1.

This estimate will immediately imply a corresponding estimate

(6.3) ‖Dmu‖ ≤ cme−
t
n ∀m ≥ 1,

in view of the relation

(6.4) hijv
−1 = −uij + h̄ij

and the estimate (5.55) on page 509.
To obtain an estimate for D2u we have to apply the following inter-

polation lemma:

Lemma 6.1. Let M = Mn be a compact Riemannian manifold of
class Cm, m ≥ 2, and u ∈ C2(M), then

(6.5) ‖Du‖0,M ≤ c|u|
1
2
2,M |u|

1
2
0,M ,

where c = c(M) and

(6.6) |u|2,M = |u|0,M + ‖Du‖0,M + ‖D2u‖0,M
and the norms on the right-hand side are supremum norms.

Proof. Using a partition of unity we may assume that u has support
in a coordinate chart and hence we may assume that

(6.7) u ∈ C2
c (Rn),

where Rn is equipped with the Euclidean metric. Moreover, we may
assume n = 1.
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Let x ∈ R, ε > 0 be arbitrary, and choose x1, x2 ∈ R such that

(6.8) x2 − x1 = ε ∧ x ∈ (x1, x2).

Then we deduce

(6.9) u(x2)− u(x1) = Du(ξ)(x2 − x1), ξ ∈ (x1, x2),

(6.10) Du(x) = Du(ξ) +

∫ x

ξ
D2u,

and hence,

(6.11) |Du(x)| ≤ 2ε−1|u|0 + ε|D2u|0 ≡ ϕ(ε),

where we assume without loss of generality that

(6.12) |D2u|0 > 0,

otherwise, we replace |D2u|0 by |D2u|0 + δ, δ > 0.
Minimizing ϕ by solving

(6.13) ϕ̇(ε) = −2ε−2|u|0 + |D2u|0 = 0,

we conclude

(6.14) ε =
√

2|u|
1
2
0 |D

2u|−
1
2

0 ,

and thus,

(6.15) |Du| ≤ 2
√

2|u|
1
2
0 |D

2u|
1
2
0 .

q.e.d.

Corollary 6.2. Let M = Mn be a compact Riemannian manifold of
class Cm, m ≥ 2, and u ∈ Cm(M), then

(6.16) ‖Dm−1u‖0,M ≤ c|u|
1
2
m−2,M |u|

1
2
m,M ,

where c = c(m,M).

We shall apply the corollary to the function (u − 2) using either
M = Sn or M = graphu.

The starting point for deriving the estimate (6.2) is equation (5.24)
on page 506 which will be differentiated covariantly. However, we first
have to derive some preparatory lemmata.

Lemma 6.3. Let ϕ be defined by

(6.17) ϕ = (u− 2)−1

and assume

(6.18) m ≥ 2 ∧ ‖DkA‖ ≤ cλe−λt ∀ 1 ≤ k ≤ m− 1,

and for all 0 < λ < 1
n , then

(6.19) ‖Dm+1ϕ‖ ≤ cεe(
1
n
+ε)t ∀ 0 < ε.
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The estimate

(6.20) ‖Dϕ‖ ≤ ce
t
n

has already been proved.

Proof. Set

(6.21) ũ = (u− 2)e
t
n ,

then ũ satisfies

(6.22) −c1 ≤ ũ ≤ −c2 ∀ 0 ≤ t <∞,

and

(6.23) ϕ = ũ−1e
t
n .

Let α ∈ Nn be a multi-index of order m + 1, m ≥ 2, then Dαϕ can be
written as

(6.24) Dαϕ =
∑

|β1|+···+|βm+1|=m+1

cβ1,...,βm+1D
β1 ũ · · ·Dβm+1 ũe

t
n ,

where the coefficients cβ1,...,βm+1 depend smoothly on ũ, and, if we allow
some of the coefficients to vanish, the sum is taken over all multi-indices
βi, 1 ≤ i ≤ m+ 1, satisfying

(6.25)
m+1∑
i=1

|βi| = m+ 1.

The estimate (6.20) is trivial in view of (5.55) on page 509. q.e.d.

Lemma 6.4. Let f = f(u,Du, ũ,Dũ) be any smooth function and
assume that the conditions (6.18) are valid, then, for any ε > 0, there
holds

(6.26) ‖Dm(fϑ̃)‖ ≤ cεe(
1
n
+ε)t,

(6.27) ‖Dm(f
˙̃
ϑui)‖ ≤ cεe(

1
n
+ε)t, ∀ 1 ≤ i ≤ n,

(6.28) ‖Dm(f
¨̃
ϑuiuj)‖ ≤ cεe(

1
n
+ε)t, ∀ 1 ≤ i, j ≤ n.

Proof. Let us only prove (6.26), since we can write

(6.29)

˙̃
ϑui =

˙̃
ϑ(u− 2)(u− 2)−1ui

=
˙̃
ϑũ−1ũi

≡ fϑ̃

with some smooth function f = f(u,Du, ũ,Dũ), and similarly

(6.30)
¨̃
ϑuiuj ≡ fϑ̃.
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”
(6.26)“ Define θ̃ by

(6.31) θ̃ = −ϑ̃(u− 2),

then θ̃ is smooth and

(6.32) fϑ̃ = −fθ̃ϕ.
The estimate then follows by applying the general Leibniz rule and
(6.19) observing that ε > 0 is assumed to be arbitrary. q.e.d.

Let Ǎ be a symbol for ȟij , then

(6.33) Ǎ = A+ v−1ϑ̃δij

and we deduce from (6.26), if the assumptions (6.18) are satisfied,

(6.34) ‖DmǍ‖ ≤ ‖DmA‖+ cεe
( 1
n
+ε)t

for any ε > 0, where cε also depends on m. Here, we also used the
relation

(6.35) v−2 = 1− ‖Du‖2.
We also note that in case m = 1 the relation (6.34) is valid for ε = 0.

Inside the braces of the right-hand side of equation (5.24) on page 506
there is the crucial term

(6.36) −v−2 ˙̃
ϑhji + v−1

˙̃
ϑh̄ikg

kj ,

which is equal to

(6.37) v−1
˙̃
ϑ
{
−v−1hji + h̄ikg

kj
}

= v−1
˙̃
ϑuji ,

in view of (6.4).
Differentiating (6.36) covariantly with respect to a multi-index α,

|α| = m, m ≥ 1, we therefore obtain

(6.38)

∑
β≤α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβ

{
−v−1hji + h̄ikg

kj
}

= v−1
˙̃
ϑDα

{
−v−1hji + h̄ikg

kj
}

+
∑
β<α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβuji .

Furthermore, there holds

(6.39) v−1
˙̃
ϑ = f(u,Du, ũ)ϑ̃e

t
n ,

and hence,

(6.40) Dα−β(v−1
˙̃
ϑ)Dβuji = Dα−β(fϑ̃)Dβũji

and we conclude

(6.41) ‖
∑
β<α

(
α

β

)
Dα−β(v−1

˙̃
ϑ)Dβuji‖ ≤ cεe

( 1
n
+ε)t ∀ ε > 0,



INVERSE CURVATURE FLOWS IN HYPERBOLIC SPACE 519

provided (6.18) is valid, in view of (6.26), (6.24) and (6.19), since

(6.42) β < α =⇒ |β|+ 2 ≤ m+ 1.

In case m = 1 we have

(6.43) ‖D(v−1
˙̃
ϑ)uji‖ ≤ ce

2
n
t‖D2u‖.

Hence we obtain:

Lemma 6.5. Let α be a multi-index of order m ≥ 2 and suppose that
(6.18) is valid, then

(6.44)

Dα
{
−v−2 ˙̃

ϑhji +v−1
˙̃
ϑh̄ikg

kj
}

= v−1
˙̃
ϑDα

{
−v−1hji + h̄ikg

kj
}

+O1
ε

= −v−2 ˙̃
ϑDαhji +O1

ε ,

where O1
ε represents a tensor that can be estimated like

(6.45) ‖O1
ε‖ ≤ cεe(

1
n
+ε)t ∀ ε > 0.

In case m = 1 we have

(6.46)

D
{
−v−2 ˙̃

ϑhji +v−1
˙̃
ϑh̄ikg

kj
}

= v−1
˙̃
ϑD

{
−v−1hji + h̄ikg

kj
}

+O2
0u

j
i

= −v−2 ˙̃
ϑDhji +O1

0 +O2
0u

j
i ,

where O1
0 resp. O2

0 represent tensors that can be estimated like

(6.47) ‖O1
0‖ ≤ ce

t
n

resp.

(6.48) ‖O2
0‖ ≤ ce

2
n
t.

Proof. Observing that

(6.49) h̄ik = u−1ḡik = u−1gik − u−1uiuk
the relation (6.44) follows from (6.38), (6.41) and (6.18), while (6.46)
can be deduced from (6.43). q.e.d.

Definition 6.6. Let k ∈ Z, then the symbol Okε represents any tensor
that can be estimated by

(6.50) ‖Okε ‖ ≤ cεe(
k
n
+ε)t ∀ ε > 0,

and the symbol Ok0 represents any tensor that can be estimated by

(6.51) ‖Ok0‖ ≤ ce
k
n
t.

Thus O0
0 represents a uniformly bounded tensor.
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We also denote by DmF the derivatives of order m of F with respect
to the argument ȟij , and when S, T are arbitrary tensors then S ?T will
symbolize any linear combination of tensors formed by contracting over
S and T . The result can be a tensor or a function. Note that we do not
distinguish between S ? T and cS ? T , c a constant.

From (6.34), the homogeneity of F and the definition of Φ we then
deduce

Lemma 6.7. Let m = 1 or assume that (6.18) is valid, then we have

(6.52) DmF = DF ? DmA+DF ?O1
ε ,

(6.53) DmΦ(k) = Φ(k+1)DmF + Φ(k+1) ?O1
ε ,

and similarly

(6.54) DmDkF = Dk+1F ? DmF +Dk+1F ?O1
ε ,

where Φ(k) is the k-th derivative of Φ. In case m = 1 O1
ε can be replaced

by O1
0.

We are now ready to differentiate (5.24) on page 506 covariantly.

Lemma 6.8. The tensor DA satisfies the evolution equation

(6.55)

D

dt
(DA)− Φ̇F kl(DA);kl =

Φ̈O0
0 ? (DA+O1

ε ) ?D2A+ Φ̇D2F ? (DA+O1
ε ) ? D

2A

+ Φ̇O0
0 ? DA+ Φ̈O0

0 ? (DA+O1
0) + Φ̇O0

0 ? (DA+O1
0)

+ ΦO0
0 ? DA+

...
Φ O0

0 ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̈O0
0 ? (D2A+O1

0 +O2
0 ? D

2u) ? (DA+O1
0)

+ Φ̈D2F ?DF ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̇D3F ? (DA+O1
0) ? (DA+O1

0) ? (DA+O1
0)

+ Φ̇D2F ? (D2A+O1
0 +O2

0 ? D
2u) ? (DA+O1

0)

+ Φ̈O0
0 ? (DA+O1

0) ? (
˙̃
ϑD2u ?O0

0 + ϑ̃O0
0 +DA ?O0

0)

+ Φ̇O0
0 ? (O1

0 +O1
0 ? DA+O0

0 ? D
2A+O2

0 ? D
2u)

+ Φ̇F klgkl(−v−2 ˙̃
ϑDA).

Proof. Differentiate (5.24) on page 506 covariantly with respect to a
spatial variable and apply Lemma 5.4 on page 509, Lemma 6.5, Defini-
tion 6.6, and Lemma 6.7. q.e.d.

An almost identical proof—where we also have to rely on Lemma 6.4—
yields the evolution equation for higher derivatives of A.
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Lemma 6.9. Let m ≥ 2 and assume that assumptions (6.18) are
valid, then the tensor DmA, where DmA represents any covariant de-
rivative DαA, |α| = m, satisfies the evolution equation
(6.56)

D

dt
(DmA)− Φ̇F kl(DmA);kl =

Φ̈DF ? (DmA+O1
ε ) ? D

2A+ Φ̇D2F ? (DmA+O1
ε ) ? D

2A

+ ΦO0
0 ? D

mA+ Φ̇O1
ε ? D

m+1A+ Φ̇D2F ?O1
ε ? (Dm+1A+O1

ε )

+ Φ̈D2F ? (D2F +O1
ε ) ?DF ? (DmA+O1

ε )

+ Φ̇D2F ? (D2A+O1
ε ) ? (DmA+O1

ε ) ?DF

+ Φ̈ (DF ? DmA+O1
ε ) ?O0

0 + Φ̇D2F ? (DmA+O1
ε ) ?O0

0

+ Φ̇ (DmA+O1
ε ) ?O0

0 +
...
Φ (DmA+O1

ε ) ? DǍ ? DǍ ?O0
0

+ Φ̈D2F ? DmA ? DǍ+ Φ̈D2F ?O1
ε ? DǍ

+ Φ̈DF ? (DmA+O1
ε ) ?D2F ? DǍ ? DǍ ?O0

0

+ Φ̇D3F ? (DmA+O1
ε ) ? DǍ ? DǍ

+ Φ̇D2F ? (Dm+1A+O1
ε ) ? (DA+O1

ε )

+ Φ̈ (DmA+O1
ε ) ? (

˙̃
ϑD2u ?O0

0 + ϑ̃O0
0)

+ Φ̇D2F ? (DmA+O1
ε ) ? (

˙̃
ϑD2u+ ϑ̃O0

0) ?O0
0

+ Φ̇DF ? (O1
ε + ϑ̃DmA ?O0

0 +O0
0 ? D

m+1A)

− Φ̇F klgklv−2 ˙̃
ϑDmA

We are now going to prove uniform bounds for

(6.57) 1
2‖D

mÃ‖2 = 1
2

∑
|α|=m

‖DαA‖2e2λt

for all m ≥ 1 and

(6.58) 0 ≤ λ < 1
n .

First, we observe that

(6.59)

D

dt
(12‖D

mÃ‖2)− Φ̇F kl(12‖D
mÃ‖2);kl ={D

dt
(DmA)− Φ̇F kl(DmA);kl

}
eλtDmÃ

− Φ̇F kl(DmÃ);k(D
mÃ);l + λ‖DmÃ‖2

Lemma 6.10. The quantities 1
2‖D

mÃ‖2 are uniformly bounded dur-

ing the evolution for any m ≥ 1 and 0 ≤ λ < 1
n ,
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Proof. We prove the lemma recursively by estimating

(6.60) ϕ = log(12‖D
mÃ‖2) + µ1

2‖D
m−1A‖2,

where

(6.61) 0 < µ = µ(m) << 1,

cf. the proof of [6, Lemma 7.6.3].
We shall only treat the case m = 1, since the proof for m ≥ 2 is

almost identical by considering the evolution equation (6.56) instead of
(6.55).

Thus, let

(6.62) ϕ = log(12‖DÃ‖
2) + µ1

2‖A‖
2.

Fix 0 < T <∞, T very large, and suppose that

(6.63) sup
[0,T ]

sup
M(t)

ϕ = ϕ(t0, ξ0)

is large, and hence, 0 < t0 ≤ T , is sufficiently large, such that the
previous decay estimates for ‖Du‖, etc. can be employed.

Applying the maximum principle we deduce from (6.55), (6.59) and
the evolution equation for 1

2‖A‖
2, see (5.113) on page 514,

(6.64)

0 ≤
{
−Φ̇F klgklv−2 ˙̃

ϑ+ λ
}
− 2Φ̇F kl(DÃ);k(DÃ);l

+ Φ̇F kl log(12‖Ã‖
2)k log(12‖DÃ‖

2)l

− µΦ̇F klhij;khij;l + rest.

When t0 is large then terms in the braces can be estimated from
above by

(6.65) −2δ,

where

(6.66) δ = δ(λ) ≈ 1
2( 1
n − λ).

To estimate

(6.67) Φ̇F kl log(12‖Ã‖
2)k log(12‖DÃ‖

2)l

we use Dϕ = 0 and conclude that this term can be estimated from
above by

(6.68) µ2Φ̇F klhij;kh
ij
;l‖A‖

2 ≤ µ
2 Φ̇F

klhij;kh
ij
;l,

if 0 < µ is small.
Most terms in the

”
rest“ can be easily absorbed; a few are a bit more

delicate. These can be estimated from above by

(6.69) c
‖D2u‖eλt‖DÃ‖
‖DÃ‖2

< c‖DÃ‖−
1
2 ,
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where the last inequality is due to the interpolation lemma, cf. Corol-
lary 6.2, applied to (u − 2). Here, we also used the assumption that

‖DÃ‖ ≥ 1.
A thorough inspection of the right-hand side of (6.64) then yields

(6.70) 0 ≤ −δ + ce−(
1
n
−λ)t0 + c‖DÃ‖−

1
2

and hence an a priori estimate for ‖DÃ‖, if t0 is large. q.e.d.

It remains to prove the optimal decay (6.2). This will be achieved by
deriving the equivalent estimate

(6.71) ‖Dmu‖ ≤ cme−
t
n ∀m ≥ 1.

Theorem 6.11. Let M(t) = graphu(t) be the leaves of the inverse
curvature flow, where F and the initial hypersurface are smooth, then
the estimate (6.71) is valid and the function

(6.72) (u− 2)e
t
n

converges in C∞(Sn) to a strictly negative constant.

Proof. It suffices to prove (6.71), in view of the relations (3.17) on
page 493 and (5.4) on page 504, and to show that the limit exists.

(i) Our starting point is equation (5.21) on page 505 satisfied by u as
well as by (u− 2).

Let ϕ, ϕ̃, F̃ , and Φ̃ be defined by

(6.73) ϕ = (2− u)−1 ∧ ϕ̃ = ϕe−
t
n ,

(6.74) F̃ = F (ȟkl (2− u)),

and

(6.75) Φ̃ = Φ(F̃ ),

then we deduce from (5.21)

(6.76)
˙̃ϕ− ˙̃Φϕ̃−2e−

2
n
tF̃ ijϕ̃ij = −2 ˙̃Φϕ̃−2e−

2
n
tF̃ ijϕ̃iϕ̃jϕ̃

−1

+ 2v−1F̃−1ϕ̃− F̃−2F ijgij θ̃ϕ̃v−2 − F̃−2F ij h̄ije−
t
n − 1

n ϕ̃,

where

(6.77) θ̃ = ϑ̃(2− u).

θ̃ depends smoothly on u and is strictly positive. The derivatives of
arbitrary order of θ̃, F̃ , Φ̃, F ij , F̃ ij , v, and h̄ij are uniformly bounded
and decay exponentially fast, if t goes to infinity, while the Cm-norms
of ϕ̃ can be estimated by

(6.78) ‖Dmϕ̃‖ ≤ cm,εeεt ∀ ε > 0,

in view of our previous estimates.
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Differentiating then (6.76) covariantly we obtain the following differ-
ential inequality for

(6.79) w = 1
2‖D

mϕ̃‖2

(6.80)
ẇ − ˙̃Φϕ̃−2e−

2
n
tF̃ ijwij ≤

O0
−2δ + 2

{
2v−1F̃−1 − F̃−2F ijgij θ̃v−2 − 1

n

}
w,

where O0
r , r ∈ R, represents a term that can be estimated by

(6.81) |O0
r | ≤ cert ∀ 0 ≤ t <∞.

In inequality (6.80) we may choose δ > 0 independently of m ≥ 1.
The terms inside the braces of that inequality are also an O0

−2δ for an
appropriate δ > 0, and, because of (6.78),

(6.82) O0
−2δw = O0

−δ.

Hence, applying the maximum principle to the function

(6.83) w + µe−δt

we derive an a priori estimate for w by choosing µ large enough.

(ii) It remains to prove that the pointwise limit

(6.84) lim
t→∞

(u(t, ξ)− 2)e
t
n

exists for any ξ ∈ Sn.
Using the scalar flow equation (5.56) on page 509 we deduce

(6.85) ˙̃u =
v

F
e
t
n + 1

n ũ,

where

(6.86) ũ = (u− 2)e
t
n

and F depends on

(6.87) ȟij = hij + v−1ϑ̃δij .

In view of the homogeneity of F we further conclude

(6.88)

˙̃u =
v

F (ȟije
− t
n )

+ 1
n ũ

= (−ũ)

{
v

F
(
hije
− t
n (−ũ) + v−1 u

(1+ 1
2
u)
δij

) − 1
n

}

≥ −ce−
t
n

in view of our previous estimates, and we finally obtain

(6.89) (ũ− nce−
t
n )′ ≥ 0,
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from which the convergence result immediately follows. The fact that
the limit is constant will be proved in the lemma below. q.e.d.

Lemma 6.12. The rescaled functions in (6.72) converge to a con-
stant.

Proof. We use the relation

(6.90) ‖Du‖2 = 1− v−2 ≡ 1− ṽ2

and shall prove that

(6.91) lim
t→∞

(‖Du‖2)′e
2t
n = 2

n∆ũ ũ,

where, by a slight abuse of notation, we also use the symbol ũ to denote

the limit of ũ = (u− 2)e
2t
n ,

(6.92) ũ = lim
t→∞

(u− 2)e
2t
n ,

and

(6.93) lim
t→∞

(ṽ2)′e
2t
n = 2

n‖Dũ‖
2

leading to the equation

(6.94) −∆ũ ũ = ‖Dũ‖2

on M = ∂B2(0). Since ũ is strictly negative we then conclude

(6.95)

∫
M
‖Dũ‖2ũ−1 = 0,

hence ‖Dũ‖ = 0.
Let us first derive (6.91). Using

(6.96) ġij = −2Φhij = 2F−1hij ,

cf. [6, Lemma 2.3.1], where F is evaluated at

(6.97) ȟij = hij + ṽϑ̃gij ,

and the expression

(6.98) gij = uiuj + u2σij ≡ uiuj + ḡij

for the induced metric, we deduce

(6.99)
(‖Du‖2)′ = (gijuiuj)

′ = 2gij u̇iuj − ġijuiuj

= 2F−1H − 2u−1u̇gij ḡij − 2F−1hiju
iuj .

In view of the scalar curvature equation

(6.100) u̇ = ṽF−1

and the relation

(6.101) gij = ḡij − ṽ2ǔiǔj ,
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where

(6.102) ǔi = ḡijuj ,

we obtain

(6.103)

(‖Du‖2)′ = 2F−1H − 2u−1F−1ṽ(n− ṽ2|Du|2)
− 2F−1hiju

iuj

= 2F−1(H − n
u ) + o(e−

2t
n ).

On the other hand, there holds

(6.104) hij ṽ = −uij + h̄ij = −uij + u−1ḡij ,

and thus

(6.105) Hṽ = −∆u+ +u−1(n− ṽ2|Du|2)
yielding

(6.106) H − n
u = −∆u+O(e−

2t
n ).

Inserting (6.106) in the right-hand side of (6.103) and using

(6.107) lim
t→∞

F (2− u) = n

we conclude

(6.108) lim
t→∞

(‖Du‖2)′e
2t
n = 2

n∆ũ ũ.

Let us now differentiate ṽ2. From the relation

(6.109) ṽ = ηαν
α,

where

(6.110) (ηα) = (rα) = (1, 0, . . . , 0),

we infer

(6.111)
˙̃v = F−1ηαβν

ανβ + ηαν̇
α

= F−1ηαβν
ανβ − (F−1)ku

k,

where we used

(6.112) ν̇ = Φkxk,

cf. [6, Lemma 2.3.2].

The first term on the right-hand side of (6.111) is an o(e−
2t
n ), while

(6.113)

(F−1)k = −F−2F ij
{
hij;k + ṽkϑ̃gij

+ ṽ ˙̃Θukgij + ṽΘ̃
1

(2− u)2
ukgij

}
,

where we used the definition (6.77) for Θ̃. Therefore, we obtain

(6.114) (F−1)ku
ke

2t
n = − 1

n‖Dũ‖
2 + o(1)
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concluding

(6.115) lim
t→∞

(ṽ2)′e
2t
n = 2

n‖Dũ‖
2,

in view of (6.107) and

(6.116) lim
t→∞

F ijgij = n

completing the proof of the lemma. q.e.d.
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