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INFINITESIMAL RIGIDITY OF CONE-MANIFOLDS
AND THE STOKER PROBLEM FOR HYPERBOLIC
AND EUCLIDEAN POLYHEDRA

RAFE MAZZEO & GREGOIRE MONTCOUQUIOL

Abstract

The deformation theory of hyperbolic and Euclidean cone-mani-
folds with all cone angles less than 27 plays an important role
in many problems in low-dimensional topology and in the ge-
ometrization of 3-manifolds. Furthermore, various old conjectures
dating back to Stoker about the moduli space of convex hyper-
bolic and Euclidean polyhedra can be reduced to the study of
deformations of cone-manifolds by doubling a polyhedron across
its faces. This deformation theory has been understood by Hodg-
son and Kerckhoff [7] when the singular set has no vertices, and
by Weif} [32] when the cone angles are less than m. We prove here
an infinitesimal rigidity result valid for cone angles less than 2,
stating that infinitesimal deformations which leave the dihedral
angles fixed are trivial in the hyperbolic case, and reduce to some
simple deformations in the Euclidean case. The method is to treat
this as a problem concerning the deformation theory of singular
Einstein metrics, and to apply analytic methods about elliptic op-
erators on stratified spaces. This work is an important ingredient
in the local deformation theory of cone-manifolds by the second
author [22]; see also the concurrent work by Weif3 [33].

1. Introduction

A conjecture made by J.J. Stoker in 1968 [28] concerns the rigidity of
convex polyhedra in three-dimensional constant curvature spaces. More
specifically, he asked whether such a polyhedron is determined by its di-
hedral angles, i.e. the angles between its faces. In the Euclidean case,
the existence of homotheties and translations of faces obviously contra-
dicts rigidity, and Stoker asked the more precise question of whether
the internal angles of each face are determined by the set of all dihedral
angles of the polyhedron. On the other hand, in the spherical and hy-
perbolic settings, there are no obvious obstacles to the validity of such
a rigidity phenomenon.
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This problem has motivated many papers (see for instance [10], [20],
[24]), but until recently results had only been obtained for specific
classes of polyhedra. Surprisingly, Schlenker [27] found a counter-
example to both the infinitesimal and global versions of this conjecture
in the spherical case. In this paper we settle the infinitesimal version
of the two remaining cases; this states that there is no nontrivial defor-
mation of a convex hyperbolic polyhedron P for which the infinitesimal
variation of all dihedral angles vanishes. In Euclidean space, there exist
such first-order deformations but they preserve the internal angles of
the faces.

We work in the somewhat more general context of (hyperbolic or Eu-
clidean) cone-manifolds. This is a class of constant curvature stratified
spaces emphasized, if not actually introduced, by Thurston [29] in his
investigation of deformations of cusped hyperbolic 3-manifolds. These
are Riemannian generalizations of orbifolds in that the cone angles at
each edge are arbitrary positive numbers (possibly larger than 27), and
in particular are not necessarily of the form 27/k, k € N, as they are
for orbifolds. There is a completely analogous problem, which we also
call the Stoker conjecture, concerning the rigidity of hyperbolic or Eu-
clidean cone-manifolds, and we resolve the infinitesimal version of this
too, assuming that the cone angles at all edges are less than 27. This
condition on the cone angles is the analogue of convexity in this setting.
In fact, any polyhedron P can be simultaneously doubled across all its
faces, giving rise to a cone-manifold with the same curvature. Convexity
of the polyhedron is equivalent to this angle condition on its double.

Theorem 1 (The Infinitesimal Stoker Conjecture for Cone-Mani-
folds). Let M be a closed three-dimensional cone-manifold with all cone
angles smaller than 2w. If M is hyperbolic, then M is infinitesimally
rigid relative to its cone angles, i.e. every angle-preserving infinitesimal
deformation is trivial. If M is Fuclidean, then every angle-preserving
deformation also preserves the spherical links of the codimension 3 sin-
gular points of M.

In particular, convex hyperbolic polyhedra are infinitesimally rigid rel-
ative to their dihedral angles, while every dihedral angle preserving in-
finitesimal deformation of a convexr Fuclidean polyhedron also preserves
the internal angles of the faces.

The cone-manifold rigidity problem has been investigated before: see
in particular Hodgson and Kerckhoff’s seminal article [7] for the case
where the singular locus is a link, and Weif’s paper [32] which treats
the case where all dihedral angles are smaller than .

Our approach to these problems is based on global analysis, and in
particular on regarding cone-manifolds as Einstein manifolds with very
special types of metric singularities. The infinitesimal rigidity statement
reduces eventually to a Bochner argument, but the first main step is to
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put an infinitesimal deformation which preserves dihedral angles into
a good gauge so that it has a tractable form near the singular locus.
We employ a now standard formalism for Einstein deformation theory
using the Bianchi gauge to do this. The second main step is to study the
asymptotics of this gauged infinitesimal deformation h in order to justify
the integrations by parts in the Bochner argument. This is equivalent
to showing that h lies in a suitable (functional analytic) domain for
a semibounded self-adjoint extension of the linearized gauged Einstein
operator, which involves a regularity theorem showing that A has an
asymptotic expansion and an examination of the leading terms in this
expansion. The existence of such an expansion is now standard for
manifolds with isolated conic or simple edge singularities. However,
three-dimensional cone-manifolds may have slightly more complicated
(‘depth 2’) singular structure, so this requires some new analytic work.

The plan of this paper is as follows. We begin with a review of
cone-manifolds, with an emphasis on the two- and three-dimensional
settings, in the context of the more general notion of iterated cone-edge
spaces. We then discuss the deformation theory of cone-manifolds via
the less obstructed problem of deforming the germ of the cone-manifold
structure in a neighbourhood of the singular locus. This leads to a
precise statement of the infinitesimal deformation problem. After that,
we review the analytic tools needed to study the deformation problem
on the entire cone-manifold: first, the Finstein equation and Bianchi
gauge, and their linearizations, then the analytic theory of conic and
iterated edge operators. With these tools we carry out the remainder
of the proof.

Since the time we proved this result, but before this paper was writ-
ten, the second author has studied the local deformation theory and ob-
tained a corresponding local (rather than infinitesimal) rigidity result
for 3-dimensional hyperbolic cone-manifolds and polyhedra [22]; this
uses the infinitesimal rigidity proved here. At the same time, Weif3 has
independently proved a similar local rigidity theorem using somewhat
different methods [33].

The authors wish to thank Steve Kerckhoff for his interest; the first
author is also grateful to Hartmut Weifl for helpful discussions. The
authors are also indebted to the three referees, who read the manuscript
carefully and gave many valuable suggestions to improve the exposition.

Acknowledgments. The first author was partially supported by the
NSF grant DMS-0505709 and 0805529. The second author was partially
supported by the ANR program GeomEinstein 06-BLAN-0154.

2. Geometry of cone-manifolds

Cone-manifolds can be defined synthetically as (X, G)-spaces in the
sense of Thurston, but the point of view we first adopt here is to treat
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them as the constant curvature elements of the class of Riemannian
iterated edge spaces, or conifolds. We begin with a brief review of this
latter class of singular spaces, then recall the synthetic description of
cone-manifolds, relating the two descriptions along the way.

2.1. Iterated edge spaces. Let (N,h) be a compact stratified Rie-
mannian space. This means simply that NV is a smooth stratified space
in the usual sense (cf. [23]), that each stratum S carries a Riemannian
metric hg, and that these various metrics satisfy the obvious compat-
ibility relationships. (We do not belabour this definition because all
examples considered here will be quite simple.) The (complete) cone
over N, C'(N) is the space ([0,00), x N)/ ~, where (0,p) ~ (0,p’) for
all p,p’ € N, endowed with the metric dr? 4+ r2h; the truncated cone
Cop(N) is the subset where a < r < b. Any singular stratum S C N
induces a singular stratum C(S) in C(N), with dim C(S) = dim S + 1.

The class of iterated edge spaces, which we also call conifolds, are
those which can be obtained locally by iterated coning and formation
of products, starting from smooth compact manifolds. More formally,
for each k > 0 the class Z; of compact conifolds of depth k is defined
by induction as follows:

Definition 1. A conifold of depth 0 is a compact smooth manifold. A
stratified pseudomanifold X lies in Iy, if it is a compact stratified space
and any point p € X, contained in an open stratum S of dimension ¥,
has a neighbourhood U such thatV =U NS is diffeomorphic to an open
ball in R and such that U is diffeomorphic to a product V x Cp1(N)
where N € I; for some j < k. The dimension of X is defined by
induction as n = £+dim N + 1; we ask furthermore that this quantity is
independent of the point p € X. An incomplete iterated edge metric g on
X is one which respects the above diffeomorphism, i.e. is locally quasi-
isometric to one of the form g ~ dr®+12h+k, where h is an incomplete
iterated edge metric on N and k is a metric on S. The entire class of
conifolds T is the union over k € N of these subclasses Zj.

Thus X € Zj if it can be formed by a k-fold iterated coning or edging
procedure. A point for which N = () is called regular; it lies in the top-
dimensional stratum of X. If S is a singular stratum with dim .S > 0,
then we say that it is an edge in X; some neighbourhood of S in X
is diffeomorphic to a bundle of cones over S with fiber C(N). For
various investigations of analysis on these spaces, it is usually necessary
to assume more about the structure of the metric near the singular
strata, but we do not elaborate on this here since our goals are more
limited.

A careful discussion of the differential topology of this class of spaces,
including a comparison with more classical definitions of stratified pseu-
domanifolds, and the construction of a resolution of any iterated edge
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space as a manifold with corners with ‘iterated fibration structure,’ is
contained in the recent paper [1].

A (constant curvature) cone-manifold is a conifold (M, g) such that
the induced metric gg on any stratum of dimension > 1 has constant
sectional curvature £ (in particular, this is true on its top-dimensional
stratum, which is an open and dense subset). The name ‘cone-manifold’
is somewhat misleading, but it is the standard and accepted terminology
so we do not discard it. A cone-manifold is called hyperbolic, Euclidean,
or spherical depending on whether k = —1, 0, or +1 (any other x can be
reduced to one of these three cases by rescaling the metric). We always
denote by X the entire singular locus of M, i.e. the union of all strata
with dimension less than dim M.

The two- and three-dimensional settings are the ones of interest in
this paper. Thus, a cone-surface N is a two-dimensional space with
isolated conic singularities (hence an element of Z;) and with constant
Gauss curvature x on its smooth part. Near each singular point p it is
a (constant curvature) cone over a circle, with metric

(1) dr? + sn2r db?, 6 € R/aZ =S..

The number « is called the cone angle at p. Here and throughout the
paper we use the convention that sn, and cs, are the unique solutions
to the initial value problem f” + kf = 0 satisfying

sn,(0) =0 csk(0) =1
snl (0) =1 csl.(0) = 0.

Accordingly, a three-dimensional cone-manifold is an element M € Zo
with dim M = 3 and with constant sectional curvature x on its top-
dimensional stratum. Its singular locus ¥ is a (combinatorial) graph
which decomposes as a disjoint union gU>1; here g = V is the vertex
set and consists of a finite number of points, and X7 = £ is the edge
set and consists of a finite union of smooth arcs each of which is either
closed or else has endpoints lying in . It is also useful to think of 3 as
a geodesic network. Near any point p € 31, the metric g can be written
in cylindrical coordinates as

(2) dp* + sn2pdf* + cs2p dy?, 6ecSt, ye(—aa) CR.

This is a ‘constant curvature cylinder’ over the constant curvature cone
Co.1(SL). The number « is still called the cone angle or dihedral angle
of the singular edge, and does not depend on the chosen point p on the
edge. Near a singular vertex p € g, M is a constant curvature cone
over a spherical cone-surface (N, h), and here g has the form

(3) dr® 4 sn’r h.

The metric h in turn has the form (1) with x = +1 near each one of its
singular points, so in a conic neighbourhood of a cone point of N, the
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metric g on M has the form
(4)  dr? +sn’r (d82 + sin’ s d?) 0 cSt, se(0,¢), € (0,a).

In particular, each cone point of N corresponds to an edge of M.

Since we are only concerned with these low-dimensional cases in this
paper, the terms cone-surface and cone-manifold will always refer to the
two- and three-dimensional cases, respectively.

2.2. Synthetic formulation. We now review the more traditional def-
initions of cone-surfaces and cone-manifolds ‘modeled on a geometry’,
following [30], but cf. the monograph by Hodgson and Kerckhoff [8] for
an alternate and excellent reference on hyperbolic cone-manifolds.

A geometry refers to a pair (X, G) consisting of a complete Riemann-
ian n-manifold X and a subgroup G C Isom (X). There are no restric-
tions on G, and in particular, it need not be the full isometry group,
nor must it act transitively on X. An (X, G)-manifold M is a mani-
fold admitting an (X, G)-atlas, i.e. a locally finite open covering {;}
of M and maps ¢; : U; — X, such that the transition maps qﬁ,-gbj_l all
lie in GG. Since the elements of G are isometries, M possesses a natural
Riemannian metric for which each ¢; is an isometry.

Given an n-dimensional geometry (X,G) (n > 1) and a point ¢ on
X, denote by G, = {9 € G | g¢ = q} the stabilizer of ¢ in G and
X, ={v € T,X | ||v]| = 1}, the unit sphere in T,X. The group G,
acts by isometries on X, so the pair (X, G,) defines a new geometry,
of dimension n — 1. If Q) is a subset of X, then for a smaller than the
injectivity radius of X at ¢ we define the (X, G)-cone of radius a,

Ca(2) = {exp,(tv),0 <t < a,v € Q} C X.

Any transition map ¢ € G, which glues together neighbourhoods {2
and {2y extends in an obvious way to a transition map gluing the (X, G)-
cones Cy(21) and Cy(€22). This process allows us to define the (X, G)-
cone associated to any (X, Gy)-manifold, or inductively, any (X,, Gq)-
cone-manifold, and thus leads to the following definition:

Definition 2. Let (X, G) be a geometry as defined above.

o If X is of dimension 1, an (X,G)-cone-manifold is an (X,G)-
manifold;

o [fdim X > 1, an (X, G)-cone-manifold is a complete metric space
in which each point p has a neighbourhood isometric to an (X, G)-
cone over a closed, connected, orientable (X4, Gq)-cone-manifold
N, for some q € X; the lower dimensional cone-manifold N, is
called the link of the point p. (The reader should be aware that
this does not coincide with the more standard definition of the link
of a cone bundle.)
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Figure 1. Extending a gluing from X, to X

Even if (X, G) is homogeneous, i.e. G acts transitively on X, this may
not be the case for the induced geometry (X,, G,), hence it is important
not to include the statement that X be a homogeneous space into the
definition of a geometry.

. e @ Length 27
F— X 3
I—> @ Length «

L :
N~

Figure 2. The inductive steps in the definition of a
cone-manifold

An (X, G)-cone-manifold is actually an iterated edge space with an
additional structure. A point in an (X, G)-cone-manifold M is regular
(i.e. in the top-dimensional stratum) if its link is the standard unit
sphere; otherwise it is in the singular locus. Equivalently, a point is
regular if it admits a neighbourhood isometric to an open set in X.
The stratification of the singular locus of M is defined by induction as
follows. If p € M is not contained in any cone neighbourhood other
than the one centered at p, then the codimension of p is n. Otherwise,
p belongs to a cone neighbourhood centered at some other point py. If
Ny is the (X4, Gy)-link of pg, then the geodesic ray from py through
p determines a point p’ in Ny. The codimension of p is then defined
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inductively as the codimension of p’ in Ny (in this case the link N, of p
is a suspension over the link N,y of p’ in Ny). Note that cone-manifolds
of dimension 1 are by definition regular, so the codimension of a singular
point is always at least two. The set of points of codimension & forms
the (n—k)-dimensional stratum X ; the strata are totally geodesic in M,
and are locally isometric to some (n — k)-dimensional totally geodesic
submanifold of X.

The cases of interest in this paper are the following:

e spherical cone-surfaces, modeled on (S%,S0(3));
e three-dimensional hyperbolic cone-manifolds, modeled on (H?,

800(17 3))7

e three-dimensional Euclidean cone-manifolds, modeled on (R?, R x
SO(3)).

e three-dimensional spherical cone-manifolds, modeled on (S?,
SO(4)).

Note that for each of these three-dimensional geometries, the induced
link geometry is always spherical; Euclidean or hyperbolic cone-surfaces
do not arise here. If the link is one-dimensional, the only invariant is
its length, i.e. the cone angle; for two-dimensional links, the ‘solid angle
analogue’ of the cone angle is the spherical cone-surface structure on
the link. We elaborate on this below.

In this paper, we restrict attention to Euclidean and hyperbolic cone-
manifolds whose cone angles are less than 27. We included the other
cases since much of the analysis below carries over directly to these
settings, although the ultimate infinitesimal rigidity theorem does not.

2.3. Spherical cone-surfaces. As just indicated, to study cone-ma-
nifolds with all cone angles less than 27, we must first study spherical
cone-surfaces with the same angle restriction. This is an interesting
story in its own right, and is described in detail in [17]. Here are the
relevant features of that theory.

The first important fact is that if NV is any (compact) cone-surface,
then its regular part is conformally equivalent to a compact Riemann
surface N with ¢ points removed. (Equivalently, although the cone
metric is singular at each of the cone points, the conformal structure
extends smoothly across these points.) This is classical, but see [16] for
a simple proof.

Next, let N be a spherical cone-surface with cone points {g;} and
corresponding cone angles o; € (0,27), i =1,...,¢. We claim that if N
is orientable, then N = S%. To see this, recall that the Gauss-Bonnet
formula extends to cone-surfaces as

)4
/N KkdA + 2(277 — ;) = 27x(N).

i=1



INFINITESIMAL RIGIDITY OF CONE-MANIFOLDS 533

Since kK = 1 and each «; < 2w, the left hand side of this equality is
strictly positive; hence x(N) > 0, which proves the claim.

For any collection of ¢ > 3 distinct points {q1,...,q} C S? and cone
angles a; € (0,27), there exists a unique spherical cone metric on S? in
the given conformal class with cone points at the g; with the specified
cone angles. The existence is due to Troyanov [31], and uniqueness was
proved by Luo and Tian [14]. We denote by M,(S?) the moduli space of
all spherical cone-surface structures (with curvature +1) with ¢ marked
points on S? and with cone angles less than 27. The result we have just

quoted is captured in the identification
My(S?) ={(q1,---,q0) € (57 : @ # q; Vi #j}/Mébx (0,2m)", £>3,

where the Md&bius group acts diagonally on the product. Notice that
we are not dividing by the action of the symmetric group, i.e. we regard
the cone points as labelled.

We discuss the cases with few cone points separately. It is classical
that a spherical cone-surface (with cone angles smaller than 27) must
have at least two cone points, and that My (S?) 2 (0,27). More explic-
itly, if N € M3(S?), then the cone metric has an S'-symmetry, so that
a1 = ag, and N has the shape of a football (or rugby ball)—see figure
2; the metric can be expressed globally as (1) with r € [0, 7]. The three-
dimensional cone with constant curvature s over such an N is isometric
to the cylinder with constant curvature s over the two-dimensional cone
with constant curvature s (and with the same cone angle); see eq. (2).
Hence this case never occurs as the link of a (‘nonremovable’) vertex
in a cone-manifold. Thus the first really interesting case in terms of
three-dimensional geometry is when N has three conical points. In this
case, we can assume that all points lie on an equator of S? (in the above
identification), and by uniqueness, the metric is preserved by reflec-
tion across this equator, so that N is the double of a spherical triangle
with geodesic edges. In particular, N is determined entirely by its cone
angles.

2.4. Three-dimensional cone-manifolds. By considering the spher-
ical reduction and link geometry, it is quite easy to see that a neigh-
bourhood of any point p in a three-dimensional cone-manifold M with
constant curvature s is isometric to a neighbourhood of a point in a
space obtained by gluing together some number of tetrahedra with con-
stant curvature x and with totally geodesic boundary faces. In such a
gluing, the metric extends smoothly across the codimension 1 boundary
faces. At points where several edges are glued together, the metric is
smooth if and only if the sum of the corresponding dihedral angles for
each tetrahedron is equal to 2m; otherwise, the resulting edge is in the
singular locus of the cone-manifold and a neighbourhood of this edge is
isometric to a constant curvature cylinder (2). The sum of the dihedral



534 R. MAZZEO & G. MONTCOUQUIOL

angles is called the dihedral angle (or cone angle) of this edge. A point
where several vertices are glued together is smooth if and only if the
links of these tetrahedral vertices tile S?; otherwise, the link is a spher-
ical cone-surface N and must lie in the space M (S?) for some ¢ > 3
which is the valence of that vertex in the cone-manifold. The cone angle
at each cone point of N equals the dihedral angle of the edge coming
into that point.

More globally, it follows from the definition that the singular locus X
of a closed three-dimensional cone-manifold M is a finite graph, where
each vertex is at least trivalent, but possibly with both endpoints of
an edge equal to the same vertex. We have described local geometry
around each edge and vertex, and away from Y the metric is locally
isometric to the model geometry.

An important and simple case of the gluing construction is as follows.
Let P be a convex polyhedron in S?, R3, or H?. Its double across all
faces is a (spherical, Euclidean, or hyperbolic) cone-manifold M. The
edges and vertices of P are in bijective correspondence with the edges
and vertices of M. The dihedral angle along an edge of M is twice
that of the corresponding edge in P, so the convexity of the original
polyhedron corresponds to the fact that all cone angles of M are less
than 27. The spherical cone-surface at any vertex p in M is the double
of a convex spherical polygon in S?. Consequently, rigidity results for
3-cone-manifolds imply corresponding results for polyhedra.

3. Geometric deformation theory

We now examine the more geometric aspects of the deformation the-
ory of cone-manifolds. The main idea is to localize near ¥ and study the
deformations of a ‘tubular neighbourhood’ i/ around the singular locus.
These local cone-manifold structures, which we call singular germs, have
unobstructed deformation theory in a sense to be made precise later, and
hence are quite easy to parameterize. Any cone-manifold determines a
singular germ along its singular locus, but the converse problem of ex-
tending a singular germ to a global compact cone-manifold is much more
subtle. We shall return to this question in a later paper. Here we use
these singular germs as a convenient setting to study the infinitesimal
deformations of cone-manifold structures.

3.1. Singular germs. Fix a compact, topological graph ¥ and define
SG(X, k) to be the set of all cone metrics defined in a neighbourhood of
>} with curvature k and cone angles smaller than 27, modulo the equiva-
lence relation that two such structures are identified if they are isometric
(in possibly smaller neighbourhoods). We call any such equivalence class
S the singular germ of a cone-manifold structure. Any singular germ S
is represented by an infinite dimensional set of mutually isometric cone
metrics. We stress that we do not emphasize explicit uniformizations
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of constant curvature metrics but focus instead on classes of mutually
isometric metric tensors.

We now describe these singular germs synthetically. The singular
locus is described entirely by its simplicial structure, e.g. its vertex set
V and edge set £, and the length of each of its edges. (Note that
unlike a one-dimensional simplicial complex in the usual sense, ¥ may
have closed components which contain no vertices; however, we still call
Y a graph or a simplicial complex.) To describe a cone metric in a
neighbourhood of its singular locus, we must extend it from the interior
of each of the edges and also near the vertices, and these extensions
must satisfy certain local and global compatibility conditions.

The extension near (the interior of) any edge e is determined uniquely
by the curvature x and the cone angle & = af(e) associated to that
edge, as in (2). To each vertex p, we specify a spherical cone-surface
N, € M,(S?), where £ is the valence of p. One additional parameter
along each edge is needed to completely describe the singular germ.
Any edge e joins two vertices pj,ps € V (where the case p; = py is
allowed), and determines cone points ¢; € N,, and g2 € N,,. These
must both have cone angle «(e), or equivalently, the same ‘link circle’
S(ll( ¢) Parallel transport along e gives an orientation-reversing isometry
between these two circles; after fixing one such isometry for each singular
edge, any other such identification is identified with a rotation of the
circle, i.e. a number 7(e) € Si(e). This is called the twist parameter
associated to e.

Figure 3. The twist parameter

Thus each singular germ corresponds to the following data: the cur-
vature k; the graph ¥ with vertex set V and edge set &£; a length A(e),
cone angle «a(e), and twist parameter 7(e) for each e € £; a spherical
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cone-surface N, to each vertex p € V. Let n(p) denote the valence of
each vertex p and set

N(E) = [[ Maw ().
peY
Then a singular germ on a fixed graph ¥ with curvature k is encoded
by some element of the space

SG* (%, k) := (RN % (0,2m)E) x [0,27) ] x N(Z).

The subset of elements which are realizable as singular germs is the space
SG(X, k) defined earlier; this has the explicit description as consisting
of the subset of data for which the cone angles at the points ¢; € N,
and ¢qo € Np, corresponding to the two ends p; and po of any edge e are
the same, and equal a(e). We frequently omit the ¥ and & from this
notation. There is a natural map

G:CM — 8¢

associating to any cone-manifold M the singular germ along its singular
locus 3.

It is almost tautological to construct a local cone metric from any
point in SG. Indeed, given (X, k,{A(e)}, {a(e)}, {r(e)},{Np}), choose
a > 0 sufficiently small (in particular, a < %)\(e) for all e € £ and
also less than 7/y/k if kK > 0). Now take the cone of curvature x and
radius a over the cone-surface N,, for each vertex p; attach to these cones
singular tubes of constant curvature  (of sufficiently small radius b) and
of specified cone angles. The result is depicted in figure 3. The final
step is to glue these pieces together using the combinatorics of ¥ and
the twist parameter along each edge and to ensure that each edge-length
is the prescribed one.

3.2. Deformations of singular germs. Fix a singular germ S € §G
and choose a representative cone metric g. There are several ways to
deform S in SG:

e One can change the curvature, or the simplicial structure of the
singular locus (see figure 4). Such deformations are quite inter-
esting, and are considered in [22], [25], and [33]; however, in this
paper we fix ¥ and x once and for all.

e One can change the length \(e) of any edge of . We present an
explicit family of metrics which does this. In cylindrical coordi-
nates (p, 6, y) around any point in the interior of e, the metric has
the form (2). Let f(y) be a smooth nondecreasing function which
vanishes for y < A\/4 and which equals 1 for y > 3\/4. Now define

(5) g = dp? +sn2pd6? + es2p (1+ef'(y))” dy?

in the tube around this edge (and let g = g around all other edges
and vertices). The length of e with respect to g. is A + €.
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a T+a/2 T4 a2
A ’
Figure 4. Deformation of the singular locus in dimen-
sion 2 and 3

e One can change the twist parameter around an edge e in much

the same way. The family of metrics g is now given by
ge = dp?> +sn2p (d(0+ef () + csipdy®

near e and is left the same elsewhere. The twist parameter for e
with respect to g. equals 7 + €.

Finally, one can change the cone-surface structures at each of the
vertices p € X. We refer to [17] for a complete description of this
moduli space theory of cone-surfaces, but as discussed earlier, the
moduli parameters are the locations of the various cone points on
each spherical link, and the cone angles at these points. Each
moduli space M, (S?) is smooth, hence so is N(X). Let h be a
path of metrics representing a curve in this space; the correspond-
ing path of metrics in cones around the vertex set is then given
by

Je = dr?® + Snir he.

If the deformation h. leaves all cone angles unchanged, then the
variation of g, is localized in a neighbourhood of the vertex set and
S0 ge = go in a neighbourhood of the edge set. However, a change
of cone angle in any N, ripples throughout the singular germ; in
particular, the cone angles of some edges are deformed, and the
metric in cylindrical coordinates near those edges is given by

ge = dp® +sn2p (1 + a(e))?do? + csipdy®

where a(e) is the modification of the cone angle.
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The expression (7) is not canonical; there is a wide latitude in choos-
ing the representative metric tensor h. on a given spherical cone-surface
N and the most obvious choice is not the best one for our purposes. We
discuss this further now.

Fix a spherical cone-surface N with £ conic points. We can always
write any representative metric tensor h in the form e?? F*g, where g is
the standard SO(3) invariant metric tensor on S?, F' is a diffeomorphism
of S?, and ¢ is a smooth function away from the conic points and has
a logarithmic singularity (with coefficient determining the cone angle)
at each cone point. Indeed, near each gj, ¢ = [logs + 1 where 1 is
smooth, s is the spherical distance to g;, and 27(1 4 ) = « is the cone
angle there; see [17].

If o, is a family of spherical cone-surface structures on N, then the
‘obvious’ choice is to choose a curve of (-tuples g(€) = (q1(€), ..., qe(€))
fixing a choice of locations of the conic points (modulo Mobius trans-
formations) in this deformation and then write h. = €2?<g, where ¢, is
singular at the g;j(e). However, the differential of this family at € = 0
blows up like the 