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EINSTEIN SPACES AS ATTRACTORS

FOR THE EINSTEIN FLOW

Lars Andersson & Vincent Moncrief

Abstract

In this paper we prove a global existence theorem, in the direc-
tion of cosmological expansion, for sufficiently small perturbations
of a family of n + 1-dimensional, spatially compact spacetimes,
which generalizes the k = −1 Friedmann–Lemâıtre-Robertson–
Walker vacuum spacetime. This work extends the result from [3].
The background spacetimes we consider are Lorentz cones over
negative Einstein spaces of dimension n ≥ 3.

We use a variant of the constant mean curvature, spatially har-
monic (CMCSH) gauge introduced in [2]. An important difference
from the 3+1 dimensional case is that one may have a nontrivial
moduli space of negative Einstein geometries. This makes it nec-
essary to introduce a time-dependent background metric, which is
used to define the spatially harmonic coordinate system that goes
into the gauge.

Instead of the Bel-Robinson energy used in [3], we here use an
expression analogous to the wave equation type of energy intro-
duced in [2] for the Einstein equations in CMCSH gauge. In order
to prove energy estimates, it turns out to be necessary to assume
stability of the Einstein geometry. Further, for our analysis it is
necessary to have a smooth moduli space. Fortunately, all known
examples of negative Einstein geometries satisfy these conditions.

We give examples of families of Einstein geometries which have
nontrivial moduli spaces. A product construction allows one to
generate new families of examples.

Our results demonstrate causal geodesic completeness of the
perturbed spacetimes, in the expanding direction, and show that
the scale-free geometry converges toward an element in the moduli
space of Einstein geometries, with a rate of decay depending on
the stability properties of the Einstein geometry.

1. Introduction

Let M be a compact, connected, orientable manifold of dimension
n ≥ 2, and assume thatM admits a smooth Riemannian Einstein metric
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γ with negative Einstein constant. After a trivial rescaling, we can
suppose that

Ric[γ] = −n− 1

n2
γ,

where Ric[γ] is the Ricci tensor of γ. With this normalization, the
Lorentz cone spacetime M̄ = (0,∞) ×M with metric

ḡ = −dt⊗ dt+
t2

n2
γ

is globally hyperbolic and Ricci flat, i.e. a solution of the vacuum Ein-
stein equations in dimension n+1, and admits a homothetic Killing field
Z = t∂t, such that LZ ḡ = −2ḡ. Such spacetimes are said, by virtue of
this global homothety, to be continuously self-similar.

We showed in an earlier paper [3] that in the case n = 3, Lorentz cone
spacetimes are stable to the future. The main result of [3] is that for
constant mean curvature (CMC) Cauchy data for the vacuum Einstein
equations close to the standard data for a Lorentz cone, the maximal fu-
ture Cauchy development is globally foliated by CMC Cauchy surfaces.
Further, the Cauchy development is causally geodesically complete to
the future, and the induced spatial metric on the CMC Cauchy surfaces
converges, after a suitable rescaling, to the background metric γ.

The result in [3] required that the background metric γ satisfy a non-
trivial rigidity condition, namely that it allows no nontrivial, traceless
Codazzi tensors. Kapovich [11, theorem 2] has proved the existence of
compact hyperbolic spaces with this property; see also the discussion
in [3, §2.4]. The rigidity condition corresponds to the assumption that
the moduli space of flat spacetimes at the Lorentz cone (M̄ , ḡ) is trivial.
The rigidity condition was later removed by Reiris [15].

The argument in [3] and also in [15] relied on Bel-Robinson type
energies to control the (fully nonlinear) perturbations, and is therefore
essentially restricted to the 3+1 dimensional case; see [16], however. In
this paper, our aim is to extend the analysis to general dimension. In
order to do this, we introduce a new family of energies for the Einstein
equations, which are not curvature-based.

1.1. Lorentz cone spacetimes. In the case n = 2, the Einstein con-
dition implies that (M,γ) is a hyperbolic surface. Since other, more far-
reaching techniques are available in two spatial dimensions [1, 4, 13, 14],
we shall here concentrate on dimensions n ≥ 3.

When n = 3, γ is necessarily hyperbolic, i.e. has constant negative
sectional curvature, and indeed hyperbolic metrics provide the most fa-
miliar special cases of negative Einstein metrics in all higher dimensions
as well, but when n ≥ 4 many examples of non-hyperbolic, negative
Einstein metrics are known to exist [5].

By Mostow rigidity, hyperbolic metrics are unique up to isometry,
and trivial homothetic rescalings, for all dimensions n ≥ 3, but when
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n = 2 there exists, for each higher genus surface, a finite dimensional
Teichmüller space of non-isometric hyperbolic metrics. Nontrivial con-
nected finite dimensional manifolds of negative Einstein metrics can
also occur when n ≥ 4, but, as we shall see below, these cannot contain
a hyperbolic member, since higher dimensional hyperbolic metrics are
always isolated as Einstein metrics.

When γ is hyperbolic, as is necessarily true for n = 2 and n = 3,
ḡ is actually flat and indeed the spacetime (M̄ , ḡ) can be regarded as
the quotient of the interior of the future light cone of a point in n + 1
dimensional Minkowski space by a subgroup of the proper orthochronous
Lorentz group which fixes that point. When γ is only Einstein, however,
and does not have constant curvature, the metric ḡ is not in general flat.

If we let g̃ and K̃ denote respectively the first and second fundamental
forms induced on a t = constant hypersurface of (M̄, ḡ), then

g̃ =
t2

n2
γ, K̃ = −t−1g̃.

Furthermore, the mean curvature τ = trgK = gijKij is given by τ =
−nt−1 so that the hypersurfaces of constant t are in fact constant mean
curvature (CMC) slices labelled by the value of their mean curvature,
which could be used as a time function. As τ ranges over (−∞, 0), the
spaces evolve from a zero volume “big bang” to an infinite volume limit
of cosmological expansion.

It is possible to prove directly, cf. [10], that any vacuum spacetime
(or, by a straightforward generalization, non-vacuum spacetime obeying
a suitable energy condition), which admits a compact, orientable CMC
Cauchy hypersurface, and a nontrivial, proper homothetic Killing field,
must in fact be a Lorentz cone spacetime of the type described above
(and so, in particular, devoid of matter). In a suitable time gauge, the
reduced Hamiltonian takes the value

Hreduced = |τ |nVol(M, g̃),

cf. [10, §4.1]. The Lorentz cone spacetimes can also be characterized
uniquely as critical points for the reduced Hamiltonian [10, theorem 3],
when the latter is re-expressed in terms of its natural canonical variables.

1.2. Rescaled Einstein equations. A closely related characterization
of these spacetimes is that they are the unique fixed points of what we
call the rescaled Einstein equations. Noting that the mean curvature
has dimensions (length)−1, adopting CMC slicing with mean curvature
τ = trgK as “time” and taking the spatial coordinates (xi) to be di-
mensionless, we find that the dimensions of the embedding variables of
a Cauchy surface in spacetime are given by

[g̃ij ] = (length)2, [K̃ij ] = (length)

[Ñ ] = (length)2, [X̃i] = (length).
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We define rescaled, dimensionless variables (g,Σ, N,X) by setting

gij = τ2g̃ij , Σij = τ(K̃ij −
τ

n
g̃ij),

N = τ2Ñ , Xi = τX̃i,

and rewrite the field equations in terms of these quantities. For a treat-
ment using the canonical ADM variables, see [10].

When τ is taken to serve as time, all of the conventional ADM
equations—constraints, evolution equations and gauge fixing equations
needed to enforce the CMC slicing—become non-autonomous since the
mean curvature τ appears in all of them. When these are expressed in
terms of the rescaled variables, however, all of this explicit τ -dependence
is scaled away except for derivatives with respect to τ , which take the di-
mensionless form τ∂τ . One can remove this final explicit τ -dependence
by simply defining a new, dimensionless time coordinate T by

T = − ln(τ/τ0)

and reexpressing τ∂τ as − ∂
∂T . Note that the natural range of T is R,

whereas τ only ranged over (−∞, 0). The transformed field equations
are given explicitly in equations (4.9, 4.10), while the elliptic equations
determining the rescaled lapse function and shift vector field are given in
(4.11). The harmonic spatial coordinate condition that we shall impose
later will not disturb the autonomous character of the field equations,
but one should note that the inclusions of a cosmological constant or
non-scale-invariant matter sources would disturb this character.

While autonomous field equations are not strictly essential for what
we wish to do, it is convenient to begin with the simplest cases and to
deal with generalizations later.

The rescaled variables for the Lorentz cone spacetimes defined above
are given by

g = γ, Σ = 0,

N = n, X = 0.

The time independence of these quantities shows directly that they are
indeed fixed points of the rescaled equations. By [10, theorem 2], they
are the only fixed points of this system and, as we have mentioned, are
the only solutions admitting a nontrivial proper and globally defined
homothetic Killing field (namely Z = ∂T ).

1.3. Linearized analysis. In [10, §3], the linearized equations for per-
turbations about an arbitrary fixed point were studied. The transverse-
traceless (TT) perturbations can be naturally decomposed in terms of
the TT eigentensors of the operator L defined by

Lhab = −∆hab − 2Racbdh
cd
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where ∆ = γcd∇c∇d, with ∇ the covariant derivative defined with re-
spect to γ, and Rabcd the Riemann tensor of γ. The above operator
is closely related to the one defined in [10, equation (3.12)], and also
to the Lichnerowicz Laplacian ∆L, cf. equation (2.3). Note that the
compatibility of this operator with the TT character of the eigentensor
depends upon the fact that γ is Einstein; see section 2 for details.

The eigenvalues λ of L are all real, since L is self-adjoint with respect
to the natural L2 inner product. A separation of variables argument
may be used to analyze the linearized, rescaled, Einstein equations (cf.
section 6.3 below; see also [10]). The character of the corresponding

solution depends upon the value of λ as follows. If λ > (n−1)2

4n2 , then the
characteristic equation has a complex pair of roots with real part −(n−
1)/2, and hence there is a universal exponential rate of decay −(n−1)/2,

in the time T . If 0 < λ < (n−1)2

4n2 , the characteristic equation has a pair
of negative real roots. In this case we have an “anomalous” rate of

decay depending on λ. In the marginal case λ = (n−1)2

4n2 , the system
has a resonance. We avoid dealing directly with the marginal case by
considering a slightly decreased λ. If λ = 0, we would have a “neutral”
mode, which does not decay. Typically, this situation corresponds to the
existence of a nontrivial moduli space of Einstein metrics containing γ.

If λ < 0 were to occur, the characteristic equation would have a
root with positive real part and the corresponding solution would grow
exponentially rather than decay. It is an open question whether any
such “unstable” Einstein spaces exist. The above discussion motivates
calling γ stable if L has nonnegative spectrum. We shall review what is
known below; cf. section 2.

1.4. Stable Einstein spaces and moduli spaces. When n = 3,
an Einstein metric is necessarily hyperbolic (in the negative case of
interest here) and Mostow rigidity excludes the possibility of deforming
the hyperbolic (hence Einstein) structure. In this sense, n = 3 is the
most “rigid” dimension—a compact manifold either admits no negative
Einstein structure or precisely one.

For n > 3, Mostow rigidity still applies, but now the new possibil-
ity arises of having negative Einstein spaces that are not hyperbolic.
Many families of such (negative) Einstein spaces are known to exist and
whenever a chosen background metric γ belongs to a smooth (neces-
sarily finite dimensional modulo gauge degrees of freedom) such family,
the linearized equations will always admit a corresponding (finite dimen-
sional) space of neutral modes with λ = 0. These represent the tangent
space, at the given background, to the space of self-similar spacetimes.
Such smooth families of self-similar spacetimes, determined by the cor-
responding families of negative Einstein metrics, are expected to form
“center manifolds” for the dynamical system defined by the rescaled
Einstein equations, and we shall see below that this is in fact the case.
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If there are no obstructions to integrating an infinitesimal Einstein
deformation to a curve of Einstein structures, then the moduli space is
a manifold (cf. [5, §12.F]). We refer to such moduli spaces as integrable;
cf. Definition 2.3 below. In particular, there are examples of negative
Einstein spaces contained in an integrable moduli space, such that L
has nonnegative spectrum.

One such family is given by negative Kähler-Einstein metrics; cf.
section 2.5. Hyperbolic metrics in dimension n ≥ 3 are rigid, in the
sense that the moduli space of Einstein metrics is trivial, and further are
strictly stable, in the sense that the spectrum of L is positive (see section
2.4). If n = 2, however, one can show that zero is always in the spectrum
of L, since every TT tensor on a higher genus surface is a traceless
Codazzi tensor [4]. This corresponds precisely to the presence of a
full Teichmüller space of self-similar solutions to the Einstein equations
to which the tangent space at any one such solution corresponds to
the space of “neutral modes” defined by TT tensors. This possibility
arises precisely for n = 2 by virtue of the failure of Mostow rigidity for
hyperbolic structures to hold for surfaces.

1.5. Stability of Lorentz cone spacetimes. The main result of this
paper gives a nonlinear stability result for Lorentz cone metrics, which
generalizes the results of [3, 15] from the 3+1 dimensional to the n+ 1
dimensional case. The result requires that γ be stable in the sense
discussed in section 1.4 above, and that γ be either rigid, or contained in
an integrable moduli space of Einstein structures. For data sufficiently
close to the standard data for the Lorentz cone over γ, the rescaled
geometry tends in the expanding direction to a limit in the moduli
space of γ. It is this fact which motivates the title of the paper. For the
case of Ricci flow, stable Einstein spaces also play the role of attractors,
in a sense which is closely related to the one discussed above; see [8].

The idea that (stable) Einstein spaces are attractors for the Einstein
flow is motivated by the linearized analysis in [10] (see section 6.3 be-
low), as well as by the fact that the reduced Hamiltonian Hreduced has
positive semi-definite Hessian at the Lorentz cone data exactly when
γ is stable, together with the observation that Hreduced is monotone
decreasing to the future; cf. [10].

The main result in this paper is analogous to the results of [4, 14],
where it is shown that the rescaled geometry of the level sets of the mean
curvature time function converges to a point in Teichmüller space, with
the Einstein moduli space playing the same role as Teichmüller space.

The work in [3] relied on the analysis of the Einstein equations in CM-
CSH gauge, i.e. CMC time gauge with spatial harmonic coordinates.
In the present work, due to the presence of nontrivial moduli spaces
of Einstein background metrics, it is necessary to use a generalization
of the CMCSH gauge, which allows for a time-dependent background
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metric for the spatial harmonic coordinates. The time-dependent back-
ground metric is determined by a so-called shadow metric condition,
which requires that the difference between the rescaled metric g and
the background metric used to define the spatial harmonic gauge be
L2-orthogonal to the deformation space (or premoduli space, in the ter-
minology of [5]). The presence of a nontrivial moduli space makes nec-
essary some rather delicate considerations in order to prove the required
energy estimates.

1.6. Overview of this paper. Section 2 gives the necessary back-
ground material on negative Einstein spaces, and introduces the notion
of stability. In section 2.5 we collect some known examples of stable
negative Einstein spaces with integrable moduli space. In section 3 we
show that Cartesian products of stable spaces are stable, and that tak-
ing products of stable spaces with integrable moduli space yields new
spaces with the same property. This allows us to construct large families
of examples where our results apply.

Next, in section 4, we introduce the rescaled system of Einstein equa-
tions which will be studied, together with the shadow metric condition,
that is, the gauge condition generalizing the CMCSH condition of [2]
which we use in the case when the moduli space is nontrivial. Section
5 discusses the proof of local wellposedness for the rescaled Einstein
equations with shadow metric gauge, based on the work in [2].

The linearized, rescaled Einstein equations are introduced and ana-
lyzed in section 6. This section also contains an analysis of the damped
oscillator equation which arises from a separation of variables of these
same linearized equations. The behavior of the solutions of this equa-
tion was studied in [10]. However, for the present purposes, we need an
energy argument which yields the correct decay estimates. The energy
for the damped oscillator equation is analyzed in section 6.4. In section
7, this analysis is used as the basis for a definition of energies for the full
rescaled Einstein equations. The energies we use have a lot in common
with the energies used for the local existence proof in CMCSH gauge;
cf. [2]. Finally, section 8 gives the statement and proof of the main
results of the paper.

The appendix A provides the proof of Lemma 4.3.

1.7. Preliminaries and notation. Let M be a compact manifold of
dimension n ≥ 2 and let M denote the space of Riemannian metrics on
M . For g ∈ M, we denote by Riem, Ric, Scal, the Riemann and Ricci
tensor, and the scalar curvature, respectively. We shall often use index
notation, with lowercase Latin indices running over 1, . . . , n and Greek
indices running over 0, . . . , n. The index versions of Riem and Ric are
Rabcd and Rab = Rc

acb, respectively. The Christoffel symbols of g are
denoted by Γi

mn. We shall sometimes indicate that a curvature tensor
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or Christoffel symbol is defined with respect to a special metric, say γ,
by writing, e.g., R[γ]abcd, Γ[γ]

i
mn.

We shall often work in the context of Sobolev regular metrics. For
an integer s, let Hs denote the L2 Sobolev spaces on M , defined with
respect to some once-and-for-all given background metric. We use the
notation || · ||Hs for the Hs norm. For s > n/2 + 1, denote by Ms,
Es
α the spaces of metrics, and Einstein metrics with Einstein constant
α, of Sobolev class s. For an Einstein metric, we may without loss of
generality, by working in harmonic coordinates, assume that it is C∞ or
in fact real analytic; see [9]. For most standard situations, we leave it
to the reader to fill in the analytical details and drop the Sobolev index
from our notation.
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for hospitality and support during the work on this paper. Moncrief also
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0407732 and DMS-0707306 to the University of Miami. Moncrief was
supported in part by the NSF, with grants PHY-0354391 and PHY-
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2. Negative Einstein Spaces

In this section we shall review some material on negative Einstein
spaces which is needed in the rest of the paper. We emphasize the
notion of stability for Einstein spaces; cf. section 2.4. The book [5] is a
good general reference on Einstein metrics. In particular, [5, chapter 12]
contains a discussion of the moduli space of Einstein structures. In [5],
the space of Einstein geometries on a compact manifold M is studied
as the space of metrics of unit volume, modulo diffeomorphisms, which
solve the equation

Ric =
1

n

(∫

M
µgScal

)
g.

The scalar curvature is locally constant on the space of Einstein geome-
tries (cf. [5, corollary 12.52]). In this paper, we are interested only in
connected components of the space of Einstein geometries with fixed
negative Einstein constant. Thus, we fix α < 0 and consider without
loss of generality the space Eα of Einstein metrics on M with Einstein
constant α, i.e. the space of solutions to the Riemannian Einstein equa-
tion

Ric = αg.
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We assume that Eα is non-empty. The results from [5] specialize to the
situation considered here. As in [5], we shall work with the premoduli
space Eα ∩ S, where S is a slice for the diffeomorphism group. Given a
metric γ0 ∈ Eα, we refer to the connected component of the premoduli
space of γ0 as the deformation space of γ0. The moduli space of γ0 is
the quotient of the premoduli space by the isometry group of (M,γ0),
which in case α < 0 is finite; see [5, §12.C] for further discussion.

2.1. The linearized Einstein equation. Denote by A the operator

Ah = 2D(Ric− αg)h,

i.e. twice the Frechet derivative of g 7→ Ric − αg, in the direction h,
evaluated at γ ∈ Eα. Let L be given by

(2.1) Lh = −∆h− 2
◦
Rh

where ∆ = ∇a∇a and

(2.2)
◦
Rhab = Racbdh

cd.

Then

Ah = Lh− 2δ∗δh −∇d(trh)
where

δha = ∇bhab, δ∗ξab = −1

2
(∇aξb +∇bξa).

Symmetric two-tensors with vanishing trace and divergence, i.e. ele-
ments of ker δ∩ker tr, play an important role in analyzing the linearized
Einstein equation. Such tensors are called transverse and traceless or
TT tensors. The space

kerA ∩ ker δ ∩ ker tr

is the space of infinitesimal Einstein deformations in our setting; cf. [5,
theorem 12.30] for the analogous statement in their setting.

The operator L is a self-adjoint elliptic operator, and since by as-
sumptionM is compact, L has discrete spectrum and finite dimensional
kernel.

We remark that L is closely related to the Lichnerowicz Laplacian
∆L defined by

(2.3) ∆Lh = Lh+ 2Ric ◦ h
where for two symmetric tensors u, v,

(u ◦ v)ab =
1

2
(uacv

c
b + vacu

c
b).

Let ∆H = dδ + δd be the Hodge Laplacian, where δ is the adjoint of d.
For γ ∈ Eα the commutation formulas

δLu = (∆H − 2α)δu
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and
trLu = (−∆− 2α)tru

hold. The Hodge Laplacian acts on one-forms by

∆Hξ = (−∆+Ric)ξ.

In particular, ∆H has nonnegative spectrum. It follows from the com-
mutation formulas that L maps TT tensors to TT tensors. Further, if
α < 0, then kerL ⊂ ker δ ∩ ker tr, i.e. a subspace of the space of TT
tensors.

For a symmetric 2-tensor h, we have the decomposition

(2.4) h = fg + hTT + LY g,

valid at any metric g, where f is a function, hTT is a TT tensor with
respect to g, and Y is a vector field. The equation Ric = αg is covariant,
which implies that at γ ∈ Eα, A(LY γ) = 0, for any vector field Y . In
the rest of this subsection, we evaluate L and A at γ ∈ Eα. Since
AhTT = LhTT, a calculation shows

(2.5) Ah = LhTT + [(−∆− 2α)f ]γ + (2− n)∇df.
Taking the trace, we find that if α < 0, h ∈ kerA only if f = 0. This
shows

(2.6) kerA = kerL+ {LY γ , Y vector field on M}.
Let P‖ denote the L2-orthogonal projection in the space of symmetric 2-
tensors onto the finite dimensional kernel kerL, and similarly let P⊥ be
the L2-orthogonal projection in the space of symmetric 2-tensors onto
the L2-orthogonal complement of kerL in the space of TT tensors with
respect to γ.

Given a symmetric 2-tensor u, we will often use the notation uTT,
uTT ‖ and uTT⊥ for the TT part of u, in the sense of the decomposition
(2.4), and the projections P

‖u, P⊥u, respectively. In particular, a TT

tensor uTT can be decomposed as uTT = uTT ‖ + uTT⊥. If it is not
clear from the context, we will indicate the dependence on the metric

by, e.g., P
‖
γ . If kerL = {0}, then P

⊥ is the projection onto the space of
TT tensors with respect to γ.

2.2. Harmonic coordinates and the slice. For γ ∈ Eα, a slice Sγ

for the diffeomorphism group, called the harmonic slice through γ, can
be defined as follows. Let Sγ be the set of g ∈ M such that the identity
map i : (M,g) → (M,γ) is harmonic. This condition holds if and only
if the tension field V vanishes, where V is given by

(2.7) V i[g; γ] = gmn(Γ[g]imn − Γ[γ]imn).

For γ ∈ Eα for α < 0 and g sufficiently close to γ, we have that

gmnR[γ]imjnX
iXj ≤ −λ2|X|2γ
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for some λ > 0. In fact, it is sufficient for γ to have negative Ricci
curvature for this to hold. Therefore we have, following [2, §5] (see in
particular [2, (5.7)]) that the operator P defined by

(2.8) PX = DV.LXγ,

where the Frechet derivative of V is taken with respect to g, is an iso-
morphism at γ, and the same holds, by continuity, for the corresponding
operator defined at g, for g close to γ. Consider a symmetric 2-tensor
h decomposed as in (2.4), with respect to g. We have for g ∈ Sγ ,

(2.9) (DV.h)i = PY i + (1− n

2
)∇if − hTTmn(Γ[g]imn − Γ[γ]imn).

Based on this, it is not difficult to apply the implicit function theorem
to show that Sγ is a submanifold of M near γ. It follows from the same
analysis that Sγ defined in this way is a slice for the diffeomorphism
group; see also [5, §12.C] for discussion.

On the other hand, for g ∈ M, close to a negative Einstein metric
γ, there is a harmonic map φ : (M,g) → (M,γ), with φ ∈ D being the
unique solution to the harmonic map equation

∆φi + Γ[γ]imn∂kφ
m∂lφ

ngkl = 0

in a neighborhood of the identity map i. This is proved along the
lines of the above remarks, also using an implicit function theorem ar-
gument. Given φ, the pushforward (φ−1)∗g has the property that i :
(M, (φ−1)∗g) → (M,γ) is harmonic, and also that i : (M,g) → (M,φ∗γ)
is harmonic. Since γ ∈ Eα, this holds for φ∗γ too. Thus, if g is close in
M to γ ∈ Eα, we may, after applying a diffeomorphism, assume that in
fact g ∈ Sγ . If it is clear from the context which metric is used to define
the slice, we will simply denote the slice by S.
2.3. The deformation space. Fix γ0 ∈ Eα and for the rest of this
section, let S be the slice defined with respect to γ0.

Definition 2.1. Let γ0 ∈ Eα, and let V be the connected component
of γ0 in Eα. The space N = V ∩ S is called the deformation space of
γ0. If N = {γ0}, then γ0 is called rigid.

Remark 2.2. By [5, corollary 12.52], the moduli space of Einstein
structures is locally connected. In the terminology of [5, §12], the defor-
mation space is the connected component of the premoduli space, which
contains γ0.

By definition, N is the γ0 component in the space of solutions of

(2.10) Ric = αg, V = 0.

By (2.6), h solves the linearization of the equation Ric = αg at γ0 if and
only if

(2.11) h = hTT ‖ + LY γ0,
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with hTT ‖ ∈ kerL, where L is the operator defined by (2.1) at γ0. From
the discussion in section 2.2, we see that the space of solutions to the
linearization of the system (2.10) at γ0 is equivalent to kerL. By [5,
corollary 12.66], γ0 is rigid if kerL = 0.

Next we consider the linearization of the system (2.10) away from
γ0. Thus, let γ ∈ N be close to γ0. Again, the space of solutions of the
linearized Riemannian Einstein equations has the form (2.11). However,
for γ 6= γ0, the term

hTT ‖mn(Γ[γ]imn − Γ[γ0]
i
mn)

is nontrivial, and the space of solutions of the linearization of the system
(2.10) is of the form

(2.12) hTT ‖ + LY ‖γ,

where hTT ‖ ∈ kerL with L defined with respect to γ, and Y ‖ solves the
equation

(2.13) PY ‖ i − hTT ‖mn(Γ[γ]imn − Γ[γ0]
i
mn) = 0.

Here P is the operator given by (2.8), defined with respect to γ with
background metric γ0. Thus the space of h of the form (2.12) is the
formal tangent space of the deformation space N at γ.

Definition 2.3. If N is a manifold near γ, with tangent space given
by the formal tangent space, i.e.

TγN = {h : h = hTT ‖ + LY ‖γ},
with Y ‖ a solution to (2.13), then N is called integrable at γ.

See [5, §§12.E,F] for a discussion of integrability.

Remark 2.4. No example of a compact, negative Einstein space with
non-integrable deformation space is known.

From now on, we shall consider only integrable deformation spaces.

2.4. Stable negative Einstein spaces.

Definition 2.5. Let (M,γ) be a negative Einstein space and let λmin

be the lowest eigenvalue of L. We call (M,γ) stable if λmin ≥ 0, while
if λmin > 0, (M,γ) is called strictly stable.

Remark 2.6. No example of an unstable, compact, negative Einstein
space is known.

The following lemma shows that stability can be analyzed by looking
at the restriction of L to TT tensors.

Lemma 2.7. Suppose (M,γ) is an Einstein space with Einstein con-
stant α < 0. Then L has nonnegative spectrum as an operator on TT
tensors if and only if (M,γ) is stable. In particular, kerL ⊂ ker δ∩ker tr
so any element of kerL is a TT tensor.
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Proof. Let u be an eigentensor of L,
Lu = λu

and suppose λ ≤ 0. This implies

δLu = λδu

and hence
∆Hδu = (2α + λ)δu,

i.e. either 2α + λ < 0 is an eigenvalue of ∆H or δu = 0. Since ∆H is
nonnegative, we have δu = 0. Similarly, by applying the trace to both
sides, we find

−∆tru = (2α+ λ)tru,

which implies tru = 0. Hence u is a TT tensor. This shows that if L
has nonnegative spectrum when restricted to TT tensors, then L has
nonnegative spectrum. The converse is immediate, as is the statement
about kerL. q.e.d.

Proposition 2.8. 1) If γ0 ∈ Eα is strictly stable, then N = {γ0}.
γ0 is isolated in Eα ∩ S. In particular, there is a neighborhood U
of γ0 in the space of metrics such that U ∩ Eα ∩ S = {γ0}.

2) If γ0 ∈ Eα has integrable, nontrivial deformation space, then there
is a neighborhood U of γ0 in the space of metrics, such that U ∩
Eα ∩ S = U ∩N .

Proof. Point 1 is a special case of [5, corollary 12.66]. Point 2 is
the fact that the moduli space and in particular the premoduli space is
locally arcwise connected; cf. [5, corollary 12.52]. q.e.d.
2.5. Examples. We will now discuss some general conditions which
imply that a negative Einstein space is stable or strictly stable, and
give examples of such spaces as well as of stable negative Einstein spaces
with nontrivial deformation space.
2.5.1. Strictly stable spaces. A compact Einstein space of dimen-
sion ≥ 3, with negative sectional curvature, is strictly stable; cf. [5, §12
H]. Thus, in particular, compact rank one symmetric spaces of noncom-
pact type provide examples of strictly stable negative Einstein spaces.
These include, among others, compact hyperbolic and complex hyper-
bolic spaces. More generally, locally symmetric spaces of noncompact
type, which have no local 2-dimensional factor, are rigid [5, prop. 12.74]
and hence also strictly stable. We mention also the work of Fischer and
Moncrief [10], which gives a condition on the Weyl tensor that implies
strict stability.

Remark 2.9. In certain cases, a type of uniformization theorem is
valid. If M carries a hyperbolic metric, then by work of Besson et al.
[6], an Einstein metric on M is hyperbolic. Further, in dimension 4, if
M carries a complex hyperbolic metric, then any Einstein metric on M
is complex hyperbolic by work of LeBrun [12].
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2.5.2. Nontrivial deformation spaces. In the two dimensional case,
negative curvature does not imply strict stability. In particular, from
standard results in Teichmüller theory, in the case n = 2, a Riemann sur-
face M of genus(M) > 1 with the hyperbolic metric is a stable negative
Einstein space with nontrivial, integrable deformation space, namely
the Teichmüller space. In this case, dimkerL = 6genus(M) − 6, the
dimension of the Teichmüller space of M .

Higher dimensional examples of negative Einstein spaces with non-
trivial integrable deformation spaces are provided by Kähler-Einstein
metrics. By a result of Aubin and Yau, cf. [5, theorem 11.17], any com-
pact complex manifold with negative first Chern class admits a unique
Kähler-Einstein metric (γ, J), where J is the complex structure, with
Einstein constant α < 0. A result by Koiso [5, theorem 12.88] shows
that the deformation space of γ is integrable if all infinitesimal complex
deformations of J are integrable. Examples where these conditions hold
are provided by hypersurfaces of CPm, m ≥ 3, of degree d ≥ m+ 2; cf.
[5, example 12.89].

By a theorem of Dai et al. [8], compact Kähler-Einstein spaces are
stable. The proof uses the fact that Kähler-Einstein spaces carry parallel
spinc spinors. In the presence of a parallel spinor σ0, it is possible to
relate L to the square of the Dirac operator. Let Σ(M) denote the spinc

spinor bundle of M . Define the map Φ : S2T ∗M → Σ(M) ⊗ T ∗M ,
taking symmetric 2-tensors to spinor-valued 1-forms, by

Φ(h) = hijeiσ0 ⊗ ej

where (ei) is an ON frame on (M,γ) with dual frame (ei), and hij =
h(ei, ej) are the frame components of h. Here indices are raised using
γij , which is just δij . A calculation shows

D∗DΦ(h) = Φ(Lh− h ◦ F +Ric ◦ h)
where D is the Dirac operator, F is the curvature of the line bundle
appearing in the spinc structure, and (h ◦ F )ab = ha

cFcb, and (Ric ◦
h)ab = Ricach

c
b. The terms involving F,Ric give a positive semi-definite

contribution, and one can show

(Lh, h)L2 ≥ (DΦ(h),DΦ(h))L2 ≥ 0,

for all h; cf. [8, theorem 2.4].

3. Stability of Product Spaces

3.1. Tensors on product spaces. Let M , N be compact, connected,
stable negative Einstein manifolds with constant α < 0, of dimension
m,n and with metrics γM , γN respectively. Then M × N is an Ein-
stein space with constant α and metric γ = (πM )∗γM +(πN )∗γN , where
πM , πN denote the projections of M ×N to the factors M , N , respec-
tively. In the following we shall lift tensors on the factors M,N to
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tensors on the product M × N by pulling back along the projections
πM , πN , and in order to avoid notational complications, for the rest
of this section we drop explicit reference to the projections. Thus, for
example, we write the metric on M ×N simply as γM + γN .

For tensors on M , we use Greek indices µ, ν, γ, . . . , and for tensors
on N , we use uppercase Latin indices A,B,C, . . . . For tensors on the
productM×N , we use lowercase Latin indices a, b, c, . . . , or, when con-
venient, a mixture of the two other index types. For computations in-
volving tensor products, we will use both index and index-free notation.
We will write ∇M ,∇N for the M,N covariant derivatives, respectively,
and ∇ for the M ×N covariant derivative. Similarly, ∆M , ∆N denote
the Laplacians on M,N and ∆ the Laplacian on M ×N . The space of
symmetric covariant tensors of order k on M will be denoted by S

kM ,
and the space of covariant k-tensors on M will be denoted by T

kM ,
and similarly for the other spaces. The covariant derivatives on M , N
apply in an unambiguous way to lifted tensors. For example, let ξ, η be
tensors on M,N . Then with the above notation we have

(3.1) ∇(ξ ⊗ η) = (∇Mξ)⊗ η + ξ ⊗ (∇Nη)

as well as the obvious index version of this formula. Similarly, we have

∆(ξ ⊗ η) = (∆Mξ)⊗ η + ξ ⊗ (∆Nη);

in particular, there are no cross terms. Let ⊙ be the symmetric tensor
product, by definition

ξ ⊙ η = ξ ⊗ η + η ⊗ ξ.

Then
∇(ξ ⊙ η) = (∇Mξ)⊙ η + ξ ⊙ (∇Nη)

and analogously for ∆.
We will frequently consider symmetric tensors on M ×N of the form

t = uψ + ξ ⊙ η + φv

where u ∈ S
2(M), ξ ∈ T

1(M), φ ∈ C∞(M), ψ ∈ C∞(N), η ∈ T
1(N),

v ∈ S
2(N). Then

∇t = ∇Muψ + u⊗∇Nψ + (∇Mξ)⊙ η

+ ξ ⊙ (∇Nη) +∇Mφ⊗ v + φ∇Nv

and similarly for ∆. For a Cartesian productM ×N , the cross terms in
the Riemann tensor vanish in the sense that R(X,Y,Z,W ) = 0 when-
ever X,Y,Z,W contains a pair of vector fields which are tangent to

M , N respectively. It follows that the operators
◦
R defined in terms of

the Riemann tensor as in (2.2) act block diagonally on tensor products
formed of tensors on M and N . In particular, with ξ, η as above,

◦
R(ξ ⊙ η) = 0.
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Hence, we have

Lt = −u∆Nψ − ψ∆Mu−∆Mξ ⊙ η − ξ ⊙∆Nη

− v∆Mφ− φ∆Nv − 2ψ(
◦
RMu)− 2φ(

◦
RNv)

where
◦
RM ,

◦
RN are defined in terms of the Riemann tensors RM , RN of

M,N , respectively.

3.2. Spectral decomposition. Consider the compact, negative Ein-
stein spaces M , N as above. Since we are considering compact mani-
folds, the covariant Laplacian acting on functions and one-forms and L
acting on symmetric 2-tensors are self-adjoint, with discrete spectrum.
We will use the following notation for the spectral decompositions. On
M the eigenvalues for the operators −∆,−∆,L acting on tensors of or-

der k = 0, 1, 2 will be denoted by λ
(k)
i . The L2 normalized eigentensors

of order 0, 1, 2 will be denoted by φi, ξi, ui, respectively. Similarly, on

N , the eigenvalues will be denoted µ
(k)
i , k = 0, 1, 2, and the L2 normal-

ized eigentensors of order 0, 1, 2 will be denoted by ψi, ηi, vi. Then from
spectral theory, it follows that the {φi}, {ξi}, {ui} and {ψi}, {ηi}, {vi}
constitute L2 bases for tensors of order 0, 1, 2 onM and N , respectively.

Lemma 3.1. The tensor products uiψj, ξi⊙ηj , φivj form a complete
orthonormal system in S

2(M ×N).

Proof. It is clear that {uiψj}, {ξi ⊙ ηj}, and {φivj} are orthonormal
sets. Let f ∈ S

2(M × N). We can assume without loss of generality
that f is smooth. Let xµ and yA be coordinate systems on M,N so
that (xµ, yA) is a coordinate system on M × N . Then we can write
f = sµνdx

µ⊙dxν+tµAdxµ⊙dyA+uABdy
A⊙dyB , where the coefficients

are smooth functions of x, y. Now suppose f is L2 perpendicular to all
uiψj . This implies for all i, j,

∫

N

(∫

M
〈s(x, y), ui(x)〉µM (x)

)
ψjµN (y) = 0.

Since {ψj} is a basis for L2(N),
∫

M
〈s(x, y), ui(x)〉µM (x) = 0,

from which follows s = 0. We can deal with the other factors similarly.
q.e.d.

Lemma 3.2. Let M,N be stable Einstein spaces with Einstein con-
stant α < 0. Then M ×N is stable and

kerLM×N = kerLM + kerLN .
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Proof. We will drop the superscript on L and other operators when
it is clear from the context which space they act on. By Lemma 3.1,
any tensor t ∈ S

2(M ×N) can be expanded in the form

(3.2) t =
∑

i,j

aijuiψj +
∑

i,j

bijξi ⊙ ηj +
∑

i,j

cijφivj

with constants (aij , bij , cij). A calculation shows

Lt =
∑

i,j

aij(λ
(2)
i + µ

(0)
j )uiψj

+
∑

i,j

bij(λ
(1)
i + µ

(1)
j )ξi ⊙ ηj

+
∑

ij

cij(λ
(0)
i + µ

(2)
j )φivj.

Thus eigentensors of the operator L on M × N can be of order (2, 0),

(1, 1), and (0, 2), with eigenvalues λ
(2)
i +µ

(0)
j , λ

(1)
i +µ

(1)
j , and λ

(0)
i +µ

(2)
j ,

respectively. Now assume each factor M,N is stable, i.e. the operators
LM ,LN are nonnegative when acting on TT tensors. By Lemma 2.7,
this implies LM ,LN are nonnegative when acting on all tensors onM,N
respectively. Further, the operator −∆ acting on functions is nonnega-
tive, and since ∆H = −∆+Ric is nonnegative, it follows that −∆ acting
on 1-forms has spectrum bounded from below by −α > 0. Hence, the
operator L on M ×N is nonnegative.

It remains to identify the kernel of L. Suppose Lt = 0. Recall that L
acts on the off diagonal terms by −∆ which has spectrum bounded from
below by −α > 0. Hence t must have coefficients bij = 0. Examining
the action of L on t, we see that zero in the spectrum of L corresponds
to zero in the spectrum of LM ,LN as well as zero in the spectrum
of ∆M ,∆N . Since the zero eigenfunction of the scalar Laplacian is
constant, we see that t = u+ v, with u ∈ kerLM and v ∈ kerLN . This
completes the proof of the theorem. q.e.d.

The result of Lemma 3.2 clearly applies to an arbitrary number of
factors.

3.3. Deformation spaces on products. In the following we will con-
sider products with two factors. However, as in the case of Lemma 3.2,
the results in the rest of this section apply to products with an arbitrary
number of factors.

We assume the deformation spacesNM ,NN of the background spaces
(M,γM0 ), (N, γN0 ) are integrable and stable. We allow the case where
one or both of γM0 , γN0 are strictly stable so that the corresponding de-
formation space is trivial.
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Proposition 3.3. Let (M,γM0 ), (N, γN0 ) be stable Einstein spaces
with Einstein constant α. Assume that M,N have integrable deforma-
tion spaces. Then, the deformation space N of γ is locally diffeomorphic
to NM ×NN .

Proof. Clearly N contains the space NM × NN . Let S be the slice
for M × N defined with respect to the product metric γ0 = γM0 + γN0
and let SM , SN be the slices defined with respect to γM0 , γN0 . By
Lemma 2.7 and Lemma 3.2, we have Tγ0 [(VM × VN ) ∩ S] = kerL =
kerLM + kerLN = TγM

0
(VM ∩ SM ) + TγN

0
(VN ∩ SN ). Therefore, the

tangent space of the deformation space at γ0 is equal to the formal
tangent space. It follows from [5, theorem 13.49, p. 351]1 that the
deformation space is integrable near γ0. q.e.d.

The following is an immediate corollary to Propositions 3.3 and 2.8.

Corollary 3.4. There is a neighborhood U of γ0 in M(M ×N) such
that U ∩ Eα(M ×N) ∩ S = U ∩ (NM ×NN ).

3.4. Examples of stable product spaces. The results above show
that Cartesian products of spaces which are strictly stable, or stable and
integrable, yield spaces which are stable and integrable. If all factors are
strictly stable, then the product is strictly stable. Thus the examples
discussed in section 2.5 allow us to construct large families of stable
integrable negative Einstein spaces with nontrivial deformation spaces,
as well as large families of strictly stable negative Einstein spaces.

Among the cases of interest are products of hyperbolic manifolds
with hyperbolic surfaces, as well as products of hyperbolic manifolds
with negative Kähler-Einstein spaces.

4. The Einstein Evolution Equations

Let γ ∈ E−(n−1)/n2 . Then the Lorentz cone over (M,γ), i.e. the
manifold (0,∞) ×M with metric

(4.1) −dt⊗ dt+
t2

n2
γ,

is a Ricci flat, maximal, globally hyperbolic spacetime, which admits a
timelike homothety t∂t.

In this section we write the Einstein evolution equations in terms
of scale invariant variables. As we shall see, the resulting system is
autonomous, and data corresponding to the Lorentz cone metric (4.1)
is an equilibrium point for this system.

1Due to a typographical error in [5], theorem 12.49 appears as theorem 13.49.
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4.1. Scale invariant variables. Let (g̃, K̃, Ñ , X̃) be constant mean
curvature Cauchy data for the Einstein equations. We use the same
conventions as in [3]. Let τ = trg̃K̃ denote the mean curvature. We

assume τ < 0. The rescaled variables corresponding to (g̃, K̃, Ñ , X̃) are
(gij ,Σij , N,X

i), defined by

gij = τ2g̃ij, N = τ2Ñ , Xi = τX̃i,

gij =
1

τ2
g̃ij , Σij = τ(K̃ij −

τ

n
g̃ij).

Since we are assuming constant mean curvature, Σ and τ contain the
same information as K̃. Thus, it is natural to use (g,Σ, N,X) as the
set of scale invariant Cauchy data. In particular, for the line element
(4.1), we have

g̃(t) = (t2/n2)γ, K̃(t) = −t−1g̃, τ(t) = −nt−1

and hence the rescaled data are

(g,Σ) ≡ (γ, 0).

Note that by construction Σ has vanishing trace. Thus, we view (g,Σ)
as an element of T trM, where T trM denotes the subbundle of TM with
fiber at g consisting of symmetric tensors h such that trgh = 0.

Introduce the scale invariant time T by

T = − ln(τ/τ0)

where τ0 is some negative constant. Then, ∂T = −τ∂τ . As we shall see
below, the Einstein evolution equations in terms of the scale invariant
variables, and the scale invariant time T , form an autonomous system.

4.2. Constraint set and slice. In this section, we review some results
from [3, §2.3] concerning the geometry of the constraint set and the slice
for the diffeomorphism group determined by the spatial harmonic gauge
condition. In [3, §2.3], M was assumed to have constant negative curva-
ture. However, the results which we shall need generalize immediately
to the case being considered here of negative Einstein spaces. In this
paper we use the scale invariant metric and the shear tensor (g,Σ) as
fundamental variables, so we shall use these in the discussion of the
constraint set and slice.

Let C be the space of (g,Σ) ∈ T trM which are solutions to the vacuum
constraint equations. Recalling that we are considering the constant
mean curvature case, the constraint equations written in terms of the
rescaled variables (g,Σ) are of the form

0 = R+
n− 1

n
− |Σ|2,

0 = ∇iΣij ,
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where |Σ|2 = ΣijΣ
ij. Fix a background metric γ0 ∈ Eα, let N be the

deformation space with respect to γ0, and let γ ∈ N be close to γ0. By
the discussion in section 2.2, there is a harmonic slice Sγ ⊂ M defined
with respect to γ. Corresponding to Sγ , we have the slice SC ,γ in the
constraint set,2 consisting of solutions (g,Σ) to the constraint equations
such that g ∈ Sγ . By [3, lemma 2.3], which generalizes immediately
to the present situation, SC ,γ is a smooth submanifold of T trM with
tangent space at (γ, 0) given by the affine subspace

T(γ,0)SC ,γ = (γ, 0)

+ {(uTT, vTT), where uTT, vTT are TT-tensors w.r.t. γ}
of T tr

γ M. Given γ, we have the decomposition

(4.2) t = tTT + [φγ +LXγ]

for any symmetric 2-tensor t, where tTT is a TT tensor on M with
respect to γ, and φ, X are a function and a vector field on M , respec-
tively. It is important to note that the terms tTT and φγ + LXγ are
L2-orthogonal. We can represent SC ,γ as a graph over its tangent space.
In particular, we may write (g,Σ) ∈ SC ,γ in the form

(4.3) g = γ + uTT + z, Σ = vTT + w

with z, w L2-orthogonal to the space of TT tensors defined with respect
to γ. Then (z, w) are second order in (uTT, vTT), i.e. an estimate of the
form

||z||Hs + ||w||Hs−1 ≤ C(||uTT||2Hs + ||vTT||2Hs−1)

holds.

4.3. Gauge condition and the shadow metric. We introduce the
following modification of the CMCSH gauge of [2]. Let N be the defor-
mation space of γ0 and assume that N is integrable.

Introducing a system of local coordinates (qα), α = 1, . . . ,m = dimN
on N , we may write a general element of N as γij = γij(q

α). Then

∂γij
∂qα

= h
(α)
ij

gives a basis for TγN . From equation (2.12), we have that each h
(α)
ij

admits a decomposition

(4.4) h
(α)
ij = h

(α) TT ‖
ij + LY (α) ‖γij

with h
(α) TT ‖
ij ∈ kerLγ , where Lγ is defined by (2.1) in terms of γ.

In general, the term LY (α) ‖γij , where Y
(α) ‖ is determined in terms of

h(α) TT ‖ by equation (2.13), is non-vanishing.

2In [3], SC was denoted by Σ.
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For g ∈ M, γ ∈ N , we say that g − γ is L2-perpendicular to N at
γ if the conditions

0 = (g − γ, h(α))L2;γ , α = 1, . . . ,m

or explicitly,

(4.5) 0 =

∫

M
(gij − γij)

∂γij

∂qα
µγ , α = 1, . . . ,m

hold. Here
∂γij

∂qα
= −

(
∂γkl
∂qα

)
γkiγlj.

Remark 4.1. Equation (4.5) can be viewed as defining a smooth
projection map P mapping a neighborhood of γ0 in M to N , given by
P[g] = γ. See section 4.5 for the relevant calculation. We refer to the
map P as the shadow map. In view of the fact (cf. [5, chapter 5F])
that Einstein metrics are smooth (in fact, real analytic) in harmonic
coordinates, it follows that P is smoothing in the sense that, for g in
the neighborhood of γ0 where P is defined and regular, we have that
DP

∣∣
g
: Hs → Hs′ is continuous for any s, s′.

Definition 4.2. Fix γ0 ∈ E−(n−1)/n2 , and let N be the deformation
space defined with respect to γ0; see section 2.3. Assume that N is
integrable. We say that for γ ∈ N , and Cauchy data (g,Σ) ∈ C, the
triple (γ, g,Σ) satisfies the shadow metric condition if

1) g satisfies the CMCSH gauge condition with respect to γ, i.e.

(4.6) V i = 0

where V is the tension field defined with respect to g and γ (cf.
equation (2.7)),

2) g − γ is L2-perpendicular to the tangent space TγN of N at γ, in
the sense of (4.5).

If this holds, we call γ the shadow metric of g.

The following lemma, proved in appendix A, shows that the shadow
metric condition can always be satisfied locally.

Lemma 4.3. Let N be the deformation space defined with respect to
γ0. Assume N is integrable. Let s > n/2 + 1. There is a δ > 0 such
that for g ∈ M satisfying ||g − γ0||Hs < δ, there exists a unique γ in N
satisfying ||g − γ||Hs < 2δ, such that γ is the shadow metric of g.

Let P be the shadow map introduced in remark 4.1. For g ∈ M close
to γ0, such that P is well defined near g, define the operator Qg,γ acting
on tensors z by

(4.7) (Qg,γz)
i = gmnDΓi

mn

∣∣
γ
.DP

∣∣
g
.z
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The following lemma will be needed in the proof of local existence (see
section 5), as well as in the proof of Lemma 6.1.

Lemma 4.4. Let s > n/2 + 1. Let γ0 ∈ Eα be given; assume γ0
has stable, integrable deformation space N ; and for g ∈ M with shadow
metric γ ∈ N , let Qg,γ be defined by (4.7). There is a δ > 0 such that
if ||g − γ0||Hs < δ, the inequality

||Qg,γz||Hs ≤ C(||g − γ||Hs + ||γ − γ0||Hs)||z||Hs−1

holds.

Proof. We have

(Qg,γz)
i = (gmn − γmn)DΓi

mn

∣∣
γ
.DP

∣∣
g
.z

+ γmnDΓi
mn

∣∣
γ
.DP

∣∣
g
.z.

By the discussion in section 2.3, DP
∣∣
g
.z is of the form

hTT‖ + LY ‖γ.

A calculation shows that

(4.8) γmnDΓi
mn

∣∣
γ
.uTT = 0

for any tensor uTT which is TT with respect to γ. In particular,
γmnDΓi

mn

∣∣
γ
.hTT ‖ = 0. Further, Y ‖ solves (2.13). As discussed in sec-

tion 2.2, the operator P occurring in that equation is an isomorphism;
in fact, as an operator Hs′ → Hs′−2 for any s′.

This allows us to estimate

||γmnDΓi
mn

∣∣
γ
.DP

∣∣
g
.z||Hs ≤ C||γ − γ0||Hs ||z||Hs−1 .

Here we have made use of the fact that the shadow map P, in view of
its definition, is smoothing; see remark 4.1. Together with the above
discussion, this completes the proof. q.e.d.

4.4. The scale invariant evolution equations. Define

δij =
1

2
(∇iVj +∇jVi),

where V is the tension field defined with respect to g, γ. Following the
work in [2], we will consider the modified Einstein evolution equations
obtained by replacing Rij by the quasilinear elliptic system

Rij − δij .

We remark that both Rij and δij are scale invariant quantities. The
modified Einstein evolution equations that we will consider are, in terms
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of the scale invariant variables,

gij,T = 2NΣij + 2(
N

n
− 1)gij − LXgij ,(4.9a)

Σij,T = −(n− 1)Σij −N(Rij − δij +
n− 1

n2
gij)

+∇i∇jN + 2NΣimΣm
j

− 1

n
(
N

n
− 1)gij − (n− 2)(

N

n
− 1)Σij

− LXΣij(4.9b)

and the constraint equations take the form

0 = R+
n− 1

n
− |Σ|2,(4.10a)

0 = ∇iΣij .(4.10b)

The defining equations for the rescaled lapse and shift are

−∆N + (|Σ|2 + 1

n
)N = 1,

(4.11a)

∆Xi +Ri
jX

j − LXV
i = (−2NΣmn + 2∇mXn)(Γ[g]imn − Γ[γ]imn)

− 2(
N

n
− 1)V i

+ 2(∇mN)Σi
m + (2− n)∇i(

N

n
− 1)

− gmn∂TΓ[γ]
i
mn,(4.11b)

where the last term will be present only in case γ0 has a nontrivial
deformation space N .

We remark that the evolution equations (4.9) do not automatically
leave invariant the conditions trΣ = 0 and V = 0, but these hold as a
consequence of imposing the defining equations (4.11); cf. the discussion
in section 5.

4.5. Evolution of the shadow metric. Recall from section 4.3 that
the shadow metric is defined by the relation

(4.12) 0 =

∫

M
(gij − γij)

∂γij

∂qα
µγ , α = 1, . . . ,m.

We now time differentiate (4.12). Note that we can write

∂T γij =
∂γij
∂qβ

q̇β.
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Thus time differentiating (4.12) gives

0 =

∫

M
(gij − γij)

∂

∂qβ

(
∂γij

∂qα

)
q̇βµγ

+

∫

M
(gij − γij)

∂γij

∂qα
1

2
γmn ∂γmn

∂qβ
q̇βµγ

+

∫

M
∂T gij

∂γij

∂qα
µγ

+

∫

M
q̇β
(
∂γij
∂qβ

γimγjn
∂γmn

∂qα

)
µγ .

The matrix

Mαβ :=

∫

M

∂γij
∂qβ

γimγjn
γmn

∂qα
µγ

is invertible since the
∂γij
∂qα form a basis for the tangent space TγN .

Thus for (gij − γij) sufficiently small,

M̃αβ :=

∫

M

(
∂γij
∂qβ

γimγjn
∂γmn

∂qα

)
µγ

+

∫

M
(gij − γij)

∂

∂qβ

(
∂γij

∂qα

)
µγ

+

∫

M
(gij − γij)

∂γij

∂qα
1

2
γmn∂γmn

∂qβ
µγ

will also be invertible and positive definite so we can solve for q̇β in

terms of the inverse matrix applied to
∫
M ∂T gij

∂γij

∂qα dµγ . The defining

equation for ∂Tγij can now be expressed in terms of an equation for q̇β

of the form

0 = M̃αβ q̇
β +

∫

M
∂T gij

∂γij

∂qα
µγ .

In applying this setup, ∂T gij will be given by (4.9a).

Remark 4.5. In terms of the shadow map P : M → N (cf. remark
4.1), we have

∂T γ = DP
∣∣
g
, ∂T g.

5. Local Existence

We shall prove local wellposedness for the system (4.9, 4.10, 4.11)
for the rescaled variables (g,Σ, N,X) by making use of the results of
[2] applied to the corresponding system of modified Einstein evolution
equations, constraint equations, and defining equations for the original
variables (g̃, K̃, Ñ , X̃). Note that in [2] these fields are denoted without
the tilde.
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If the deformation space is trivial, i.e. if γ0 is strictly stable, we
can apply the same argument as in the standard case considered in [2].
We will now consider the modifications necessary for the case when the
deformation space is nontrivial. Let t be the time variable in the system
considered in [2]. For the solution to this system, it will be the case that
t is the CMC time, t = trK. However, it should be noted that in the
course of the iteration procedure, and the proof of wellposedness, as
presented in [2], this cannot be assumed. We remark that it follows

from our assumption on initial data, and continuity, that g̃ijK̃ij/t is
close to 1 for times t close to the initial time, so that in the construction
of solutions we may assume that we are in an almost CMC situation.

For the application in this paper, we are interested only in the small
data situation where t2g̃ is close to a background metric γ0, and tK̃ij −
(t2/n)g̃ij is small.

Define τ to be the average mean curvature,

τ = (

∫

M
g̃ijK̃ijµg̃)/

∫

M
µg̃.

The system of equations which will be considered is the same as in
[2], with the difference that the shadow metric γ is time dependent,
γ = γ(t), and that the spatially harmonic gauge is now defined with
respect to the time dependent shadow metric γ. We define the shadow
metric using the shadow map P (see remark 4.1), by letting the shadow
metric γ(t) be given by

γ(t) = P[τ 2(t)g̃(t)].

As mentioned above, we are considering a small data situation, and in
particular, τ2g̃ is in a neighborhood of the shadow manifold N where
the map P is well defined and smooth.

Using the notation of [2], the system of evolution equations can be
written in the form

L[g̃, Ñ , X̃ ]U = F
with U = (u, v). Let ∇[γ] be the covariant derivative defined with
respect to the metric γ. In order to prove local wellposedness for the
resulting system, we use a wave-equation type energy analogous to the
one used in [2], i.e. an energy of the form

E =

∫

M
(|u|2 + |∇[γ]u|2g̃ + |v|2)µg̃

where for a 2-tensor u, |u| is defined in terms of γ by |u|2 = uijuklγ
ikγjl,

and |∇[γ]u|g̃ is defined by |∇[γ]u|2g̃ = ∇[γ]iujk∇[γ]lumng̃
ilγjmγkn.

Given g̃, X̃, let ρ be defined by

(5.1) ρ = −1

2
(∂tg̃ − LX̃ g̃).
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Taking into account the time dependence of γ, the energy estimate [2,
lemma 2.4] is replaced by

∂tE ≤ C(E1/2||F||H1×L2 + (1 + ||ρ||L∞ + ||∂tγ||L∞)E)

Using this estimate, it is straightforward to prove the higher order en-
ergy estimates needed for local wellposedness, following the same argu-
ment as in [2]. Once the energy estimate is obtained, a solution to the
field equations is constructed using an iteration as in [2, §2.2].

The argument from [2] carries over nearly without modification. How-
ever, the fact that we now allow for a moving shadow metric γ gives
rise to an extra term in the defining equation for the shift vector, of the
form

g̃mn∂tΓ[γ]
i
mn.

Since ∂tγ = DP
∣∣
τ2g̃
∂t(τ

2g̃), and ∂tg̃ = −2ÑK̃ + LX̃ g̃, this adds a non-

local operator acting on X̃ to the defining equation for the shift vector.
However, in view of the estimate given in Lemma 4.4, the effect of

this term is a small perturbation for the small data situation we are
considering here, and hence the modified shift equation satisfies the
same estimates as the one which was considered in [2]. In order to
analyze the modified shift operator, it suffices to consider the expression

g̃mnDΓi
mn

∣∣
γ
.DP

∣∣
τ2g̃

(LτX̃τ
2g̃).

Here and below we have made use of the average mean curvature to
introduce in appropriate places scale invariant fields along the lines of
section 4.1. We shall apply Lemma 4.4 to estimate

Qi
(τ2g̃,γ).(LτX̃τ

2g̃) = τ−2g̃mnDΓi
mn

∣∣
γ
.DP

∣∣
τ2g̃

(LτX̃τ
2g̃).

We have, in the small data situation we are considering,

||Q(τ2g̃,γ).LτX̃τ
2g̃||Hs ≤ C(||τ2g̃ − γ||Hs + ||γ − γ0||Hs)||LτX̃τ

2g̃||Hs−1

≤ C(||τ2g̃ − γ||Hs + ||γ − γ0||Hs)||τX̃ ||Hs .(5.2)

Note we are considering only the case where t < t0 < 0 for some t0.
Consequently, due to the small data assumption, we may assume with-
out loss of generality that 2τ ∗ < τ < τ∗ < 0 for some τ∗. In view
of the estimate (5.2), the extra term in the shift equation due to the
time dependence of γ can be considered as a small perturbation which
does not affect the existence and uniqueness results for this equation
proved in [2]. In particular, the estimates for X̃ needed for the iteration
argument in [2] are valid also for the modified system.

With this remark, the rest of the argument goes through unchanged.
This proves local wellposedness in Hs, s > n/2 + 1. In particular (see

[2, theorem 3.1]), for initial data (g̃0, K̃0) ∈ Hs ×Hs−1 at t0 satisfying
the small data conditions as above, we have a solution curve

t 7→ (g̃, K̃, X̃, Ñ) ∈ Hs ×Hs−1 ×Hs+1 ×Hs+1,
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defined on an open time interval containing t0.
It remains to consider the propagation of gauges and constraints.

Introduce, as in [2], the gauge and constraint quantities

Ã = trg̃K̃ − t,(5.3a)

Ṽ k = g̃ij(Γ[g̃]kij − Γ[γ]kij) ,(5.3b)

F̃ = R[g̃] + (trg̃K̃)2 − |K̃|2g̃ −∇[g̃]iṼ
i,(5.3c)

D̃i = ∇[g̃]itrg̃K̃ − 2∇[g̃]jK̃ji.(5.3d)

Here we raise and lower indices using g̃ij and g̃ij and use the nota-

tion trg̃K̃ = g̃mnK̃mn and |K̃|2g̃ = K̃mnK̃
mn. We consider the energy

expression Ẽ defined by

Ẽ =
1

2

∫

M
(|Ã|2 + |∇[g̃]Ã|2g̃ + |F̃ |2)µg̃ +

1

2

∫

M
(|Ṽ |2g̃ + |∇[g̃]Ṽ |2g̃ + |D̃|2g̃)µg̃.

Recall that the defining equations for Ñ and X̃ are derived by time
differentiating the gauge conditions using the evolution equations. In
particular, the shift equation may be chosen such that the expression for
∂tṼ is the same as in the rigid case. One sees from considering the gauge
and constraint quantities that the only potential difference from the case
when the deformation space is trivial is via the evolution equation for
Ṽ . Thus, with the aforementioned choice, the evolution equations for
the gauge and constraint quantities are identical, in the case when the
deformation space is nontrivial, to the evolution equations valid in the
case when the background metric γ0 is rigid. Therefore, we are able to
conclude by the same argument as in [2] that if the constraint and gauge
conditions are satisfied initially, they are also satisfied throughout the
course of the evolution.

The system discussed here is the modified Einstein evolution equa-
tions without rescaling. We now return to the situation considered in
the rest of the paper and state the results we have proved for the rescaled
variables (g,Σ, N,X) introduced in section 4. It follows from the above
discussion that the system of equations for the rescaled variables (4.9,
4.10, 4.11) is also well posed in the shadow metric gauge. As shown in
[2], the result that we have proved can be formulated as a continuation
principle, which will be used for the global existence theorem.

In formulating the continuation principle, we will deal with rescaled
data. Fix a background metric γ0 ∈ N , and for δ > 0, s > n/2 + 1,
let Bs,δ(γ0, 0) be the ball of radius δ in Cs, centered on (γ0, 0). Here
Cs denotes the space of (g,Σ) ∈ C such that (g,Σ) ∈ Hs ×Hs−1. The
following lemma follows immediately from Lemma 4.3 and the construc-
tion of the shadow map P.

Lemma 5.1. Assume N is integrable near γ0. Then there is a δ > 0
such that
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1) for (g,Σ) ∈ Bs,δ(γ0, 0), there is a unique γ ∈ N such that the triple
(γ, g,Σ) satisfies the shadow metric condition,

2) there is a constant C such that the Frechet derivative DP satisfies

||DP||Op,s,∞ ≤ C

in Bs,δ(γ0, 0). Here the left hand side is the operator norm of the
Frechet derivative from Hs to L∞.

Based on the above discussion of the proof of local wellposedness and
the continuation principle [2, theorem 5.1], we can state the following
continuation principle which is appropriate for the situation considered
in this paper. Note that in the small data situation considered here, the
assumption of negative sectional curvature for the target metric made
in [2] is not needed. In particular, if γ is negative Einstein and g is
close to γ, then the operator Xi 7→ gmnR[γ]imjnX

j is strictly negative,
in which case the proof of [2, lemma 5.2] goes through unchanged.

Theorem 5.2. Fix s > n/2+1. Let γ0 ∈ N be given and assume N
is integrable near γ0. Then there is a δ0 > 0 such that the conclusion
of Lemma 5.1 holds, and such that the following continuation principle
holds for the system (4.9, 4.10, 4.11):

Let (g0,Σ0) be rescaled data given at an initial rescaled time T0, such
that the triple (γ0, g0,Σ0) satisfies the shadow metric condition. Assume
that

1) (g0,Σ0) ∈ Bs,δ0(γ0, 0),
2) [T0, T+) is the maximal existence interval in Hs for the system

(4.9, 4.10, 4.11) with initial data (γ0, g0,Σ0).

Then, either

1) T+ = ∞ or
2) the solution curve T 7→ (gij(T ),Σij(T )) leaves Bs,δ0(γ0, 0) at some

finite time.

6. Definition of Energies

In this section, assume that a background γ0 is given, with integrable
deformation space N , and let δ0 > 0 be a sufficiently small constant
such that for (g,Σ) ∈ Bs,δ0(γ0, 0), the conclusion of Theorem 5.2 holds.
For the estimates proved below in this section, we suppose that δ0 is
decreased as necessary.

6.1. Small quantities. The data corresponding to the Lorentz cone
metric (4.1) is

(g,Σ, N,X) = (γ, 0, n, 0).

Thus,

g − γ,Σ,
N

n
− 1,X
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should be considered as small quantities in the small data situation we
are considering.

In this section, we shall consider a solution to the rescaled Einstein
equations presented above, satisfying the CMCSH gauge conditions
(4.6) with respect to a curve of background metrics γ defined by the
shadow metric condition. In case γ0 is strictly stable, γ ≡ γ0 and hence
∂Tγ = 0. We will show that in this case the quantities N/n − 1,X
satisfy quadratic estimates in terms of g − γ,Σ.

If γ0 has a nontrivial integrable deformation space, then

(6.1) ∂T γ = hTT ‖ + LY ‖γ

is in general non-vanishing, and in particular Y ‖ 6= 0. In this case,
N/n − 1 satisfies a quadratic estimate as in the strictly stable case,

while X,Y ‖ separately cannot be expected to satisfy such an estimate.
However, as we shall prove, the sum X + Y ‖ does. This is precisely
what is needed for the energy estimates to go through.

Lemma 6.1. Let s > n/2 + 1. For (g,Σ) ∈ Bs,δ0(γ0, 0), there is a
constant C > 0 such that the inequalities

(6.2) ||N
n

− 1||Hs+1 ≤ C||Σ||2Hs−1 ,

(6.3) ||X||Hs+1 ≤ C(||Σ||Hs−1 + ||g − γ||Hs)

and

(6.4) ||X + Y ‖||Hs+1 ≤ C(||Σ||2Hs−1 + ||g − γ||2Hs)

hold.

Proof. Recall that the scale invariant lapse and shift N,Xi solve the
defining equations (4.11). It follows from the lapse equation (4.11a) that

N̂ = N/n − 1 satisfies the equation

−∆N̂ + (|Σ|2 + 1

n
)N̂ = −|Σ|2.

From this, one finds that if the gauge conditions are satisfied, N̂ can be
estimated in terms of the square norm of Σ, which proves (6.2).

In case γ0 is rigid, then ∂Tγ = 0 and X can be estimated in terms
of square norms of g − γ and Σ; cf. [2, §3]. However, in case γ0 has
a nontrivial deformation space V, ∂Tγ will in general be nonzero. By
(4.9a) and (6.2), we have an estimate of the form

(6.5) ||∂T g||Hs−1 ≤ C(||Σ||Hs−1 + ||X||Hs).

As discussed in section 2, we may without loss of generality assume
that γ0, and all metrics in N are smooth. Hence, it follows from the
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definition of the shadow metric that ∂Tγ is smooth and that an estimate
of the form

||∂T γ||Hs′ ≤ C||∂T g||L2

holds for any s′ ≥ 0. Consider the last term in equation (4.11b). Fol-
lowing the proof of Lemma 4.4, it is straightforward in view of the above
discussion to show that an inequality of the form

(6.6) ||gmn∂TΓ[γ]
i
mn||Hs ≤
C(||g − γ||Hs + ||γ − γ0||Hs)(||Σ||Hs−1 + ||X||Hs)

holds.
We now recall some facts from [2]. Let Vg,γ be the tension field

defined with respect to the metrics g, γ, and denote by ∇[g],∆[g], R[g]
the covariant derivative, Laplacian, and curvature defined with respect
to g, and by ∇[γ],∆[γ], R[γ] the corresponding objects defined with
respect to γ.

Let ∆g,γ be the operator defined on symmetric 2-tensors by

(6.7) ∆g,γhij =
1

µg
∇[γ]m(gmnµg∇[γ]nhij)

(see [2, (1.8)]). Define the operator Pg,γ by

Pg,γX
i = ∆[g]Xi +R[g]ijX

j −LXV
i
g,γ − 2(∇[g]mXn)(Γ[g]imn − Γ[γ]imn).

The defining equation for X is given in terms of Pg,γ in equation (6.10)
below. Note that we are interested here in the case where V = 0, but
we include it in the above formula since it makes the calculations below
more transparent. Similarly, let Pγ,γ be the corresponding operator with
g replaced by γ

Pγ,γX
i = ∆[γ]Xi +R[γ]ijX

j −LXV
i
γ,γ − 2(∇[γ]mXn)(Γ[γ]imn − Γ[γ]imn)

where the last two terms vanish identically. By the results of [2, §5],
these operators take the form

Pg,γX
i = gmn∇[γ]m∇[γ]nX

i + gmnR[γ]imjnX
j(6.8)

Pγ,γX
i = γmn∇[γ]m∇[γ]nX

i + γmnR[γ]imjnX
j(6.9)

where the index on R[γ] is raised with γ. By the discussion in section
2.2, Pg,γ : Hs+1 → Hs−1 is an isomorphism, as is Pγ,γ . From this it is
straightforward to show that the inequality

||X||Hs+1 ≤ C(||Σ||Hs−1 + ||g − γ||Hs)

holds, i.e. we have proved (6.3). Here we have made use of (6.6) and
absorbed terms which can be estimated by

(||g − γ||Hs + ||γ − γ0||Hs)||X||Hs+1

after a small change in the constant.
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It remains to prove (6.4). We write the defining equation for X as

Pg,γX
i = −2NΣmn(Γ[g]imn − Γ[γ]imn)− 2(

N

n
− 1)V i

+ 2(∇mN)Σi
m + (2− n)∇i(

N

n
− 1)

− gmn∂TΓ[γ]
i
mn(6.10)

where by the gauge conditions we may set V = 0. All terms in the right
hand side of (6.10) are quadratic in small quantities, except the last.

Recall that ∂Tγ is of the form (6.1). A calculation shows

γmnDΓ[γ]imn.h
TT ‖ = 0

due to the fact that hTT ‖ is transverse traceless with respect to γ.
Therefore, we have

γmn∂TΓ[γ]
i
mn = γmnDΓ[γ]imn.(LY ‖γ)

and a direct calculation gives

γmn∂TΓ[γ]
i
mn = ∆[γ]Y ‖ i +R[γ]ifY

‖ f .

Comparing with (6.9) we have

γmn∂TΓ[γ]
i
mn = Pγ,γY

‖ i

and hence we may write the defining equation for X in the form

Pγ,γ(X
i + Y ‖ i) = −2NΣmn(Γ[g]imn − Γ[γ]imn)

+ 2(∇mN)Σi
m + (2− n)∇i(

N

n
− 1)

− (gmn − γmn)(∇[γ]m∇[γ]nX
i +R[γ]imjnX

j)

− (gmn − γmn)∂TΓ[γ]
i
mn

where we have set V = 0. Estimating each term gives, after making use
of (6.2) and (6.3), as well as of the elementary inequality ab ≤ 1

2(a
2+b2),

the estimate (6.4). q.e.d.

6.2. Splitting the Einstein equations. In this section we will, in
preparation for proving the energy estimates needed for the proof of
our main result, rewrite the scale invariant Einstein along the lines of
[2]. We shall need the following estimate for the curvature term in
(4.9b). Let Lg,γ be the operator on symmetric 2-tensors defined by

(6.11) Lg,γh = −∆g,γh− 2
◦
Rγh.

Here
◦
Rγh is given by (2.2) with the curvature tensor R[γ]. In particular,

if g = γ, then Lg,γ coincides with the operator L defined by (2.1). The
following lemma follows from the form of Rij derived in the proof of [2,
theorem 3.1].



32 L. ANDERSSON & V. MONCRIEF

Lemma 6.2.

Rij − δij +
(n− 1)

n2
gij =

1

2
Lg,γ(g − γ)ij + Jij

where

||J ||Hs−1 ≤ C||g − γ||2Hs .

We will write the Einstein evolution equations in terms of variables
(u, v) defined by

u = g − γ, v = 2nΣ(6.12a)

and the normalized lapse

ω =
N

n
.(6.12b)

We use the identity

(6.13) LXuij = Xm∇[γ]muij + uim∇[γ]jX
m + umj∇[γ]iX

m

to expand the Lie derivative. With these definitions, we have

Lemma 6.3. The Einstein evolution equations (4.9) are equivalent
to the system

∂Tu = ωv − hTT ‖ −Xi∇[γ]iu+ Fu,(6.14a)

∂T v = −(n− 1)v − n2ωLg,γu−Xi∇[γ]iv + Fv(6.14b)

where

||Fu||Hs ≤ C(||u||2Hs + ||v||2Hs−1),(6.15a)

||Fv||Hs−1 ≤ C(||u||2Hs + ||v||2Hs−1).(6.15b)

Proof. A direct calculation gives

∂Tu = ωv − hTT ‖ + 2(ω − 1)g − LXg − LY ‖γ

= ωv − hTT ‖ − LXu

+ 2(ω − 1)g − LX+Y ‖γ.

We now expand the term LXu using (6.13) and put ∂Tu in the form
(6.14a). The term Fu defined in this manner can be shown, using the
inequalities of Lemma 6.1, to satisfy the estimate (6.15a).

For v, we proceed in a similar manner, making use of Lemma 6.2 to
rewrite the curvature term in equation (4.9b). q.e.d.
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6.3. The linearized Einstein equations. It is straightforward to lin-
earize the system defined by equations (4.6), (4.10)–(4.12), and (6.14)
about the exact solution (g,Σ, N,X) = (γ, 0, n, 0) where γ lies in the
deformation space N of a fixed Einstein metric γ0. Linearization of the
Hamiltonian constraint (4.10a) and the gauge condition (4.6), together
with the Einstein condition satisfied by γ, immediately imply that the
first variation δu of u = g− γ is transverse traceless with respect to the
background metric γ. Linearization of the momentum constraint (4.10b)
together with the condition gijΣij = 0 implies that δvij = 2nδΣij is also
transverse traceless with respect to γ. Variation of equations (4.11) leads

to δN = 0 and δXi+δY ‖ i = 0. From equation (2.13) one finds that δY ‖

is determined from δhTT ‖, which latter is also transverse traceless with
respect to γ and satisfies P

‖δhTT ‖ = δhTT ‖. Variation of the shadow
metric condition (4.12) shows further that P‖(δu) = 0, i.e., that the
transverse traceless tensor δu satisfies δu = δu⊥.

It is now straightforward to linearize the evolution equations (6.14)
and decompose them into ‖ and ⊥ projections. This leads immediately

to δv‖ = δhTT ‖ and to

∂T δu
⊥ = δv⊥,

∂T δv
‖ = −(n− 1)δv‖,

∂T δv
⊥ = −(n− 1)δv⊥ − n2Lδu⊥

where L is the operator given by (6.11) with g = γ. These combine to
give the second order equation

(6.16) δu⊥,TT + (n− 1)δu⊥,T + n2Lδu⊥ = 0

for δu⊥ and to give immediately that

δv‖ = δv‖
∣∣
T=T0

e−(n−1)(T−T0) .

It follows that δhTT ‖ = δv‖, and therefore also δY ‖, all decay at the
same universal exponential rate (at least in this linearized approxima-
tion). As we shall demonstrate below, cf. section 8, exponential decay
also holds for the solution to the full nonlinear problem.

While equation (6.16) may be solved explicitly by separation of vari-
ables (as shown in [10] and recalled below), we shall need to prove
energy estimates for this system in order to have a tool adequate for
generalization to the nonlinear problem. In any case, recalling that we
can write

δγ = δq(α)(h(α) TT ‖ + LY (α) ‖γ)
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where h(α) TT ‖ and Y (α) ‖ are background quantities and δq(α) = δq(α)(T )
are functions of T only, we can decompose δu = δg − δγ into its con-
stituents and show that

δq(α)(T ) = −
(
∂T (δq

(α))
∣∣
T=T0

) 1

n− 1
e−(n−1)(T−T0) + δq(α)(∞)

where δq(α)(∞) is a constant of integration that yields the asymptotic
value of δγ. The perturbed metric δg is thus given by δg = δu⊥ + δγ,
with δu⊥ and δγ determined as above.

In order to understand how to prove energy estimates for the sys-
tem (6.16), we perform a separation of variables. Let λ be a nonzero
eigenvalue L and let X be an eigentensor corresponding to λ. Equation
(6.16) gives the model system

(6.17) Ẍ + (n − 1)Ẋ + n2λX = 0,

which we recognize as a damped oscillator equation. This has charac-
teristic roots

−(n− 1)±
√

(n− 1)2 − 4n2λ

2
.

If λ > (n−1)2

4n2 , then the characteristic equation has a complex pair of
roots with real part −(n − 1)/2, and hence there is a universal expo-

nential rate of decay −(n − 1)/2. If 0 < λ < (n−1)2

4n2 the characteristic
equation has a pair of negative real roots. In this case we have an

“anomalous” rate of decay depending on λ. If λ = (n−1)2

4n2 we have a
critically damped oscillator. We avoid dealing directly with this case,
by decreasing λ slightly.

6.4. Energies for the damped oscillator. The equation (6.17) is
an ODE with constant coefficients and can therefore be analyzed by
elementary means. However, since the analysis of this system plays a
central role in this paper, we present a complete derivation of an energy
estimate, which will be used later on to prove that energy for the rescaled
Einstein equations has the decay property needed for the main result of
this paper.

In this section we consider the situation that λ ≥ λ0 for some λ0 > 0,

λ0 6= (n−1)2

4n2 . Let −α+ denote the real part of

−(n− 1) +
√

(n− 1)2 − 4n2λ0
2

,

i.e. α+ = α+(n, λ0) is given by

α+ =

{
n−1
2 , λ0 >

(n−1)2

4n2

(n−1)−
√

(n−1)2−4n2λ0

2 , 0 < λ0 <
(n−1)2

4n2 .
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Define the constant cE = cE(n, λ0) by

cE =

{
n−1
2 , λ0 >

(n−1)2

4n2

2n2λ0
(n−1) , 0 < λ0 <

(n−1)2

4n2 .

Define the energy E = E(X, Ẋ ;n, λ, λ0) by

E =
1

2
Ẋ2 +

n2λ

2
X2 + cEXẊ

and let X be a solution to the damped oscillator equation (6.17) for
some λ ≥ λ0.

Lemma 6.4. The energy E is positive definite for λ0 > 0. Assume

λ ≥ λ0 > 0 and λ0 6= (n−1)2

4n2 . Then E satisfies Ė ≤ −2α+E.

Proof. We will consider the case 0 < λ0 <
(n−1)2

4n2 where anomalous

decay holds. The case λ0 >
(n−1)2

4n2 with a universal rate of decay is
straightforward and will be left to the reader. The energy E corresponds
to the quadratic form

E =
1

2

(
1 cE
cE n2λ

)
.

Let A = 2E. In the anomalous case, cE = 2n2λ0/(n − 1), and setting
Y = 4n2λ0/(n − 1)2, we have 0 < Y < 1. Then

trA = 1 + n2λ,

detA ≥ n2λ0(1− Y ).

Therefore, we have trA > 0,detA > 0 and it follows that E is positive
definite.

A calculation shows

Ė = −2α+E + J

with

(6.18) J = (cE − (n− 1) + α+)Ẋ
2

− (cE − α+)n
2λX2 − cE((n− 1)− 2α+)XẊ,

which corresponds to the quadratic form
(

cE − (n− 1) + α+ −cE((n− 1)− 2α+)/2
−cE((n − 1)− 2α+)/2 −(cE − α+)n

2λ

)
.

J is in the anomalous case of the form

J =
n− 1

2

(
Y − 1−

√
1− Y −2n2λ0

n−1

√
1− Y

−2n2λ0
n−1

√
1− Y −n2λ[Y − 1 +

√
1− Y ]

)
.
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Setting B = 2
n−1J , the determinant and trace of B are given by

detB = (n2λ− n2λ0)Y (1− Y ),

trB = (Y − 1−
√
1− Y )− n2λ

√
1− Y (1−

√
1− Y ).

From this we see that trB < 0, detB > 0. Thus, the quadratic form B
and hence also J is negative definite. It follows that

Ė ≤ −2α+E

as claimed. q.e.d.

7. Energy Estimate

Taking the analysis in section 6.4 as a guide, we will now define
energies for the full Einstein equations. Let the operator Lg,γ be given
by (6.11). Recall that ∆g,γ as defined in (6.7) is the rough Laplacian on
a certain vector bundle Q over (M,g) (see [2, §2] for discussion), which
can be identified with the bundle of symmetric covariant 2-tensors on
(M,g) with covariant derivative ∇[γ] and fiber metric defined in terms
of γ by

〈u, v〉 = uijvklγ
ikγjl.

The corresponding norm is |u| = (〈u, u〉)1/2. It follows from the defini-
tion that the covariant derivative ∇[γ] is metric with respect to 〈·, ·〉.
The inner product on derivatives is

〈∇[γ]u,∇[γ]v〉 = 〈∇[γ]mu,∇[γ]nv〉gmn.

The rough Laplacian ∆g,γ is formally self-adjoint with respect to the
natural L2 inner product

∫

M
〈u,∆g,γv〉µg =

∫

M
〈∆g,γu, v〉µg.

It follows that the operator Lg,γ is self-adjoint with respect to this inner
product. We are now able to define the energies which will be used for
the Einstein equations. The energy for the damped oscillator consists
of a standard oscillator energy and a correction term. Analogously,
the energies we are about to define for the rescaled Einstein equations
will consist of a wave equation type energy and a correction term. To
connect with the damped oscillator energy, we use the correspondence
X ↔ u and Ẋ ↔ v, where u = g − γ, v = 2nΣ; cf. (6.12).

Throughout the rest of the paper, we fix s > n/2+1, assume that the
triple (γ, g,Σ) satisfies the shadow metric condition, and that (g,Σ) ∈
Bδ,s(γ, 0) for some δ > 0 sufficiently small.
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The first order energy and correction term is

E(1) =
1

2

∫

M
|v|2µg +

1

2
n2
∫

M
〈u,Lg,γu〉µg,

Γ(1) =

∫

M
〈v, u〉µg .

Explicitly, substituting in g−γ,Σ using the relation u = g−γ, v = 2nΣ,
this gives

E(1) =
1

2
(2n)2

∫

M
ΣijΣklγ

ikγjlµg

+
1

2
n2
∫

M

{
∇[γ]k(gij − γij)∇[γ]l(gmn − γmn)g

klγimγjn

−2R[γ] k l
i j (gkl − γkl)(gmn − γmn)γ

imγjn
}
µg.

The correction term Γ(1) can be expanded in a similar manner. We now
define higher order energies by inserting suitable powers of Lg,γ , giving
for integers m ≥ 1,

E(m) =
1

2

∫

M
〈v,Lm−1

g,γ v〉µg +
1

2
n2
∫

M
〈u,Lm

g,γu〉µg,

Γ(m) =

∫

M
〈v,Lm−1

g,γ u〉µg.

Due to the shadow metric condition, γ may be viewed as a function of
g, and hence the energies E(s) depend only on (g,Σ). In case the lowest
eigenvalue of Lγ0,γ0 is zero at the initial background metric, let λ′min > 0
be the smallest nonzero eigenvalue of Lγ0,γ0 and let

(7.1) λ0 = λ′min − ǫ

for some ǫ > 0. We require λ0 > 0. The reason for choosing λ0 smaller
than λ′min is that the spectrum of Lγ(T ) depends on T and it is neces-
sary that the energy estimates we shall prove hold uniformly during the
course of the evolution.

Let now cE , α+ be defined as in section 6.4 in terms of the λ0 chosen
above. For integers m ≥ 1, let

E(m) = E(m) + cE Γ(m) .

Based on the work in section 6.4, one expects that a corrected energy
of the form

(7.2) Es =
∑

1≤m≤s

E(m)

will have the property that

∂TEs ≤ −2α+Es + higher order terms.

This is indeed the case, as will be shown below.
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Remark 7.1. The value of λ0 determines α+ and hence the decay
rate that is proved by the present argument. A more detailed analysis,
along the lines of [7], can be used to prove a sharp decay estimate.

7.1. Positive definiteness of the energy. Recall that P
⊥
γ , which

was introduced in section 2.1, is the L2-orthogonal projection onto the
orthogonal complement of kerL in the space of TT tensors with respect
to γ. It is clear from the construction that for s > n/2 + 1, Es is a
smooth function on Cs and further that P

⊥
γ depends smoothly on the

Einstein metric γ.

Lemma 7.2. Let γ be an Einstein metric on M with Einstein con-
stant −(n − 1)/n2 and let Es be the total energy defined in section 7
with s > n/2 + 1. Then there is a δ > 0 and a constant C > 0, such
that for (g,Σ) ∈ Bs,δ(γ, 0), the inequality

(7.3) ||P⊥
γ (g − γ)||2Hs + ||Σ||2Hs−1 ≤ CEs

holds.

Proof. Note that (γ, 0) ∈ Cs is a critical point of Es. Therefore, it
suffices to consider the second derivative of the energy at (γ, 0). Let m
be an integer such that 1 ≤ m ≤ s. The Hessian of E(m) is of the form

D2E(m)((h, k), (h, k)) =∫

M
〈k,Lm−1

γ,γ k〉µγ + n2
∫

M
〈h,Lm

γ,γh〉µγ + 2cE

∫

M
〈k,Lm−1

γ,γ h〉µγ .

An analysis using the spectral decomposition of Lγ,γ shows, using the
arguments in the proof of Lemma 6.4, that D2E(m) satisfies

D2E(m).((h, k), (h, k)) ≥ 0

with equality if and only if (h, k) = (hTT ‖, 0) with hTT ‖ ∈ kerLγ,γ .
From this it follows that

||P⊥
γ h||2Hs + ||k||2Hs−1 ≤ CD2Es.((h, k), (h, k))

for some constant C = C(λ0, γ) > 0, where λ0 is defined in (7.1). It
follows from the above and Taylor’s theorem that there is a δ > 0 such
that the inequality (7.3) holds in Bs,δ(γ, 0) for suitable δ > 0, C > 0.
q.e.d.

Lemma 7.3. Let (γ, g,Σ) be as in Lemma 7.2. There is a δ > 0
sufficiently small, and a constant C > 0, so that if ||g − γ||Hs ≤ δ,

||P‖
γ(g − γ)||Hs ≤ C(||P⊥

γ (g − γ)||2Hs + ||Σ||2Hs−1) .

Proof. By the analysis in section 4.2, we may write

(7.4) g − γ = uTT + z, Σ = vTT + w
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where uTT, vTT are TT tensors with respect to γ and z, w are L2 per-
pendicular to the space of TT tensors and satisfy

||z||Hs + ||w||Hs−1 ≤ C(||uTT||2Hs + ||vTT||2Hs−1)

for g sufficiently close to γ. Recall that for any TT tensor with respect
to γ,

(uTT,LY γ)L2 = 0.

Using P
⊥
γ , we may split uTT L2-orthogonally as uTT ‖ + uTT⊥. Taking

equation (4.4) and the just-mentioned facts into account, one finds that
equation (4.12) is equivalent to the set of m conditions

0 = (uTT + z, h(α) TT ‖ + LY (α)‖γ)L2

= (uTT ‖, h(α) TT ‖)L2 + (z,LY (α)‖γ)L2 , α = 1, . . . ,m.

It follows that this relation defines uTT ‖ as a smooth function of z,
vanishing at z = 0, and hence in view of (7.4) z is seen to be a function
of uTT⊥, vTT. Since z is of at least second order in uTT, vTT and if the
shadow relation holds, of uTT⊥, we have

||z||Hs + ||w||Hs−1 ≤ C(||uTT⊥||2Hs + ||vTT||2Hs−1).

The result follows. q.e.d.

The following result is a direct consequence of Lemmas 7.2 and 7.3,
and their proofs.

Theorem 7.4. Suppose that (γ, g,Σ) satisfy the shadow metric con-
dition, and let Es be the total energy defined in section 7 for s > n/2+1.
Then there is a δ > 0 and a constant C > 0, such that for (g,Σ) ∈
Bs,δ(γ, 0), the inequality

||g − γ||2Hs + ||Σ||2Hs−1 ≤ CEs

holds.

We are now able to state the following version of the continuation
principle.

Corollary 7.5. Let (γ0, g0,Σ0) be an initial data set as in Theorem
7.4, at an initial time T0. Let [T0, T+) be the maximal existence interval
in Hs, s > n/2+ 1, for the rescaled Einstein equations with the shadow
metric condition imposed, with initial data (γ0, g0,Σ0).

Then there are numbers δ0 > 0, δ > 0 so that if (g(T0),Σ(T0)) ∈
Bs,δ0(γ0, 0) satisfies Es(g(T0),Σ(T0)) < δ, then either T+ = ∞ or there
is a finite time T <∞ such that

Es(T ) ≥ δ.
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This result reduces the problem of proving global existence for the
system (4.9, 4.10, 4.11), with the shadow metric condition (4.12) im-
posed, to the problem of proving that the energy Es stays small, if it is
small initially.

7.2. Time derivative of the energy. We now consider the time de-
rivative of the energy. In order to see the pattern, we do the calculation
for the first order energy separately. In the situation considered in The-
orem 7.4 and Corollary 7.5, we have

Lemma 7.6. Suppose that (γ, g,Σ) satisfy the shadow metric condi-
tion. There is a δ > 0 such that for (g,Σ) ∈ Bs,δ(γ, 0), s > n/2 + 1, we
have

∂TE(1) = −(n− 1)

∫

M
|v|2µg + U1

and

∂TΓ(1) ≤
∫

M
(〈−(n − 1)v, u〉 + |v|2)µg − n2

∫

M
〈ωLg,γu, u〉µg + V1

where

|U1|+ |V1| ≤ C(||g − γ||3Hs + ||Σ||3Hs−1).

Proof. We have

∂TE(1) =
∫

M
〈v,−(n − 1)v〉µg − n2

∫

M
〈Lg,γu, h

TT ‖〉µg

−
∫

M
〈v,Xi∇[γ]iv〉µg − n2

∫

M
〈Lg,γu,X

i∇[γ]iu〉µg +R1

where R1 is third order. In particular, using the estimates for X, we
have

|R1| ≤ C(||u||3Hs + ||v||3Hs−1) .

Further, due to the self-adjointness of Lg,γ and the fact that Lγ,γh
TT ‖ =

0, we have that
∣∣∣∣
∫

M
〈Lg,γu, h

TT ‖〉µg
∣∣∣∣ ≤ C(||u||3Hs + ||v||3Hs−1).

The terms
∫

M
〈v,Xi∇[γ]iv〉µg,

∫

M
〈Lg,γu,X

i∇[γ]iu〉µg
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also clearly satisfy a third order estimate. Next we consider the correc-
tion term. We have, proceeding as above after a direct calculation,

∂TΓ(1) =

∫

M
(〈−(n− 1)v, u〉 + |v|2)µg − n2

∫

M
〈ωLg,γu, u〉µg

+

∫

M
〈v, (ω − 1)v − hTT ‖〉µg

−
∫

M
(〈Xi∇[γ]iv, u〉+ 〈v,Xi∇[γ]iu〉)µg + S1

where S1 is third order.
Time differentiating equation (4.12) gives, in view of (6.1),

0 =

∫

M
(gij,T − γij,T )γ

ikγjl(h
(α) TT ‖
kl + LY (α) ‖γkl)µγ

+ second order terms

=

∫

M
(gij,T − h

TT ‖
ij − LY ‖γij)γ

ikγjl(h
(α) TT ‖
kl + LY (α) ‖γkl)µγ

+ second order terms.

Here we have made use of the fact that q̇(α) is of first order. By (6.2),
N/n− 1 is second order. This gives, after using (4.9a) and simplifying,

0 =

∫

M
(2nΣij − h

TT ‖
ij )γikγjl(h

(α) TT ‖
kl + LY (α) ‖γkl)µγ

+ second order terms.

We next note that modulo second order terms, Σ is transverse traceless
with respect to γ. This gives

0 =

∫

M
(2nΣij − h

TT ‖
ij )h(α) TT ‖ ijµγ + second order terms

=

∫

M
(vij − h

TT ‖
ij )h(α) TT ‖ ijµγ + second order terms.

We have now proved that

(7.5) hTT ‖ = P
‖v + second order terms

and hence∫

M
〈v, hTT ‖〉µg =

∫

M
|vTT ‖|2µg + third order terms.

Taking signs into account, we see that
∫

M
〈v, (ω − 1)v − hTT ‖〉µg = −

∫

M
|hTT ‖|2γµγ + third order terms

can be bounded from above by a third order term. The terms involving
Xi∇[γ]i can be handled as above. This completes the proof of the
lemma. q.e.d.
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Since s > n/2+1 is assumed the standard product estimates (cf. e.g. [2,
section 2]), allow us to use the fact that we are in a small data situation
and handle the higher order terms in the energy in the same way. Let
Js =

∑
1≤j≤s J(j) where

J(j) = (cE − (n− 1) + α+)

∫

M
〈Lj−1

g,γ v, v〉µg

− (cE − α+)n
2

∫

M
〈Lj

g,γu, u〉µg

− cE((n − 1)− 2α+)

∫

M
〈Lj−1

g,γ u, v〉µg

is defined in analogy with (6.18). An analysis along the lines of Lemma
7.2, using the estimate for the term J from the proof of Lemma 6.4,
shows that the term Js is nonpositive modulo a third order term. This
gives

Lemma 7.7. Suppose that (γ, g,Σ) satisfy the shadow metric condi-
tion. There is a δ > 0 such that for (g,Σ) ∈ Bs,δ(γ, 0), s > n/2 + 1, we
have

Js ≤ C(||g − γ||3Hs + ||Σ||3Hs−1).

Putting these results together and using Theorem 7.4 gives

Theorem 7.8. Suppose the assumptions of Corollary 7.5 hold. Then,
after possibly decreasing δ, there is a constant C such that

(7.6) ∂TEs ≤ −2α+Es + 2CEs
3/2

holds if Es < δ.

8. Future Complete Spacetimes

In this section, we derive some consequences of the results we have

proved for the rescaled Einstein equations. Let Y = E
1/2
s and write

Ẏ = ∂TY . Then (7.6) takes the form

Ẏ ≤ −α+Y + CY 2.

The model equation ẏ = −α+y + Cy2 with y(T0) = y0 > 0 has the
solution

y =
α+

C + eα+(T−T0)[α+/y0 − C]

which tends to zero exponentially for T ≥ T0 if y
−1
0 > C

α+
. Since ∂T g and

hence also ∂T γ is bounded in terms of E
1/2
s , we see that we can ensure

that by starting sufficiently close to data of the form (γ0, 0) ∈ N , the
conditions of Corollary 7.5 remain satisfied for all T ≥ T0.

We state the conclusion as
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Theorem 8.1. Suppose γ0 has integrable deformation space. Then
there is a δ1 > 0 such that for any (g0,Σ0) ∈ Bs,δ1(γ0, 0), with (γ0, g0,Σ0)
satisfying the shadow metric condition, the Cauchy problem for the sys-
tem (4.9, 4.10, 4.11), with the shadow metric condition imposed, with
initial data (γ0, g0,Σ0), is globally well posed to the future.

Next we consider the properties of the spacetimes corresponding to
the solutions constructed in Theorem 8.1. In order to do this, we
rephrase the result in terms of the physical Cauchy data. Thus, let
(M, g̃0, K̃0) be CMC vacuum Cauchy data for the Einstein equations
with mean curvature τ0 < 0, and let the spacetime (M̄ , ḡ) be the

maximal Cauchy development of (M, g̃0, K̃0). Further, suppose that

(M, g̃0, K̃0) is such that for the corresponding rescaled data (g0,Σ0) at
scale invariant time T0, there exists γ0 ∈ E−(n−1)/n2 with integrable de-
formation space N and such that the triple (γ0, g0,Σ0) is initial data
for the rescaled Einstein equations, satisfying the shadow metric condi-
tion, with (g0,Σ0) ∈ Bs,δ1(γ0, 0) for δ1 as in Theorem 8.1. The following
corollary to Theorem 8.1 follows by an argument along the lines of [3,
§6.1].

Corollary 8.2. Let (γ0, g0,Σ0) be as in Theorem 8.1, let (g̃0, K̃0) be
the corresponding physical Cauchy data, and let (M̄, ḡ) be the maximal

Cauchy development of (g̃0, K̃0). Then

1) The spacetime (M̄, ḡ) is future complete.

2) The spacetime (M̄, ḡ) is globally foliated to the future of (M, g̃, K̃)
by CMC Cauchy surfaces, with mean curvature taking all values
in [τ0, 0).

It follows from the energy estimate that

(8.1) ||g − γ||Hs + ||Σ||Hs−1 ≤ Ce−α+T

as T → ∞, for some constant C. Recall that γ is the shadow metric of g.
For the solution curves T 7→ (γ, g,Σ) to the rescaled Einstein equations
in CMCSH gauge considered in Theorem 8.1, it holds by construction
that γ stays in a neighborhood of γ0 in N . In fact, it holds that γ(T )
tends to a limit in N as T → ∞. To see this, we note the following. In
view of (6.1), we may estimate ∂Tγ in terms of hTT ‖ and Y ‖. Equation

(2.13) gives an estimate for Y ‖ in terms of hTT ‖. Further, equation
(7.5) allows us to estimate hTT ‖ in terms of v = 2nΣ up to terms which
are of second order in small quantities. Thus, the inequality (8.1) gives
the following corollary to Theorem 8.1.

Corollary 8.3. Let (γ0, g0,Σ0) be as in Theorem 8.1, and let T 7→
(γ, g,Σ) be the maximal solution to the Cauchy problem for the system
(4.9, 4.10, 4.11), with the shadow metric condition imposed, with initial
data (γ0, g0,Σ0). Then there is γ∗ ∈ N such that (γ, g,Σ) → (γ∗, γ∗, 0)
as T → ∞.
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This shows that there is a limiting Einstein metric for the rescaled
Einstein flow, and hence motivates the title of the paper. The above
result is completely analogous to the results of [4, 14], which imply
that in the case of the 2+1 dimensional vacuum Einstein equations,
the rescaled geometry for a CMC foliation converges to a point in Te-
ichmüller space. Similarly, the conclusion in the work of Moncrief and
Choquet-Bruhat [7] is that the conformal geometry of the CMC folia-
tion of the base of the U(1) bundle converges to a point in Teichmüller
space. In the higher dimensional situation considered in the present
paper, the Einstein moduli space plays the same role as Teichmüller
space.

Appendix A. The Shadow Gauge

In this section, we let N be the deformation space with respect to
γ0 and assume that N is integrable, of dimension m. We shall consider
some aspects of the shadow gauge condition. We make use of some
standard facts from differential topology of infinite dimensional man-
ifolds. All spaces we shall deal with can be viewed either as smooth
Hilbert manifolds, modelled on Sobolev spaces Hs, or as Frechet mani-
folds, modelled on C∞ viewed as a scale of Sobolev spaces. Further, all
maps are smooth with Fredholm Frechet derivatives.

Let V i
g,γ be the tension field, defined in (2.7). Let X be the space

of vector fields on M . We can view V as a map from the Cartesian
product of the space of metrics M with the shadow manifold N to the
space of vector fields,

V : M×N → X .
The space of pairs (g, γ) ∈ M × N such that g is in harmonic gauge
with respect to γ is precisely the zero set of this map. We now shift our
attention to the constraint set C. The space C is a smooth submanifold
of the space T trM, consisting of pairs (g,Σ) satisfying the constraint
equations (4.10). By a slight abuse of notation, we can view V as a map
C ×N → X . Let P : M → N be the shadow map; cf. remark 4.1. This
is a smooth map defined on a neighborhood of N . Similarly to above,
we can view P as defining a map C → N , defined locally near (γ0, 0).

We shall now define a map V̂ on a neighborhood of N × {0} ⊂ C, in
terms of V,P. We define

V̂ : C → X , V̂ : (g,Σ) 7→ Vg,P(g).

We now calculate DV̂
∣∣
(γ0,0)

. We have the decomposition

T(γ0,0)C = (uTT + LY γ0, v
TT).

Lemma A.1.

DV̂
∣∣
(γ0,0)

.(uTT + LY γ0, v
TT) = Pγ0,γ0Y,
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where the operator Pγ0,γ0 is as in (2.8), defined at (g, γ) = (γ0, γ0).

Proof. We consider the tension field V as a map (g, γ) → Vg,γ . Let
h = uTT + LY γ0, where u

TT is transverse traceless with respect to γ0.
It follows from (2.9) that DgV

i
∣∣
γ0,γ0

.h = Pγ0,γ0Y
i. Using this together

with the fact that DP
∣∣
γ0
.h = uTT ‖, as follows from equations (6.1) and

(2.13), we have

DV̂ i
∣∣
(γ0,0)

.(h, vTT) = DgV
i
∣∣
γ0,γ0

.h+DγV
i
∣∣
γ0,γ0

.DP
∣∣
γ0
.h

= Pγ0,γ0Y
i + γmn

0 DΓi
mn

∣∣
γ0
uTT ‖

= Pγ0,γ0Y
i

where in the last step we used (4.8). q.e.d.

As discussed in section 4.2, the operator Pγ0,γ0 is an isomorphism. This
implies, by an application of the implicit function theorem, the following

corollary. Let S⊥
C,N ⊂ C be the set of solutions to V̂ = 0, and let S⊥

C,γ be

the subset of S⊥
C,N consisting of (g,Σ) ∈ C satisfying the shadow gauge

condition with respect to γ.

Corollary A.2. There is a neighborhood U of (γ0, 0) ∈ C such that

V̂ : U → X is a submersion and

U ∩ S⊥
C,N

is a submanifold of U .
Next we consider the action of the diffeomorphism group D. In the

applications to C, it is sufficient to work in a neighborhood of (γ0, 0).

Lemma A.3.

T(γ0,0)S⊥
C,N = T(γ0,0)SC,γ0 .

Proof. Recall from section 4.2 that T(γ0,0)SC,γ0 is the space {(uTT, vTT)}
where uTT, vTT are TT tensors with respect to γ0. This shows, in view

of the proof of Lemma A.1, that kerDV̂
∣∣
(γ0,0)

= T(γ0,0)SC,γ0 , and hence

T(γ0,0)S⊥
C,N = T(γ0,0)SC,γ0 as claimed. q.e.d.

Taking Lemma A.3 into account, we can now complete the analysis of
the shadow gauge condition.

Proposition A.4. There is a neighborhood U of (γ0, 0) ∈ C such that
for (g,Σ) ∈ U , there is a unique φ ∈ D, so that

(φ∗g, φ∗Σ) ∈ S⊥
C,N .

In particular, for (g,Σ) ∈ U , there are unique φ ∈ D, γ ∈ N , such that
(φ∗g, φ∗Σ) ∈ S⊥

C,γ, i.e. such that (φ∗g, φ∗Σ, γ) satisfy the shadow gauge
condition.



46 L. ANDERSSON & V. MONCRIEF

Proof. We show that the map L : D × S⊥
C,N → C, defined by

L(φ, g,Σ) = (φ∗g, φ∗Σ),

is a diffeomorphism locally at (i, (γ0, 0)), where i denotes the identity
in D. Write a general element in TiD as X, and a general element of
T(γ0,0)S⊥

C,N as (uTT, vTT). We have

DL
∣∣
(i,(γ0,0))

= (uTT + LXγ0, v
TT).

Recalling that T(γ0,0)C is spanned by tensors of the form (uTT + LXγ0,

vTT), we see that the Frechet derivative DL is an isomorphism

DL
∣∣
(i,(γ0,0))

: TiD × T(γ0,0)S⊥
C,N → T(γ0,0)C,

and the proposition follows. q.e.d.

Proposition A.4 establishes the validity of Lemma 4.3.
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1064.

8. Xianzhe Dai, Xiaodong Wang, & Guofang Wei, On the variational stability of
Kähler-Einstein metrics, Comm. Anal. Geom. 15 (2007), no. 4, 669–693.

9. Dennis M. DeTurck & Jerry L. Kazdan, Some regularity theorems in Riemannian

geometry, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 249–260.

10. Arthur E. Fischer & Vincent Moncrief, Hamiltonian reduction and perturbations
of continuously self-similar (n + 1)-dimensional Einstein vacuum spacetimes,
Classical Quantum Gravity 19 (2002), no. 21, 5557–5589.

11. Michael Kapovich, Deformations of representations of discrete subgroups of
SO(3, 1), Math. Ann. 299 (1994), no. 2, 341–354.

12. Claude LeBrun, Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 (1995),
no. 1, 1–8.



EINSTEIN SPACES AS ATTRACTORS FOR THE EINSTEIN FLOW 47

13. Geoffrey Mess, Lorentz spacetimes of constant curvature, Geom. Dedicata 126

(2007), 3–45.

14. Vincent Moncrief, Relativistic Teichmüller theory—a Hamilton-Jacobi approach
to 2+ 1-dimensional Einstein gravity, Surveys in differential geometry. Vol. XII.
Geometric flows, Surv. Differ. Geom., vol. 12, Int. Press, Somerville, MA, 2008,
pp. 203–249.

15. Martin Reiris, On the asymptotic spectrum of the reduced volume in cosmological
solutions of the Einstein equations, Gen. Relativity Gravitation 41 (2009), no. 5,
1083–1106.
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