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MORSE THEORY AND HYPERKÄHLER KIRWAN

SURJECTIVITY FOR HIGGS BUNDLES

Georgios Daskalopoulos, Jonathan Weitsman, Richard A.
Wentworth & Graeme Wilkin

Abstract

This paper uses Morse-theoretic techniques to compute the
equivariant Betti numbers of the space of semistable rank two
degree zero Higgs bundles over a compact Riemann surface, a
method in the spirit of Atiyah and Bott’s original approach for
semistable holomorphic bundles. This leads to a natural proof
that the hyperkähler Kirwan map is surjective for the non-fixed
determinant case.

1. Introduction

The moduli space of semistable holomorphic bundles over a compact
Riemann surface is a well-studied object in algebraic geometry. The
seminal paper of Atiyah and Bott introduced a new method for com-
puting the cohomology of this space: the equivariant Morse theory of the
Yang-Mills functional. This and subsequent work provides substantial
information on its cohomology ring. Also of interest is the moduli space

of semistable Higgs bundles. The purpose of this paper is to develop
an equivariant Morse theory on the (singular) space of Higgs bundles in
order to carry out the Atiyah and Bott program for the case of rank 2.

The precise setup is as follows. Let E be a complex Hermitian vector
bundle of rank 2 and degree dE over a compact Riemann surface M of
genus g. Let A(2, dE) denote the space of Hermitian connections on E,
and A0(2, dE) the space of traceless Hermitian connections (which can
be identified with the space of holomorphic structures on E without
or with a fixed determinant bundle). We use End(E) to denote the
bundle of endomorphisms of E, End0(E) the subbundle of trace-free
endomorphisms, and ad(E) ⊂ End(E) (resp. ad0(E) ⊂ End0(E)) the
subbundle of endomorphisms that are skew adjoint with respect to the
Hermitian metric.

Let

B(2, dE) = {(A,Φ) ∈ A(2, dE)× Ω0(End(E)⊗K) : d′′AΦ = 0}
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be the space of Higgs bundles of degree dE and rank 2 over M and let

B0(2, dE) = {(A,Φ) ∈ A0(2, dE)× Ω0(End0(E)⊗K) : d′′AΦ = 0}

denote the space of Higgs bundles with fixed determinant. Let G (resp.
GC) denote the gauge group of E with structure group U(2) (resp.
GL(2)) for the non-fixed determinant case, and G0 (resp. G

C
0 ) the gauge

groups with structure group SU(2) (resp. SL(2)) for the fixed determi-
nant case. The action of these groups on the space of Higgs bundles is
given by

(1) g · (A,Φ) = (g−1A′′g+g∗A′(g∗)−1+g−1d′′g− (d′g∗)(g∗)−1, g−1Φg),

where A′′ and A′ denote the (0, 1) and (1, 0) parts of the connection
form A.

The cotangent bundle pr : T ∗A(2, dE) → A(2, dE) is naturally

T ∗A(2, dE) ≃ A(2, dE)× Ω0(End(E)⊗K)

and this gives rise to a hyperkähler structure preserved by the action of
G (cf. [8]). The moment maps for this action are

µ1 = FA + [Φ,Φ∗]

µ2 = −i
(
d′′AΦ+ d′AΦ

∗
)

µ3 = −d′′AΦ+ d′AΦ
∗

In the sequel, we refer to µC = µ2 + iµ3 = −2id′′AΦ as the complex

moment map. The hyperkähler quotient T ∗A(2, dE)///G is the space

T ∗A(2, dE)///G := µ−1
1 (α) ∩ µ−1

2 (0) ∩ µ−1
3 (0)/G,

where α is a constant multiple of the identity (depending on dE) chosen
so that µ1 = α minimizes the Yang-Mills-Higgs functional

YMH(A,Φ) = ‖FA + [Φ,Φ∗]‖2

In the following, B or B0 (resp. A or A0) will often be used to denote
the space of Higgs bundles (resp. connections) with non-fixed or fixed
determinant, and the extra notation will be omitted if the meaning is
clear from the context. Let Bst (resp. Bss) denote the space of stable
(resp. semistable) Higgs bundles, those for which every Φ-invariant
holomorphic subbundle F ⊂ E satisfies

deg(F )

rank(F )
<

deg(E)

rank(E)

(
resp.

deg(F )

rank(F )
≤

deg(E)

rank(E)

)

Similarly for Bst
0 and B0

ss. Let 〈u, v〉 =
∫
M tr{u∗̄v} be the L2 inner

product on Ω0(ad(E)), with associated norm ‖u‖2 = 〈u, u〉. The func-
tional YMH is defined on B and B0, and µ

−1(α) ∩ µ−1
C

(0) is the subset
of Higgs bundles that minimize YMH.
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Theorems of Hitchin [8] and Simpson [12] identify the hyperkähler
quotient

{
Bmin = µ−1

1 (α) ∩ µ−1
C

(0)
}
/G

with the moduli space of semistable Higgs bundles of rank 2, degree
dE , and non-fixed determinant MHiggs(2, dE) = Bss

//
GC, and simi-

larly in the fixed determinant case MHiggs
0 (2, dE) = Bss

0

//
G0

C. Since
−2id′′AΦ = µ2 + iµ3, this hyperkähler quotient can be viewed as a sym-
plectic quotient of the singular space of Higgs bundles

T ∗A///G =
(
B ∩ µ−1

1 (α)
)
/G

This paper uses the equivariant Morse theory of the functional YMH
on the space B and B0 to study the topology of the moduli space of
rank 2 Higgs bundles for both fixed and non-fixed determinant and
both degree zero and odd degree. The main results are the following.

Theorem 1.1. For the degree zero case, we have the following formu-

lae for the equivariant Poincaré polynomials. For the fixed determinant

case,

P G
t (B

ss
0 (2, 0)) =Pt(BG)−

∞∑

d=1

t2µd
(1 + t)2g

1− t2

+

g−1∑

d=1

t2µdPt(S̃
2g−2d−2M),

(2)

and for the non-fixed determinant case,

P G
t (B

ss(2, 0)) =Pt(BG)−
∞∑

d=1

t2µd
(1 + t)4g

(1− t2)2

+

g−1∑

d=1

t2µdPt(S
2g−2d−2M)

(1 + t)2g

1− t2
,

(3)

where µd = g + 2d− 1 and S̃nM denotes the 22g-fold cover of the sym-

metric product SnM as described in [8, sect. 7].
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Corollary 1.2. The equivariant Poincaré polynomial of the space of

semistable Higgs bundles of rank 2 and degree zero with fixed determi-

nant over a compact Riemann surface M of genus g is given by

P G
t (B

ss
0 (2, 0)) =

(1 + t3)2g − (1 + t)2gt2g+2

(1− t2)(1− t4)

− t4g−4 +
t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

+
(1 + t)2gt4g−4

2(1− t2)

(
2g

t+ 1
+

1

t2 − 1
−

1

2
+ (3− 2g)

)

+
1

2
(22g − 1)t4g−4

(
(1 + t)2g−2 + (1− t)2g−2 − 2

)

and in the non-fixed determinant case,

P G
t (B

ss(2, 0)) =
(1 + t)2g

(1− t2)2(1− t4)

(
(1 + t3)2g − (1 + t)2gt2g+2

)

+
(1 + t)2g

1− t2

(
−t4g−4 +

t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

)

+
(1 + t)4gt4g−4

2(1− t2)2

(
2g

t+ 1
+

1

t2 − 1
−

1

2
+ (3− 2g)

)

The odd degree case was studied by Hitchin [8] using the Morse the-

ory of the functional ‖Φ‖2 which appears as (twice) the moment map
associated to the S1 action eit · (A,Φ) = (A, eitΦ) on the moduli space

MHiggs
0 (2, 1). The methods developed in this paper give a new proof of

Hitchin’s result.

Theorem 1.3 (cf. [8, sect. 7]).

Pt(M
Higgs
0 (2, 1)) = Pt(BG)−

∞∑

d=1

t2µd
(1 + t)2g

1− t2
+

g−1∑

d=1

t2µdPt(S̃
2g−2d−1M)

where S̃nM denotes the 22g-fold cover of the symmetric product SnM
as described in [8, sect. 7]. In the non-fixed determinant case,

Pt(M
Higgs(2, 1)) = (1− t2)Pt(BG)−

∞∑

d=1

t2µd(1 + t)4g
1

1− t2

+

g−1∑

d=1

t2µdPt(S
2g−2d−1M × Jd(M))

where µd = g + 2d− 2.

As mentioned above, the moduli space MHiggs is the hyperkähler
quotient of T ∗A by the action of G, with associated hyperkähler Kirwan
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map:

κH : H∗
G(A×Ω0(K ⊗ End(E))) → H∗

G(µ
−1
1 (0) ∩ µ−1

C
(0))

induced by the inclusion µ−1
1 (0)∩µ−1

C
(0) →֒ A×Ω0(K⊗End(E)). The

Morse theory techniques used to prove Theorems 1.2 and 1.3 also lead
to a natural proof of the following.

Theorem 1.4. The hyperkähler Kirwan map is surjective for the

space of rank 2 Higgs bundles of non-fixed determinant, for both degree

zero and for odd degree.

For the case of odd degree, surjectivity was previously shown by
Hausel and Thaddeus [7] using different methods. The result proved
here applies as well to the heretofore unknown degree zero case, and the
proof follows naturally from the Morse theory approach used in this pa-
per. In the fixed determinant case, Hitchin’s calculation

of Pt(M
Higgs
0 (2, 1)) for a compact genus 2 surface shows that

b5(M
Higgs
0 (2, 1)) = 34; however, for genus 2, b5(BGSU(2)) = 4, hence

surjectivity cannot hold in this case.
The most important technical ingredient of this paper is the result

of [13] that the gradient flow of YMH on the spaces B and B0 con-
verges to a critical point that corresponds to the graded object of the
Harder-Narasimhan-Seshadri filtration of the initial conditions to the
gradient flow. The functional YMH then provides a gauge group equi-
variant stratification of the spaces B, B0, and there is a well-defined
deformation retraction of each stratum onto an associated set of critical
points. This convergence result is sufficient to develop a Morse-type
theory on the singular spaces B and B0 and to compute the cohomology
of the semistable strata Bss and Bss

0 . It is therefore a consequence of our
methods that the lack of Kirwan surjectivity in the fixed determinant
case is not due to analytic problems, as one might initially suspect.

More precisely, the results of [13] show that this Morse stratification
is the same as the stratification by the type of the Harder-Narasimhan
filtration (cf. [7]). In the case where rank(E) = 2 the strata are enu-
merated as follows. Given an unstable Higgs pair (A,Φ), there exists a
destabilizing Φ-invariant line bundle L ⊂ E. The quotient E/L is a line
bundle (and hence stable), therefore the Harder-Narasimhan filtration
is 0 ⊂ L ⊂ E. In this case the type of the Harder-Narasimhan filtration
is determined by the integer d = degL, and so

B = Bss ∪
⋃

d∈Z
d> 1

2
dE

Bd,
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where Bd is the set of Higgs pairs with Harder-Narasimhan type d. For
d > dE/2 we define the space Xd to be the union

(4) Xd = Bss ∪
⋃

ℓ∈Z
d≥ℓ> 1

2
dE

Bℓ

and by convention we set X⌊dE/2⌋ = Bss. Then {Xd}
∞
d=⌊dE/2⌋ is the

Harder-Narasimhan and YMH-Morse stratification.
This approach for MHiggs is a special case of a more general method

originally outlined by Kirwan, where the topology of a hyperkähler quo-
tient M///G can be studied using a two-step process. First, the coho-

mology of µ−1
C

(0) is calculated using the Morse theory of ‖µC‖
2 on M

associated to the complex moment map µC = µ2 + iµ3, and then the
cohomology of M///G can be obtained by studying the Kähler quotient
of µ−1

C
(0) by the group G with moment map µ1. In the case of M =

A×Ω0(K⊗End(E)) we have that H∗
G(A×Ω0(K⊗End(E))) = H∗

G(B).
Therefore, in the Higgs bundle case studied here, it only remains to
study the Morse theory of YMH = ‖µ1‖

2 on B and B0 respectively.
The formula obtained here for the equivariant cohomology of the

minimum has the form

(5) P G
t (B

ss) = P G
t (B)−

∞∑

d=0

t2µdP G
t (Bd) +

g−1∑

d=1

t2µdP G
t (B

′
d,ε,B

′′
d,ε)

where Bd denotes the d
th stratum of the functional YMH, µd is the rank

of a certain bundle over the dth critical set ηd (see (24)) representing
a subset of the negative eigenspace of the Hessian of YMH at ηd, and
P G
t (B

′
d,ε,B

′′
d,ε) are correction terms arising from the fact that the Morse

index is not well-defined on the first g − 1 critical sets. Indeed, as
shown in [13], the Morse index at each critical point of YMH can jump
from point to point within the same component of the critical set, and so
standard Morse theory cannot be used a priori. If the space B = µ−1

C
(0)

were smooth then the Morse index would be well-defined and the Morse
function equivariantly perfect (as is the case for the symplectic reduction
considered in [1] or [9]) and the formula for the cohomology of M///G
would only consist of the first two terms in (5). However, this paper
shows that it is possible to construct the Morse theory by hand, using the
commutative diagram (29) in Section 3, and computing the cohomology
groups of the stratification at each stage.

In order to explain how to define the index µd in our case, we proceed
as follows: Regarding A × Ω0(K ⊗ End(E)) as the cotangent bundle
T ∗A, and B = µ−1

C
(0) as a subspace of this bundle, on a critical set of

YMH the solutions of the negative eigenvalue equation of the Hessian of
YMH = ‖µ1‖

2 split naturally into two components: one corresponding

to the index of the restricted functional ‖µ1|A‖
2, and one along the
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direction of the cotangent fibers. The dimension of the first component
is well-defined over all points of the critical set (this corresponds to µd
in the formula above), and the Atiyah-Bott lemma can be applied to the
negative normal bundle defined along these directions. The dimension
of the second component is not well-defined over all points of the critical
set; the methods used here to deal with this show that this leads to extra
terms in the Poincaré polynomial of BG corresponding to P G

t (B
′
d,ε,B

′′
d,ε).

More or less this method should work for any hyperkähler quotient of a
cotangent bundle.

For the non-fixed determinant case, the long exact sequence obtained
at each step of the Morse stratification splits into short exact sequences,
thus providing a simple proof of the surjectivity of the hyperkähler Kir-
wan map. This is done by careful analysis of the correction terms, and
it is in a way one of the key observations of this paper (cf. Section 4.1).
As mentioned above, this fails in the fixed determinant case.

This paper is organized as follows. Section 2 describes the infini-
tesimal topology of the stratification arising from the Yang-Mills-Higgs
functional. We define an appropriate linearization of the “normal bun-
dle” to the strata and compute its equivariant cohomology.

Section 3 is the heart of the paper and contains the details of the
Morse theory used to calculate the cohomology of the moduli space.
The first result proves the isomorphism in Proposition 3.1. This is the
exact analogue of Bott’s Lemma [3, p. 250] in the sense of Bott-Morse
theory. The second main result of the section is the commutative dia-
gram (29), which describes how attaching the strata affects the topology
of our space. As mentioned before, the main difference between Poincaré
polynomials of hyperkähler quotients and Poincaré polynomials of sym-
plectic quotients is the appearance of the rather mysterious correction
terms in formula (5). In the course of the proof of Proposition 3.1 we
show how these terms correspond by excision to the fixed points of the
S1 action on the moduli space of Higgs bundles. This in our opinion
provides an interesting link between our approach and Hitchin’s that
should be further explored.

Section 4.1 contains a detailed analysis of the exact sequence derived
from the Morse theory. We prove Kirwan surjectivity for any degree
in the non-fixed determinant case (cf. Theorem 4.1). This is achieved
by showing that the vertical exact sequence in diagram (29) splits, in-
ducing a splitting on the horizontal sequence. Key to this are results
of Macdonald [11] on the cohomology of the symmetric product of a
curve. Next, we introduce the fundamental Γ2 = H1(M,Z2) action on
the equivariant cohomology which played an important role in the orig-
inal work of Harder-Narasimhan, Atiyah-Bott, and Hitchin (cf. [1, 8]).
The action splits the exact sequences in diagram (29) into Γ2-invariant
and noninvariant parts, and the main result is Theorem 4.13, which
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demonstrates that Kirwan surjectivity holds on the Γ2-invariant part of
the cohomology.

Finally, Section 5 contains the computations of the equivariant Poin-
caré polynomials of Bss and Bss

0 stated above.

Acknowledgments. G.D. supported in part by NSF grant DMS-
0604930. J.W. supported in part by NSF grant DMS-0405670 and DMS-
0907110. R.W. supported in part by NSF grant DMS-0805797. We are
thankful to Megumi Harada, Nan-Kuo Ho and Melissa Liu for pointing
out an error in a previous version of the paper.

2. Local structure of the space of Higgs bundles

In this section we explain the Kuranishi model for Higgs bundles
(cf. [2] and [10, ch. VII]) and derive the basic results needed for the
Morse theory of Section 3. For simplicity, we treat the case of non-fixed
determinant, and the results for fixed determinant are identical mutatis

mutandi.

2.1. The deformation complex. We begin with the deformation the-
ory.

Infinitesimal deformations of (A,Φ) ∈ B modulo equivalence are de-
scribed by the following elliptic complex, which we denote by C(A,Φ).

C0
(A,Φ)

D1
// C1

(A,Φ)

D2
// C2

(A,Φ)

Ω0(End(E))
D1

// Ω0,1(End(E)) ⊕ Ω1,0(End(E))
D2

// Ω2(End(E))

(6)

where
D1(u) = (d′′Au, [Φ, u]) , D2(a, ϕ) = d′′Aϕ+ [a,Φ]

Here, D1 is the linearization of the action of the complex gauge group
on B, and D2 is the linearization of the condition d′′AΦ = 0. Note that
D2D1 = [d′′AΦ, u] = 0 if (A,Φ) ∈ B.

The hermitian metric gives adjoint operators D∗
1, D

∗
2, and the spaces

of harmonic forms are given by

H0(C(A,Φ)) = kerD1

H1(C(A,Φ)) = kerD∗
1 ∩ kerD2

H2(C(A,Φ)) = kerD∗
2

with harmonic projections Πi : C
i
(A,Φ) → Hi(C(A,Φ)).

We will be interested in the deformation complex along higher critical
sets of the Yang-Mills-Higgs functional. These are given by split Higgs
bundles (A,Φ) = (A1⊕A2,Φ1⊕Φ2) corresponding to a smooth splitting
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E = L1 ⊕ L2 of E with degL1 = d > degL2 = dE − d. The set of all
such critical points is denoted by ηd ⊂ B. We will often use the notation
L = L1 ⊗ L∗

2, and Φ♭ = 1
2(Φ1 − Φ2), and denote the components of

End(E) ≃ Li ⊗ L∗
j in the complex by uij , aij , ϕij , u♭ =

1
2(u11 − u22),

etc. Define End(E)UT to be the subbundle of End(E) consisting of
endomorphisms that preserve L1, and End(E)SUT ⊂ End(E)UT to be
the subbundle of endomorphisms whose component in the subbundle
End(L1)⊕ End(L2) is zero. We say that

(a, ϕ) ∈ Ω0,1(End(E)UT )⊕Ω1,0(End(E)UT )

is upper-triangular, and

(a, ϕ) ∈ Ω0,1(End(E)SUT )⊕Ω1,0(End(E)SUT )

is strictly upper-triangular. Similarly, define the lower-triangular, strictly
lower-triangular, diagonal, and off-diagonal endomorphisms, with the
obvious notation. Since Φ is diagonal, harmonic projection preserves
components. For example, H1(C(A,Φ)) consists of all (a, ϕ) satisfying

d′′ϕii = 0 (d′′)∗aii = 0(7)

d′′Aϕ12 + 2Φ♭a12 = 0 (d′′A)
∗a12 + 2∗̄(Φ♭∗̄ϕ12) = 0(8)

d′′Aϕ21 − 2Φ♭a21 = 0 (d′′A)
∗a21 − 2∗̄(Φ♭∗̄ϕ21) = 0(9)

where ∗̄ is defined as in [10, eq. (2.8)].
The following construction will be important for the computations in

this paper.

Definition 2.1. Let q̃ : T → ηd be the trivial bundle over ηd with
fiber

Ω0,1(End(E)) ⊕ Ω1,0(End(E))

and define ν−d ⊂ T to be the subspace with projection map q̃ : ν−d → ηd,

where the fiber over (A,Φ) ∈ ηd is H1(CSLT
(A,Φ)). Note that in general the

dimension of the fiber may depend on the Higgs structure.
We also define the subsets

ν ′d = ν−d \ ηd

ν ′′d =
{
((A,Φ), (a, ϕ)) ∈ ν−d : H(a21) 6= 0

}

where H denotes the d′′A-harmonic projection.

2.2. Equivariant cohomology of the normal spaces. Note that
there is a natural action of G on the spaces introduced in Definition 2.1.
In this section we compute the G-equivariant cohomology associated to
the triple ν−d , ν

′
d, and ν

′′
d . We first make the following
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Definition 2.2. Let (A,Φ) ∈ ηd, E = L1 ⊕ L2, and L = L1 ⊗ L∗
2.

Let (a, ϕ) ∈ Ω0,1(End(E)) ⊕ Ω1,0(End(E)). Since degL > 0, there is a
unique f21 ∈ Ω0(L∗) such that a21 = H(a21) + d′′Af21. Define
(10)
Ψ : Ω0,1(End(E))⊕Ω1,0(End(E)) → H1,0(L) : (a, ϕ) 7→ H(ϕ21+2f21Φ♭)

Set ψ21 = ϕ21+2f21Φ♭, and let F21 be the unique section in (ker(d′′A)
∗)⊥

⊂ Ω1,1(L∗) such that ψ21 = Ψ(a, ϕ) + (d′′A)
∗F21.

Let

(11) Td =
{
(a, ϕ) ∈ ν−d : H(a21) = 0 , Ψ(a, ϕ) 6= 0

}

and set µd = g − 1 + 2d− dE . We will prove the following

Theorem 2.3. There are isomorphisms

H∗
G(ν

−
d , ν

′′
d ) ≃ H∗−2µd

G (ηd)(12)

H∗
G(ν

′
d, ν

′′
d ) ≃ H∗−2µd

G (Td)(13)

With the notation above, eq. (9) becomes

�AF21 + 2H(a21)Φ♭ = 0(14)

�Af21 + 4‖Φ♭‖
2f21 = (d′′A)

∗(2∗̄(Φ♭∗̄F21)) + 2∗̄(Φ♭∗̄Ψ(a, ϕ))(15)

Given (H(a21),Ψ(a, ϕ)) ∈ H0,1(L∗)⊕H1,0(L∗), satisfying H(H(a21)Φ♭)
= 0, (14) uniquely determines F21. Then (15) uniquely determines f21.
Note that since degL > 0, �A, and therefore �A+‖Φ♭‖

2, has no kernel.
We then reconstruct (a, ϕ) ∈ H1(CSLT

(A,Φ)) by setting a21 = H(a21)+d
′′
Af21,

and ϕ21 = Ψ(a, ϕ) + (d′′A)
∗F21 − 2f21Φ♭. Thus, we have shown

ν−d ∩ q̃−1(A,Φ)

≃
{
(H(a21),Ψ(a, ϕ)) ∈ H0,1(L∗)⊕H1,0(L∗) : H(H(a21)Φ♭) = 0

}

(16)

Next, let ηd,0 ⊂ ηd be the subset of critical points where Φ = 0. Notice
that ηd,0 →֒ ηd is a G-equivariant deformation retraction under scaling
(A,Φ) 7→ (A, tΦ), for 0 ≤ t ≤ 1. Let

ν−d,0 = ν−d ∩ q̃−1(ηd,0) , ν
′
d,0 = ν ′d ∩ q̃−1(ηd,0) , ν

′′
d,0 = ν ′′d ∩ q̃−1(ηd,0)

We have the following

Lemma 2.4. There is a G-equivariant retraction ν−d,0 →֒ ν−d that

preserves the subspaces ν ′d and ν ′′d .

Proof. Given (A,Φ) and (a21, ϕ21) ∈ Ω0,1(L∗)⊕Ω1,0(L∗), let (f21(Φ),
F21(Φ)) be the unique solutions to (14) and (15). Notice that (f21(0),
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F21(0)) = (0, 0). Then an explicit retraction may be defined as follows:

ρ : [0, 1] × ν−d −→ ν−d

ρ(t, (A,Φ), (a, ϕ)) =
(
(A, tΦ),H(a21) + d′′Af21(tΦ),

Ψ(a, ϕ) + (d′′A)
∗F21(tΦ)− 2tf21(tΦ)Φ♭

)

It is easily verified that ρ satisfies the properties stated in the lemma.
q.e.d.

Proof of Theorem 2.3. First, note that by Riemann-Roch, dimH0,1(L∗)
= µd. By Lemma 2.4, there are G-equivariant homotopy equivalences
(ν−d,0, ν

′′
d,0) ≃ (ν−d , ν

′′
d ), and (ν ′d,0, ν

′′
d,0) ≃ (ν ′d, ν

′′
d ). Also, since ηd,0 →֒ ηd

is a G-equivariant deformation retraction, H∗
G(ηd) ≃ H∗

G(ηd,0). By (16),
a similar statement holds for

(17) Td,0 = Td ∩ q̃
−1(ηd,0)

Hence, it suffices to prove

H∗
G(ν

−
d,0, ν

′′
d,0) ≃ H∗−2µd

G (ηd,0)(18)

H∗
G(ν

′
d,0, ν

′′
d,0) ≃ H∗−2µd

G (Td,0)(19)

From (16) we have

ν−d,0 ∩ q̃−1(A, 0) ≃ H0,1(L∗)⊕H1,0(L∗)

Then (18) follows from this and the Thom isomorphism theorem. Next,
let

Yd =
{
(a, ϕ) ∈ ν ′′d,0 : Ψ(a, ϕ) = 0

}

Clearly, Yd is closed in ν ′′d,0, and one observes that it is also closed in

ν ′d,0.
Hence, by excision and the Thom isomorphism applied to the projec-

tion to H1,0(L∗),

H∗
G(ν

′
d,0, ν

′′
d,0) ≃ H∗

G(ν
′
d,0 \ Yd, ν

′′
d,0 \ Yd) ≃ H∗−2µd

G (Td,0)

This proves (19). q.e.d.

There is an important connection between the topology of the space
Td,0 and the fixed points of the S1-action on the moduli space of semi-
stable Higgs bundles, and this will be used below. Recall from [8,
sect. 7] that the non-minimal critical point set of the function ‖Φ‖2 on
MHiggs(2, dE) has components cd corresponding to equivalence classes
of (stable) Higgs pairs (A,Φ), where A = A1 ⊕ A2 is a split connec-
tion on E = L1 ⊕ L2 with degL1 = d > degL2 = dE − d and Φ 6= 0
is strictly lower triangular with respect to the splitting. On the other
hand, it follows from (9) and (17) that

Td,0 =
{
((A,Φ = 0), (α21 = 0, ϕ21)) : A = A1 ⊕A2 , d

′′
A(ϕ21) = 0

}

Taking into account gauge equivalence, we therefore obtain the following
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Lemma 2.5. Let cd be as above. For the non-fixed determinant case,

H∗
G(Td,0) = H∗(cd)⊗H∗(BU(1))

and in the fixed determinant case, H∗
G(Td,0) = H∗(cd).

3. Morse Theory on the space of Higgs bundles

The purpose of this section is to derive the theoretical results under-
pinning the calculations in Section 5. This is done in a natural way,
using the functional YMH as a Morse function on the singular space
B. As a consequence, we obtain a criterion for hyperkähler Kirwan sur-
jectivity in Corollary 3.5, which we show is satisfied for the non-fixed
determinant case in Section 4.1. The key steps in this process are (a)
the proof of the isomorphism (20), which relates the topology of a neigh-
borhood of the stratum to the topology of the negative eigenspace of the
Hessian on the critical set (a generalization of Bott’s isomorphism [3, p.
250] to the singular space of Higgs bundles), and (b) the commutative
diagram (29), which provides a way to measure the imperfections of the
Morse function YMH caused by the singularities in the space B.

The methods of this section are also valid for the rank 2 degree 1
case, and in Section 5 they are used to provide new computations of the
results of [8] (fixed determinant case) and [7] (non-fixed determinant
case).

3.1. Relationship to Morse-Bott theory. Recall the spaces ν−d , ν
′
d,

and ν ′′d from Definition 2.1. This section is devoted to the proof of the
Bott isomorphism

Proposition 3.1. For d > dE/2, there is an isomorphism

(20) H∗
G(Xd,Xd−1) ≃ H∗

G(ν
−
d , ν

′
d)

Let Ad denote the stable manifold in A of the critical set ηd,0 of the
Yang-Mills functional (cf. [1, 5]). We also define

XA
d = Ass ∪

⋃

dE/2<ℓ≤d

Aℓ

Let X ′′
d = Xd \ pr−1(Ad). By applying the five lemma to the exact

sequences for the triples (Xd,Xd−1,X
′′
d ) and (ν−d , ν

′
d, ν

′′
d ), it suffices to

prove the two isomorphisms

H∗
G(Xd,X

′′
d ) ≃ H∗

G(ν
−
d , ν

′′
d )(21)

H∗
G(Xd−1,X

′′
d ) ≃ H∗

G(ν
′
d, ν

′′
d ) .(22)

We begin with the first equality.

Proof of (21). By (12), the result of Atiyah-Bott [1], and the fact that
the projection ηd → ηd,0 has contractible fibers, it suffices to show

H∗
G(Xd,X

′′
d ) ≃ H∗

G(X
A
d ,X

A
d−1)
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Also, note that for ℓ > d/2, pr(Bℓ) = Aℓ. Indeed, the inclusion ⊃ comes
from taking Φ = 0, and the inclusion ⊂ follows from the fact that for
any extension of line bundles

0 −→ L1 −→ E −→ L2 −→ 0

with degL1 > degL2, 0 ⊂ L1 ⊂ E is precisely the Harder-Narasimhan
filtration of E. With this understood, let Kd = Xd ∩ pr−1 (∪ℓ>dAℓ).
Then we claim that Kd, which is manifestly contained in X ′′

d , is in fact
closed in X ′′

d . To see this, let (Aj ,Φj) ∈ Kd, (Aj ,Φj) → (A,Φ) ∈ Xd.
By definition, either (A,Φ) ∈ Bss, or (A,Φ) ∈ Bℓ, ℓ ≤ d. Notice that
by semicontinuity, A ∈ ∪ℓ>dAℓ. Hence, the second possibility does
not occur. It must therefore be the case that (A,Φ) ∈ Bss, and hence
(A,Φ) ∈ Kd also.

Since the fibers of the map pr : Xd \ Kd → pr(Xd \ Kd) are G-
equivariantly contractible via scaling of the Higgs field, it follows from
excision that

H∗
G(Xd,X

′′
d ) ≃ H∗

G(Xd \ Kd,X
′′
d \ Kd) ≃ H∗

G(pr(Xd \ Kd),pr(X
′′
d \ Kd))

However,

pr(Xd \ Kd) = XA
d , pr(X ′′

d \ Kd) = XA
d−1

This completes the proof. q.e.d.

Proof of (22). By the isomorphism (13) (see also Lemma 2.4), it suffices
to prove H∗

G(Xd−1,X
′′
d ) ≃ H∗

G(Td,0). From the proof of (21) we have

X ′′
d =

{
Bss ∪ (∪dE/2<ℓ≤dBℓ)

}
\ pr−1(Ad)

=
{
Bss \ pr−1(Ad)

}
∪ (∪dE/2<ℓ≤d−1Bℓ)

whereas

Xd−1 = Bss ∪ (∪dE/2<ℓ≤d−1Bℓ)

Since ∪dE/2<ℓ≤d−1Bℓ ⊂ X ′′
d is closed in Xd−1, it follows from excision

that

H∗
G(Xd−1,X

′′
d ) ≃ H∗

G(B
ss,Bss \ pr−1(Ad))

By the main result of [13], the YMH-flow gives a G-equivariant defor-
mation retract to Bmin. Hence,

H∗
G(Xd−1,X

′′
d ) ≃ H∗

G(Bmin,Bmin \ pr−1(Ad)).

Next, notice that the singularities of Bmin correspond to strictly semi-
stable points and therefore there exists a neighborhoodNd of pr

−1(Ad)∩
Bmin in Bmin consisting entirely of smooth points. Furthermore, G acts
on Nd with constant central transformations as stabilizers. Therefore,
by again applying excision and passing to the quotient we obtain

H∗
G(Xd−1,X

′′
d ) ≃ H∗

G(Nd,Nd \ pr
−1(Ad))

≃ H∗(Nd/G, (Nd \ pr
−1(Ad))/G) ⊗H∗(BU(1)).
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Now according to Frankel and Hitchin (cf. [8, sect. 7]) the latter equality
localizes the computation to the d-th component cd of the fixed point
set for the S1-action on Bmin/G. Hence,

H∗
G(Xd−1,X

′′
d ) ≃ H∗−2µd(cd)⊗H∗(BU(1)).

The result follows by combining the above isomorphism with Theorem
2.3 and Lemma 2.5. q.e.d.

3.2. A framework for cohomology computations. From Propo-
sition 3.1, the computation of H∗

G(ν
−
d , ν

′
d) in Theorem 2.3 leads to a

computation of the equivariant cohomology of the space of rank 2 Higgs
bundles, using the commutative diagram (29). Recall the decomposition
(4).

The inclusion Xd−1 →֒ Xd induces a long exact sequence in equivari-
ant cohomology

(23) · · · → H∗
G(Xd,Xd−1) → H∗

G(Xd) → H∗
G(Xd−1) → · · · ,

and the method of this section is to relate the cohomology groups
H∗

G(Xd) and H∗
G(Xd−1) by H∗

G(Xd,Xd−1) and the maps in the corre-

sponding long exact sequence for (ν−d , ν
′
d, ν

′′
d ).

Let Jd(M) denote the Jacobian of degree d line bundles over the
Riemann surface M , let SnM denote the nth symmetric product of M ,

and let S̃nM denote the 22g cover of SnM described in [8, eq. (7.10)].
The critical sets correspond to Φ-invariant holomorphic splittings E =
L1 ⊕ L2; therefore, after dividing by the unitary gauge group G, the
critical sets of YMH are

(24) ηd =

{
T ∗Jd(M)× T ∗JdE−d(M) non-fixed determinant case;

T ∗Jd(M) fixed determinant case.

By combining this with Lemma 2.5 and the computation in [8] we
obtain

Lemma 3.2. In the non-fixed determinant case

H∗
G(ηd)

∼= H∗(Jd(M)× Jn(M)) ⊗H∗(BU(1))⊗2(25)

H∗
G(Td)

∼= H∗(Jd(M))⊗H∗(SnM)⊗H∗(BU(1)).(26)

In the fixed determinant case

H∗
G(ηd)

∼= H∗(Jd(M))⊗H∗(BU(1))(27)

H∗
G(Td)

∼= H∗(S̃nM).(28)

The spaces (ν−d , ν
′
d, ν

′′
d ) form a triple, and the isomorphism

H∗
G(Xd,Xd−1) ∼= H∗

G(ν
−
d , ν

′
d) from (20) implies the long exact sequence
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(abbrev. LES ) of this triple is related to the LES (23) in the following
commutative diagram.

(29)
...

δk−1

��

· · · // Hk
G(Xd,Xd−1)

∼=
��

αk
// Hk

G(Xd)
βk

//

��

Hk
G(Xd−1)

��

γk

// · · ·

· · · // Hk
G(ν

−
d , ν

′
d)

ζk

��

αk
ε

// Hk
G(ν

−
d )

βk
ε

//

ωk

��

Hk
G(ν

′
d)

γk
ε

// · · ·

Hk
G(ν

−
d , ν

′′
d )

`e
//

λk

��

ξk
88
p
p
p
p
p
p
p
p
p
p
p

Hk
G(ηd)

Hk
G(ν

′
d, ν

′′
d )

δk
��
...

where the two horizontal exact sequences are the LES of the pairs
(Xd,Xd−1) and (ν−d , ν

′
d), respectively. The vertical exact sequence in

the diagram is the LES of the triple (ν−d , ν
′
d, ν

′′
d ). The diagonal map ξk

is from the LES of the pair (ν−d , ν
′′
d ). Applying the Atiyah-Bott lemma

([1, prop. 13.4]) gives us the following lemma.

Lemma 3.3. The map ` e : Hk
G(ν

−
d , ν

′′
d ) → Hk

G(ηd) is injective and

therefore the map ξk is injective, since ωk ◦ ξk =` e.

From the horizontal LES of (29),

Hk
G(Xd−1)

imβk
∼=
Hk

G(Xd−1)

ker γk
∼= im γk ∼= kerαk+1

and also

imβk ∼=
Hk

G(Xd)

ker βk
∼=
Hk

G(Xd)

imαk

Therefore

dim kerαk+1 = dimHk
G(Xd−1)− dim imβk

= dimHk
G(Xd−1)− dimHk

G(Xd) + dim imαk

Lemma 3.4. kerαk ⊆ ker ζk.

Proof. Lemma 3.3 implies ξk is injective, and since αk
ε = ξk ◦ ζk,

then kerαk
ε = ker ζk. Using the isomorphism (20) to identify the spaces
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H∗
G(Xd,Xd−1) ∼= H∗

G(ν
−
d , ν

′
d), we see that kerαk ⊆ kerαk

ε , which com-
pletes the proof. q.e.d.

Corollary 3.5. If λk is surjective for all k, then βk is surjective for

all k.

Proof. If λk is surjective for all k, then ζk is injective for all k, and so
Lemma 3.4 implies αk is injective for all k. Therefore, βk is surjective
for all k. q.e.d.

In particular, we see that if for each stratum Xd, we can show that λk

is surjective for all k, then the inclusion Bss →֒ B induces a surjective
map κH : H∗

G(B) → H∗
G(B

ss). The next section shows that this is indeed
the case for non-fixed determinant Higgs bundles.

4. Hyperkähler Kirwan surjectivity

We now apply the results of Section 3 to the question of Kirwan
surjectivity for Higgs bundles. We establish surjectivity in the case of
the non-fixed determinant moduli space. In the fixed determinant case
surjectivity fails; this will be explained in more detail in Section 4.2,
where we introduce an action of Γ2 = H1(M,Z2) and prove surjectivity
onto the Γ2-invariant equivariant cohomology.

4.1. The non-fixed determinant case. For simplicity of notation,
throughout this section let n = 2g−2+dE −2d where dE = deg(E) and
d is the index of the stratum Bd as defined in Section 3. In this section
we prove

Theorem 4.1. The spaces MHiggs(2, 1) and MHiggs(2, 0) are hy-

perkähler quotients T ∗A///G for which the hyperkähler Kirwan map

κH : H∗
G(T

∗A) → H∗
G(B

ss)

is surjective.

As mentioned in the Introduction, for the spaceMHiggs(2, 1) a special
case of Theorem 4.1 has already been proven by Hausel and Thaddeus
in [7]. However, because of singularities their methods do not apply to
the space MHiggs(2, 0).

The calculations of Hitchin in [8] for MHiggs
0 (2, 1), and those of Sec-

tion 5 in this paper for MHiggs
0 (2, 0), show that the hyperkähler Kirwan

map cannot be surjective for the fixed determinant case. The results of
this section also provide a basis for the proof of Theorem 4.13 below,
where we show that the hyperkähler Kirwan map is surjective onto the
Γ2-invariant part of the cohomology. This is the best possible result for
the fixed determinant case.

The proof of Theorem 4.1 reduces to showing that the LES (23) splits,
and hence the map β∗ : H∗

G(Xd) → H∗
G(Xd−1) is surjective for each pos-

itive integer d. Lemma 3.4 shows that this is the case iff the vertical
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LES of diagram (29) splits. By Corollary 3.5, together with the descrip-
tion of the cohomology groups in Theorem 2.3, the proof of Theorem
4.1 reduces to showing that the map λ∗ : H∗−2µd

G (ηd) → H∗−2µd

G (Td)
is surjective. In the non-fixed determinant case, the following lemma
provides a simpler description of the map λ∗.

Lemma 4.2. The map λ∗ restricts to a map

λ∗r : H
∗−2µd(Jd(M)) ⊗H∗(BU(1)) → H∗−2µd(SnM),

and λ∗ is surjective iff λ∗r is surjective. The restriction of the map λ∗r
to H∗−2νd(Jd(M)) is induced by the Abel-Jacobi map SnM → Jn(M).

Proof. The same methods as [1, sect. 7] show that for the critical set
ηd, the following decomposition of the equivariant cohomology holds

H∗
G(ηd)

∼= H∗
Gdiag

(ηd) ∼= H∗
Gdiag

(η̃∗d),

where Gdiag is the subgroup of gauge transformations that are diago-
nal with respect to the Harder-Narasimhan filtration, η∗d refers to the
subset of critical points that split with respect to a fixed filtration,
Gdiag is the subgroup of constant gauge transformations that are di-
agonal with respect to the same fixed filtration, and η̃∗d is the fiber of
η∗d

∼= Gdiag ×Gdiag
η̃∗d. In the rank 2 case, the group Gdiag is simply the

torus T = U(1) × U(1) and we can define (using the local coordinates
on ν−d from Section 2)

Z̃∗
d = {(A,Φ, a, ϕ) ∈ (ν−d )r : (A,Φ) ∈ η̃∗d, a = 0}(30)

Z∗
d = {(A,Φ, a, ϕ) ∈ (ν−d )r : (A,Φ) ∈ η̃∗d, a = 0, ϕ 6= 0}(31)

(we henceforth omit the subscript 21 from (a, ϕ); also, L will denote a
general line bundle, and not necessarily L1⊗L

∗
2). The map λ∗ is induced

by the inclusion Z∗
d →֒ Z̃∗

d and so the map λ∗ becomes λ∗ : H∗
T (Z̃

∗
d) →

H∗
T (Z

∗
d). Let T ′ be the quotient of T by the subgroup of constant

multiples of the identity. Since the constant multiples of the identity
fix all points in Z̃∗

d and Z∗
d , then H

∗
T (Z̃

∗
d)

∼= H∗
T ′(Z̃∗

d)⊗H∗(BU(1)) and
H∗

T (Z
∗
d)

∼= H∗
T ′(Z∗

d )⊗H∗(BU(1)). Therefore the map

λ∗ : H∗
T ′(Z̃∗

d)⊗H∗(BU(1)) → H∗
T ′(Z∗

d)⊗H∗(BU(1))

is the identity on the factor H∗(BU(1)).

Now consider coordinates on Z̃∗
d given by (L1, L2,Φ1,Φ2, ϕ) where

L1 ∈ Jd(M), L2 ∈ JdE−d(M) are the line bundles of the holomorphic
splitting E = L1 ⊕ L2 and ϕ ∈ H0(L1L

∗
2 ⊗ K). For a fixed holomor-

phic structure, Φ1 and Φ2 take values in a vector space, and so Z̃∗
d is

homotopy equivalent to a fibration over

(32)
{
(L,ϕ) : L ∈ Jn , ϕ ∈ H0(L)

}

with fiber Jd(M). The fibration is trivialized by the map

(L1, L, ϕ) 7→ (L1, L2 = L1 ⊗K∗ ⊗ L,ϕ)
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Let Fn be the subspace of (32) with ‖ϕ‖ = 1. Then the cohomology of
the fiber bundle splits as

H∗
T ′(Z̃∗

d)
∼= H∗(Jd(M)) ⊗H∗

T ′(Jn(M))(33)

H∗
T ′(Z∗

d)
∼= H∗(Jd(M)) ⊗H∗

T ′(Fn)(34)

Note that Fn fibers over the symmetric product SnM with fiber U(1) ∼=
T ′, where T ′ acts trivially on the base, and freely on the fibers. The map
λ∗ restricts to the identity on the factorH∗(Jd(M)) in (33) and (34), and
therefore it restricts to a map H∗

T ′(Jn(M)) → H∗
T ′(Fn). Now the action

of T ′ fixes the holomorphic structures on L1 and L2, and so acts trivially
on the base of the fiber bundle. T ′ acts freely on a nonzero section
ϕ ∈ H0(L∗

1L2 ⊗ K) and so (after applying the deformation retraction
|ϕ| → 1), the quotient of the space Fn is the space of effective divisors
on M , since the zeros of each 0 6= ϕ ∈ H∗(L∗

1L2 ⊗K) correspond to an
effective divisor of degree n = 2g − 2 + dE − 2d. Therefore the map λ∗

restricts to a map

λ∗r : H
∗(Jn(M)) ⊗H∗(BU(1)) → H∗(SnM)

which is induced by the T ′-equivariant map Fn → Jn(M), which maps
a nonzero section ϕ ∈ H0(L∗

1L2 ⊗ K) to the line bundle L∗
1L2 ⊗ K.

On the quotient Fn/T
′ = SnM this restricts to the Abel-Jacobi map

SnM → Jn(M). q.e.d.

Let

Mpairs =
{
(L,Φ) : L ∈ Jn(M),Φ ∈ H0(L⊗K)

}

Mpairs
0 =

{
(L,Φ) : L ∈ Jn(M),Φ ∈ H0(L⊗K) \ {0}

}

The group U(1) acts on Mpairs and Mpairs
0 by eiθ · (L,Φ) = (L, eiθΦ).

The inclusion Mpairs
0 →֒ Mpairs is U(1)-equivariant with respect to this

action, and the proof of Lemma 4.2 shows that λ∗r is induced by this
inclusion.

Remark 4.3. The paper [11] describes the cohomology ring of the
symmetric product of a curve in detail. The result relevant to this paper
is that H∗(SnM) is generated by 2g generators inH1, and one generator
in H2. Therefore, the proof of Theorem 4.1 reduces to showing that λ∗r
maps onto these generators.

From the proof of [11, (14.1)] we have the following lemma for the
Abel-Jacobi map.

Lemma 4.4. λ∗r is surjective onto H1(SnM).

Next we need the following technical lemma.

Lemma 4.5. For any positive integer n, the cohomology group H2(Fn)
consists of products of elements of H1(Fn).
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Proof. First consider the case where n > 2g − 2. By Serre duality,
h1(L) = 0 for all L ∈ Jn(M), and so Riemann-Roch shows that h0(L) =
n + 1 − g. Therefore Fn is a sphere bundle over the Jacobian Jn(M)

with fiber the sphere S2(n−g+1)−1. By the spectral sequence for this fiber
bundle, Hk(Fn) ∼= Hk(Jn(M)) for all k ≤ 2(n − g + 1) − 1; therefore
in low dimensions the ring structure of H∗(Fn) is isomorphic to that of
H∗(Jn(M)). In particular, since 2(n − g + 1) − 1 ≥ 2g − 1 > 2, we see
that H2(Fn) consists of products of elements of H1(Fn).

When n < 2g − 2, we see that Fn is not a fiber bundle over the
Jacobian (since the dimension of the fiber may jump). For a fixed
basepoint x0 of M , consider the inclusion map Mn →֒MN given by

(x1, . . . , xn) 7→ (x1, . . . , xn, x0, . . . , x0)

This induces the inclusion of symmetric products i : SnM →֒ SNM , and
the description of the generators of H∗(SNM) in [11, eq. (3.1)] shows
that the induced map i∗ : H∗(SNM) → H∗(SnM) maps generators to
generators and hence is surjective. Therefore the inclusion i induces the
following map of fiber bundles



U(1) → Fn

↓
SnM


 →



U(1) → FN

↓
SNM




which is the identity map j : U(1) → U(1) on the fibers.
If N > 2g−2, then the previous argument implies H2(FN ) has no ir-

reducible generators, and so in the Serre spectral sequence for H∗(FN ),
the irreducible generator pN ∈ H2

(
SNM ;H0(U(1))

)
∼= H2(SNM) ⊗

H0(U(1)) must be killed by a differential (note that π1(S
NM) acts triv-

ially on the space of components of the fiber, and hence on H0(U(1))).
For dimensional reasons, this must be the differential

dN2 : E0,1
2

∼= H1(U(1)) ⊗H0(SNM) → E2,0
2

∼= H0(U(1)) ⊗H2(SNM)

on the E2 page of the spectral sequence. Since the map i∗ is surjective,
i∗ ◦ dN2 maps onto pn, the irreducible generator of H2(SnM).

Naturality of the Serre spectral sequence then shows that dn2 ◦j
∗ maps

onto pn, where d
n
2 : E0,1

2 → E2,0
2 is a differential on the E2 page of the

Serre spectral sequence for Fn. Since j∗ is an isomorphism, dn2 maps
onto the irreducible generator pn of H2

(
SnM ;H0(U(1))

)
.

The following diagram summarizes the argument.

H1(U(1)) ⊗H0(SNM)

j∗ iso.
��

dN
2

// H0(U(1)) ⊗H2(SNM)

i∗ surj.
��

H1(U(1)) ⊗H0(SnM)
dn
2

// H0(U(1)) ⊗H2(SnM)
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Therefore the irreducible generator in H2(SnM) is killed by a differ-
ential in the spectral sequence for Fn, and so there are no irreducible
generators of H2(Fn). q.e.d.

Lemma 4.6. λ∗r is surjective onto H2(SnM).

Proof. Using the definition of Fn from above, note that SnM ≃
Fn ×U(1) EU(1), where U(1) acts by multiplication on the fibers of
U(1) → Fn → SnM . Therefore SnM is homotopy equivalent to a fiber
bundle over Fn with fibers BU(1). From the Serre spectral sequence,
we have the map

(
H0(Fn)⊗H2(BU(1))

)
⊕

(
H1(Fn)⊗H1(BU(1))

)

⊕
(
H2(Fn)⊗H0(BU(1))

)
→ H2(SnM)

From [11], H2(SnM) has an irreducible generator pn. We have that
H1(BU(1)) = 0 and by Lemma 4.5 there are no irreducible generators
of H2(Fn) ⊗ H0(BU(1)). Therefore pn is in the image of the term
H0(Fn)⊗H2(BU(1)) ∼= C, and therefore this term is not killed by any
differential in the Serre spectral sequence for SnM ≃ Fn ×U(1) EU(1).

By construction, the map λ∗r is induced by a map of fiber bundles,
which is an isomorphism on the base BU(1)



Fn → Fn ×U(1) EU(1) ≃ SnM

↓
BU(1)


 →



Jn(M) → Jn(M)×U(1) EU(1)

↓
BU(1)




and therefore the induced map

H2(BU(1))⊗H0(Jn(M)) → H2(BU(1)) ⊗H0(Fn)

is an isomorphism on the E2 page of the respective Serre spectral se-
quences. Therefore the map

H2(BU(1))⊗H0(Jn(M)) →֒ H2(Jn(M)×U(1) EU(1)) → H2(SnM)

is surjective onto the generator pn of H2(SnM). q.e.d.

Proof of Theorem 4.1. The results of Lemmas 4.4 and 4.6, together with
Macdonald’s results about the cohomology of the symmetric product
SnM (see Remark 4.3), show that the map λ∗ is surjective. Therefore,
Corollary 3.5 implies κH is surjective. q.e.d.
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4.2. The action of Γ2 on the cohomology. First we recall the defi-
nition of the action of

Γ2
∼= H1(M,Z2) ∼= Hom(π1(M),Z2)

on the space of Higgs bundles (cf. [1, 8]). Γ2 can be identified with the
2-torsion points of the Jacobian J0(M) which act on MHiggs(2, dE) by
tensor product

L · (E,Φ) = (E ⊗ L,Φ)

The Jacobian acts also on MHiggs(1, k) by

L · (F,Φ) = (F ⊗ L2,Φ)

and the determinant map

det : MHiggs(2, dE) → MHiggs(1, dE) : (E,Φ) 7→ (detE, tr Φ)

becomes J0(M)-equivariant. Since L ∈ J0(M) acts on the base by ten-
soring with L2, we obtain, after lifting det from MHiggs(1, dE) (which is

homotopy equivalent to J0(M)) to the cover M̂Higgs(1, dE) correspond-
ing to Γ2, a product fibration

(35) d̂et : MHiggs
0 (2, dE)× M̂Higgs(1, dE) → M̂Higgs(1, dE)

The trivialization

(36) χ̂ : MHiggs
0 (2, dE)× M̂Higgs(1, dE) → M̂Higgs(2, dE)

given by (E,L) 7→ E ⊗ L descends to a homeomorphism

MHiggs
0 (2, dE)×Γ2

M̂Higgs(1, dE) ∼= MHiggs(2, dE)

(cf. [1, eq. (9.5)] for the case of holomorphic bundles). It is originally
one of the main observations of Atiyah and Bott (cf. [1, sects. 2 and 9])
that we can also define the Γ2-action via equivariant cohomology.

Recall from [1] that the group Γ of components of G is given by
Γ ∼= H1(M,Z). Let Γ′ = 2Γ ⊂ Γ be a sublattice of index 2, and let
G′ be the associated subgroup of G, whose components correspond to
elements of Γ′. By [1, Prop. 2.16], BG′ is torsion-free and has the same
Poincaré polynomial as BG.

The degree of a gauge transformation is the component of G contain-
ing g, i.e. deg g ∈ Γ. Dividing by the subgroup of constant central
gauge transformations, we obtain Ḡ = G/U(1), and Ḡ0 = G0/{±1}, and
we define

Ḡ′ = {g ∈ Ḡ : deg g ∈ Γ′}

Let B(1, k) denote the space of Higgs bundles on a line bundle L→M
of degree k, G(1) the corresponding gauge group, and Gp(1) the subgroup
based at p. Fix a basepoint D0 ∈ B0(2, dE) and define T : B(2, dE) →
B(1, dE), the trace map, by T (A,Φ) = (trA, tr Φ). Clearly, T is a fibra-
tion with fiber ≃ B0(2, dE).
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The fixed determinant gauge group G0 acts on B(2, dE) preserving
B0(2, dE) and such that T is invariant. To see this, note that if g ∈ G0,
then tr(D0gg

−1) = 0. Indeed, since G0 is connected it suffices to show
that tr(D0gg

−1) = tr(dgg−1) is locally constant. Any g in a neighbor-
hood of g0 can be expressed eug0, where u ∈ Lie(G0) is a smooth map
from M to the vector space of traceless endomorphisms. In particular,
tr(du) = d tr u = 0. But then

tr(dgg−1) = tr(d(eu)e−u) + tr(eudg0g
−1
0 e−u)

= tr(du) + tr(dg0g
−1
0 ) = tr(dg0g

−1
0 )

Now for g ∈ G0,

T (g(A), gΦg−1) =
(
tr(gAg−1 − dgg−1), tr gΦg−1

)
= (trA, tr Φ),

hence there is an induced fibration T : B(2, dE)×G0
EG → B(1, dE) with

fiber B0(2, dE)×G0
EG.

The group G/G0 ≃ G(1) induced by the determinant map acts fiber-
wise on T with nontrivial stabilizers on B(1, dE) given by the constant
U(1) gauge transformations. Therefore, following the approach of [1],
we pass to the quotient G = G/U(1), G0 = G0/{±1} and consider the
induced fibration T : B(2, dE) ×G0

EG → B(1, dE). We claim that

T is a trivial fibration. Indeed, with respect to the fixed base point
D0 ∈ B0(2, dE) define

χ : B(2, dE) −→ B0(2, dE)× B(1, dE)

χ(A,Φ) =
(
(A− (12 trA)I,Φ − (12 tr Φ)I), (trA, tr Φ)

)
.

Then χ descends to a trivialization

χ : B(2, dE)×G0
EG −→

(
B0(2, dE)×G0

EG
)
× B(1, dE).

Now the group G
/
G0 ≃ G(1) = G(1)

/
U(1) induced by the determinant

map acts freely on the total space and the base of T , but the induced
fibration on the quotient is not trivial. For this reason, we need to pass
to a subgroup.

Indeed, given g ∈ G(1), let deg g ∈ Γ = H1(M,Z) denote the degree
of the gauge transformation g. Since constant gauge transformations
have degree 0, it induces a map deg : G(1) → Γ. Let

G
′
(1) =

{
g ∈ G(1) : deg g ∈ 2Γ

}
.

We define G
′
=

{
g ∈ G : det(g) ∈ G

′
(1)

}
. Given g ∈ G

′
(1), set g = s2,

s ∈ G(1), and let ĝ =

(
s 0
0 s

)
∈ G. Define g[A,Φ, e] = [ĝ(A,Φ, e)]

for [A,Φ, e] ∈ B(2, dE) ×G0
EG. Notice that the action is well-defined

independent of the choice of square root. Furthermore, χ is equivariant,
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where the action of G
′
(1) is trivial on B0(2, dE) ×G0

EG and has the

usual action on B(1, dE). Hence the induced fibration

(37) T̂ : B(2, dE)×G
′ EG −→ B(1, dE)

/
G
′
(1)

can be trivialized by the homeomorphism

(38) χ̂ : B(2, dE)×G
′ EG −→

(
B0(2, dE)×G0

EG
)
× B(1, dE)

/
G
′
(1)

induced from χ.

Remark 4.7. Formulas (37) and (38) should be considered as the
equivariant analogues of (35) and (36).

Now Γ2 acts on the left-hand side of (38). It is also clear that the

action of Γ2 on B(1, dE)
/
G
′
(1) ∼= M̂Higgs(1, dE) is just by tensoring

with a torsion point in the Jacobian.

Definition 4.8. The action of Γ2 on B0(2, dE)×G0
EG is defined so

that the map χ̂ becomes Γ2-equivariant.

The following simple lemma identifies also the two actions on the
fibers of (35) and (37).

Lemma 4.9. On any subspace Y of B0(2, dE) invariant under G0 on

which G0 acts with constant stabilizer, the action of Γ2 on Y/G0 is given

by tensoring with a 2-torsion point of J0(M).

Proof. Given γ ∈ Γ2, let gγ be a gauge transformation in G(1) such

that deg(gγ) = γ mod H1(M, 2Z) and hγ ∈ G with det(hγ) = gγ . Note
that tr(h−1

γ dhγ) = g−1
γ dgγ . Then by Definition 4.8, the action of hγ on

B0(2, dE) (modulo gauge transformations in G0) is given by

hγ [(A,Φ)] = [(h−1
γ Ahγ + h−1

γ D0hγ −
1

2
tr
(
h−1
γ D0hγ + h−1

γ Ahγ
)
I,

h−1
γ Φhγ −

1

2
tr
(
h−1
γ Φhγ

)
I)]

=

[(
h−1
γ D0hγ + h−1

γ Ahγ −
1

2
(g−1

γ dgγ)I, h
−1
γ Φhγ

)]
,

since trA = 0 and trΦ = 0. We claim that this equivalent to tensoring
with the line bundle Lγ corresponding to γ. To see this last statement,
choose a simple loop σ on M and note that if γ[σ] = +1, then gγ has
even degree around the loop σ and so in an annulus around σ the gauge
transformation gγ = s2 is a square, hence the previous formula becomes

hγ [(A,Φ)] =
[
(ĝ−1hγ) · (A,φ)

]
,

where ĝ = sI as before (note that since gγ ∈ Ḡ(1) then g−1
γ dgγ =

dgγg
−1). Since ĝ−1hγ ∈ G0 then this shows that hγ [(A,Φ)] = [(A,Φ)] in

an annulus around σ.
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If γ[σ] = −1, then parametrise the loop σ by θ : 0 ≤ θ ≤ 2π and note
that since gγ has odd degree, then gγ = eiθs2 in an annulus around σ.
Therefore the effect of the gauge term (12gγ

−1dgγ)I is that it changes
the argument of the holonomy around σ by π, as desired. q.e.d.

In the above, we can restrict to the G0-invariant subspaces Xd of
B0(2, dE), and the action commutes with inclusions and connecting ho-
momorphisms from the LES in cohomology. Therefore, we have a LES
of Γ2 spaces and Γ2-equivariant maps

Hk
G0
(Xd,Xd−1)

αk
// Hk

G0
(Xd)

βk

// Hk
G0
(Xd−1)

γk

// Hk+1
G0

(Xd,Xd−1)

Lemma 4.10. The Γ2-action commutes with the isomorphism in (20)

(39) H∗
G0
(Xd,Xd−1) ∼= H∗

G0
(ν−d , ν

′
d),

and with the isomorphisms (12) and (13), (27), and (28).

Proof. First, note that the Γ2 action on B0(2, dE)×Ḡ0
EḠ0 preserves

the subspaces Bd×Ḡ0
EḠ0 and ν−d ×Ḡ0

EḠ0, Xd ×Ḡ0
EḠ0 and ν ′d×Ḡ0

EḠ0

for all values of d, and so the inclusion of pairs
(
ν−d ×Ḡ0

EḠ0, ν
′
d ×Ḡ0

EḠ0

)
→֒

(
Xd ×Ḡ0

EḠ0,Xd−1 ×Ḡ0
EḠ0

)

is Γ2-equivariant. Therefore the action of Γ2 commutes with the excision
isomorphism

H∗(Xd ×Ḡ0
EḠ0,Xd−1 ×Ḡ0

EḠ0) ∼= H∗(ν−d ×Ḡ0
EḠ0, ν

′
d ×Ḡ0

EḠ0),

which descends to the isomorphism (39) in equivariant cohomology.
The isomorphisms (27) and (28) arise from taking quotients

H∗
Ḡ0
(ηd) ∼= H∗(ηd×Ḡ0

EḠ0) ∼= H∗
U(1)(ηd/Ḡ0) ∼= H∗ (Jd(M))⊗H∗ (BU(1))

(where Ḡ0 acts on ηd with isotropy group U(1)), and

(40) H∗
Ḡ0
(Td) ∼= H∗(Td ×Ḡ0

EḠ0) ∼= H∗(Td/Ḡ0) ∼= H∗(S̃nM)

(since Ḡ0 acts freely on Td). The action of Γ2 on the space B0×Ḡ0
EḠ0 in-

duces actions on ηd×Ḡ0
EḠ0 and Td×Ḡ0

EḠ0, which in turn induces an ac-

tion on the spaces ηd/Ḡ0 and Td/Ḡ0. By Lemma 4.9, the action of γ ∈ Γ2

on the quotient ηd/Ḡ0 ≃ {(L1, L2) ∈ Jd(M)× JdE−d(M) : L1L2 = F}
is given by tensor product (L1, L2) 7→ (L1 ⊗ Lγ , L2 ⊗ Lγ), where Lγ ∈
J0(M) is the line bundle corresponding to γ. The induced action on the
cohomology is trivial by [1, prop. 9.7]. The action of Γ2 on the quotient
Td/Ḡ0 is also by tensor product, (L1, L2,Φ) 7→ (L1 ⊗ Lγ , L2 ⊗ Lγ ,Φ);
therefore the action on the right-hand side of (40) is via deck trans-

formations of the 22g-fold cover S̃nM → SnM (see also [8, sect. 7]).
q.e.d.
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Let N be a space with a Γ2-action. Then we have a splitting

H∗(N) ∼= H∗(N)Γ2 ⊕H∗(N)a

where H∗(N)Γ2 is the Γ2-invariant part of the cohomology and

H∗(N)a ∼= ⊕ϕ 6=1H
∗(N)ϕ

where ϕ varies over all homomorphisms Γ2 → {±1}. If N1, N2 are two
such spaces and f : H∗(N1) → H∗(N2) is a Γ2-equivariant homomor-
phism, we denote by fΓ2

(resp. fa) the restriction of f to H∗(N1)
Γ2

(resp. H∗(N1)
a).

Applying this notation to λ∗, we have

λ∗Γ2
: H∗

G(ν
−
d , ν

′′
d )

Γ2 → H∗
G(ν

′
d, ν

′′
d )

Γ2

The main result of this section is Lemma 4.12, which shows that λ∗Γ2

is surjective, a key step toward proving Theorem 4.13. The earlier

results (13) and Lemma 3.2 show that H∗
G(ν

′
d, ν

′′
d )

∼= H∗−2µd(S̃nM),

where n = 2g − 2 + dE − 2d. Points in S̃nM correspond to triples
(L1, L2,Φ) ∈ Jd(M)× JdE−d(M)×Ω0(L∗

1L2 ⊗K), where L1L2 = detE
is a fixed line bundle. Similarly, there is a corresponding 22g cover of
the Jacobian J̃n(M) = Jd(M)× JdE−d(M)/∼, where the equivalence is

given by (L1, L2) ∼ (L̃1, L̃2) if L1L2
∼= L̃1L̃2.

The isomorphisms

H∗
G(ν

−
d , ν

′′
d )

∼= H∗−2µd(ηd) ∼= H∗−2µd(J̃(M)×BU(1))

H∗
G(ν

′
d, ν

′′
d )

∼= H∗−2µd(Td) ∼= H∗−2µd(S̃nM)

from Theorem 2.3 and Lemma 3.2 show that the map λΓ2
is given by

λ∗Γ2
: H∗−2µd(J̃(M)×BU(1))Γ2 //

∼=
��

H∗−2µd(S̃nM)Γ2 ∼= H∗−2µd(SnM)

∼=
��

H∗−2µd(ηd)
Γ2 // H∗−2µd(Td)

Γ2

where n = 2g − 2 + dE − 2d, and µd = 2d − dE + g − 1. This map is
induced by the inclusion Td →֒ (ν−d )r (where the spaces are now subsets
of the space of fixed determinant Higgs bundles). We define the lifted

Abel-Jacobi map to be the map S̃nM → J̃(M), which takes a triple

(L1, L2,Φ) to the pair (L1, L2) ∈ J̃(M). The same proof as Lemma 4.2
in the previous section gives us the following

Lemma 4.11. The restriction of λ∗Γ2
to H∗−2µd(J̃n(M)) given by

(λ∗Γ2
)r : H

∗−2µd(J̃n(M))Γ2 → H∗−2µd(S̃nM)Γ2

is induced by the lifted Abel-Jacobi map.

Lemma 4.12. The map λ∗Γ2
is surjective.
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Proof. By [8, eqs. (7.12) and (7.13)], H∗(S̃nM)Γ2 ∼= H∗(SnM), and

we also haveH∗(J̃n(M))Γ2 ∼= H∗(Jn(M)). Therefore Lemma 4.4 implies

λ∗Γ2
is surjective onto H1(S̃nM)Γ2 . By the same argument as in Lemma

4.6 (with the Γ2-invariant part of the cohomology), λ∗Γ2
is surjective

onto H2(S̃nM)Γ2 . By [11], H∗(S̃nM)Γ2 ∼= H∗(SnM) is generated in
dimensions 1 and 2; hence, λ∗Γ2

is surjective. q.e.d.
4.3. Γ2-invariant hyperkähler Kirwan surjectivity. For fixed de-
terminant, the inclusion Bss

0 →֒ T ∗A0 induces a map on the Γ2-invariant
part of the G-equivariant cohomology which we call the Γ2-invariant hy-

perkähler Kirwan map

κΓ2

HK : H∗
G(T

∗A0) ∼= H∗
G(T

∗A0)
Γ2 → H∗

G(B
ss
0 )Γ2

In this section we prove

Theorem 4.13. κΓ2

HK is surjective.

As mentioned in the Introduction, it turns out that the full Kirwan map
is not surjective.

The second goal of this section is the following. The results of Section
4.1 show that the map ζk in Diagram (29) is always injective for non-
fixed determinant Higgs bundles, and so Lemma 3.4 implies that in
this case kerαk ∼= ker ζk = {0}. In this section we will show that
kerαk ∼= ker ζk holds for fixed determinant as well, which is important
for the calculations in Section 5.

Proposition 4.14. For rank 2 Higgs bundles, kerαk ∼= ker ζk for all

k, and therefore dim imαk = dim im ζk also. In the non-fixed determi-

nant case kerαk = 0 for all k, and in the fixed determinant case

kerαk = Hk
G(Xd,Xd−1)

a

∼=

{
Hk−2µd(S̃2g−2d−2+dEM)a k = 4g − 4− dE + 2d+ 1

0 otherwise

Note that we have already proven kerαk ∼= ker ζk in the non-fixed de-
terminant case (Sect. 4.1). Hence, for the rest of this section we restrict
to the fixed determinant case.

In order to separate out the Γ2-invariant part of the equivariant co-
homology, we require the following simple

Lemma 4.15. Let

· · · // An
fn

// Bn
gn

// Cn
hn

// An+1
// · · ·

be a LES of C-vector spaces. Suppose that Γ is a finite abelian group act-

ing linearly on An, Bn, and Cn such that fn, gn, and hn are equivariant.

Then for each homomorphism ϕ : Γ → C
∗ the restriction

· · · // (An)ϕ
fn,ϕ

// (Bn)ϕ
gn,ϕ

// (Cn)ϕ
hn,ϕ

// (An+1)ϕ // · · ·
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to the ϕ-isotypical subspaces is exact.

Proof. By the equivariance of the maps, the restrictions are well-
defined. We prove exactness at (Bn)ϕ. By equivariance and exactness
of the original sequence,

fn((An)ϕ) ⊂ ker gn ∩ (Bn)ϕ

Suppose b ∈ ker gn∩(Bn)ϕ. Again by exactness of the original sequence,
b = fn(ã) for some ã ∈ An. Set

a =
1

#Γ

∑

σ∈Γ

ϕ(σ−1)σã

Then

fn(a) =
1

#Γ

∑

σ∈Γ

ϕ(σ−1)σb =
1

#Γ

∑

σ∈Γ

ϕ(σ−1)ϕ(σ)b =
1

#Γ

∑

σ∈Γ

b = b

and since b ∈ (Bn)ϕ,

γa =
1

#Γ

∑

σ∈Γ

ϕ(σ−1)γσã =
1

#Γ

∑

γσ∈Γ

ϕ((γσ)−1)ϕ(γ)γσã = ϕ(γ)a

Hence, a ∈ (An)ϕ and fn(a) = b. This completes the proof. q.e.d.

We apply this result to the vertical and horizontal long exact se-
quences in (29).

Proposition 4.16. The decomposition of the vertical LES of Dia-

gram (29) into Γ2-invariant and noninvariant parts gives the following

for all k:

(i) δka : Hk−1
G (ν ′d, ν

′′
d )

a → Hk
G(ν

−
d , ν

′
d)

a is an isomorphism; in particu-

lar, H∗
G(ν

−
d , ν

′′
d )

a = 0.
(ii) The sequence

0 // Hk
G(ν

−
d , ν

′
d)

Γ2

ζk
Γ2

// Hk
G(ν

−
d , ν

′′
d )

Γ2

λk
Γ2

// Hk
G(ν

′
d, ν

′′
d )

Γ2

δk
Γ2

// 0

is exact.

Proof. Since the Γ2 action is trivial on the cohomology of the Jacobian
and on the cohomology of BU(1), it follows from (12) and (27) that
H∗

G(ν
−
d , ν

′′
d )

a = 0. Lemma 4.12 implies Hk
G(ν

′
d, ν

′′
d )

Γ2 ⊆ imλk = ker δk,

so δkΓ2
= 0 for all k, which proves the second part of the Proposition.

The first part then follows from Lemma 4.15. q.e.d.

Corollary 4.17. αk
Γ2

is injective.

Proof. Let x ∈ Hk
G(Xd,Xd−1)

Γ2 ∼= Hk
G(ν

−
d , ν

′
d)

Γ2 , and suppose that

αk(x) = 0. In the following, use x to also denote the corresponding
element in Hk

G(Bd,ε,B
′
d,ε) via the excision isomorphism. Then from the
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commutativity of Diagram (29), αk(x) = 0 implies that αk
ε(x) = 0, and

so ξk ◦ ζk(x) = 0. By Lemma 3.3 and Proposition 4.16, ξk is injective
and ζk is injective on Hk

G(ν
−
d , ν

′
d)

Γ2 . Therefore x = 0, which completes
the proof. q.e.d.

Lemma 3.2, Theorem 2.3, and Lemma 4.10, together with Hitchin’s
formulas [8, eqs. (7.12) and (7.13)], give us the following result.

Lemma 4.18.

Hk
G(ν

′
d, ν

′′
d )

a =

{
V k = 4g − 4− dE + 2d

0 otherwise

where V ∼= Hk−2µd(S̃2g−2d−2+dEM)a is a complex vector space of di-

mension

dimC V = (22g − 1)

(
2g − 1

2g − 2d− 2 + dE

)

Lemma 4.19. Hk
G(Xd)

a = 0, for all k ≤ 4g − 4− dE + 2d+ 1.

Proof. The proof is by induction on the index d. For d > g − 1, the
induced map κH : H∗

G(B) → H∗
G(Xd) is surjective, since each stratum

has a well-defined normal bundle, and so the methods of [1] work in this
case. Therefore, when d > g − 1 we have that H∗

G(Xd) is Γ2-invariant
for all k. Suppose the result is true for Xd. To complete the induction,
we show that it is true for Xd−1, i.e. H

k
G(Xd−1) is Γ2-invariant for all

k ≤ 4g − 4− dE + 2d− 1.
Consider the following LES for k ≤ 4g − 4− dE + 2d− 1.

(41)

· · ·
αk

// Hk
G(Xd)

βk

// Hk
G(Xd−1)

γk

// Hk+1
G (Xd,Xd−1)

αk+1
//// · · ·

From Lemma 4.18 and Proposition 4.16 we see that

Hk+1
G (Xd,Xd−1)

a ∼= Hk+1
G (ν−d , ν

′
d)

a ∼= Hk
G(ν

′
d, ν

′′
d )

a = 0

for all k ≤ 4g−4−dE+2d−1. ThereforeHk+1
G (Xd,Xd−1) is Γ2-invariant.

The exact sequence (41) decomposes to become

0 // imβk // Hk
G(Xd−1)

γk

// im γk // 0

Since im γk ⊆ Hk+1
G (Xd,Xd−1), and the latter is Γ2-invariant, an appli-

cation of Lemma 4.15 implies

0 −→ (imβk)a −→ Hk
G(Xd−1)

a −→ 0

is exact. By the inductive hypothesis, Hk
G(Xd) is Γ2-invariant; hence,

(im βk)a = 0, and so Hk
G(Xd−1)

a = 0 also. q.e.d.
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Proposition 4.20. The decomposition of the horizontal LES of Di-

agram (29) into Γ2-invariant and noninvariant parts gives the following

for all k ≤ 4g − 4− dE + 2d+ 1:

(i) γk−1
a : Hk−1

G (Xd−1)
a → Hk

G(Xd,Xd−1)
a is an isomorphism; in par-

ticular, Hk−1
G (Xd−1)

a ∼= Hk
G(ν

−
d , ν

′
d)

a.

(ii) The sequence

0 // Hk−1
G (Xd,Xd−1)

Γ2

αk−1

Γ2
// Hk−1

G (Xd)
Γ2

βk−1

Γ2
// Hk−1

G (Xd−1)
Γ2

γk−1

Γ2
// 0

is exact.

Proof. First, by Lemma 4.19, Hk−1
G (Xd)

a = 0 = Hk
G(Xd)

a for k ≤

4g − 4 − dE + 2d + 1. Next we claim that γk−1 maps Hk−1
G (Xd−1)

Γ2

to zero for all values of k (not just for k ≤ 4g − 4 − dE + 2d + 1). To

see this, let x ∈ Hk−1
G (Xd−1)

Γ2 , and let y = γk−1(x) ∈ Hk
G(Xd,Xd−1)

Γ2 .

Exactness of the horizontal LES in Diagram (29) implies αk(y) = αk ◦
γk−1(x) = 0. By Corollary 4.17, αk is injective on Hk

G(Xd,Xd−1)
Γ2 ;

hence, y = γk−1(x) = 0. Therefore, γk−1(x) = 0, and so γk−1 is the

zero map on Hk−1
G (Xd−1)

Γ2 . The result then follows from Lemma 4.15.
q.e.d.

Proof of Theorem 4.13. By the proof of Proposition 4.20, γkΓ2
= 0 for all

k. By Lemma 4.18, Hk
G(Xd−1)

a is only nontrivial for k = 4g−4−dE+2d,

and so Proposition 4.20 (i) implies γk is injective on Hk
G(Xd−1)

a for all

k. Therefore, βk maps Hk
G(Xd)

Γ2 surjectively onto Hk
G(Xd−1)

Γ2 for all
k. Applying this result to every stratum Xd completes the proof of the
theorem. q.e.d.

Proof of Proposition 4.14. For k ≤ 4g − 4 − dE + 2d + 1, Proposition
4.20 (i) implies kerαk ⊇ Hk

G(Xd,Xd−1)
a, which together with Corol-

lary 4.17 implies kerαk = Hk
G(Xd,Xd−1)

a ∼= Hk
G(ν

−
d , ν

′
d)

a. The two

exact sequences in Proposition 4.16 show that ker ζk = Hk
G(ν

−
d , ν

′
d)

a ∼=
Hk

G(ν
′
d, ν

′′
d )

a. Therefore Lemma 4.18 implies

kerαk ∼= ker ζk ∼= Hk−1
G (ν ′d, ν

′′
d )

a

∼=

{
Hk−1−2µd(S̃2g−2d−2+dEM)a k = 4g − 4− dE + 2d+ 1

0 k < 4g − 4− dE + 2d+ 1

For k > 4g− 4− dE +2d+1, Lemma 4.18 and Proposition 4.16 show
that

Hk
G(Xd,Xd−1)

a ∼= Hk
G(ν

−
d , ν

′
d)

a ∼= Hk−1
G (ν ′d, ν

′′
d )

a = 0

Hence, Hk
G(Xd,Xd−1) = Hk

G(Xd,Xd−1)
Γ2 , and so kerαk = 0 by Corol-

lary 4.17. Together with the vanishing of Hk
G(ν

−
d , ν

′
d)

a, Proposition 4.16
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implies ker ζk = 0, and so ker ζk = kerαk = 0 for k > 4g−4−dE+2d+1.
Therefore, for all values of k we have kerαk = ker ζk. q.e.d.

5. Computation of the equivariant Betti numbers

Here we use the results above, specifically Proposition 4.14, together
with the commutative diagram (29), and derive an explicit formula for
the equivariant Poincaré polynomial of Bss

0 (2, 0) and Bss(2, 0).
We have the following relationship between the equivariant Betti

numbers of Xd and Xd−1.

Lemma 5.1.

dim kerαk+1 − dim imαk = dimHk
G(ν

′
d, ν

′′
d )− dimHk

G(ν
−
d , ν

′′
d )

Proof. Using the vertical LES in diagram (29), we have

ker ζk+1 ∼= im δk ∼=
Hk

G(ν
′
d, ν

′′
d )

ker δk
∼=
Hk

G(ν
′
d, ν

′′
d )

im λk

imλk ∼=
Hk

G(ν
−
d , ν

′′
d )

ker λk
∼=
Hk

G(ν
−
d , ν

′′
d )

im ζk

Therefore

dim ker ζk+1 = dimHk
G(ν

′
d, ν

′′
d )− dim imλk

= dimHk
G(ν

′
d, ν

′′
d )− dimHk

G(ν
−
d , ν

′′
d ) + dim im ζk

and so Proposition 4.14 implies

dim kerαk+1 − dim imαk = dim ker ζk+1 − dim im ζk

= dimHk
G(ν

′
d, ν

′′
d )− dimHk

G(ν
−
d , ν

′′
d ),

completing the proof. q.e.d.

Proposition 5.2.

dimHk
G(Xd)− dimHk

G(Xd−1) = dimHk
G(ν

−
d , ν

′′
d )− dimHk

G(ν
′
d, ν

′′
d )

In the fixed determinant case

(42) dimHk
G(Xd)− dimHk

G(Xd−1)

= dimHk−2µd (Jd(M)×BU(1)))− dimHk−2µd(S̃2g−2+dE−2dM)

In the non-fixed determinant case

(43) dimHk
G(Xd)− dimHk

G(Xd−1)

= dimHk−2µd (Jd(M)× Jn(M)×BU(1)×BU(1))

− dimHk−2µd

(
S2g−2+dE−2dM × Jd(M)×BU(1)

)
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Proof. Lemma 5.1 shows that

dimHk
G(Xd)− dimHk

G(Xd−1)

= dim imβk + dim ker βk − dim im γk − dim ker γk

= dim imβk + dim imαk − dim kerαk+1 − dim imβk

= dim imαk − dim kerαk+1

= dimHk
G(ν

−
d , ν

′′
d )− dimHk

G(ν
′
d, ν

′′
d )

In the fixed determinant case, use eqs. (12), (13), (25), and (26) to
obtain (42). In the non-fixed determinant case, use eqs. (12), (13), (27),
and (28) to obtain (43). q.e.d.

Inductively computing H∗
G(Xd) in terms of H∗

G(Xd−1) for each value
of d, we obtain the

Proof of Theorem 1.1. First we study the fixed determinant case. Eq.
(42) shows that in both the degree zero and degree one case we have

P G
t (B)− P G

t (B
ss
0 ) =

∞∑

d=1

t2µd
(1 + t)2g

1− t2
−

g−1∑

d=1

t2µdPt(S̃
2g−2+dE−2dM)

where µd = g−1+2d−dE . Note that the second sum has only g−1 terms
because H∗

G(ν
′
d, ν

′′
d ) is only non-zero if the vector space H0(L∗

1L2⊗K) is
non-zero, i.e. dE−2d+2g−2 ≥ 0, where degL1 = d and degL2 = dE−d.

Rearranging this equation and substituting P G
t (B) = Pt(BG),

P G
t (B

ss
0 ) = Pt(BG)−

∞∑

d=1

t2µd
(1 + t)2g

1− t2
+

g−1∑

d=1

t2µdPt(S̃
2g−2+dE−2dM)

which proves (2). A similar argument using (43) in Proposition 5.2
proves (3). q.e.d.

As mentioned in the Introduction, in the degree one case this gives a
new proof of [8, thm. 7.6 (iv)] (fixed determinant case) and the results
of [7] (non-fixed determinant case).

In [8, sect. 7] an explicit formula is given for the sum

g−1∑

d=1

t2µdPt(S̃
2g−2d−1M)

for µd = g+2d−2, corresponding to the case where deg(E) = 1. For the
degree zero case we use eqs. (2) and (3), together with the techniques
of [8], to give the

Proof of Corollary 1.2. First, recall from [1, sect. 2] that for the rank 2
fixed determinant case

(44) Pt(BG) =
(1 + t3)2g

(1− t2)(1 − t4)
,
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and for the non-fixed determinant case

(45) Pt(BG) =
(1 + t)2g(1 + t3)2g

(1− t2)2(1− t4)

Note that using the results from [8, eq. (7.13)], the last term in (2) is
given by

g−1∑

d=1

t2µdPt(S̃
2g−2d−2M) =

g−1∑

d=1

t2(g+2d−1)Pt(S
2g−2d−2M)

+ (22g − 1)

g−1∑

d=1

(
2g − 2

2g − 2d− 2

)
t4g+2d−4

=

g−1∑

d=1

t2(g+2d−1)Pt(S
2g−2d−2M)

+ (22g − 1)t4g−4
g−1∑

d=1

(
2g − 2

2g − 2d− 2

)
t2d

(46)

Using the binomial theorem, the second term is

(47)
1

2
(22g − 1)t4g−4

(
(1 + t)2g−2 + (1− t)2g−2 − 2

)

The first term is calculated in the following lemma.

Lemma 5.3.

g−1∑

d=1

t2(g+2d−1)Pt(S
2g−2d−2M) =

− t4g−4 +
t2g+2(1 + t)2g

(1− t2)(1− t4)
+

(1− t)2gt4g−4

4(1 + t2)

−
(t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
−

1

2
+ (3− 2g)

)

Part (b) of Corollary 1.2 immediately follows from eqs. (3) and (45)
and Lemma (5.3). Part (a) follows from combining eqs. (2), (44), (46),
and (47) and Lemma 5.3. q.e.d.

Proof of Lemma 5.3. By [11], Pt(S
2g−2d−2M) is the coefficient of

x2g−2d−2 in (1+xt)2g

(1−x)(1−xt2)
, or equivalently the coefficient of x2g in

x2d+2(1+xt)2g

(1−x)(1−xt2)
. Therefore the sum

g−1∑

d=1

t2(g+2d−1)Pt(S
2g−2d−2M)
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is the coefficient of x2g in
g−1∑

d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1− xt2)
,

which is equal to the coefficient of x2g in the following infinite sum
∞∑

d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1− xt2)

The sum above is equal to
∞∑

d=1

t2(g+2d−1)x2d+2 (1 + xt)2g

(1− x)(1 − xt2)

= t2g+2x4
(1 + xt)2g

(1− x)(1− xt2)

∞∑

d=1

(xt2)2d−2

=
t2g+2x4(1 + xt)2g

(1− x)(1− xt2)(1− x2t4)

Therefore the coefficient of x2g in the above sum is equal to the residue
at x = 0 of the function

f(x) =
(1 + xt)2gt2g+2

(1− x)(1− xt2)2(1 + xt2)
·

1

x2g−3

As in [8], this residue can be computed in terms of the residues at
the simple poles x = 1 and x = −t−2, the residue at the double pole
x = t−2, and the integral of f(x) around a contour containing all of
the poles. In this case the same methods can be used to compute the
residues. However, unlike the situation in [8], the contour integral is
not asymptotically zero as the contour approaches the circle at infinity,
so this must be computed here as well. To compute the integral, let Cr

be the circle of radius r in the complex plane where r > 1 and r > t−2

(i.e. the disk inside Cr contains all the poles of f(x)). Then for |x| = r
we have the following Laurent expansion of f(x) centered at x = 0.

(1 + xt)2gt2g+2x3−2g

(1− x)(1− xt2)2(1 + xt2)
=−

( 1x + t)2gt2g+2

xt6
(
1− 1

x

) (
1− 1

xt2

)2 (
1 + 1

xt2

)

=−
1

xt4

(
t

x
+ t2

)2g (
1 +

1

x
+ · · ·

)

×

(
1 +

1

xt2
+ · · ·

)2(
1−

1

xt2
+ · · ·

)

=−
t4g−4

x
+ terms of orderx−nwheren > 1

This series expansion is uniformly convergent on the annulus {x : r−ε <
x < r+ε} for r > 1, r > t−2 and ε small enough so that the closure of the
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annulus doesn’t contain any of the poles of f(x). As r → ∞ the series
asymptotically approaches −t4g−4/x, and so the integral approaches

(48) lim
r→∞

1

2πi

∫

Cr

(1 + xt)2gt2g+2x3−2g

(1− x)(1− xt2)2(1 + xt2)
dx = −t4g−4

The residues of f(x) at x = 1, x = −t−2, and x = t−2 are similar to the
results obtained in [8]. At the simple pole x = 1,

(49) Resx=1f(x) = −
t2g+2(1 + t)2g

(1− t2)(1 − t4)

At the simple pole x = −t−2,

(50) Resx=−t−2f(x) = −
(1− t)2gt4g−4

4(1 + t2)

and at the double pole x = t−2,

(51) Resx=t−2f(x) =
(t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
−

1

2
+ (3− 2g)

)

Combining (48), (49), (50), and (51), we have

g−1∑

d=1

t2(g+2d−1)Pt(S
2g−2d−2M) = −t4g−4

+
t2g+2(1 + t)2g

(1− t2)(1 − t4)
+

(1− t)2gt4g−4

4(1 + t2)

−
(t+ 1)2gt4g−4

2(t2 − 1)

(
2g

t+ 1
+

1

t2 − 1
−

1

2
+ (3− 2g)

)

thus completing the proof of the lemma and therefore also of Corol-
lary 1.2. q.e.d.
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