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DEFORMATIONS OF GENERALIZED COMPLEX

AND GENERALIZED KÄHLER STRUCTURES

Ryushi Goto

Abstract

In this paper we obtain a stability theorem of generalized Kähler
structures with one pure spinor under small deformations of gen-
eralized complex structures. (This is analogous to the stability
theorem of Kähler manifolds by Kodaira-Spencer.) We apply the
stability theorem to a class of compact Kähler manifolds which
admits deformations to generalized complex manifolds and ob-
tain non-trivial generalized Kähler structures on Fano surfaces
and toric Kähler manifolds. In particular, we show that every
nonzero holomorphic Poisson structure on a Kähler manifold in-
duces deformations of non-trivial generalized Kähler structures.

0. Introduction

A notion of generalized complex structures was introduced by Hitchin
[12], which interpolates between complex and symplectic structures.
An associated notion of generalized Kähler structures is developed by
Gualtieri [10]. Examples of generalized Kähler structures have been
constructed by the reduction [3, 20] which is a generalization of the
symplectic quotient construction. Hitchin gave an explicit construc-
tion of generalized Kähler structures on Del Pezzo surfaces by using
holomorphic Poisson structures and suggested that generalized Kähler
structures are related to holomorphic Poisson structures [13, 14].

Kodaira and Spencer showed that Kähler structures on compact com-
plex manifolds are stable under sufficiently small deformations of com-
plex structures [18]. More precisely, if V0 is a compact Kähler manifold,
then any small deformation Vt of V0 is also a Kähler manifold.

The purpose of this paper is to establish a stability theorem of gener-
alized Kähler structures under small deformations of generalized com-
plex structures. Applying the theorem, we shall obtain a systematic
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construction of non-trivial generalized Kähler structures which arise as
deformations of ordinary Kähler manifolds with holomorphic Poisson
structures. The construction provides many examples by using both
holomorphic Poisson structures and deformations of complex structures.
In our construction, it is intriguing to solve the problem of obstructions
to deformations of generalized Kähler structures. Note that there ex-
ists an obstruction to deformations of generalized complex structures in
general. We assume that there exists a family of deformations of gen-
eralized complex structures on a generalized Kähler manifold X. Then
we apply the method in [8] and show that every obstruction to corre-
sponding deformations of generalized Kähler structures vanishes. The
method is a generalization of the one in unobstructed theorem of Calabi-
Yau manifolds by Bogomolov-Tian-Todorov [24], which is also applied
to obtain unobstructed deformations and the local Torelli type theorem
for Riemannian manifolds with special holonomy group [7]. For the
more precise statement of the stability theorem, we explain generalized
complex structures, generalized Kähler structures, and in particular, a
relation to pure spinors.

The notion of generalized complex structures is based on an idea of
replacing the tangent bundle T of a manifold with the direct sum of the
tangent bundle T and the cotangent bundle T ∗. The fibre bundle of the
direct sum T ⊕ T ∗ admits an indefinite metric 〈 , 〉 by which we obtain
the fibre bundle SO(T ⊕ T ∗) with fibre the special orthogonal group.
An almost generalized complex structure J is defined as a section of
the fibre bundle SO(T ⊕T ∗) with J 2 = −id, which gives rise to the de-
composition (T ⊕T ∗)⊗C = LJ ⊕LJ , where LJ is −

√
−1-eigenspace of

J and LJ denotes its complex conjugate. Almost generalized complex
structures form an orbit of the action of the real Clifford group of the
real Clifford algebra bundle CL with respect to (T⊕T ∗, 〈 , 〉) (cf. [6]). A
generalized complex structure is an almost generalized complex struc-
ture which is integrable with respect to the Courant bracket.

A generalized Kähler structure is a pair (J0,J1) consisting of com-
muting generalized complex structures J0 and J1 which gives rise to a
generalized metric G := −J0J1.

The direct sum T ⊕ T ∗ acts on differential forms on a manifold by
the interior product and the exterior product. For a differential form
ψ, we define a subspace Lψ by Lψ := {E ∈ (T ⊕ T ∗) ⊗ C |E · ψ = 0 }.
A non-degenerate pure spinor is a differential form ψ which gives a de-
composition (T ⊕ T ∗) ⊗ C = Lψ ⊕ Lψ. Thus a non-degenerate pure
spinor ψ induces an almost generalized complex structure Jψ. It turns
out that if a non-degenerate pure spinor ψ is d-closed, then the induced

structure Jψ is integrable. For a Kähler form ω, the exponential e
√
−1ω

is a non-degenerate pure spinor which induces the generalized complex
structure Jω. From this point of view, we introduce a generalized Kähler
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structure with one pure spinor as a pair (J , ψ) consisting of a gener-
alized complex structure J and a d-closed, non-degenerate pure spinor
ψ which induces the generalized Kähler structure (J ,Jψ). Then we
obtain the following stability theorem.

Theorem 3.1 Let (J , ψ) be a generalized Kähler structure with one
pure spinor on a compact manifold X. We assume that there exists
an analytic family of generalized complex structures {Jt}t∈△ on X with
J0 = J parametrized by the complex one-dimensional open disk △ con-
taining the origin 0. Then there exists an analytic family of generalized
Kähler structures with one pure spinor { (Jt, ψt)}t∈△′ with ψ0 = ψ
parametrized by a sufficiently small open disk △′ ⊂ △ containing the
origin.

An analytic family of generalized complex structures is a family of gener-
alized complex structures {Jt} which depend analytically on the param-
eter t in △. If the space of obstructions to deformations of generalized
complex structures vanishes, then infinitesimal deformations generate
an analytic family of deformations of generalized complex structures. It
is remarkable that a holomorphic Poisson structure on a compact Kähler
manifold gives the analytic family of deformations of generalized com-
plex structures which induces a family of deformations of non-trivial
generalized Kähler structures.

In section 1, we present an exposition on generalized complex and
generalized Kähler geometry. Preliminary results are collected in sub-
sections 1-1 and 1-2 (cf. [10, 11, 12]). In subsection 1-3, we introduce a
generalized Kähler structure with one pure spinor and construct a differ-
ential complex (K•, d) which is a subcomplex of the de Rham complex.
Applying the generalized Hodge decomposition [11], we obtain an in-
jective map from the cohomology H∗(K•) of the complex (K•, d) to the
de Rham cohomology group. In section 2 we discuss deformations of
generalized complex structures from the view point of pure spinors. The
Maurer-Cartan equation naturally arises as the integrability of almost
generalized complex structures. Further we show that an analytic fam-
ily of generalized complex structures {Jt}t∈△ are described in terms of

an analytic family of sections a(t) of the real Clifford bundle CL2 with
respect to (T ⊕ T ∗, 〈 , 〉) which is the Lie algebra of the Clifford group
(conformal pin group). The exponential of sections a(t) of CL2 is the
family of sections of the Clifford group which acts on J0 by the adjoint
action, and we have

Jt = Adea(t)J0.

We prove the stability theorem in section 3 in the sense of formal power
series. For the analytic family a(t), we will construct a family of sections
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b(t) of CL2 such that

d (ea(t) eb(t) ψ0) = 0,(1)

Adeb(t)J0 = J0.(2)

It follows from the Campbell-Hausdorff formula [23] that we have a
unique family z(t) ∈ CL2 with

ez(t) = ea(t) eb(t).

Then from (1), ez(t) ψ0 is a d-closed and non-degenerate pure spinor and
we have

Adez(t)J0 = Jt,
from (2). Since almost generalized Kähler structures also form the orbit

of the action of the Clifford group, it follows that (Jt, ez(t) ψ) is a family
of generalized Kähler structures with one pure spinor. When we try to
solve the equations (1) and (2), we encounter the class of obstruction

[Õbk] ∈ H2(K•) for each k > 0. It turns out that each representative

Õbk is a d-exact differential form. Since the cohomology group H2(K•)
is embedded into the de Rham cohomology group, it follows that the

class [Õbk] vanishes and we obtain a solution b(t) of the equations (1)
and (2) as the formal power series. Our solution b(t) is not unique in
general. A solution b(t) together with a(t) gives rise to a cohomology
class of H1(K•) by the action on ψ0. We show that there exists a family
of solutions of the equations (1) and (2) which are locally parametrized
by the first cohomology group H1(K•) of the complex (K•, d).

Theorem 3.2 Let {Jt}t∈△ and ψ be as in theorem 3.1. Then there is
an open set W in H1(K•) containing the origin such that there exists a
family of generalized Kähler structures with one pure spinor {(Jt, ψt,s)}
with ψ0,0 = ψ parametrized by t ∈ △′ and s ∈ W in H1(K•). Further
if we denote by [ψt,s] the de Rham cohomology class represented by ψt,s,
then [ψt,s1 ] 6= [ψt,s2 ] for s1 6= s2.

In section 4, we will prove that the formal power series b(t) converges
and finish the proof of the stability theorem. In section 5, we construct
examples of generalized Kähler structures on compact Kähler manifolds
such as Fano surfaces and toric manifolds. Since there is no obstruction
to deformations of generalized complex structures on any Fano surface,
we can count the dimensions of deformations of generalized complex
and generalized Kähler structures, respectively. We show that a holo-
morphic Poisson structure induces many interesting generalized Kähler
structures. If there is an action of a complex 2-dimensional commutative
Lie group which gives a non-trivial holomorphic Poisson structure on a
compact Kähler manifold, then we obtain a family of deformations of
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non-trivial generalized Kähler structures. It follows that every compact
toric Kähler manifold admits non-trivial generalized Kähler structures.

There is a one-to-one correspondence between generalized Kähler
structures and bihermitian structures [10]. Then by using the stability
theorem, it is shown that there exists a family of non-trivial bihermi-
tian structures on every compact Kähler manifold (X,ω) with a non-
zero holomorphic Poisson structure β. Then we obtain an unobstructed
deformations of complex structures whose infinitesimal deformation is
given by β · ω, which is a ∂-closed T 1,0-valued form of type (0, 1) given
by the contraction of β by ω. Thus we obtain:

Theorem 3.2 [9] Let X be a compact Kähler manifold with a holo-
morphic Poisson structure β. The class [β ·ω] ∈ H1(X,Θ) gives rise to
unobstructed deformations of complex structures. (see section 3 in [9]
for more detail).

1. Generalized complex and Kähler structures

1.1. Generalized complex structures. Let T⊕T ∗ be the direct sum
of the tangent bundle TX and the cotangent bundle T ∗X on a manifold
X of real 2n dimension. Then there is a symmetric bilinear form 〈 , 〉
on T ⊕ T ∗ which is given by

(1.1) 〈v + θ,w + η〉 = 1

2
θ(w) +

1

2
η(v),

where v,w ∈ TX and θ, η ∈ T ∗X. Then we have the fibre bundle
SO(T ⊕T ∗) with fibre the special orthogonal group with respect to 〈 , 〉.
We define an almost generalized complex structure J as a section of the
bundle SO(T ⊕ T ∗) with J 2 = −id. The direct sum T ⊕ T ∗ acts on
the differential forms ∧•T ∗X by the interior product and the exterior
product,

(1.2) (v + θ) · α := ivα+ θ ∧ α,
where α ∈ ∧•T ∗X. Let CL be the real Clifford algebra bundle of T ⊕T ∗

with respect to the bilinear form 〈 , 〉. Then from (1.1) and (1.2) we
have the induced action of CL on differential forms ∧•T ∗X, which is
the spin representation of CL. For a complex differential form φ we
define a subspace Lφ of (T ⊕ T ∗)⊗ C by

(1.3) Lφ := {E ∈ (T ⊕ T ∗)⊗ C |E · φ = 0 }.
A complex differential form φ is a (complex) pure spinor if Lφ is max-
imally isotropic, i.e., 2n dimensional. A (complex) pure spinor φ is
non-degenerate if we have the decomposition of (T ⊕ T ∗) ⊗ C into Lφ
and its complex conjugate Lφ,

(1.4) (T ⊕ T ∗)⊗ C = Lφ ⊕ Lφ.
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The decomposition (6) induces the almost generalized complex structure
Jφ which is defined by

(1.5) Jφ(E) =

{
−
√
−1E, (E ∈ Lφ),√

−1E, (E ∈ Lφ).

We call Jφ the induced structure from the non-degenerate pure spinor
φ.

Let J be an almost generalized complex structure with the −
√
−1-

eigenspace LJ . Then we have the decomposition (T ⊕ T ∗) ⊗ C =

LJ ⊕ LJ . We denote by CL[i] the subbundle of CL of degree i. Then

we identify the Lie algebra bundle so (T ⊕ T ∗) with CL[2]. Under the

identification so (T⊕T ∗) = CL[2], J acts on ∧•T ∗X⊗C by the spin rep-
resentation. Then we have the eigenspace decomposition of ∧•T ∗X⊗C,

(1.6) ∧•T ∗X ⊗ C = U−n ⊕ U−n+1 ⊕ · · · ⊕ Un−1 ⊕ Un,

where Uk denotes the eigenspace with eigenvalue k
√
−1. The space U−n

is a complex line bundle which we call the canonical line bundle of J .
(We also denote it by KJ ). Let ∧kLJ be the kth exterior product of
LJ . Then the eigenspace U−n+k is given by the action of ∧kLJ on KJ ,

(1.7) U−n+k = ∧kLJ ·KJ .

We denote by {(Uα, φα)} a trivialization of the line bundle KJ , where
{Uα} is a covering of X. Each φα is a non-vanishing section of KJ |Uα
which is a non-degenerate pure spinor with the induced structure J . Let
d be the exterior derivative and E an element of CL[1]⊗C = (T⊕T ∗)⊗C.
Then the anti-commutator {d,E} := dE+Ed acts on ∧•T ∗X. We have
the derived bracket by the commutator of {d,E} and F ,

(1.8) [E,F ]d := [{d,E}, F ].
By skew-symmetrization of the derived bracket, we construct the Courant
bracket as

(1.9) [E,F ]co :=
1

2
[{d,E}, F ] − 1

2
[{d, F}, E].

This is known as the derived bracket construction [19]. Note that if
E = v, F = w ∈ TX, then the Courant bracket becomes the standard
bracket of vector fields. If the subbundle LJ is involutive with respect
to the Courant bracket, then J is integrable. A generalized complex
structure is an almost generalized complex structure which is integrable.
The integrability of J is also given in terms of the corresponding pure
spinor. The following observation can be found in section 4.4 [10].

Lemma 1.1. Let φ be a non-degenerate pure spinor with the induced
structure Jφ. Then Jφ is integrable if and only if there exists E ∈
CL[1] ⊗ C = (T ⊕ T ∗)⊗ C such that

(1.10) dφ+ E · φ = 0.
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To make the paper self-contained, we will give a proof.

Proof. It suffices to show that [E1, E2]co ∈ Lφ for E1, E2 ∈ Lφ. It
follows that

(1.11) [{d,E1}, E2]φ = −E2E1dφ.

If we have dφ+ E · φ = 0, then it follows that

[{d,E1}, E2]φ = E2E1Eφ,(1.12)

= 〈E1, E〉E2φ = 0.(1.13)

Hence from (1.9), we have [E1, E2]coφ = 0. It implies that Lφ is in-
volutive. Conversely, assume that J is integrable. From (1.6), dφ is
decomposed into

(1.14) dφ =

n∑

k=−n
(dφ)[k],

where (dφ)[k] ∈ Uk. Then it follows that if (dφ)[k] 6= 0 for k > −n+ 1,
then there are E1, E2 such that [{d,E1}, E2]φ = −E2E1dφ 6= 0. Hence

dφ ∈ U−n+1. It implies that (dφ) = −E · φ for E ∈ CL[1] ⊗ C. q.e.d.

If J is integrable, the image d(Uk) is a subspace of the direct sum
Uk−1 ⊕ Uk+1. Then d is decomposed into ∂ + ∂,

dα = ∂α+ ∂α,

where ∂α ∈ Uk−1 and ∂α ∈ Uk+1 for α ∈ Uk. There is a natural
filtration of the even part of the real Clifford bundle CL,

CL0 ⊂ CL2 ⊂ · · · .(1.15)

We also have a filtration of the odd part of the real Clifford bundle,

CL1 ⊂ CL3 ⊂ · · · .(1.16)

For instance, the first several ones are given by

CL0 = C∞(X), CL1 = CL[1] = T ⊕ T ∗,

CL2 = CL0 ⊕ CL[2], CL3 = CL[1] ⊕ CL[3],

where CL[i] denotes the skew-symmetric subspace of (T ⊕ T ∗) in CLi.
The filtrations give rise to the filtration of bundles Ek given by the
action of CLk+1 on the canonical line bundle KJ ,

Ek := CLk+1 ·KJ ,

where Ek = {0} for k < −1. Note that Ek is the complex vector bundle
since KJ is the complex line bundle. We change the degree of E•.
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For instance, E−1 is the canonical line bundle KJ and E0 and E1 are
respectively written in the forms

E0 = {E · φ |E ∈ CL1, φ ∈ KJ },(1.17)

E1 = { a · φ | a ∈ CL2, φ ∈ KJ , }.(1.18)

Then Ek is the direct sum in terms of U−n+•. The first four bundles
are given by

E−1 = U−n,(1.19)

E0 = U−n+1,(1.20)

E1 = U−n ⊕ U−n+2,(1.21)

E2 = U−n+1 ⊕ U−n+3.(1.22)

Then U−n+k is given as the quotient bundle,

U−n+k = Ek−1/Ek−3.

It follows from d = ∂ + ∂ that E• is invariant under the action of d.
Hence we have the differential complex (E•, d),

0
d // E−1 d // E0 d // E1 d // E2 d // · · · .

It is shown that the complex (E•, d) is elliptic in [8]. We denote by
Hk(E•) the kth cohomology of the complex (E•, d).

1.2. Generalized Kähler structures. In this subsection, we use the
same notation as in [11]. Let (J0,J1) be a pair of commuting general-

ized complex structures. Then we define Ĝ by the composition

Ĝ = −J0J1 = −J1J0.

The symmetric bilinear form G is given by G(E1, E2) := 〈ĜE1, E2〉 for
E1, E2 ∈ T ⊕ T ∗.

Definition 1.2. A pair (J0,J1) consisting of commuting generalized
complex structures is a generalized Kähler structure if the symmetric
bilinear form G is positive-definite.

Let UpJi be the eigenspace with respect to Ji for i = 0, 1. Because we

have the commuting pair (J0,J1), we have the simultaneous decompo-
sition into eigenspaces,

∧•T ∗X ⊗ C = ⊕p,qU
p,q,

where Up,q = UpJ0
∩ U qJ1

. Then the image of Up,q by the exterior de-

rivative d is decomposed into four components Up+1,q+1 ⊕ Up+1,q−1 ⊕
Up−1,q−1 ⊕ Up−1,q+1 which induces the decomposition of d,

d = δ+ + δ− + δ+ + δ−.
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Figure 1

1.3. Generalized Kähler structures with one pure spinor. We
already see that a non-degenerate pure spinor ψ is a differential form
which induces the almost generalized complex structure Jψ.

Definition 1.3. Let (J , ψ) be a pair consisting of generalized com-
plex structure J and a non-degenerate pure spinor ψ with dψ = 0. A
pair (J , ψ) is a generalized Kähler structure with one pure spinor if the
corresponding pair (J ,Jψ) is a generalized Kähler structure.

We denote by K1 the bundle U0,−n+2 and define the graded left
module K• generated by K1 over the Clifford algebra CL. We set
Ki = {0} for i ≤ 0. Then it follows that

K1 = U0,−n+2,(1.23)

K2 = U1,−n+1 ⊕ U−1,−n+1 ⊕ U1,−n+3 ⊕ U1,−n+3.(1.24)

U−3,−n+3

NNNNNNNNNNN
U−1,−n+3

ppppppppppp

MMMMMMMMMMM
U1,−n+3

qqqqqqqqqq

MMMMMMMMMM
U3,−n+3

qqqqqqqqqq

−n+3

U−2,−n+2

NNNNNNNNNNN
U0,−n+2

qqqqqqqqqqq

MMMMMMMMMM
U2,−n+2

qqqqqqqqqq

−n+2

U−1,−n+1 U1,−n+1 −n+1

U0,−n

MMMMMMMMMMM

qqqqqqqqqq

−n

−3 −2 −1 0 1 2 3

Figure 2

Then we have the following lemma from the decomposition of the exte-
rior derivative d.

Lemma 1.4. (K•, d) is a differential complex.

Let (J , ψ) be a generalized Kähler structure with one pure spinor.
We denote by a ·KJ the action of a ∈ CL on the canonical line bundle
KJ . We define a bundle keri by

(1.25) keri = { a ∈ CLi+1 | a ·KJ = 0 },
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for i = 0, 1, 2. We also define k̃er
i
by using the filtration of CL and

Ei := CLi+1 ·KJ ,

(1.26) k̃er
i
= { a ∈ CLi+1 | a ·KJ ∈ CLi−1 ·KJ }.

Then we have:

Lemma 1.5.

(1.27) U0,−n ⊕ U0,−n+2 = { a · ψ | a ∈ k̃er
1 },

Proof. The real bundle k̃er
1
consists of linear combinations of the real

part E ·F where E ∈ LJ and F ∈ LJ . Since E ·Fψ ∈ U0,−n⊕U0,−n+2,

it follows that k̃er
1 · ψ ∈ U0,−n ⊕ U0,−n+2. Conversely, it follows that

U0,−n ⊕ U0,−n+2 is generated by forms (E · F + E · F )ψ and
√
−1(E ·

F − E · F )ψ for E ∈ LJ and F ∈ LJ . q.e.d.

The bundle K2 is also described in terms of ker2 and k̃er
2
:

Lemma 1.6.

K2 = { b · ψ | b ∈ ker2 },(1.28)

= { b · ψ | b ∈ k̃er
2 }.

Proof. We denote by K̃2 the bundle { b · ψ | b ∈ k̃er
2 }. Since K2 is

generated by K1, we see that

K2 ⊂{ b · ψ | b ∈ ker2 } ⊂ K̃2.(1.29)

The space U3,−n+3 is given by ∧3LJ · ψ. Let h be an element of ∧3LJ .
Then h ·KJ ∈ CL1 ·KJ if and only if h = 0. Since ker2 is real, K̃2 does
not contain the components U3,−n+3 and U−3,−n+3. Hence it follows

from (1.24) that K2 = K̃2. We have the result from (1.29). q.e.d.

Lemma 1.7. (K•, d) is an elliptic complex for i = 1, 2.

Proof. We will show that the symbol complex of the complex (K•, d)
is exact. It is sufficient to prove that if u ∧ α = 0 for non-zero one
form u ∈ T ∗ and α ∈ Ki then α is given by α = u ∧ β for a β ∈ Ki−1

for i = 1, 2. We have the commuting generalized complex structures J
and Jψ which act on (T ⊕ T ∗) ⊗ C. Then we have the simultaneous
eigenspace decomposition

(1.30) (T ⊕ T ∗)⊗ C = L+ ⊕ L− ⊕ L+ ⊕ L−,

where L+ ⊕ L− is −√
−1-eigenspace with respect to J and L+ ⊕ L− is

−√
−1-eigenspace with respect to Jψ. The non-zero element u is decom-

posed into

(1.31) u = u+ + u− + u+ + u−,
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where u± ∈ L± and u± ∈ L±. Since u ∈ T ∗, we have 〈u, u〉 = 0. Hence

(1.32) 0 = 〈u, u〉 = 〈u+, u+〉+ 〈u−, u−〉.
The composition Ĝ = −JJψ = −JψJ defines the generalized met-

ric. Since Ĝ(u± + u±) = ±(u± + u±), we have (±1)〈u±, u±〉 > 0. In
particular, it follows that

(1.33) 〈u±, u±〉 6= 0,

because the generalized metric is positive-definite. At first we consider
the case K1 = U0,−n+2. We assume that u ∧ α = 0 for non-zero u ∈ T ∗

and α ∈ U0,−n+2. Then it follows from the decomposition (1.31) that

(1.34) u± · α = 0, u± · α = 0.

Then we have

(1.35) u+ · u+ · α = 〈u+, u+〉α = 0.

Since 〈u+, u+〉 6= 0, we have α = 0. In the case K2, we assume that
u ∧ α = 0 for non-zero u ∈ T ∗ and α ∈ K2. From (1.24), we see that
K2 ⊂ U−n+1

Jψ ⊕ U−n+3
Jψ . Let (Eψ, d) be the differential complex defined

by the action of CL on the canonical line bundleKJψ . Since the complex

(Eψ, d) is elliptic, we have that there exists β̃ ∈ U−n+2
Jψ

such that

(1.36) α = u ∧ β̃.
We decompose β̃ by

(1.37) β̃ = β̃(2) + β̃(0) + β̃(−2),

where β̃(i) ∈ U i,−n+2. Then we define γ(±1) ∈ U±1,−n+1 by

γ(1) = −〈u+, u+〉−1u+ · β̃(2),(1.38)

γ(−1) = 〈u−, u−〉−1u− · β̃(−2).(1.39)

Then applying (1.32) and (1.36), we obtain that

u ∧ (u− · γ(1)) = (u+ + u−) · u− · γ(1)

= −(u+ + u−) · u− · 〈u+, u+〉−1u+ · β̃(2)

= (u− + u+) · β̃(2)

= u ∧ β̃(2).

We also apply a similar method to β(−2); then we have two equations

u ∧ (u− · γ(1)) = u ∧ β̃(2)(1.40)

−u ∧ (u+ · γ(−1)) = u ∧ β̃(−2).(1.41)

We define β(0) ∈ U0,−n+2 by

(1.42) β(0) = β̃(0) + u− · γ(1) − u+ · γ(−1).
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Then it follows from (1.40) and (1.41) that

u ∧ β(0) = u ∧ β̃(0) + u ∧ β̃(2) + u ∧ β̃(−2)(1.43)

= u ∧ β = α.(1.44)

Hence the complex (K•, d) is elliptic for i = 1, 2. q.e.d.

We denote by H i(K•) the ith cohomology group of the complex
(K•, d). The complex (K•, d) is a subcomplex of the (full) de Rham

complex {· · · d→ ∧•T ∗X
d→ ∧•T ∗X

d→ · · · }. The cohomology group
of the full de Rham complex is given by the full de Rham cohomol-
ogy group HdR(X) := ⊕2n

i=0H
i(X,C). Then we have the induced map

piK : H i(K•) → HdR(X).

Lemma 1.8. The map pi
K

: H i(K•) → HdR(X) is injective for
i = 1, 2.

Proof. Our proof is based on the generalized Kähler identities (cf.
proposition 2 in [11])

(1.45) δ
∗
+ = −δ+, δ

∗
− = δ−,

where the exterior derivative d is given by

(1.46) d = δ+ + δ− + δ+ + δ−,

and δ
∗
± is the adjoint operator of δ± with respect to the generalized

Hodge star operator. Then the identities imply the equality of all avail-
able Laplacian,

(1.47) △d = 2△∂ψ
= 4△δ±

= 4△δ± ,

where ∂ψ = δ++ δ−. We obtain a (p, q) decomposition for the de Rham
cohomology of any compact generalized Kähler manifold,

(1.48) H•(X,C) =
⊕

|p+q|≤n
p+q≡n (mod2)

Hp,q,

where Hp,q are △d-harmonic forms in Up,q. At first we consider the
cohomology H1(K•). Let α be a d-closed element of K1. Then from
(1.46) we have

(1.49) δ±α = 0, δ±α = 0.

Then if follows from the generalized Kähler identities (1.45) that

(1.50) δ+α = 0, δ
∗
+α = −δ+α = 0.

Hence we have

(1.51) △δ+
α = (δ+δ

∗
+ + δ

∗
+δ+)α = 0.

Then from (1.47), α is △d-harmonic and we have

(1.52) H1(K•) ∼= H0,−n+2.
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Hence we have the injection p1K : H1(K•) → HdR(X).
In the case H2(K•), we use the Green operators Gδ± , Gδ± and the

Hodge decomposition of each Up,q by the elliptic operator △δ±
. We

assume that α ∈ K2 is d-exact, i.e., α = dβ. Then it follows from
ddJ -lemma [11] that we have an element of β̃ ∈ U−n+2

Jψ such that

(1.53) α = dβ̃.

(See the discussion [8].) Then β̃ is decomposed into the form

(1.54) β̃ = β̃(2) + β̃(0) + β̃(−2),

where β̃(i) ∈ U i,−n+2. We define γ(±1) by

γ(1) = δ+Gδ+ β̃
(2),(1.55)

γ(−1) = δ−Gδ− β̃
(−2).(1.56)

Then from the generalized Kähler identities (1.45) we have

dδ−γ
(1) = dβ̃(2),(1.57)

−dδ+γ(−1) = dβ̃(−2).(1.58)

We define β(0) by

(1.59) β(0) = β̃(0) + δ−γ
(1) − δ+γ

(−1).

Then it follows from (1.57) and (1.58) that

dβ(0) = dβ̃(0) + d(δ−γ
(1))− d(δ+γ

(−1))(1.60)

= dβ̃(0) + dβ̃(2) + dβ̃(−2)(1.61)

= dβ̃ = α.(1.62)

Hence every d-exact element α ∈ K2 is written as

(1.63) α = dβ(0),

for β(0) ∈ U0,−n+2 = K1. It implies that the map p2K : H2(K•) →
HdR(X) is injective. q.e.d.

2. Deformations of generalized complex structures

Let J be a generalized complex structure on a manifold X with
the maximally isotropic subspace L(= LJ ) in (T ⊕ T ∗) ⊗ C. In the
deformation theory of generalized complex structures developed in [10],
we will deform L in the Grassmannian which consists of maximally
isotropic subspaces. Then a small deformation of isotropic subspace is
given by

(2.1) Lε := (1 + ε)L = {E + [E, ε] |E ∈ L },
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for sufficiently small ε ∈ ∧2L. Then we have the decomposition (T ⊕
T ∗)⊗ C into Lε and its complex conjugate Lε which defines an almost
generalized complex structure Jε for ε. The integrability of Jε is equiv-
alent to the one of almost Dirac structures in [21].

Theorem 2.1. ([21]) The structure Jε is integrable if and only if ε
satisfies the generalized Maurer-Cartan equation

(2.2) dLε+
1

2
[ε, ε]L = 0,

where dL : ∧kL → ∧k+1L denotes the exterior derivative of the Lie
algebroid and [ , ]L is the Lie algebroid bracket of L, i.e., the Schouten
bracket.

Let φ be a locally defined nowhere vanishing section of KJ . Then
φ is a non-degenerate pure spinor which induces the structure J . The
exponential eε acts on φ and we have the deformed non-degenerate pure
spinor eε · φ which induces Jε. We already show that Jε is integrable if
and only if the differential form eεφ satisfies

(2.3) deε φ+ Eε · eε φ = 0,

for Eε ∈ CL1 ⊗ C. We will give another proof of theorem 2.1 from the
viewpoint of pure spinors. Our proof is suitable for our argument in
this paper.

Proof of theorem 2.1. We recall the decomposition of differential forms,

(2.4) ∧•T ∗X ⊗ C =

n⊕

k=−n
Uk.

Let πU−n+3 be the projection to the component U−n+3. Since Jε is
integrable, we have

(2.5) deεφ = −Eε · eεφ.

Let Êε be e
−εE eε ∈ CL1 ⊗ C. Then by the left action of e−ε, we have

(2.6) e−ε deε φ = −Êε · φ.
We see that e−εdeε is a Clifford-Lie operator of order 3 (cf. definition
2.2 in [8]). It follows from definition that e−εdeε is locally given by the
Clifford algebra valued Lie derivative,

e−εdeε =
∑

i

EiLvi +Ni,

where Lvi is the Lie derivative by a vector filed vi and Ei ∈ CL1 ⊗ C,
Ni ∈ CL3⊗C. Thus e−εdeεφ is an element of U−n+1⊕U−n+3. It implies
that Jε is integrable if and only if we have πU−n+3 (e−εdeεφ) = 0. The
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operator e−εdeεφ is written in the form of power series (cf. lemma 2-7
in [8])

e−εdeεφ = dφ+ [d, ε]φ +
1

2!
[[d, ε], ε]φ + · · · .(2.7)

We define N(ε, ε) by

(2.8) N(ε, ε) := [[d, ε], ε].

Lemma 2.2. The operator N(ε, ε) linearly acts on ∧•T ∗X, which is
not a differential operator.

Proof. We will show that [[d, ε1], ε2]fα = f [[d, ε1], ε2]α for α ∈ ∧∗T ∗

and a function f , where ε1, ε2 ∈ ∧2L. It follows that

[[d, ε1], ε2]fα− f [[d, ε1], ε2]α

= (df)ε1ε2 − ε1(df)ε2 − ε2(df)ε1 + ε2ε1(df)

= (df)ε1ε2 − [ε1, df ]ε2 − [ε2, df ]ε1 + ε2[ε1, df ]

− (df)ε1ε2 − (df)ε2ε1 + [ε2, (df)]ε1

+ (df)ε2ε1

= [ε2, [ε1, (df)]].

Since εi ∈ ∧2L, we have [εi, (df)] ∈ L. Hence

[εi, [εj , (df)]] = 0,

for i, j = 1, 2. Thus the result follows. q.e.d.

The higher order terms of (2.7) are given by the adjoint action of ε on

N(ε, ε) successively. We define adlεN(ε, ε) by

adlεN(ε, ε) := [adl−1
ε N(ε, ε), ε].

Hence we have

e−εdeε = dφ+ [d, ε]φ +
1

2!
N(ε, ε)φ(2.9)

+
∞∑

l=1

1

(l + 2)!
adlεN(ε, ε).(2.10)

Since dL is the exterior derivative of the Lie algebroid L, we have the
complex

· · · dL // ∧pL
dL // ∧p+1L

dL // · · · .

Then dLε ∈ ∧3L for ε ∈ ∧2L is given by:

Lemma 2.3.

πU−n+3 [d, ε]φ = (dLε)φ.
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Proof. Since we have dφ+ Eφ = 0 for E ∈ L, it follows that

(2.11) πU−n+3(d+ E)εφ = (dLε)φ.

Then we have

[d, ε]φ = dεφ− εdφ(2.12)

= dεφ+ εEφ(2.13)

= dεφ+ Eεφ(2.14)

= (d+ E)εφ.(2.15)

Thus it follows that

πU−n+3 [d, ε]φ = (dLε)φ.

q.e.d.

Lemma 2.4. The Schouten bracket [ε, ε]L is given by

[ε, ε]L = N(ε, ε).

Proof. Let Ei be a section of T ⊕ T ∗ for i = 1, 2, 3, 4. In terms of the
derived bracket [Ei, Ej ]d = [{d,Ei}, Ej ] in (1.8), the bracket [[d, ε1], ε2]
is written as

[[d, ε1], ε2] = −[E1, E3]dE2E4 + [E1, E4]dE2E3(2.16)

+ [E2, E3]dE1E4 − [E2, E4]dE1E3(2.17)

for ε1 = E1E2 and ε2 = E3E4. Then the result follows. q.e.d.

Note that lemma 2.4 can be extended to higher order terms (see appen-
dix).
We also have

Lemma 2.5.

adlεN(ε, ε) = 0,

for all l ≥ 1.

Proof. Since N(ε, ε) ∈ ∧3L, it follows that

(2.18) [N(ε, ε), ε] = 0.

Similarly we have adlεN(ε, ε) = 0. q.e.d.

Then it follows from lemma 2.3 and 2.4 that we have

πU−n+3 e−εdeεφ = dLεφ+
1

2!
[ε, ε]Lφ(2.19)

=

(
dLε+

1

2
[ε, ε]L

)
φ.(2.20)

Thus the equation

(2.21) πU−n+3 e−εdeεφ = 0,
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is equivalent to the Maurer-Cartan equation

(2.22)

(
dLε+

1

2
[ε, ε]L

)
= 0.

Hence we have the result. q.e.d.

Let ε(t) be an analytic family of sections of ∧2L. Then ε(t) is written
in the form of the power series in t,

(2.23) ε(t) = ε1t+ ε2
t2

2!
+ ε3

t3

3!
+ · · · ,

where t is a sufficiently small complex parameter. Then ε(t) gives defor-
mations of almost generalized complex structures Jε(t) by (2.1). The set
of almost generalized complex structures forms an orbit of the adjoint
action of SO(T ⊕ T ∗). The Lie algebra of SO(T ⊕ T ∗) is identified with

∧2(T ⊕ T ∗), which is the subspace CL[2] of CL2. Thus Jε(t) is written

as Jε(t) = Adea(t)J for a(t) ∈ ∧2(T ⊕ T ∗). We denote by (∧2L⊕∧2L)R

the real part of the bundle (∧2L ⊕ ∧2L) which is a subbundle of CL2.
Then we have:

Proposition 2.6. There exists a unique analytic family a(t) of sec-
tions of (∧2L⊕ ∧2L)R such that

(2.24) Jε(t) = Adea(t)J
where we take sufficiently small t if necessary.

Proof. The action of eε(t) on the canonical line bundle KJ defines
a line bundle eε(t) · KJ . We also have a line bundle ea(t) · KJ by the
action of a(t) ∈ CL2. The condition eε(t) ·KJ = ea(t) ·KJ is equivalent
to the condition Jε(t) = Adea(t)J . Thus it suffices to construct a section

a(t) ∈ (∧2L⊕ ∧2L)R which satisfies

(2.25) (e−ε(t)ea(t))φ ∈ KJ , for all φ ∈ KJ .

Given two differential forms α, β, if α− β ∈ KJ , then we write it by

α ≡ β (mod KJ ).

Then the equation (2.25) is written as

(e−ε(t)ea(t))φ ≡ 0 (mod KJ ) for all φ ∈ KJ .

We write a(t) in the form of the power series in t,

(2.26) a(t) = a1t+ a2
t2

2!
+ · · · ,

where ak is a section of (∧2L⊕∧2L)R. We denote by (e−ε(t)ea(t))[k]φ the
kth term in t. Then the equation (2.25) is reduced to infinitely many
equations,

(2.27) (e−ε(t)ea(t))[k]φ ∈ KJ , for all φ ∈ KJ .
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We will show that there exists a solution a(t) by induction on k. For
k = 1, we have

(2.28) (e−ε(t)ea(t))[1]φ = −ε1φ+ a1φ ∈ KJ .

Thus if we set a1 = ε1 + ε1, then (e−ε(t)ea(t))[1]φ = 0 ∈ KJ . We assume

that there are sections a1, · · · , ak−1 ∈ (∧2L⊕ ∧2L)R such that

(2.29)
(
e−ε(t)ea(t)

)
[i]
φ ∈ KJ ,

for ∀i < k. If follows from the Campbel-Hausdorff formula that there
exists z(t) ∈ CL2 ⊗ C such that e−ε(t)ea(t) = ez(t), where

(2.30) z(t) = −ε(t) + a(t)− [ε(t), a(t)] + · · · .
Thus our assumption (2.29) is

(
ez(t)

)
[i]
· φ ∈ KJ for all i < k. Since the

degree of z(t) is greater than or equal to 1, we have z(t)[1] · φ ∈ KJ
and it successively follows from our assumption that z(t)[i] · φ ∈ KJ ,
(∀i < k). Then we have

(2.31) (ez(t))[k] · φ ≡ z(t)[k]φ (mod KJ ) for all φ ∈ KJ .

Hence from (2.30), there is a Hk ∈ CL2 ⊗ C such that

(ez(t))[k] · φ ≡ 1

k!
akφ−Hkφ (mod KJ ) for all φ ∈ KJ(2.32)

where Hk is written in terms of a1, · · · , ak−1 and ε1 · · · , εk. Then there

is a Ĥk ∈ ∧2L such that Ĥkφ −Hkφ ∈ KJ . Thus ak is defined as the

real part of (k!)Ĥk and we have

1

k!
akφ−Hkφ ∈ KJ .(2.33)

Hence it follows that

(2.34) (ez(t))[k] · φ =
(
e−ε(t)ea(t)

)
[k]
φ ∈ KJ .

Then we have a solution a(t) as the formal power series. It follows that
the a(t) is a convergent series which is a smooth section. Thus a(t) is
a unique section of (∧2L⊕∧2L)R with Jε(t) = Adea(t)J which depends
analytically on t. q.e.d.

3. Stability theorem of generalized Kähler structures

We use the same notation as in sections 1 and 2.

Theorem 3.1. Let (J , ψ) be a generalized Kähler structure with
one pure spinor on a compact manifold X. We assume that there ex-
ists an analytic family of generalized complex structures {Jt}t∈△ on X
with J0 = J parametrized by the complex one-dimensional open disk △
containing the origin 0. Then there exists an analytic family of general-
ized Kähler structures with one pure spinor { (Jt, ψt)}t∈△′ with ψ0 = ψ
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parametrized by a sufficiently small open disk △′ ⊂ △ containing the
origin.

Theorem 3.1 implies that generalized Kähler structures with one pure
spinor are stable under deformations of generalized complex structures.
Theorem 3.1 is a generalization of the so-called stability theorem of
Kähler structures due to Kodaira-Spencer. We also obtain:

Theorem 3.2. Let {Jt}t∈△ and ψ be as in theorem 3.1. Then there is
an open set W in H1(K•) containing the origin such that there exists a
family of generalized Kähler structures with one pure spinor {(Jt, ψt,s)}
with ψ0,0 = ψ parametrized by t ∈ △′ and s ∈ W in H1(K•). Further
if we denote by [ψt,s] the de Rham cohomology class represented by ψt,s,
then [ψt,s1 ] 6= [ψt,s2 ] for s1 6= s2.

This section is devoted to proving theorem 3.1 and theorem 3.2. Let
KJ0 be the canonical line bundle with respect to J0. We take a triv-
ialization {Uα, φα} of KJ0 , where {Uα} is a covering of X and φα is
a non-vanishing section of KJ0 |Uα which induces the generalized com-
plex structure J0. Since J0 is integrable, we have dφα + Eαφα = 0 for
Eα ∈ CL1 ⊗ C|Uα . It follows from section 2 that deformations {Jt}
is given by an analytic family of global sections a(t) ∈ CL2 which is
constructed from an analytic family of global sections ε(t) ∈ ∧2L. Each

section a(t) gives the non-degenerate pure spinor ea(t)φα which induces
the structure Jt. Since Jt is integrable, we have

(3.1) dea(t)φα + Eα(t)e
a(t)φα = 0.

It follows from the left action of e−a(t) that

(3.2) e−a(t) d ea(t)φα + e−a(t)Eα(t)e
a(t)φα = 0.

We define Ẽα(t) by

(3.3) Ẽα(t) = e−a(t)Eα(t)e
a(t) ∈ (T ⊕ T ∗)|Uα = (CL1)|Uα .

Then we have

(3.4) e−a(t) d ea(t)φα + Ẽα(t)φα = 0.

Hence it follows that

(3.5) (e−a(t) d ea(t))φα ∈ E0
J0
|Uα = {E · φα |E ∈ CL1|Uα }.

Since e−a(t) d ea(t) is a Clifford-Lie operator of order 3 (cf. definition 2.2

in [8]), it follows that e−a(t) d ea(t) is locally written in terms of the Lie
derivative and the Clifford algebra,

(3.6) e−a(t) d ea(t) =
∑

i

EiLvi +Ni,

where Ei ∈ CL1, vi ∈ T and N ∈ CL3. Then we have:



544 RYUSHI GOTO

Lemma 3.3. There is a section ai ∈ CL2 such that

Lviφα ≡ ai · φa mod (KJ0),(3.7)

Lviψ = ai · ψ,(3.8)

for each vector field vi, where the equation (3.7) implies that

Lviφα − ai · φa = ραφα

for a function ρa.

Proof. The set of almost generalized Kähler structures with one pure
spinor forms an orbit under the diagonal action of the Clifford group
whose Lie algebra is given by CL2. Thus small deformations of the
structures are given by the exponential action of CL2. Let ft be the
one parameter subgroup of diffeomorphisms defined by the vector field
v, i.e.,

d

dt
ft|t=0 = v.

Since the set of almost generalized Kähler structures with one pure
spinor is invariant under the action of diffeomorphisms, there is a section
a(t) ∈ CL2 with a(0) = 0 such that

(f∗t J0, f
∗
t ψ) = (Adea(t)J0, e

a(t) · ψ).
By differentiating with respect to t, we have

(LvJ0,Lvψ) = ([a,J0], a · ψ),
where a = d

dt
a(t)|t=0. Since f∗t φa and ea(t)φα induce the same general-

ized complex structure Adea(t)J0, we have

f∗t φα = eρ(t)ea(t)φα,

for a function ρ(t) with ρ(0) = 0. Then we have

Lvφα ≡ a · φa mod (KJ0),(3.9)

Lvψ = a · ψ.(3.10)

q.e.d.

Hence it follows from (3.6) that there exists a section hα ∈ CL3|Uα such
that

(e−a(t) d ea(t))φα ≡ hα · φα mod (CL1 ·KJ0),(3.11)

(e−a(t) d ea(t))ψ = hα · ψ.(3.12)

LetK• be the graded left module generated by U0,−n+2 over the Clifford
algebra CL, as in section 1.3. The exterior derivative d gives rise to the
differential complex:

(3.13) 0 → K1 → K2 → · · · .
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Then we see that K2 is given by

(3.14) K2 = U1,−n+1 ⊕ U−1,−n+1 ⊕ U1,−n+3 ⊕ U−1,−n+3.

We define a vector bundle keri by

(3.15) keri = { a ∈ CLi+1 | a · φα = 0 },

for i = 1, 2. In section 1, we define a bundle k̃er
i
by

(3.16) k̃er
i
= { a ∈ CLi+1 | a · φα ∈ CLi−1 ·KJ0 }.

The k̃er
i
gives the bundle

(3.17) K̃i = { a · ψ | a ∈ k̃er
i }.

In section 1.3 we also have

K̃1 = U0,−n ⊕ U0,−n+2,(3.18)

K̃2 = K2.(3.19)

Hence K1 is the subbundle of K̃1,

(3.20) K1 ⊂ K̃1.

Proposition 3.4.

e−a(t) d ea(t)ψ ∈ K2.

Proof. It follows from (3.11) that there exists hα ∈ CL3|Uα for each
α such that

e−a(t) d ea(t)φα ≡ hα · φα mod (CL1 ·KJ0),(3.21)

e−a(t) d ea(t)ψ = hα · ψ,(3.22)

where (3.21) implies that there is a section Fα ∈ T ⊕ T ∗ such that

e−a(t) d ea(t)φα − hα · φα = Fα · φα. Since Jt is integrable, from (3.4) we
have

(3.23) e−a(t) d ea(t)φα = −Ẽα(t) · φα ∈ CL1 ·KJ0 |Uα .

Hence it follows that hα ∈ k̃er
2
and we have

(3.24) e−a(t) d ea(t)ψ = hα · ψ ∈ K̃2 = K2.

q.e.d.

Proof of theorem 3.1 and 3.2. We will construct a smooth family b(t)
of sections of ker1 such that

(3.25) d( ea(t) eb(t) ψ) = 0.

Then it follows from the Campbel-Haudorff formula that there exists
z(t) ∈ CL2 such that

(3.26) ez(t) = ea(t)eb(t).
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Explicitly, the first five components of z(t) are given by

z(t) = a(t) + b(t) +
1

2
[a(t), b(t)](3.27)

+
1

12
[x, [x, y]] +

1

12
[y, [y, x]] + · · · ,(3.28)

(cf. [23].) Since b(t) ∈ ker1, we have

ez(t)φα = ea(t)eb(t)φα(3.29)

= ea(t)φα.(3.30)

It implies that ez(t)φα induces the same deformations Jt as before and
the pair (Jt, ez(t)ψ) gives deformations of generalized Kähler structure
with one pure spinor. Consequently the equation we must solve is that

d ea(t) eb(t) ψ = 0, b(t) ∈ ker1 .(eq)

The section a(t) is written as the power series

(3.31) a(t) = a1t+ a2
t2

2!
+ a3

t3

3!
+ · · · ,

where ai ∈ CL2. We shall construct a solution b(t) as the formal power
series

(3.32) b(t) = b1t+ b2
t2

2!
+ b3

t3

3!
+ · · · ,

where bi ∈ ker1. The ith homogeneous part of the equation (eq) in t is
denoted by

(eq[i])
(
d ea(t) eb(t) ψ

)
[i]

= 0, b(t) ∈ ker1 .

Thus in order to obtain a solution b(t), it suffices to determine b1, · · · , bi
satisfying (eq)[i] by induction on i. In the case i = 1, we have

(
d ea(t) eb(t)

)
[1]
ψ = da1ψ + db1ψ(3.33)

= [d, a1]ψ + db1ψ = 0.(3.34)

From proposition 3.4 we have
(
e−a(t) d ea(t)ψ

)
[1]

= [d, a1]ψ ∈ K2. Since

da1ψ = [d, a1]ψ ∈ K2 is a d-exact differential form, da1ψ defines a class

of cohomology [Õb1] in H
2(K∗) whose image vanishes in the de Rham

cohomology group HdR(X). Since the map p2K : H2(K•) → HdR(X) is

injective, it follows that [Õb1] = 0. Thus we have a solution b1 ∈ ker1

which is given by

(3.35) b1ψ = −d∗GK(da1ψ) ∈ K1,
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where d∗ is the adjoint operator and GK is the Green operator of the
complex (K∗, d) with respect to a metric. Further for each represen-
tative s of the first cohomology group H1(K•), we have a solution b1,s
which is defined by

(3.36) b1,sψ = −d∗GK(da1ψ) + s.

Assume that we already have b1, · · · , bk−1 ∈ ker1 such that

(3.37)
(
dea(t)eb(t)ψ

)
[i]

= 0,

for all i < k. From the Campbel-Hausdorff formula we have

(3.38) ez(t) = ea(t)eb(t).

Hence it follows from our assumption (3.37) that
(
e−z(t) d ez(t)

)
[k]
ψ =

∑

i+j=k
i,j≥0

(
e−z(t)

)
[i]

(
dez(t)

)
[j]
ψ

(3.39)

=
(
dez(t)

)
[k]
ψ.

Since (e−z(t)dez(t)) is given by

(3.40) (e−z(t)dez(t)) = d+ [d, z(t)] +
1

2!
[[d, z(t)], z(t)] + · · · ,

the left-hand side of (3.39) is written as

(e−z(t)dez(t))[k]ψ =
1

k!
dbkψ +

1

k!
dakψ +Obk,

where Obk is the higher order term which is determined by a1, · · · , ak−1,

and b1, · · · bk−1. We define Õbk by

(3.41) Õbk =
1

k!
dak ψ +Obk.

Thene (eq)[k] is reduced to

1

k!
dbkψ + Õbk = 0, (bk ∈ ker1).

From (3.4), we have

e−z(t) d ez(t)φα = e−b(t) e−a(t) d ea(t) eb(t)φα

= −
(
e−b(t)Ẽα(t)e

b(t)
)
φα ∈ CL1 ·KJ0 .

Thus it follows from the same argument as in proposition 3.3 that we
have

(3.42) (e−z(t)dez(t))ψ ∈ K2.
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It follows from (3.39) that Õbk ∈ K2 is d-exact. It implies that Õbk
gives rise to the class of the cohomology [Õbk] ∈ H2(K∗) with p2K(([Õbk]) =

0. Since p2K is injective from lemma 1.8, we have [Õbk] = 0. Thus

bk ∈ ker1 is given by

(3.43)
1

k!
bkψ = −d∗GK(Õbk) ∈ K1,

where d∗ is the adjoint operator and GK is the Green operator of the
complex (K•, d). Hence it follows from the induction that we have the
solution b(t) of the equation (eq) as the formal power series. As we
see from (3.36), we obtain the family of sections b1,s parametrized by
s ∈ H1(K•) which gives rise to a family b(t, s) of solutions. A family of

non-degenerate pure spinor {ψt,s} are constructed as eb(t,s) · ψ0. Since
the map p1K : H1(K•) → HdR(X) is injective, we have [ψt,s1 ] 6= [ψt,s2 ] ∈
HdR(X) for s1 6= s2. In section 4 we show that the formal power series
b(t) converges. q.e.d.

4. The convergence

This section is devoted to showing that both power series b(t) and
z(t) in section 3 are convergent series. We will use a similar method to
that in [16] which applies the elliptic estimate of the Green operator.
However we must develop an estimate of the obstruction Ob in section
3 which includes the higher-order term. We will use the induction on
the degree k. At first we will estimate the first terms b1 and z1 of power
series b(t) and z(t). We assume that b(t) and z(t) satisfy the inequalities
(4.16) and (4.17), respectively. Then we will show that b(t) satisfies the
inequality (4.6) and then obtain the inequality (4.7).

We shall fix our notation. We denote by ‖f‖s = ‖f‖Cs,α the Hölder
norm of a section f of a bundle with respect to a metric. Then we have
an inequality,

‖fg‖s ≤ Cs‖f‖s ‖g‖s,
where f, g are sections and Cs is a constant. We have the elliptic com-
plex (K•, d) in section 1 and we use the Schauder estimates of the el-
liptic operators with respect to the complex (K•, d) with a constant
CK . Let P (t) be a formal power series in t. We denote by (P (t))[k]
the kth coefficient of P (t). Given two power series P (t) and Q(t), if
(P (t))[k] < (Q(t))[k] for all k, we denote it by

P (t) << Q(t).

For a positive integer k, if (P (t))[i] < (Q(t))[i] for all i ≤ k, then we
write it by

P (t) <<
k
Q(t).
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We also consider a formal power series f(t) in t whose coefficients are
sections of a bundle. Then we put ‖f(t)‖s =

∑
i ‖ (f(t))[i] ‖sti. We

define a convergent power series M(t) by

M(t) =

∞∑

ν=1

1

16c

(ct)ν

ν2
=

∞∑

ν=1

Mνt
ν .

In [16], it turns out that the series M(t) satisfies:

Lemma 4.1.

M(t)2 <<
1

c
M(t).

We put λ = 1
c
. Then it follows from lemma 4.1 that

1

l!
M(t)l <<

1

l!
λl−1M(t) =

λl

l!

1

λ
M(t).

Hence we have:

Lemma 4.2.

eM(t) <<
1

λ
eλM(t).

As in section 3, the power series z(t) is defined by the Campbel-
Hausdorff formula,

ez(t) = ea(t)eb(t),

where

z(t) =

∞∑

l=0

tl

l!
zk,(4.1)

ez(t) =

∞∑

j=0

1

j!
z(t)j(4.2)

= 1 + z(t) +
1

2!
z(t)2 + · · · .

The power series a(t) is the convergent series which induces deforma-
tions of generalized complex structures {Jt} defined in proposition 2.6.
The norm of a(t) is written as

‖a(t)‖s =
∞∑

l=1

1

l!
‖ak‖stl.

Then we can assume that ‖a(t)‖s satisfies

(4.3) ‖a(t)‖s << K1M(t),

for a non-zero constant K1 and λ if we take a(t) sufficiently small. We
will show that there exist constants K1, K2, and λ such that we have
the following inequalities,
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‖b(t)‖s << K2M(t),(4.4)

‖z(t)‖s << M(t)(4.5)

for sufficiently small a(t). Note that K1, K2, and λ are determined by
a(t), J , and ψ which do not depend on b(t) and z(t). The inequalities
(4.4) and (4.5) are reduced to the infinitely many inequalities on degree
k

‖b(t)‖s <<
k
K2M(t),(4.6)

‖z(t)‖s <<
k
M(t)(4.7)

We will show both inequalities (4.6) and (4.7) by the induction on k.
In this section we denote by Ci constants which do not depend on z(t),
b(t), and k but depend on a(t), J , and ψ. For k = 1, as in section 3,
b1ψ satisfies the equation

db1ψ + da1ψ = 0, (b1ψ ∈ K1)

Then b1ψ is given by

(4.8) b1ψ = −d∗GK(da1ψ),

where d∗ is the adjoint operator and GK is the Green operator of the
complex (K•, d). It follows from the Schauder estimate of the elliptic
operators that

‖b1ψ‖s ≤ CK‖a1ψ‖s ≤ CKCs‖a1‖s‖ψ‖s(4.9)

≤ 1

16
C1K1,

where ‖a1‖s ≤ K1M1 =
K1
16 and C1 = CKCs‖ψ‖s.

We can define b1 as a section of the real part of L+L−. Then we have

(4.10) ‖b1‖s ≤ C2‖b1ψ‖s.
Substituting (4.9) into (4.10), we have

(4.11) ‖b1‖s ≤
1

16
C1C2K1 =M1C1C2K1.

Thus if we take K2 with C1C2K1 < K2, then we have

(4.12) ‖b1‖s ≤ K2M1.

Since z1 = a1 + b1, if we take K1 and K2 satisfying K1 +K2 < 1, we
have

‖z1‖s ≤ ‖a1‖s + ‖b1‖s(4.13)

≤M1K1 +M1K2(4.14)

= (K1 +K2)M1 < M1.(4.15)
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It follows from (4.12), (4.15) that we have inequalities (4.6) and (4.7)
for k = 1. We assume that the following inequalities hold:

‖b(t)‖ <<
k−1

K2M(t),(4.16)

‖z(t)‖ <<
k−1

M(t).(4.17)

Let Obk be the higher order term in section 3. Then we have:

Lemma 4.3. Obk = Obk(a1, · · · , ak−1, b1 · · · , bk−1) satisfies the in-
equality

‖Obk‖s−1 ≤ C(λ)Mk,

where C(λ) depends on λ and we have

lim
λ→0

C(λ) = 0.

Proof. Since Obk is determined by the terms of order greater than or
equal to 2,

Obk =

k∑

l=2

1

l!
(adlz(t) d)[k]ψ.

We have

‖ [d, z(t)]ψ ‖s−1 << 2‖z(t)ψ‖s.

Since (adlz(t) d) = [ adl−1
z(t)

d, z(t) ], we find

(4.18) ‖
(
adlz(t)d

)
[k]
ψ‖s−1 ≤ 2(2Cs)

l(‖z(t)‖ls ‖ψ‖s)[k].

Hence it follows that

‖Obk‖s−1 =
k∑

l=2

1

l!

∥∥
(
adlz(t) d

)
[k]
ψ
∥∥
s−1

(4.19)

≤
k∑

l=2

1

l!
2(2Cs)

l
(
‖z(t)‖ls ‖ψ‖s

)
[k]
.(4.20)

Since the degree of z(t) is greater than or equal to 1, it follows from our
assumption (4.17) and l ≥ 2 that we have

(4.21)
(
‖z(t)‖ls

)
[k]

≤ (M(t))l[k] .
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(Note that
(
‖z(t)‖ls

)
[k]

consists of the term ‖zi‖s, for i < k.) Substitut-

ing (4.21) into (4.20) and using lemma 4.2, we obtain

‖Obk‖s−1 ≤
k∑

l=2

1

l!
2(2Cs)

l
(
M(t)l

)
[k]

‖ψ‖s(4.22)

≤ C3

k∑

l=2

1

l!
(2Cs)

lλl−1Mk(4.23)

≤ C3λ
−1(e2Csλ − 1− 2Csλ)Mk(4.24)

= C(λ)Mk,

where C3 = 2‖ψ‖s. Then it follows that the constant C(λ) satisfies

lim
t→0

C(λ) = 0.

q.e.d.

Lemma 4.4.

‖b(t)‖s <<
k
K2M(t).

Proof. In section 3, bk is defined as the solution of the equation

1

k!
dbkψ +

1

k!
dakψ +Obk = 0(4.25)

In fact, bkψ is given by

1

k!
bkψ = −GKd∗(Obk)−GKd

∗(
1

k!
akψ).(4.26)

Thus it follows from (4.10) and the Schauder estimate that

‖ 1

k!
bk‖s ≤ C2CK‖Obk‖s−1 + C2CK‖

1

k!
akψ‖s.(4.27)

Applying lemma 4.3 and (4.3) to (4.27), we have

‖ 1

k!
bk‖s ≤ C2CKC(λ)Mk + CsC2CKK1Mk‖ψ‖s

≤ (C4C(λ) + C5K1)Mk(4.28)

where C4 = C2CK and C5 = CsC2‖ψ‖s. Then from (4.11) and (4.28) if
we take K2 as

K2 := max{C2C1K1, (C4C(λ) + C5K1)},(4.29)

then we have the inequality,

(4.30) ‖b(t)‖s <<
k
K2M(t).

q.e.d.



DEFORMATIONS OF GENERALIZED KÄHLER STRUCTURES 553

Finally we estimate zk. It follows that

(z(t))[k] =
1

k!
zk =


ez(t) − 1−

k∑

p=2

1

p!
z(t)p




[k]

.

Hence we have

(4.31) ‖ 1

k!
zk‖s ≤ ‖(ez(t) − 1)[k]‖s +

k∑

p=2

1

p!
‖ (z(t)p)[k] ‖s.

From our assumption and (4.30),

‖a(t)‖s << K1M(t), ‖b(t)‖s <<
k
K2M(t).

Then it follows from lemma 4.1 and lemma 4.2 that

‖ea(t) − 1‖s <<
1

λ
(eK1λ − 1)M(t).(4.32)

We also have

‖eb(t) − 1‖s <<
k

1

λ
(eK2λ − 1)M(t).(4.33)

Then we obtain:

Lemma 4.5.

‖z(t)‖s <<
k
M(t).

Proof. It follows from lemma 4.2 and lemma 4.3 that

‖ea(t)‖s <<
1

λ
eK1λM(t).

Then from (4.32) and (4.33), we have

‖(ez(t) − 1)‖s <<
k

‖ea(t)(eb(t) − 1)‖s + ‖ea(t) − 1‖s

(4.34)

<<
k

1

λ
eK1λM(t)

1

λ
(eK2λ − 1)M(t) +

1

λ
(eK1λ − 1)M(t)(4.35)

(4.36)

Applying lemma 4.1 again, we have

‖
(
ez(t) − 1

)
‖s <<

k

(
eK1λ

1

λ
(eK2λ − 1) +

1

λ
(eK1λ − 1)

)
M(t)(4.37)

<<
k
C(K1,K2)M(t),(4.38)
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where C(K1,K2) is a constant which depends only on K1 and K2. Since
(z(t))p[k] consists of terms zi for i < k, it follows from our assumption of

the induction that the second term of (4.31) satisfies

k∑

p=2

1

p!
‖ (z(t)p)[k] ‖s ≤

k∑

p=2

1

p!
((CsM(t))p)[k](4.39)

≤ 1

λ
(eCsλ − 1−Csλ)Mk(4.40)

= C1(λ)Mk,(4.41)

where limλ→0C1(λ) = 0. Thus if we take K1,K2, λ which satisfy

(4.42) C(K1,K2) +C1(λ) ≤ 1,

it follows from (4.31) that

1

k!
‖zk‖s ≤ (C(K1,K2) + C1(λ))Mk ≤Mk.(4.43)

Thus ‖z(t)‖s <<
k
M(t). q.e.d.

If we take a(t) sufficiently small, we can take K1, K2, and λ with K1 +
K2 < 1 which satisfy (4.29) and (4.42). Hence by the induction, it turns
out that b(t) and z(t) in section 3 are convergent series.

5. Applications

5.1. Generalized Kähler structures on Kähler manifolds. Let
X be a compact Kähler manifold with the complex structure J and
the Kähler form ω. Then we have the generalized Kähler structure

(J , e
√
−1ω) with one pure spinor on X. The deformations complex of

generalized complex structures is given by the complex (∧•L, dL). The
complex (∧•L, dL) is isomorphic to the complex (U−n+•⊗K−1

J , π•◦dE0),

where K−1
J denotes the dual of the (usual) canonical line bundle of the

complex manifold (X,J). In the case (J , e
√
−1ω) on a Kähler manifold,

we see that U−n+• is written in terms of the (usual) complex forms of
type (r, s),

U−n = ∧n,0,(5.1)

U−n+1 = ∧n,1 ⊕ ∧n−1,0,(5.2)

U−n+2 = ∧n,2 ⊕ ∧n−1,1 ⊕∧n−2,0,(5.3)

U−n+3 = ∧n,3 ⊕ ∧n−1,2 ⊕∧n−2,1 ⊕ ∧n−3,0.(5.4)

We take an open cover {Vα} of X and Ωα as a nowhere vanishing holo-
morphic n-form on Vα. Then Eα,0 = 0 and the operator π• ◦ dEα,0 is

the (usual) ∂ operator. It implies that the space of infinitesimal defor-
mations of generalized complex structures on X is given by the direct
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sum of the K−1
J -valued Dolbeault cohomology groups

(5.5) Hn,2

∂
(X,K−1

J )⊕Hn−1,1

∂
(X,K−1

J )⊕Hn−2,0

∂
(X,K−1

J ),

where the space Hn−1,1

∂
(X,K−1

J ) ∼= H1(X,Θ) is the space of infinitesi-

mal deformations of complex structures in Kodaira-Spencer theory. The
space Hn,2

∂
(X,K−1

J ) is given by the action of B-fields (2-forms) and the

space Hn−2,0

∂
(X,K−1

J ) is induced by the action of holomorphic 2-vector

fields.
The space of the obstructions is given by

Hn,3

∂
(X,K−1

J )⊕Hn−1,2

∂
(X,K−1

J )⊕Hn−2,1

∂
(X,K−1

J )⊕Hn−3,0

∂
(X,K−1

J ).

(5.6)

Note that the description in equation (5.5) is related to that in [10].
Similarly we find that the first cohomology of the complex (K•, d) is
described as

(5.7) H1(K•) ∼= H1,1

∂
(X).

Hence it follows from theorems 3.1 and 3.2 that we obtain

Theorem 5.1. Let X be a compact Kähler manifold with the gener-

alized Kähler structure (J , e
√
−1ω). If the obstruction space

3⊕

i=0

Hn−i,3−i
∂

(X,K−1
J )

vanishes, then we have the family of generalized Kähler structures {Jt, ψt,s}
with (J0, ψ0,0) = (J , e

√
−1ω) which is parametrized by (t, s) ∈ △′ ×W ,

where △′ is a small open set of

2⊕

i=0

Hn−i,2−i
∂

(X,K−1
J )

and W denotes a small open set of H1,1

∂
(X) containing the origin.

There are no deformations of complex structures on the complex pro-
jective space CP 2. However there is a family of deformations of gener-
alized complex structures on CP 2 which is parametrized by the space of
holomorphic 2-vector fields H0(CP 2,∧2Θ). Let {Vα , Ωα} be a trivial-
ization of the canonical line bundle K. Let β be a holomorphic 2-vector
field on CP 2. Then it follows that the action of spin group on Ωα,

eβt ∧ Ωα,

induces deformations of generalized complex structure on CP 2. In fact,
we take inhomogeneous coordinates (zα1 , z

α
2 ) on each Uα with Ωα =
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dzα1 ∧ dzα2 , and β is written as

β = f
∂

∂zα1
∧ ∂

∂zα2
,

where f is a cubic function. Then

eβ ∧ Ωa = f +Ωα.

Thus eβ∧Ωa is a non-degenerate pure spinor which induces a generalized
complex structure Jβ. The type of generalized complex structure J is
defined as the minimal degree of differential forms (non-degenerate pure
spinors) which induces J . Thus the type of Jβ is 0 on the complement
of the zero set of β and the type of Jβ is 2 at the zero set of β. Since
we have H0(CP 2,∧2Θ) ∼= H0(CP 2,O(3)), it follows from the theorem
of stability that we have a family of generalized Kähler structures on
CP 2 parametrized by H0(CP 2,O(3)) ⊕H1,1

∂
(X).

5.2. Generalized Kähler structures on Fano surfaces. Our the-
orem can be applied to Fano surfaces. Let Sn be a blown up CP 2 at
n points whose anti-canonical line bundle is ample (n ≤ 8). Then it
follows from the Kodaira vanishing theorem that the space of obstruc-
tions vanishes. Thus deformations of generalized complex structures
are parametrized by an open set of H0(Sn,K

−1) ⊕ H1(Sn,Θ), whose
dimensions are given by

dimH1(Sn,Θ) =

{
2n− 8, (n = 5, 6, 7, 8),

0, (n = 0, 1, 2, 3, 4)

dimH0(Sn,K
−1) = 10− n.

It follows from the theorem of stability that we have the family of gen-
eralized Kähler structures on Sn which is parametrized by an open set
of the direct sum

H0(Sn,K
∗)⊕H1(Sn,Θ)⊕H1,1(Sn),

where H1,1(Sn) denotes the Dolbeault cohomology of type (1, 1) which
coincides with the cohomology H1(K•) (see section 4),

dimH1,1(Sn) = 1 + n.

5.3. Poisson structures and generalized Kähler structures. In
general, we have an obstruction to deformations of generalized complex
structures and the space of infinitesimal deformations does not coincide
with the space of actual deformations. However, the theorem of stability
can be applied as long as we have a one-dimensional analytic family of
deformations of generalized complex structures. Typical examples are
constructed from holomorphic Poisson structures. Let X be a compact
Kähler manifold with a holomorphic 2-vector field β. If β satisfies that

(5.8) [β, β]L = 0,
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where the bracket denotes the Schouten bracket, then β is called a
holomorphic Poisson structure on X. Since β is holomorphic, we find
dLβ = 0. Hence β also satisfies the Maurer-Cartan equation and the
adjoint action of eβt on J induces an analytic family of deformations of
generalized complex structures. We write it by Jtβ = AdetβJ . Hence
we obtain from theorems 3.1 and 3.2:

Theorem 5.2. Let β be a holomorphic Poisson structure on a com-
pact Kähler manifold X. Then we have a family of generalized Kähler
structures {Jtβ, ψt}.

The rank of 2-vector β at x is r if βrx 6= 0 and βr+1
x = 0 for a point

x ∈ X. Then we denote it by rank βx = r. Since the type of generalized
complex structure of Jβ is defined as the minimal degree of differential

form eβ · Ωα, where Ωα denotes a non-zero holomorphic n-form. Thus
we have

(5.9) type(Jβ)x = n− 2 rank βx.

This is concerned with the fact that the type (Jβ)x can jump, depending
on a choice of x ∈ X. Let X be a Kähler manifold with an action
of an l-dimensional complex commutative Lie group G (l ≥ 2). We
denote by {ξi}li=1 a basis of the Lie algebra of G which induces the
corresponding holomorphic vector fields {Vi}li=1 on X. We take β as a
linear combination of Vi ∧ Vj ’s,
(5.10) β =

∑

i,j

λi,jVi ∧ Vj ,

where each λi,j denotes a constant. Since [Vi, Vj ] = 0, we have [β, β]L =
0. Then we have a family of generalized Kähler structure on X. The
type of Jβ can change, according to the fixed points set of the action of
G. Hence we have:

Theorem 5.3. Let X be a compact Kähler manifold of dimension
n. If we have an action of an l-dimensional complex commutative Lie
group G with a non-trivial 2-vector β as in (5.10), then we have a family
of deformations of non-trivial generalized Kähler structures on X.

Since the type of Jβ is given by n − 2 rankβ from (5.9), it follows
that generalized Kähler structures in theorem 5.3 are not obtained by
the action of B-fields (2-forms) from usual Kähler structures.

Theorems 5.1, 5.2, and 5.3 imply that there are many examples of
deformations of generalized Kähler structures on Kähler manifolds, such
as every toric Kähler manifold and the Grassmannians. On a complex
surface, any holomorphic section of anti-canonical bundle gives the Pois-
son structure. There is a classification of holomorphic Poisson surfaces
and we can count the dimensions of sections of anti-canonical bundles
on a given holomorphic Poisson surfaces [4, 22].
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6. Appendix

Let J be a generalized complex structure on a manifold X. Then we
have the decomposition

(T ⊕ T ∗)⊗ C = LJ ⊕ LJ .

We denote by |a| the degree of a ∈ ∧pLJ , that is, p. Then for a ∈ ∧∗LJ ,
we define a graded bracket by

[d, a]G = da− (−1)|a|ad.

We also define a bracket [a, b]L by

[a, b]L = [d, a]Gb− (−1)(|a|+1)|b|b[d, a]G.

There is the following explicit description.

Proposition 6.1. [a, b]L is an element of ∧|a|+|b|−1LJ which is given
in terms of the derived bracket

[E1 · · ·En, F1 · · ·Fm]L =
∑

i,j

(−1)i+jE1 · · ·
ǐ

Ei · · ·En[Ei, Fj ]dF1 · · ·
ǰ

F j · · ·Fm

(6.1)

for Ei, Fj ∈ LJ , i = 1, · · · , n, j = 1, · · · ,m.

Proof. The bracket [a, b]L is an operator acting on the differential
forms ∧∗T ∗. Then it turns out that

[a, b]Lfφ = f [a, b]Lφ, φ ∈ ∧∗T ∗

for a function f . Thus [a, b]L is not a differential operator but an element
of ∧∗LJ . Next we see that

[E,F1 · · ·Fm]L = [{d,E}, F1 · · ·Fm]L(6.2)

=
∑

j

(−1)j+1[E,Fj ]dF1 · · ·
ǰ

F j · · ·Fm.(6.3)

Further for a, b ∈ ∧∗LJ and E ∈ LJ , we have

(6.4) [E ∧ a, b]L = a ∧ [E, b]L − E[a, b]L.

Then by the induction, we have the result. q.e.d.
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