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THE DIFFERENTIABLE-INVARIANCE OF THE

ALGEBRAIC MULTIPLICITY OF A HOLOMORPHIC

VECTOR FIELD

Rudy Rosas

Abstract

We prove that the algebraic multiplicity of a holomorphic vector
field at an isolated singularity is invariant by topological equiva-
lences which are differentiable at the singular point.

1. Introduction

Given a holomorphic curve f : (C2, 0) → (C, 0), singular at 0 ∈ C
2,

we define its algebraic multiplicity as the degree of the first nonzero jet
of f , that is, ν(f) = ν where

f = fν + fν+1 + · · ·
is the Taylor development of f and fν 6= 0. A well known result by
Burau [2] and Zariski [15] states that ν is a topological invariant, that

is, given f̃ : (C2, 0) → (C2, 0) and a homeomorphism h : U → Ũ between

neighborhoods of 0 ∈ C
2 such that h(f−1(0) ∩ U) = f̃−1(0) ∩ V then

ν(f) = ν(f̃). Consider now a holomorphic vector field Z in C
2 with a

singularity at 0 ∈ C
2. If

Z = Zν + Zν+1 + · · · , Zν 6= 0

we define ν = ν(Z) as the algebraic multiplicity of Z at 0 ∈ C
2. The

vector field Z defines a holomorphic foliation by curves F with isolated
singularity in a neighborhood of 0 ∈ C

2 and the algebraic multiplicity
ν(Z) depends only on the foliation F . A natural question, posed by
J.F. Mattei is: is ν(F) a topological invariant of F? In [3], the au-
thors give a positive answer if F is a generalized curve, that is, if the
desingularization of F does not contain complex saddle-nodes. If F is
dicritical, that is, after a blow up the exceptional divisor is not invariant
by the strict transform of F , the conjecture is also true: in this case,
it is not difficult to show that the algebraic multiplicity of F is equal
to the index of F (as defined in [3]) along a generic separatrix. Then
the topological invariance of the algebraic multiplicity of a dicritical
singularity is a consequence of the topological invariance of the index
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along a curve, which is proved in [3]. Thus, in this paper we always

assume the non-dicritical case. Given foliations F and F̃ with isolated
singularities at 0 ∈ C

2, we say that F and F̃ are topologically equivalent

(at 0 ∈ C
2) if there is a homeomorphism h : U → Ũ , h(0) = 0 between

neighborhoods of 0 ∈ C
2, taking leaves of F to leaves of F̃ . Such a

homeomorphism is a topological equivalence between F and F̃ . In this

work we impose conditions on the topological equivalence h : U → Ũ
and prove the following.

Theorem 1.1. Let h : U → Ũ be a topological equivalence between

F and F̃ and assume that h preserves the orientation of C
2. Suppose

that h is differentiable at 0 ∈ C
2 and such that dh(0) : R

4 → R
4 is a

real isomorphism. Then the algebraic multiplicities of F and F̃ are the
same.

Let π : Ĉ2 → C
2 be the blow up at 0 ∈ C

2. Given a complex line
P passing through 0 ∈ C

2, we say that P is regular for F , if the strict
transform of P by π intersects the divisor E at a regular point of the
strict transform of F . The following theorem is a key step in the proof
of Theorem 1.1.

Theorem 1.2. Let h : U → Ũ be a topological equivalence between

F and F̃ and assume that h preserves the orientation of C
2. Let P and

P̃ be two complex lines passing through 0 ∈ C
2 which are regular for F

and F̃ respectively. Suppose that P ∩ U is homeomorphic to a disc and

h(P ∩ U) = P̃ ∩ Ũ . Then the algebraic multiplicities of F and F̃ are
equal.

The paper is organized as follows. In section 2 we prove a weaker
version of Theorem 1.2. In section 3 we stay and prove a topological
lemma, fundamental for the following sections. We prove Theorem 1.2
in section 4. Finally, in section 5 we prove Theorem 1.1.
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2. A first theorem.

Let h : U → Ũ be a topological equivalence between F and F̃ . Let

F0 and F̃0 be the strict transforms of F and F̃ respectively. Let W and

W̃ be denote the sets π−1(U) and π−1(Ũ ) respectively. Let

h : W\E → W̃\E
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be the homeomorphism defined by h = π−1 hπ. We have a natural

fibration ρ on Ĉ2 which fibers are the strict transforms of the complex
lines passing through 0 ∈ C

2. Consider p, p̃ ∈ E and let Lp and Lep

be the fibers of ρ passing through p and p̃ respectively. This section is
devoted to prove the following.

Theorem 2.1. Suppose that p and p̃ are regular points of F0 and

F̃0 respectively. Let Ω be a neighborhood of p in Ĉ2. Suppose that h
extends to (W\E) ∪ Ω as a homeomorphism onto its image, such that

h(Lp ∩W ) = Lep ∩ W̃ . Then the algebraic multiplicities of F and F̃ are
the same.

Let ν be the algebraic multiplicity of F at 0 and let p1, ..., pk be the
singularities of F0 on E. We have the following relation due to Ven Den
Essen (see [9], appendix I):

k∑

i=1

µ(F0, pi) = µ(F , 0) − ν2 + ν + 1,

where µ(F , p) is the Milnor number of F at p. Let s =
∑k

i=1 µ(F0, pi).
In the same way, let s̃ be the sum of the Milnor numbers of the sin-

gularities on E of F̃0. Then, since the Milnor number is a topological
invariant, it is sufficient to prove that s = s̃.

Let D ⊂ E ∩Ω be a closed disc containing p, which does not contain
singularities of F0 and such that h(D) does not contains singularities

of F̃0. Let D and D̃ be the closed discs in E equal to the closure of
E\D and E\h(D) respectively. Then h maps W\D homeomorphically

onto W̃\D̃, and the interiors of D and D̃ contain all the singularities

of F0 and F̃0 respectively. Observe that h is a topological equivalence

between F0|W\D and F̃0|fW\ eD
. Since h(Lp ∩W ) = Lep ∩ W̃ , we have the

homeomorphism

h : (W\D)\Lp → (W̃\D̃)\Lep.

We know that W\Lp and W̃\Lep are isomorphic to C
2, where the divisor

can be represented by the vertical line {z1 = 0} and the sets W\Lp and

W̃\Lep give neighborhoods V and Ṽ of {z1 = 0}. Thus, we may think

that the foliations F0 and F̃0 are defined on the sets V and Ṽ in C
2,

and that

h : V \D ⊂ C
2 → Ṽ \D̃ ⊂ C

2

is a topological equivalence between F0 and F̃0. Observe that F0 is
globally defined by a holomorphic vector field on V and the same holds

for F̃0 on Ṽ . The disc D is contained in {z1 = 0} and we may assume
that D = {(0, z2) : |z2| ≤ r}, where r > 0.
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We proceed now to compute s. Let Z be a holomorphic vector field
which generates the foliation F0 on V . Let B be a neighborhood of
D homeomorphic to a ball, such that ∂B is homeomorphic to S3 and
B ⊂ V . It is well known that the Milnor number is just the Poincar-
Hopf index (considering the holomorphic vector field as a real vector
field). Then, since all the singularities of F0 are contained in B, we have
([10],p. 36) that the sum of the Milnor numbers of the singularities of
F0 is equal to the degree of the map

Z

||Z|| : ∂B → S
3,

Z

||Z|| (z) =
Z(z)

||Z(z)|| .

Let B be a neighborhood of B homeomorphic to a ball and such that
B ⊂ V . Since V is a neighborhood of {z1 = 0}, for ε > 0 small enough,
the set {|z1| < 2ε, |z2| < 4r}, which contains D, is contained in V .
Then, we may chose B and B such that

B ⊂ {|z1| < ε, |z2| < 2r}.
The last hypothesis will be only used in the proof of Lemma 2.5.

Consider the sets B̃ = h(B\D) ∪ D̃, B̃ = h(B\D) ∪ D̃ and Ṽ =

h(V \D)∪ D̃. It is easy to see that B̃, B̃ and Ṽ are neighborhoods of D̃
in C

2.

V V

BB

hD D

B B

Let

ϕ : Dε × B → V ⊂ C
2

and

ϕ̃ : Dε × B̃ → Ṽ ⊂ C
2
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be the local complex flows of Z and Z̃ respectively, where Dε = {T ∈
C : ||T || < ε} with ε small enough. Now, we follow the ideas used in [3]
to prove the topological invariance of the Milnor number.

Lemma 2.2. There exists continuous functions τ : B\D → (0, ε) and
τ̃ : h(B\D) → Dε\{0} such that for all z ∈ B\D we have:

(i) ϕ(τ(z), z) ∈ B\D.
(ii) ϕ(tτ(z), z) 6= z, for any t ∈ (0, 1].

(iii) h(ϕ(τ(z), z)) = ϕ̃(τ̃(h(z)), h(z)).

We say that a function f : U → R is lower(upper) semi-continuous
if given ǫ > 0 and x0 ∈ U , there is a neighborhood Ω of x0 in U such
that f(x) ≥ f(x0) − ǫ (f(x) ≤ f(x0) + ǫ) for all x ∈ Ω. We need the
following lemma.

Lemma 2.3. Let U be an open set in Rn and let f : U → R and
g : U → R be an upper and a lower semicontinuous function respectively.
Suppose that f < g. Then there exists a continuous function h : U → R

such that f < h < g. In particular, if g is a strictly positive lower
semicontinuous function, then there exists a continuous function h such
that 0 < h < g.

Proof of Lemma 2.2. Clearly, given z ∈ B\D there exists δ > 0 such
that ϕ(∗, z) is injective on Dδ. Then define δ(z) > 0 as the supremum
of δ′ ≤ ε such that ϕ(∗, z) is injective on Dδ′ .

Assertion 1. The function δ : B\D → (0, ε] is lower semicontinuous.

Proof. Fix z0 ∈ B\D and let ǫ > 0. We will prove that for z close
enough to z0 we have δ(z) ≥ δ(z0)−ǫ. Suppose by contradiction that for
zk → z0 we have that ϕ(∗, zk) is not injective on Dδ(z0)−ǫ. Then there are

points tk, t
′
k in Dδ(z0)−ǫ, with tk 6= t′k and such that ϕ(tk, zk) = ϕ(t′k, zk)

for all k. By taking a subsequence we may assume that tk → a and
t′k → a′ with a, a′ ∈ Dδ(z0)−ǫ ⊂ Dδ(z0). By continuity we have

ϕ(a, z0) = lim
k→∞

ϕ(tk, zk) = lim
k→∞

ϕ(t′k, zk) = ϕ(a′, z0)

and, since ϕ(∗, z0) is injective on Dδ(z0), we deduce that a = a′. Let

z′ = ϕ(a, z0) and take a neighborhood Ω of z′ and δ0 > 0 such that
ϕ(∗, z) is injective on Dδ0 for all z ∈ Ω. For k big enough we have that
ϕ(a, zk) ∈ Ω and (tk − a), (t′k − a′) ∈ Dδ0 . Then, since

ϕ(tk − a, ϕ(a, zk)) = ϕ(tk, zk) = ϕ(t′k, zk) = ϕ(t′k − a′, ϕ(a′, zk)),

we have that tk − a = t′k − a′, hence tk = t′k, which is a contradiction.

Assertion 2. Consider δ̄ : B\D → (0, ε], where δ̄(z) is the supremum of
δ′ < ε such that ϕ(Dδ′ , z) ⊂ B\D. Then δ̄ is a lower semicontinuous
function.
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Proof. Fix z0 and let ǫ > 0. The set ϕ(Dδ̄(z0)−ǫ, z0) is compact and is

contained in B\D. If z is close enough to z0 we have that ϕ(Dδ̄(z0)−ǫ, z)

is also contained in B\D. Then δ̄(z) ≥ δ̄(z0)− ǫ and it follows that δ̄ is
lower semicontinuous.

Consider δ̃ : h(B\D) → (0, ε], where δ̃(w) is the supremum of δ′ < ε
such that ϕ̃(∗, w) is injective on Dδ′ . As in Assertion 1, we can prove

that δ̃ is a lower semicontinuous function.

Assertion 3. Define δ̂ : B\D → (0, ε], where δ̂(z) is the supremum of

δ′ < ε such that h(ϕ(Dδ′ , z)) is contained in ϕ̃(Deδ(h(z))
, h(z)). Then δ̂ is

a lower semicontinuous function.

Proof. Fix z0 and let ǫ > 0. Since h(ϕ(Dδ̂(z0), z0)) is contained in

ϕ̃(Deδ(h(z0))
, h(z0)), there is ǫ′ > 0 such that h(ϕ(Dδ̂(z0)−ǫ, z0)) is con-

tained in ϕ̃(Deδ(h(z0))−ǫ′
, h(z0)). Let Σ be a disc passing through h(z0)

and transverse to the foliation. Since δ̃ is lower semicontinuous, we may
take Σ small enough such that ϕ̃(∗, z) is injective on Deδ(h(z0))−ǫ′

for all

z ∈ Σ. Moreover, we may take Σ small enough such that ϕ̃ is injective
on Deδ(h(z0))−ǫ′

× Σ. Let M denote the open set ϕ̃(Deδ(h(z0))−ǫ′
× Σ) and

let M ′ = ϕ̃(Dǫ′/2 × Σ). We may take a neighborhood Ω of z0 such that

h(Ω) ⊂ M ′ and δ̃(h(z)) ≥ δ̃(h(z0)) − ǫ′/2 for all z ∈ Ω, because δ̃ is
lower semicontinuous. Since h(ϕ(Dδ̂(z0)−ǫ, z0)) is compact and is con-

tained in M , we may assume Ω small enough such that h(ϕ(Dδ̂(z0)−ǫ, z))

is contained in M for all z ∈ Ω. Fix z ∈ Ω. Since h(z) ∈ M ′, there
is w′ ∈ Σ and t′, with |t′| < ǫ′/2, such that h(z) = ϕ̃(t′, w′). Since
h(ϕ(Dδ̂(z0)−ǫ, z)) is contained in M, we deduce that it is contained in

ϕ̃(Deδ(h(z0))−ǫ′
, w′). Then, given w in h(ϕ(Dδ̂(z0)−ǫ, z)), we have that

w = ϕ̃(t′′, w′) with |t′′| < δ̃(h(z0)) − ǫ′. Thus

w = ϕ̃(t′′, w′) = ϕ̃(t′′ − t′, ϕ̃(t′, w′)) = ϕ̃(t′′ − t′, h(z)),

where |t′′−t′| ≤ |t′′|+|t′| < δ̃(h(z0))−ǫ′+ǫ′/2 = δ̃(h(z0))−ǫ′/2 ≤ δ̃(h(z)).
Then h(ϕ(Dδ̂(z0)−ǫ, z)) is contained in ϕ̃(Deδ(h(z))

, h(z)) and it follows

that δ̂ is lower semicontinuous.

It is easy to see that the function g = min{δ, δ̄, δ̂} is also lower semi-
continuous. Then, by Lemma 2.3, there exists a positive continuous
function τ on B\D such that τ < δ, δ̄, δ̂. By the definition of δ̄, (i)
is satisfied. Since ϕ(∗, z) is injective on Dδ̄ and τ(z) ∈ Dδ̄, we have
that (ii) holds. Now, we shall define τ̃ . Let w = h(z) ∈ h(B\D).

Since τ < δ̂, we have that h(ϕ(τ(z), z)) is contained in ϕ̃(Deδ(h(z))
, h(z))
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and by injectivity there exists a unique τ̃(h(z)) in Deδ(h(z))
such that

h(ϕ(τ(z), z)) = ϕ̃(τ̃(h(z)), h(z)). Now, it is easy to see that τ̃ is contin-
uous and therefore (iii) holds. q.e.d.

Proof of Lemma 2.3. Consider x ∈ U and ax ∈ R, such that f(x) < ax <
g(x). It follows from the definition of lower and upper semicontinuous
function that there exists a neighborhood Vx of x in U such that f(y) <
ax < g(y) for all y ∈ Vx. We may take a subset I ⊂ U , such that U ⊂⋃

i∈I Vi and {Vi}i∈I is locally finite. Thus, we have f(x) < ai < g(x)
for all x ∈ Vi. Let {ψi}i∈I be a partition of the unity subordinate to
{Vi}i∈I . Then, we define h : U → R by

h(x) =
∑

i∈I

ψi(x)ai.

Clearly, h is continuous. If x ∈ Vi, then f(x) < ai < g(x), hence
ψi(x)f(x) < ψi(x)ai < ψi(x)g(x) and it follows that f < h < g.

q.e.d.

From Lemma 2.2, we have the maps

f : B\D → B\D,
f(z) = ϕ(τ(z), z)

and
f̃ : B̃\D̃ → B̃\D̃,
f̃(w) = ϕ̃(τ̃ (w), w)

with
h ◦ f = f̃ ◦ h

and such that f and f̃ are without fixed points.

There exists ψ, ψ̃ : C
2 → C

2 with the following properties:

(i) ψ(D) = 0 and ψ̃(D̃) = 0.

(ii) ψ : C
2\D → C

2\{0} and ψ̃ : C
2\D̃ → C

2\{0} are homeomor-
phisms.

(iii) ψ and ψ̃ are equal to the identity out of B and B̃ respectively.

We define

f ′ = ψfψ−1 : B\{0} → B\{0} ⊂ C
2,

f̃ ′ = ψ̃f̃ ψ̃−1 : B̃\{0} → B̃\{0} ⊂ C
2,

h′ = ψ̃hψ−1 : V → Ṽ .

Then we have the following:

(i) f ′ and f̃ ′ do not have fixed points.

(ii) On ∂B, we have f ′ = f and f̃ ′ = f̃ .

(iii) h′ is a homeomorphism with h′(0) = 0 and such that h′◦f ′ = f̃ ′◦h′.
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Thus, there are well defined maps:

(f ′ − id) : B\{0} → C
2\{0},

(f̃ ′ − id) : B̃\{0} → C
2\{0}.

Observe that H3(B\{0}) ⊂ H3(C
2\{0}) and this inclusion is an iso-

morphism between the groups. Then (f ′ − id) induces a map

(f ′ − id)∗ : H3(C
2\{0}) → H3(C

2\{0})
at the homology level.

Lemma 2.4. (f ′ − id)∗ is the multiplication by s.

Proof. We have that ∂B ⊂ B is a generator of H3(C
2\{0}). It is

known that, homologically:

(f ′ − id)(S3) = (f ′ − id)(∂B) = nS
3,

where n is the degree of the map:

g : ∂B → S
3,

g(z) =
(f ′ − id)

||(f ′ − id)||(z).

Thus, it is sufficient to prove that deg(g) = s. Observe that g = (f−id)
||(f−id)|| ,

since f ′ = f on ∂B. By (ii) of Lemma 2.2 the map

G : [0, 1] × ∂B → S
3,

G(t, z) =
ϕ(tτ(z), z) − z

||ϕ(tτ(z), z) − z|| , t 6= 0,

G(0, z) =
τ(z)

||τ(z)|| ·
Z(z)

||Z(z)||
is well defined. Evidently, G(1, z) = g(z). On the other hand:

lim
t→0

G(t, z) =
τ(z)

||τ(z)|| lim
t→0

∣∣∣∣
∣∣∣∣
ϕ(tτ(z), z) − z

tτ(z)

∣∣∣∣
∣∣∣∣
−1

· lim
t→0

ϕ(tτ(z), z) − z

tτ(z)

=
τ(z)

||τ(z)|| lim
s→0

∣∣∣∣
∣∣∣∣
ϕ(s, z) − z

s

∣∣∣∣
∣∣∣∣
−1

· lim
s→0

ϕ(s, z) − z

s

=
τ(z)

||τ(z)|| ·
Z(z)

||Z(z)|| .

It follows that G is continuous and therefore is a homotopy between

g(z) and G(0, z) = τ(z)
||τ(z)|| ·

Z(z)
||Z(z)|| . Now, since π3(S

1) = {0}, the map

τ/|τ | : ∂B → S
1 is homotopic to the constant 1 ∈ S

1 and g is homotopic
to Z/||Z||. Therefore deg(g) = deg(Z/||Z||) = s.

In the same way, we have that

(f̃ ′ − id)∗ : H3(C
2\{0}) → H3(C

2\{0})
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is the multiplication by s̃.
Let

h′∗ : H3(C
2\{0}) → H3(C

2\{0})
be the isomorphism induced by h′. Clearly, the following lemma implies
Theorem 2.1.

Lemma 2.5. The following diagram commutes:

H3(C
2\{0}) (f ′−id)∗−−−−−→ H3(C

2\{0})
yh′

∗

yh′
∗

H3(C
2\{0}) ( ef ′−id)∗−−−−−→ H3(C

2\{0})
Proof. Recall that B was chosen such that

B ⊂ {|z1| < ε, |z2| < 2r} ⊂ {|z1| < 2ε, |z2| < 4r} ⊂ V.

Since h′ ◦ f ′ = f̃ ′ ◦ h′ we have (f̃ ′ − id) ◦ h′ = f̃ ′ ◦ h′ − h′ = h′ ◦ f ′ − h′.
It is sufficient to prove that h′ ◦ f ′ − h′ and h′ ◦ (f ′ − id) : B\{0} →
C

2\{0} are homotopic. For any z ∈ B\{0} and t ∈ [0, 1] we have that
f ′(z), (1 − t)z ∈ Dǫ × D2r. Then (f ′(z) + (1 − t)z) is contained in
D2ǫ × D4r ⊂ V . Therefore, the map:

F : [0, 1] × (B\{0}) → C
2\{0},

F (t, z) = h′(f ′(z) − (1 − t)z) − h′(tz)

is well defined. F is continuous and F (t, z) 6= 0 for all (t, z) ∈ [0, 1] ×
(B\{0}) because F (t, z) = 0 implies h′(f ′(z) − (1 − t)z) = h′(tz) and
since h′ is a homeomorphism f ′(z) − (1 − t)z = tz, hence f ′(z) = z,
which contradicts f ′(z) 6= z. Thus F is a homotopy between h′ ◦ f ′ −h′

and h′ ◦ (f ′ − id). q.e.d.

3. A topological fact.

Let M be a complex manifold. We say that D is a complex disc in M ,
if D ⊂ M and there is a map f : D → M , which is a homeomorphism
onto D and is holomorphic on D. Let V be any subset of M containing
∂D. The map f |S1 : S1 → ∂D ⊂M defines a 1-cycle in V and represents
an element inH1(V ) which does not depend on f . We denote this 1-cycle
by ∂D independently of the set V . For simplicity, we write γ = γ′ in
H1(M) for means that the 1-cycles γ and γ′ represents the same element

in the group H1(M). Let π : Ĉ2 → C
2 be the blow up at 0 ∈ C

2 and

let E = π−1(0). Let ρ : Ĉ2 → E be the natural projection. (If L is the
strict transform by π of a complex line passing through 0 ∈ C

2, then
ρ(L) = L∩E.) The following Lemma is a reason for assuming that the
topological equivalence h preserves the orientation of C

2.
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Lemma 3.1. Let h : U → U ′ be a homeomorphism, where U and
U ′ are neighborhoods of 0 ∈ C

2 homeomorphic to balls. Let P and P ′

be two complex lines passing through 0 ∈ C
2. Suppose that P ∩ U is

homeomorphic to a disc and h(P ∩ U) = P ′ ∩ U ′. Let L and L′ be
the strict transforms by π of P and P ′ respectively. Let p and p′ be the
points of intersection of L and L′ with E respectively. Denote by W and

W ′ the sets π−1(U) and π−1(U ′) in Ĉ2 and let h : W\E →W ′\E be the
homeomorphism defined by h = π−1 hπ. Let V ⊂ W be a neighborhood
of p and let

ϕ : D × D → V

be a biholomorphism such that ϕ({0} × D) = L ∩ V and ϕ(D × {0}) =
E ∩ V . Let r with 0 < r < 1 and consider the disc Bw = ϕ(w, |z| ≤ r),
where w ∈ D. Let Ω be a neighborhood of p′ in E, homeomorphic to a

disc. Let V ′ ⊂ Ĉ2 be the set ρ−1(Ω). Let A′ ⊂ V ′\E and B′ ⊂ V ′\L′ be
complex discs transverse to L′ and E respectively. Then, for |w| small
enough we have the following:

(i) If h preserves the orientation of C
2, then

h(∂Bw) = ξ∂B′ in H1(V
′\(L′ ∪ E)),

where ξ = +1 or −1.
(ii) If h inverts the orientation of C

2, then

h(∂Bw) = −2ξ∂A′ + ξ∂B′ in H1(V
′\(L′ ∪ E)),

where ξ = +1 or −1.

Remark. With some hypothesis on the foliation F , we have in fact
that the topological equivalence h necessarily preserves the orientation
of C

2. Precisely, we have the following.

Proposition 3.2. Let F be a holomorphic foliation by curves on
U which has 0 ∈ C

2 as its unique singularity. Suppose that F has

three smooth and transverse separatrices. Suppose that F̃ is another

holomorphic foliation of a neighborhood Ũ of 0 ∈ C
2 and let

h : U → Ũ

be a topological equivalence between F and F̃ . Then h preserves the
orientation of C

2.

Let U ⊂ C
2 be an open set homeomorphic to a ball. Let P be a

complex line in C
2 and suppose that U ∩ P is homeomorphic to a disc.

It follows by Alexander’s duality theorem that H1(U\P ) ≃ Z. Let
D ⊂ C

2 be a complex disc transverse to P . The 1-cycle ∂D represents
an element in H1(U\P ) ≃ Z, which does not depends on the disc D.
We know that ∂D is a generator of the group and we say that it is the
positive generator of H1(U\P ). Given a homeomorphism f : M →M ′,
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where M and M ′ are oriented manifolds, we define deg(f) to be 1 or
−1 depending on whether f preserves or reverses orientation.

Lemma 3.3. Let h : U → U ′ be a homeomorphism, where U and
U ′ are neighborhoods of 0 ∈ C

2 homeomorphic to balls. Let P and
P ′ be two complex lines passing through 0 ∈ C

2. Suppose that P ∩ U is
homeomorphic to a disc and h(P ∩U) = P ′∩U ′. Let a and a′ be 1-cycles
in U\P and U ′\P ′ representing the positive generators of H1(U\P ) and
H1(U

′\P ′) respectively. Then

h(a) = deg(h) deg(h |P )a′ in H1(U
′\P ′).

Proof of Lemma 3.1. If B′′ ⊂ V ′\L′ is any complex disc transverse to E,
we have that ∂B′′ is homologous ∂B′ in H1(V

′\(L′∪E)). Thus, we may
change the disc B′ if necessary and assume that it is contained in W ′.
Let b′ be the 1-cycle defined by b′ = π(∂B′). Then, since π(B′) ⊂ U ′

is a complex disc transverse to P ′ and π(∂B′) = ∂π(B′), we have that
b′ is a positive generator of H1(U

′\P ′). Analogously, if b = π(∂Bw),
we deduce that b is a positive generator of H1(U\P ). It follows from
Lemma 3.3 that:

h(b) = ψξb′ in H1(U
′\P ′),

where ψ = deg(h) and ξ = deg(h |P ). Then, since π−1 : U ′\P ′ →
W ′\(L′ ∪ E) is well defined, we have that

π−1(h(b)) = ψξπ−1(b′) in H1(W
′\(L′ ∪ E))

and thus

(1) h(∂Bw) = ψξ∂B′ in H1(W
′\(L′ ∪ E)).

Observe that π(A′) is a complex disc transverse to P ′. Then the cycle
∂π(A′) = π(∂A′) represents the positive generator of H1(U

′\P ′). Thus,
we deduce that π(∂A′) = π(∂B′) in H1(U

′\P ′) and therefore

(2) ∂A′ = ∂B′ in H1(W
′\(L′ ∪ E)).

Let C be the disc ϕ(0, |z| ≤ r) in L. Let C′ be a disc in L′ containing
p′. Since h maps C homeomorphically into L′ with h(p) = p′, the cycle
h(∂C) is a generator of the group H1(L

′\{p′}) and we have h(∂C) =
deg(h|L)∂C′. Thus, since h|L preserves orientation if an only if h |P does,
we have that h(∂C) = ξ∂C′ in H1(L

′\{p′}). Since L′\{p′} is contained
in V ′\E, we conclude that

(3) h(∂C) = ξ∂C′ in H1(V
′\E).

Observe that ∂C′ = ∂B′ in H1(V
′\E). Moreover, ∂C = ϕ(0, |z| = r) is

homologous to ∂Bw = ϕ(w, |z| = r) in the set T = ϕ(|z| ≤ |w|, |z| = r).
It is easy to see that for |w| small enough, the set h(T ) is contained



348 R. ROSAS

in V ′\E. Then h(∂C) and h(∂Bw) are homologous in V ′\E. It follows
from (3) and the observations above that for |w| small enough:

(4) h(∂Bw) = ξ∂B′ in H1(V
′\E).

We know that there exists integers n and m such that

h(∂Bw) = n∂A′ +m∂B′ in H1(V
′\(L′ ∪E)).

Then, since V ′\(L′ ∪ E) ⊂ V ′\E:

h(∂Bw) = n∂A′ +m∂B′ in H1(V
′\E),

hence

h(∂Bw) = m∂B′ in H1(V
′\E),

because ∂A′ = 0 in H1(V
′\E). From this and (4) we conclude that

m = ξ. Then

h(∂Bw) = n∂A′ + ξ∂B′ in H1(V
′\(L′ ∪ E))

and, since V ′\(E ∪ L′) is contained in W ′\(E ∪ L′), we have that

(5) h(∂Bw) = n∂A′ + ξ∂B′ in H1(W
′\(L′ ∪ E)).

From (2) we have ∂A′ = ∂B′ in H1(W
′\(L′ ∪ E)). Replacing in (5) we

obtain:

h(∂Bw) = n∂B′ + ξ∂B′ in H1(W
′\(L′ ∪ E)).

Thus, from (1) we have:

ψξ∂B′ = n∂B′ + ξ∂B′ in H1(W
′\(L′ ∪ E))

and therefore n = (ψ − 1)ξ. This proves the Lemma. q.e.d.

Proof of Proposition 3.2. It is known that the germ of three smooth
and transverse curves is equivalent to the germ given by its tangents
lines. Therefore we may assume that F has three transverse complex
lines P1, P2 and P3 as separatrices. Then h(P1), h(P2) and h(P3) are

smooth and transverse separatrices of F̃ and we can also assume that

they are contained in complex lines P̃1, P̃2 and P̃3. By reducing U we
may assume that U ∩P1, U ∩P2 and U ∩P3 are homeomorphic to discs.

We may take a neighborhood Ũ ′ ⊂ h(U) of 0 ∈ C
2 such that Ũ ′ ∩ P̃1,

Ũ ′ ∩ P̃2 and Ũ ′ ∩ P̃3 are homeomorphic to discs and are contained in
h(U ∩ P1), h(U ∩ P2) and h(U ∩ P3) respectively. Then if we make

U ′ = h−1(Ũ ′), it is easy to see that U ′ ∩ P1, U
′ ∩ P2 and U ′ ∩ P3 are

homeomorphic to discs and h(U ′ ∩P1) = Ũ ′ ∩ P̃1, h(U ′ ∩P2) = Ũ ′ ∩ P̃2,

h(U ′ ∩ P3) = Ũ ′ ∩ P̃3. We may choose two of the complex lines P1,
P2 and P3, say us P1 and P2, such that deg(h |P1) = deg(h |P2). Let
D ⊂ P1 be a disc containing 0 ∈ C

2. Then h(∂D) = deg(h |P1)∂ h(D) in

H1(P̃1 ∩ Ũ ′\{0}) and, since P̃1 ∩ Ũ ′\{0} ⊂ Ũ ′\P̃2, we have that

h(∂D) = deg(h |P1)∂ h(D) in H1(Ũ
′\P̃2).
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On the other hand, since ∂D and ∂ h(D) are positive generators of

H1(U
′\P2) and H1(Ũ

′\P̃2) respectively, we have by Lemma 3.3 that

h(∂D) = deg(h) deg(h |P2)∂ h(D) in H1(Ũ
′\P̃2).

Finally, since deg(h |P1) = deg(h |P2), it follows from the equations above
that deg(h) = 1 and therefore h preserves orientation. q.e.d.

Proof of Lemma 3.3. We only sketch the proof. Let D and D′ be
complex discs transverse to P and P ′ respectively. Thus ∂D and ∂D′

are homologous to a and a′ respectively. Clearly h(∂D) = ξ∂D′, where
ξ = 1 or −1. Let L = P ∩ U and L′ = P ′ ∩ U ′. It follows from the
topological invariance of the intersection number (see [6], p.200) that

h(L) · h(D) = deg(h)L′ · D′.

On the other hand it is easy to see that

h(L) · h(D) = (deg(h |P )L′) · (ξD′) = deg(h |P )ξL′ · D′.

Then deg(h |P )ξ = deg(h) and therefore ξ = deg(h |P ) deg(h), which
proves the lemma. q.e.d.

4. Proof of theorem 1.2

Let ρ : Ĉ2 → π−1(0) be the projection associated to the natural

fibration on a neighborhood of the divisor π−1(0). Let h : U → Ũ , F ,

F̃ , P , and P̃ be as in Theorem 1.2. We know that the strict transforms

of P and P̃ are fibers of ρ. Let Lp and Lep, the fibers passing through

p and p̃, be the strict transforms of P and P̃ respectively. By the

hypothesis on P and P̃ we have that p and p̃ are regular points of F0

and F̃0 respectively. Let W and W̃ denote the sets π−1(U) and π−1(Ũ )

and let E be the divisor π−1(0). Since h(P ∩ U) = P̃ ∩ Ũ , if

h : W\E → W̃\E
is the homeomorphism given by h = π−1 hπ, we have that

h(Lp ∩W\{p}) = Lep ∩ W̃\{p̃}.
Now, it is easy to see that Theorem 1.2 is a direct consequence of the
following proposition.

Proposition 4.1. Let p and p̃ be points in the divisor which are

nonsingular for F0 and F̃0 respectively. Let Lp and Lep be the fibers
through p and p̃ respectively and suppose that

h(Lp ∩W\{p}) = Lep ∩ W̃\{p̃}.
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Then there exists neighborhoods U ⊂ U and Ũ ⊂ Ũ of 0 ∈ C
2, and

another topological equivalence

ĥ : U → Ũ

between F and F̃ , for which the hypothesis of Theorem 2.1 holds.

We need some lemmas. Let U ⊂ C be the domain bounded by the
Jordan curve J . Let p ∈ U and ζ ∈ J . We know that any biholomor-
phism between D and U extends as a homeomorphism between D and
U = U ∪ J and there exists a unique biholomorphism f : D → U with
f(0) = p and such that its extension to D satisfies f(1) = ζ. In other
words, f : D → U is the unique orientation preserving homeomorphism,
which is conformal on D and maps 0 to p and 1 to ζ. It is easy to
prove that g : D → U defined by g(z) = f(z̄) is the unique orientation
reversing homeomorphism, which is conformal on D and maps 0 to p
and 1 to ζ. Therefore we have the following.

Lemma 4.2. Let U,U ′ ⊂ C be the domains bounded by the Jordan
curves J and J ′ respectively. Let p ∈ U , ζ ∈ J and p′ ∈ U ′, ζ ′ ∈ J ′.

Then there exists exactly two homeomorphisms between U and U
′
which

are conformal and maps p to p′ and ζ to ζ ′. The first one preserves
orientation and the other one reverses orientation.

Lemma 4.3. Let Jk : S1 → C be a Jordan curve for all k ≥ 1.
Suppose that Jk converges uniformly on S1 to the Jordan curve J :
S1 → C. Let U and Uk, k ≥ 1 be the domains bounded by J and Jk,
k ≥ 1 respectively. Let pk ∈ Uk and ζk ∈ Jk be such that pk → p ∈ U
and ζk → ζ ∈ J as k → ∞. Let f : D → U and fk : D → Uk

be the orientation preserving homeomorphisms which are conformal on
D and such that f(0) = p, f(1) = ζ, fk(0) = pk and fk(0) = ζk.
Then fk converges to f uniformly on D. If under the same hypothesis,
we change “orientation preserving homeomorphisms” by “orientation
reversing homeomorphisms”, the conclusion is also true.

Lemma 4.4. Let φ : X → C\{0} be a continuous function. Suppose
that φ∗ : π1(X) → π1(C\{0}) is trivial. Then there exists a continuous

function logφ : X → C such that elogφ = φ.

Lemma 4.5. Let φ : S1 → S1 be an orientation preserving home-
omorphism. Consider S1 as a subset of C and define the closed curve
α : S1 → C\{0} by α(ζ) = φ(ζ)/ζ. Then α is homotopically trivial in
C\{0}.

Lemma 4.6. Let φ : S1 → S1 be an orientation preserving homeo-
morphism and let τ : S1 → C be such that eτ(ζ) = φ(ζ)/ζ. Let A ⊂ C

be the annulus {z ∈ C : 1/2 ≤ |z| ≤ 1}. Then the map

g : A→ A
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g(z) = ze(2|z|−1)τ(z/|z|)

is a homeomorphism. Moreover, g = φ on {|z| = 1} and g = id on
{|z| = 1/2}.

Lemma 4.7. Let f : D → C be a conformal map. Then there exists
δ0 > 0 such that for all δ ≤ δ0 the set f(|z| ≤ δ) is convex. (For
convenience, we define a set U ⊂ C to be convex if U is the domain
bounded by a smooth Jordan curve with positive curvature.)

Lemma 4.8. Let f : D → C be a conformal map. Let U be an open
set in C and let δ0 > 0. Suppose for all δ ≤ δ0 the set f(|z| ≤ δ) is
convex and contained in U . Then there exists ǫ > 0 with the following
property: if g : D → C is a conformal map with ||f − g||{|z|≤δ0} < ǫ,
then for all δ ≤ δ0 the set g(|z| ≤ δ) is convex and contained in U . (If
K is compact and f is continuous, ||f ||K is defined as the supremum of
|f(x)| for x ∈ K.)

Any leaf of F0 or F̃0 has a natural orientation induced by the complex
structure. Thus, given a leaf L of F0 out of the divisor, we may state

if h|L : L → L̃ preserves or reverses orientation. Suppose that h|L pre-
serves orientation. Then it is not difficult to prove that h|L′ preserves
orientation of any leaf L′ close enough to L. On the other hand, if h|L
reverses orientation, the same holds for h|L′ provided the leaf L′ is close
enough to L. By connectedness we have in fact that: either h preserves
orientation for every leaf, or h reverses orientation for every leaf.

Proof of Proposition 4.1. Let V and Ṽ be neighborhoods of p and p̃ and

let ϕ : D × D → V and ϕ̃ : D × D → Ṽ be diffeomorphisms with the
following properties:

(i) If restricted to D × D, the maps ϕ and ϕ̃ are biholomorphisms.

(ii) The leaves of F0|V and the leaves of F̃0|eV
are given by the sets

ϕ(D × {∗}) and ϕ̃(D × {∗}) respectively.

(iii) We have Lp ∩ V = ϕ({0} × D), E ∩ V = ϕ(D × {0}), Lep ∩ Ṽ =

ϕ̃({0} × D) and E ∩ Ṽ = ϕ̃(D × {0}).
Let ̺ : V → D be the projection ̺(ϕ(z1, z2)) = z1 and we also denote

by ̺ the projection ̺ : Ṽ → D, ̺(ϕ̃(z1, z2)) = z1. Let Σ be the set
Lp ∩ V = ϕ({0} × D). We have that h(Σ) ⊂ Lep and we may assume V

small enough such that h(Σ) ⊂ Ṽ Given x = ϕ(0, z2) ∈ Σ, we denote
by Dx the plaque ϕ(D × {z2}) passing through x. We have that Dx is
a closed disc in the leaf of F0 passing through x.

Step 1. Fix a point q in ∂D = S1 and denote by qx the unique point in
∂Dx such that ̺(qx) = q. If h preserves the orientation of the leaves, by
Lemma 4.2 we may define fx : Dx → h(Dx) as the unique orientation-
preserving-homeomorphism which is conformal on the interior of Dx
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and such that fx(x) = h(x) and fx(qx) = h(qx). Otherwise, we define
fx : Dx → h(Dx) as the unique orientation reversing homeomorphism
which is conformal on the interior of Dx and such that fx(x) = h(x)
and fx(qx) = h(qx). Let ̺−1

x : D → Dx be the inverse of ̺|Dx : Dx → D.

Assertion 1. Let f : V \E → Ĉ2 be defined by f |Dx = fx for all x ∈
Σ\{p}. Then f is continuous.

Proof. Let gx : D → h(Dx) be defined by gx = fx◦̺−1
x . It is sufficient

to prove that gx varies continuously with x, precisely: fix x0 ∈ Σ\{p}
and let xk(k ≥ 1) be such that xk → x0 as k → ∞; then we shall
prove that gxk

→ gx0 uniformly on D. Since h(Dx0) is a compact and

simply connected subset of a leaf of F̃0, there exits a neighborhood U
of h(Dx0) and a biholomorphism φ = (Z,W ) : U → D × D such that

the leaves of F̃0 are mapped to the sets D × {z}. We may assume that
h(Dxk

) is contained in U for all k ≥ 0. Thus, we define Gk : D → D×D

by Gk = φ ◦ gxk
= (Z ◦ gxk

,W ◦ gxk
). Since gxk

(D) = h(Dxk
) ⊂ U

is contained in a leaf, there is zk ∈ D such that Gk(D) is contained in
D × {zk}. Thus W ◦ gxk

≡ zk and it is sufficient to show that Fk =

Z ◦ gxk
: D → D converges to F0 = W ◦ gx0 uniformly on D. Observe

that Fk is a homeomorphism onto its image and is conformal on D.
Moreover, we have that

Fk(0) = Z ◦ gxk
(0) = Z(h(xk)) → Z(h(x0)) = Z ◦ gx0(0) = F0(0)

and

Fk(q) = Z ◦ gxk
(q) = h(qxk

) → h(qx0) = gx0(q) = F0(q).

Then Assertion 1 follows from Lemma 4.3

Let

θx : S1 → S1

be the homeomorphism defined by θx = ̺f−1
x h̺−1

x |S1 . It is easy to see
that θx preserves the orientation of S1.

Define the function

φ : S1 × (Σ\{p}) → C\{0}

φ(ζ, x) =
θx(ζ)

ζ
.

Assertion 2. At homotopy level, φ∗ : π1(S
1 × (Σ\{p})) → π1(C\{0}) is

trivial.

Proof. The generators of π1(S
1 × (Σ\{p})) are represented by the

paths

α, β : S1 → S1 × (Σ\{p}),
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defined by α(ζ) = (ζ, x0) and β(ζ) = (q, γ(ζ)), where x0 ∈ Σ\{p} and γ
is a simple closed curve around p in Σ. Recall that q ∈ S1, then |q| = 1
and we have

φ(β(ζ)) = φ(q, γ(ζ)) =
θγ(ζ)(q)

q
=
̺f−1

γ(ζ)h̺
−1
γ(ζ)(q)

q

=
̺f−1

γ(ζ)h(qγ(ζ))

q
=
̺f−1

γ(ζ)fγ(ζ)(qγ(ζ))

q

=
̺(qγ(ζ))

q
= 1.

Then φ∗(β) = 0. On the other hand, since θx0 : S1 → S1 is an orienta-
tion preserving homeomorphism, we have by Lemma 4.5 that

φ ◦ α : S1 → C\{0},

φ ◦ α(ζ) =
θx0(ζ)

ζ

is homotopically trivial and thus φ∗(α) = 0.

It follows from Assertion 2 and Lemma 4.4 that there exists a con-
tinuous function

τ : S1 × (Σ\{p}) → C

such that eτ = φ, that is, eτ(ζ,x) = θx(ζ)/ζ. Consider the annulus
A = {1/2 ≤ ||z|| ≤ 1} ⊂ D and define the map

g : A× (Σ\{p}) → A,

g(z, x) = ze(2|z|−1)τ(z/|z|,x).

It follows from Lemma 4.6 that for all x the map

gx : A→ A,

gx(z) = g(z, x)

is a homeomorphism such that gx = id on {|z| = 1/2} and gx = θx on
S1. Let Ax be the annulus ̺−1

x (A) in Dx and let ∂A′
x = ̺−1

x (|z| = 1/2)
and ∂A′′

x = ̺−1
x (|z| = 1) be the interior and the exterior boundary of

Ax respectively. Then the map

ḡ : Ax → fx(Ax)

defined by ḡx = fx̺
−1
x gx̺ : Ax → fx(Ax) is a homeomorphism and it is

easy to see that ḡx coincides with fx on ∂A′
x and with h on ∂A′′

x. Then
we may define the homeomorphism

hx : Dx → h(Dx)
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by

hx = fx on ̺−1
x (|z| ≤ 1/2),

hx = gx on Ax.

Clearly, hx coincides with h on ∂Dx and it is easy to see that hx

depends continuously on x. Finally, we define the function h′ by

h′|Dx = hx for all x ∈ Σ\{p},
h′ = h, otherwise.

It is easy to see that h′ is injective and take leaves to leaves. More-
over, if we restrict h′ to a small enough neighborhood of the divisor, h′

is continuous. Hence, h′ restricted to a neighborhood of the divisor is
a homeomorphism onto its image and is therefore a topological equiva-

lence between F0 and F̃0. By definition h′ is conformal on every plaque
̺−1

x (|z| ≤ 1/2), because coincides with fx. In other words, there is ǫ > 0
such that h′ restricted to ϕ(|z1| ≤ 1/2, |z2| ≤ ǫ) is conformal along the
leaves.

Step 2. From step 1 and by reducing V , we may assume that h re-
stricted to V is conformal along the leaves. Then for all x ∈ Σ\{p} the
map

h̺−1
x : D → h(Dx)

is conformal and maps 0 to h(x). Given x ∈ Σ\{p}, since h̺−1
x (0) =

h(x) is contained in Lep ∩ Ṽ , there is δ > 0 such that the disc {|z| ≤ δ}
in D is mapped by h̺−1

x into the interior of Ṽ . Then the map

̺h̺−1
x : {|z| ≤ δ} → D

is well defined and assuming δ be small, by Lemma 4.7 we have that for
all δ′ ≤ δ the disc {|z| ≤ δ′} is mapped by ̺h̺−1

x onto a convex subset
of D. Define δ(x) > 0 as the supremum of 0 < δ < 1 such that for all
δ′ ≤ δ, the disc {|z| ≤ δ′} in D is mapped by ̺h̺−1

x onto a convex subset
of D.

Assertion 3. The function δ : Σ\p → R
+ is lower semi-continuous.

Proof. Fix x0 ∈ Σ\p and let ǫ > 0. Take δ0 be such that δ(x0) − ǫ <
δ0 < δ(x0). Then the disc {|z| ≤ δ0} is mapped by ̺h̺−1

x0
onto a compact

subset of D. Then, if Ω is a small enough neighborhood of x0 in Σ\p,
we have that

̺h̺−1
x : {|z| ≤ δ0} → D

is well defined for all x ∈ Ω. If we write f = ̺h̺−1
x0

, it follows from the
definition of δ(x0) that for all δ′ ≤ δ(x0) − ǫ, the set f(|z| ≤ δ′) is a
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convex subset of D. Let ǫ0 > 0 be given by Lemma 4.8 for f = ̺h̺−1
x0

and U = D. Then if

g : {|z| ≤ δ0} → D

is a conformal map with ||f − g||{|z|≤δ(x0)−ǫ} < ǫ0, we have that for all

δ′ ≤ δ(x0)− ǫ, the set g(|z| ≤ δ′) is also convex and contained in D. By
reducing the neighborhood Ω of x0 we may assume that

||̺h̺−1
x0

− ̺h̺−1
x ||{|z|≤δ(x0)−ǫ} < ǫ0

for all x ∈ Ω. Then, for all δ′ ≤ δ(x0) − ǫ the set ̺h̺−1
x (|z| ≤ δ′) is

convex and contained in D. Thus by the definition of δ(x) we conclude
that

δ(x) ≥ δ(x0) − ǫ.

It follows that δ is a lower semi-continuous function.

Assertion 4. There exists a positive continuous function

r : Σ\{p} → (0, 1)

such that for all x the map

̺h̺−1
x : {|z| ≤ r(x)} → D

is well defined and its image Ux := ̺h̺−1
x (|z| ≤ r(x)) is a convex subset

of D.

Proof. We take any continuous function r < δ given by Lemma 2.3.
Then Assertion 4 is a direct consequence of the definition of δ.

For all 0 < r < 1 let βr : [0, 1] → [0, 1] be the homeomorphism defined
by

βr(t) = t
ln(1/r)

ln 2 .

We have that βr(0) = 0, βr(1) = 1 and it is easy to see that βr(1/2) = r.
In fact

βr(1/2) = (1/2)
ln(1/r)

ln 2 =
(
2

1
ln 2

)− ln(1/r)

=
(
(eln 2)

1
ln 2

)ln(r)
= eln(r) = r.

For each x ∈ Σ\{p} we define the homeomorphism:

fx : D → D,

fx(z) = βr(x)(|z|)z.
Observe that fx maps each ratio of D homeomorphically onto itself and
this homeomorphism is “given” by βr(x). We have that fx(0) = 0,

fx = id on ∂D and that fx maps the disc {|z| ≤ 1/2} onto the disc

{|z| ≤ r(x)}. For all y ∈ Lep ∩ Ṽ , let ̺−1
y : D → Dy be the inverse of
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̺|Dy : Dy → D.

Assertion 5. For each x ∈ Σ\{p}, define the homeomorphism

hx = h̺−1
x fx̺ : Dx → h(Dx).

Then hx coincides with h on ∂Dx and maps the disc ̺−1
x (|z| ≤ 1/2)

onto ̺−1
h(x)(Ux). Moreover, hx depends continuously on x.

Proof. If ζ ∈ ∂Dx, then ̺(ζ) ∈ S1 and since fx = id on S1 we have
that fx(̺(ζ)) = ̺(ζ). Then

hx(ζ) = h̺−1
x fx̺(ζ) = h̺−1

x ̺(ζ) = h(ζ).

On the other hand,

hx(̺−1
x (|z| ≤ 1/2)) = h̺−1

x fx̺(̺
−1
x (|z| ≤ 1/2)) = h̺−1

x fx(|z| ≤ 1/2)

and, since fx(|z| ≤ 1/2) = {|z| ≤ r(x)}, we obtain:

hx(̺−1
x (|z| ≤ 1/2)) = h̺−1

x (|z| ≤ r(x)).

Recall that Ux = ̺h̺−1
x (|z| ≤ r(x)) and so

̺−1
h(x)(Ux) = h̺−1

x (|z| ≤ r(x)).

therefore

hx(̺−1
x (|z| ≤ 1/2)) = ̺−1

h(x)(Ux).

Finally, h depends continuously on x because βr depends continuously
on r.

We now define the function h′ by

h′|Dx = hx for all x,

h′ = h, otherwise.

It is easy to see that h′ is injective and take leaves to leaves. Moreover, if
we restrict h′ to a small enough neighborhood of the divisor, it is contin-
uous. Hence, h′ restricted to a neighborhood of the divisor is a home-
omorphism onto its image and is therefore a topological equivalence

between F0 and F̃0. By definition, h′ maps each plaque ̺−1
x (|z| ≤ 1/2)

onto ̺−1
h(x)(Ux). In other words, any plaque ̺−1

x (|z| ≤ 1/2) is mapped

by h′ onto a set which projection by ̺ is a convex set Ux in D.

Step 3. From step 2 and by reducing V we may assume that h maps
each plaque Dx onto ̺−1

h(x)(Ux). Since Ux ⊂ D is convex and contains 0,

given w ∈ D there exists a unique point in the intersection of ∂Ux with

the ray
−→
0w. Let rx(w) be the norm of this point. It is easy to see that

rx(w) depends continuously on x and w. We define the homeomorphism:

fx : D → D,
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fx(w) = βrx(w)(|w|)w.
Observe that fx maps the ratio of D passing through w homeomorphi-
cally onto itself and this homeomorphism is “given” by βrx(w). We have
that fx maps the disc {|z| ≤ 1/2} onto Ux.

Assertion 6. For each x ∈ Σ\{p} define the homeomorphism

gx = ̺−1
h(x)f

−1
x ̺ : Dh(x) → Dh(x).

Then gx = id on ∂Dh(x) and maps ̺−1
h(x)(Ux) onto ̺−1

h(x)(|z| ≤ 1/2).

Moreover, gx depends continuously on x.

Proof. If ζ ∈ ∂Dh(x), then ̺(ζ) ∈ S1 and since fx = id on S1 we have

that f−1
x (̺(ζ)) = ̺(ζ). Then

gx(ζ) = ̺−1
h(x)f

−1
x ̺(ζ) = ̺−1

h(x)̺(ζ) = ζ.

On the other hand:

gx(̺−1
h(x)(Ux)) = ̺−1

h(x)f
−1
x ̺(̺−1

h(x)(Ux)) = ̺−1
h(x)f

−1
x (Ux).

From the definition of fx, we have that f−1
x (Ux) = {|z| ≤ 1/2}. Then

gx(̺−1
h(x)(Ux)) = ̺−1

h(x)f
−1
x (Ux) = ̺−1

h(x)(|z| ≤ 1/2).

Finally, gx depends continuously on x because rx depends continuously
on x.

Now, define the function g by

g|Dh(x)
= gx for all x,

g = id, otherwise.

It is easy to see that g is injective and maps leaves of F̃0 to leaves of

F̃0. Moreover, if we restrict g to a small enough neighborhood of the
divisor, g is continuous. Hence, g restricted to a neighborhood of the
divisor is a homeomorphism onto its image and is therefore a topological

equivalence of F̃0 with itself. Finally we define h′ = g ◦ h. Then h′ is a

topological equivalence between F0 and F̃0 and from the definition of g
we have

h′(Dx) = g(h(Dx)) = g(̺−1
h(x)(Ux)) = ̺−1

h(x)(|z| ≤ 1/2).

Thus h′ maps each plaque Dx onto the plaque ̺−1
h(x)(|z| ≤ 1/2).

Step 4. From step 3 and by redefining Ṽ we may assume that for
all y ∈ D\{0} the equivalence h maps the plaque ϕ(D × {y}) onto the
plaque the ϕ̃(D × {f(y)}), where f : D → D is a homeomorphism onto

its image. Therefore h|V \E : V \E → Ṽ \E is expressed as

h(ϕ(x, y)) = ϕ̃(hy(x), f(y)),
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where hy : D → D is a homeomorphism such that hy(0) = 0 (because
h(Σ) ⊂ Lep). As a first case we assume that the homeomorphisms hy

preserve orientation. Define the function

φ : S1 × (D\{0}) → C\{0}

φ(ζ, y) =
hy(ζ)

ζ
.

Assertion 7. At homotopy level, φ∗ : π1(S
1 × (D\{0})) → π1(C\{0}) is

trivial.

Proof. The generators of π1(S
1 × (D\{0})) are represented by the

paths
α, β : S1 → S1 × (D\{0}),

defined as α(ζ) = (ζ, 1) and β(ζ) = (1, ζ). Then we have that

φ ◦ α(ζ) = φ(ζ, 1) =
h1(ζ)

ζ

and, since h1|S1 : S1 → S1 preserves the orientation, we have by Lemma
4.5 that φ ◦ α is homotopically trivial in C\{0}. Observe that β is the
boundary of the disc {(1, y) : |y| ≤ 1}. Thus, ϕ(β) is the boundary of the
complex disc B = ϕ(1, |y| ≤ 1). Consider the disc Bw = ϕ(w, |y| ≤ 1),
where w ∈ D\{0}. By Lemma 3.1 we may chose w such that the path

h(∂Bw) in Ṽ does not link the fiber Lep. Thus, since ∂B = ∂Bw in

H1(V \(Lp ∪E)) and h(V \(Lp ∪E)) ⊂ Ṽ \(Lep ∪E), we have that h(∂B)

does not link the fiber Lep. Therefore the path ϕ̃−1h(∂B) in (D\{0})×D

does not link {0} × D and, since

ϕ̃−1h(∂B) = ϕ̃−1h(ϕ(β)) = ϕ̃−1h(ϕ(1, ζ))

= ϕ̃−1ϕ̃(hζ(1), f(ζ)) = (hζ(1), f(ζ)),

we conclude that the path ζ → hζ(1) = φ(β(ζ)) is homotopically trivial
in C\{0}.

Assertion 7 and Lemma 4.4 imply that there exists a continuous func-
tion

τ : S1 × (D\{0}) → C

such that eτ(ζ,y) = hy(ζ)/ζ. We define the map:

h′ : V \E → Ṽ \E
by:

h′(ϕ(x, y)) = ϕ̃(x, f(y)), for |x| < 1/2, and

h′(ϕ(x, y)) = ϕ̃
(
xe(2|x|−1)τ(x/|x|,y), f(y)

)
, for |x| ≥ 1/2.

By Lemma 4.6 we have that h′ maps the plaque ϕ(D×{y}) homeomor-
phically onto the plaque ϕ̃(D × {f(y)}). Thus h′ is a homeomorphism
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which preserves the plaques and it is easy to see that h′ coincides with
h on ϕ(∂D× (D\{0})). Moreover h′ extends to ϕ(|x| < 1/2, y = 0) ⊂ E
as h′(ϕ(x, 0)) = ϕ̃(x, 0). It is easy to see that this extension is a home-
omorphism onto its image. We now define:

ĥ = h′ on V \E,
ĥ = h otherwise.

As before, on a neighborhood of the divisor, ĥ is also a topological

equivalence between F0 and F̃0. Moreover, from above ĥ extends to the
open set ϕ(|x| < 1/2, |y| < 1) and Proposition 4.1 is therefore proved
in this case. We now suppose that the homeomorphisms hx inverts
orientation. Then we define

h′ : V \E → Ṽ \E
by:

h′(ϕ(x, y)) = ϕ̃(x̄, f(y)), for |x| < 1/2, and

h′(ϕ(x, y)) = ϕ̃
(
x̄e(2|x|−1)τ(x̄/|x|,y), f(y)

)
, for |x| ≥ 1/2.

and the proof follows in the same way. q.e.d.

Proof of Lemma 4.3. This lemma is a direct consequence of a theorem
of Rado (see [11], p.26). q.e.d.
Proof of Lemma 4.4. Fix x0 ∈ X. There is a neighborhood Ω of z0φ(x0)
in C\{0} where a branch of logarithm function is well defined. Then
there exist a holomorphic function

f : Ω → C

such that ef(z) = z for all z ∈ Ω. We know that f can be analytically
continued along any path γ in C\{0} with γ(0) = z0 and γ(1) = z ∈
C\{0}. This analytic continuation has a value at γ(1) = z, which we
denote by fγ(z). Let x ∈ X. Take a path α in X connecting x0 to
x. Then we define Fα(x) = fφ◦α(φ(x)). Let α′ be other path in X
connecting x0 to x. Then, since

φ∗ : π1(X) → π1(C\{0})
is trivial, it follows that φ ◦α and φ ◦α′ are homotopic in C\{0}. Then

fφ◦α(φ(x)) = fφ◦α′(φ(x))

and so Fα(x) = Fα′(x). Therefore we define logφ(x) = Fα(x) for any α.
q.e.d.

Proof of Lemma 4.5. It is known that a map φ : Sn → Sn is ho-
motopically determined by its degree (Brouwer). Thus, a preserving-
orientation homeomorphism of S1 is homotopic to the identity map
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id : S1 → S1, that is, there exists a map

F : S1 × [0, 1] → S1

such that F (ζ, 0) = φ(ζ) and F (ζ, 1) = ζ for all ζ ∈ S1. Then the map

G : S1 × [0, 1] → S1 ⊂ C\{0}
defined by

G(ζ, t) =
F (ζ, t)

ζ
is a homotopy between α and the constant 1. q.e.d.

Proof of Lemma 4.6. We first observe that each circle {|z| = r} in A is
mapped into itself. Let z ∈ A with |z| = r. Since

eτ(ζ) = φ(ζ)/ζ ∈ S1

for all ζ ∈ S1, it follows that τ(z/|z|) = 2πit with t ∈ R. Then

|g(z)| =
∣∣∣ze(2|z|−1)τ(z/|z|)

∣∣∣ = |z|
∣∣∣e(2|z|−1)(2πit)

∣∣∣ = |z| = r.

Now, it is sufficient to prove that g maps each {|z| = r} homeomorphi-
caly onto itself, which is equivalent to prove that the map h : S1 → S1

defined by h(ζ) = g(rζ)/r is a homeomorphism. We have that

h(ζ) = g(rζ)/r = (rζ)e(2|rζ|−1)τ(rζ/|rζ|)/r = ζe(2r−1)τ(ζ),

where 1/2 ≤ r ≤ 1. Since φ is a homeomorphism and preserves
the orientation, there exists a homeomorphism f : R → R such that
φ(e2πit) = e2πif(t) and f(t + 1) = f(t) + 1 for all t ∈ R. Then, since

eτ(ζ) = φ(ζ)/ζ, we obtain

eτ(e2πit) = φ(e2πit)/e2πit = e2πif(t)/e2πit = e2πi(f(t)−t).

Hence τ(e2πit) = 2πi(f(t) − t+N), where N ∈ Z. Then

h(e2πit) = e2πite(2r−1)τ(e2πit) = e2πite(2r−1)(2πi)(f(t)−t+N)

= e(2πi)(t+(2r−1)f(t)−(2r−1)t+(2r−1)N)

= e(2πi)((2r−1)f(t)+(2−2r)t+(2r−1)N)(6)

and we have therefore

h(e2πit) = e2πif̄(t),

where f̄(t) = (2r − 1)f(t)+(2 − 2r)t+(2r − 1)N . An easy computation
shows that f̄(t + 1) = f̄(t) + 1. Moreover, since f is increasing, it is
easy to see that f̄ also is. Then f̄ : R → R is a homeomorphism and
the lemma follows. q.e.d.

Proof of Lemma 4.7. Since the conjugation z → z̄ preserves the convex
sets, by replacing f with f̄ we may assume that f is holomorphic. For
r > 0 small enough, define gr : D → C, gr(z) = f(rz/a)/r, where
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a = f ′(0). It is easy to see that gr(z) → z as r → 0 for all z. Then
gr converges uniformly on compact sets to the identity id : D → D as
r → 0. Hence there is r0 such that for all r ≤ r0 we have

|| id−gr||{|z|≤1/2} < ǫ,

where ǫ is given by Lemma 4.8 for δ0 = 1/2. Therefore gr(|z| ≤ 1/2) is
convex for all r ≤ r0. But

gr(|z| ≤ 1/2) = g

(
r{|z| ≤ 1/2}

a

)
/r = g

(
|z| ≤ r

|2a|

)
/r,

which is convex in and only if the set g(|z| ≤ r/|2a|) is convex. Then,
if we take δ0 = r0/(2|a|), we have that the set g(|z| ≤ δ) is convex for
all δ ≤ δ0. q.e.d.

Proof of Lemma 4.8. We may assume that f is holomorphic. Thus, if
the conformal map g is close enough to f , it will be holomorphic too.
If α : (a, b) → C is a smooth curve, the curvature of α at the point α(t)
is given by

kα(t) =

∣∣∣∣
d

dt

(
α′(t)

|α′(t)|

)∣∣∣∣ =
||α′′(t)|α′(t)| − α′(t)|α′(t)|′||

|α′(t)|2

=

∣∣∣
∣∣∣α′′(t)|α′(t)| − α′(t)

(
α′′(t)α′(t)+α′(t)α′′(t)

2|α′(t)|

)∣∣∣
∣∣∣

|α′(t)|2

=
||α′′(t)|α′(t)|2 − α′′(t)(α′(t))2||

2|α′(t)|3 .(7)

Let r > 0 and parametrices the boundary of the disc {|z| ≤ r} by

γr(t) = reit/r, t ∈ R. Let g : D → C be any holomorphic conformal map
and let αrg be the curve αrg = g ◦ γr. We have α′

rg(t) = g′(γr(t))γ
′
r(t),

α′′
rg(t) = g′′(γr(t))(γ

′
r(t))

2 + g′(γr(t))γ
′′
r (t), |γ′r(t)| = 1 and |γ′r(t)| = 1/r.

Then from (7):

kαrg (t) =
|(g′′(γr)(γ

′
r)

2 + g′(γr)γ
′′
r )|g′(γr)| − g′(γr)γ

′
r|g′(γr)|′

|g′(γr)|2

=
|g′(γr)γ

′′
r |g′(γr)| + g′′(γr)(γ

′
r)

2|g′(γr)| − g′(γr)γ
′
r|g′(γr)|′

|g′(γr)|2
,

Hence

kαrg (t) ≥ |g′(γr)|2/r − |g′′(γr)||g′(γr)| − |g′(γr)||g′(γr)|′
|g′(γr)|2

=
|g′(γr)|/r − |g′′(γr)| − |g′(γr)|′

|g′(γr)|
.(8)
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Observe that

|g′(γr)|′ =
g′′(γr)γ

′
rg

′(γr) + g′(γr)g′′(γr)γ′r
|g′(γr)|

and thus

|g′(γr)|′ ≤
|g′′(γr)||g′(γr)| + |g′(γr)||g′′(γr)|

|g′(γr)|
≤ 2|g′′(γr)|.

Replacing in equation (8) we obtain

kαrg (t) ≥ |g′(γr)|/r − |g′′(γr)| − 2|g′′(γr)|
|g′(γr)|

= 1/r − 3|g′′(γr)|/|g′(γr)|.
We know that if g → f , then g′′/g′ → f ′′/f ′ (uniformly on the compact
sets). Then there is ǫ > 0 such that ||f−g||{|z|≤r0} < ǫ1 implies kαrg (t) ≥
1/r − 3||f ′′/f ′||{|z|≤δ0} − 1 for all r ∈ (0, δ0). Thus we make take r0 ∈
(0, δ0) such that kαrg(t) > 0 whenever ||f − g||{|z|≤r0} < ǫ and r < r0.

On the other hand, clearly if g → f then g′(γr) → f ′(γr) and g′′(γr) →
f ′′(γr) uniformly on {r0 ≤ |r| ≤ δ0}, t ∈ R. Consequently, from (8),
we have kαrg(t) → kαrf

(t) uniformly on t ∈ R, r ∈ [r0, δ0]. Then, since
k(αrf (t)) > 0 for all t ∈ R, r ∈ [r0, δ0] (from convexity), we may reduce
ǫ in order to have kαrg (t) > 0 for all t ∈ R, r ∈ [r0, δ0]. Thus g(|z| ≤ δ)
is convex for all δ ≤ δ0. Clearly we may assume ǫ small enough such
that g(|z| ≤ δ0) is contained in U , which finishes the proof. q.e.d.

5. The differentiable case.

In this section we prove Theorem 1.1. As before, let π : Ĉ2 → C
2

be the blow up at 0 ∈ C
2 and let E be denote the divisor π−1(0). Let

ρ : Ĉ2 → E be the natural projection associated to the fibration on

Ĉ2 which fibers are given by the strict transforms of the complex lines
passing through 0 ∈ C

2.

Definition 5.1. Let {zk} be a sequence of points in C
2\{0}. Let

L be a complex line passing through 0 ∈ C
2 . We say that {zk} is

tangent to L at 0 if zk → 0 and every accumulation point of {zk/||zk||}
is contained in L.

Lemma 5.2. Let {xk} be a sequence of points in Ĉ2\E. Let x ∈ E
and let Px = π(Lx), where Lx is the fiber of ρ through x. Then xk →
x ∈ E if and only if {π(xk)} is tangent to Px at 0.

Let C be an irreducible separatrix (That is: an irreducible holomor-
phic curve invariant by F) of F (It exists by Separatrix Theorem, see

[4]). Then C̃ = h(C) is an irreducible separatrix of F̃ . Let P and P̃ be

the tangents lines at 0 ∈ C
2 of C and C̃ respectively.



THE ALGEBRAIC MULTIPLICITY OF A VECTOR FIELD SINGULARITY363

Proposition 5.3. Denote by A the derivative dh(0) : R
4 → R

4.

Then A(P ) = P̃ .

Proof. Given v ∈ P\{0}, there exits a path γ : [0, 1) → C, with
γ(0) = 0 and such that γ′(0) = v. Then the path h ◦γ is contained in

C̃ and therefore

(h ◦γ)′(0) = dh(0)(γ′(0)) = A(v)

is contained in P̃ . It follows that A(P ) ⊂ P̃ , and so A(P ) = P̃ , since A
is a isomorphism. q.e.d.

Let L and L̃ denote the strict transforms by π, of P and P̃ respec-

tively. Let q and q̃ be the points of intersection of L and L̃ with E. We
may assume without loss of generality that

P = P̃ = {(z1, z2) ∈ C
2 : z2 = 0}.

Let U = π−1(z1 6= 0) and consider holomorphic coordinates (t, x) in U
such that π is given by π(t, x) = (x, tx). Then the fibers of ρ are given

by the sets {t = cte} and , the fibers L and L̃ are represented by {t = 0},
that is, q = q̃ = (0, 0). Since F̃0 has a finite number of singularities on
E, we may take ǫ > 0 such that the set {(t, 0) : 0 < |t| < 2ǫ} ⊂ E does

not contain singularities of F̃0. let

A : Ĉ2\E → Ĉ2\E
be the homeomorphism defined by A = π−1Aπ.

Proposition 5.4. There exists δ > 0 such that the set

{(t, x) : |t| < 2δ}\E
is mapped by A into {(t, x) : |t| < 2ǫ}. Clearly, we may take δ such that
the set {(t, 0) : 0 < |t| < 2δ} ⊂ E does not contain singularities of F0.

Proof. Let A(z) = (A1(z),A2(z)) for all z = (z1, z2) ∈ C
2. Since

A(P ) = P ′, it follows that A2(z1, 0) = 0 for all z1 ∈ C. Hence:

A2(ζ, 0)

A1(ζ, 0)
= 0

for all ζ ∈ S1. Then there exists δ > 0 such that

(9)
A2(ζ, z2)

A1(ζ, z2)
< 2ǫ

for all ζ ∈ S1 and all z2 ∈ C with |z2| ≤ 2δ. Since A is real linear:

A2(z1, z2)

A1(z1, z2)
=

|z1|A2(z1/|z1|, z2/|z1|)
|z1|A1(z1/|z1|, z2/|z1|)

=
A2(z1/|z1|, z2/|z1|)
A1(z1/|z1|, z2/|z1|)

< 2ǫ
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and, since z1/|z1| ∈ S1, it follows from (9) that

(10)
A2(z1, z2)

A1(z1, z2)
< 2ǫ whenever |z2/z1| ≤ 2δ.

If w ∈ {(t, x) : |t| < 2δ}\E, then π(w) = (z1, z2) with z1 6= 0 and
|z2/z1| < 2δ. Therefore

A(w) = π−1Aπ(w) = π−1A(z1, z2) = π−1(A1(z1, z2),A2(z1, z2))

=

(
A2(z1, z2)

A1(z1, z2)
,A1(z1, z2)

)
,

and it follows from (10) that A(w) is contained in {(t, x) : |t| < 2ǫ}.
q.e.d.

Let p = (δ, 0) ∈ E and let Lp = {t = δ} (its fiber). Consider the path

β : S1 → Lp,

β(ζ) = (δ, ζ),

and let βA : S1 → {(t, x) : |t| < 2ǫ} given by βA = A ◦ β.

Proposition 5.5. The set ρ(A(Lp\{p})) is equal to ρ(βA(S1)).

Proof. Evidently ρβA(S1) ⊂ ρ(A(Lp\{p})). On the other hand, let
(δ, x) ∈ Lp\{p}, then

ρA(δ, x) = ρπ−1Aπ(δ, x) = ρπ−1A(x, δx)

= ρπ−1(A1(x, δx),A2(x, δx)) = ρ

(
A2(x, δx)

A1(x, δx)
,A1(x, δx)

)

=

(
A2(x, δx)

A1(x, δx)
, 0

)
=

(
A2(x/|x|, δx/|x|)
A1(x/|x|, δx/|x|)

, 0

)

= ρ

(
A2(x/|x|, δx/|x|)
A1(x/|x|, δx/|x|)

,A1(x/|x|, δx/|x|)
)

= ρπ−1(A1(x/|x|, δx/|x|),A2(x/|x|, δx/|x|))
= ρπ−1A(x/|x|, δx/|x|) = ρπ−1Aπ(δ, x/|x|)
= ρA(β(x/|x|)) = ρ(βA(x/|x|)).

Therefore ρ(A(Lp\{p})) ⊂ ρβA(S1). q.e.d.

Define K as the set of points y ∈ E such that there exists a sequence
{xk} in Lp\{p} with h(xk) → y as k → ∞.

Proposition 5.6. Given a neighborhood Ω of K in Ĉ2, there exist a
disc Σ in Lp containing p, such that the set h(Σ\{p}) is contained in
Ω.
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Proof. Is a direct consequence of the definition of K. q.e.d.

Proposition 5.7. The set K is equal to ρβA(S1). Thus, since βA(S1)

⊂ A(Lp\{p}) does not intersect L̃, the set K is contained in {(t, 0) : 0 <
|t| < 2ǫ}.

Proof. Let y ∈ K. Then there exist a sequence {xk} in Lp\{p} with
h(xk) → y as k → ∞. Let Py = π(Ly), where Ly is the fiber of ρ
through y. It follows from Lemma 5.2 that the sequence {π(h(xk))} is
tangent to Py at 0. Since π(xk) → 0 as k → ∞ and A is the derivate of
h at 0, we have that

h(π(xk)) = A(π(xk)) +R(π(xk)),

where R(π(xk))/||π(xk)|| → 0 as k → ∞. Therefore

(11)
h(π(xk))

||π(xk)|| =
A(π(xk))

||π(xk)|| +
R(π(xk))

||π(xk)|| ,

with R(π(xk))/||π(xk)|| → 0 as k → ∞. Since the sequence {hπ(xk)} =
{πh(xk)} is tangent to Py at 0, we have by definition that any accumu-
lation point of

h(π(xk))

||h(π(xk))||
is contained in Py and the same holds for the sequence

h(π(xk))

||π(xk)|| =
h(π(xk))

||h(π(xk))|| ·
||h(π(xk))||
||π(xk)||

.

Then, it follows from (11) that any accumulation point of the sequence

A(π(xk))

||π(xk)||
is contained in Py and the same property is satisfied by

A(π(xk))

||A(π(xk))||
=

A(π(xk))

||π(xk)|| · ||π(xk)||
||A(π(xk))||

.

Then the sequence

A(π(xk))

||A(π(xk))||
=

π(A(xk))

||π(A(xk))||
is tangent to Py at 0. By Lemma 5.2 we have that A(xk) → y as
k → ∞, hence ρ(A(xk)) → y as k → ∞. Then y is a limit point of
ρ(A(Lp\{p})). But ρ(A(Lp\{p})) is equal to ρβA(S1) by Proposition
5.5. Then, since ρβA(S1) is compact, we have that y ∈ ρβA(S1) and
therefore K ⊂ ρβA(S1). On the other hand, let y ∈ ρβA(S1). Then
y = ρ(A(δ, ζ)). For all k ∈ N let xk = (δ, skζ) ∈ Lp, where sk > 0
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and sk → 0 as k → ∞. Clearly xk → p = (δ, 0) as k → ∞. Then
π(xk) → 0 ∈ C

2 as k → ∞ and we have that

h(π(xk)) = A(π(xk)) +R(π(xk))

with ||R(π(xk))||/||π(xk)|| → 0 as k → ∞. Therefore

h(π(xk))

||π(xk)|| =
A(π(xk))

||π(xk)|| +
R(π(xk))

||π(xk)|| .

Hence, since

A(π(xk))

||π(xk)|| =
A(skζ, sxζδ)

||(skζ, sxζδ)||
=

sk A(ζ, ζδ)

|sk|||(ζ, ζδ)||
=

A(ζ, ζδ)

||(ζ, ζδ)||

and ||R(π(xk))||/||π(xk)|| → 0 as k → ∞, we have that

(12)
h(π(xk))

||π(xk)|| → A(ζ, ζδ)

||(ζ, ζδ)||

as k → ∞. Let Ly be the fiber of ρ through y and let Py = π(Ly). Since
ρ(A(δ, ζ)) = y we have A(δ, ζ) ∈ Ly, hence πA(δ, ζ) ∈ Py. Then

A(ζ, ζδ)

||(ζ, ζδ)|| =
A(π(δ, ζ))

||(π(δ, ζ)|| =
πA(δ, ζ)

||(π(δ, ζ)||

is contained in Py and it follows from (12) that any accumulation point
of the sequence

π(h(xk))

||π(h(xk))|| =
h(π(xk))

||π(xk)|| ·
||h(π(xk))||
||π(xk)||

is contained in Py. Then, by Lemma 5.2 we have that π(h(xk)) → y as
k → ∞. Thus y ∈ K and therefore ρβA(S1) ⊂ K. q.e.d.

Proposition 5.8. Define θ : [0, 1] → E by θ(s) = ρβA(eπis) for all
s ∈ [0, 1]. Then

ρ ◦ βA(e2πis) = θ(2s), if 0 ≤ s ≤ 1/2,

ρ ◦ βA(e2πis) = θ(2s− 1), if 1/2 ≤ s ≤ 1.

In particular, ρβ(S1) = θ([0, 1]) and, by Proposition 5.7, we have that
K = θ([0, 1]).
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Proof. If s ∈ [0, 1/2], then ρβA(e2πis) = ρβA(eπi(2s)) = θ(2s). Sup-
pose now that s ∈ [1/2, 1]. Then, since A is real linear:

w = ρAβ(e2πis) = ρπ−1Aπ(δ, e2πis) = ρπ−1A(e2πis, δe2πis)

= ρπ−1(−1)A((−1)e2πis, (−1)δe2πis)

= ρπ−1(−1)(A1(e
−πie2πis, e−πiδe2πis),A2(e

−πie2πis, e−πiδe2πis))

= ρπ−1(−A1(e
πi(2s−1), δeπi(2s−1)),−A2(e

πi(2s−1), δeπi(2s−1)))

= ρ

(
A2(e

πi(2s−1), δeπi(2s−1))

A1(eπi(2s−1), δeπi(2s−1))
,−A1(e

πi(2s−1), δeπi(2s−1))

)

=

(
A2(e

πi(2s−1), δeπi(2s−1))

A1(eπi(2s−1), δeπi(2s−1))
, 0

)

= ρ

(
A2(e

πi(2s−1), δeπi(2s−1))

A1(eπi(2s−1), δeπi(2s−1))
,A1(e

πi(2s−1), δeπi(2s−1))

)

= ρπ−1(A1(e
πi(2s−1), δeπi(2s−1)),A2(e

πi(2s−1), δeπi(2s−1)))

= ρπ−1A(eπi(2s−1), δeπi(2s−1)) = ρπ−1Aπ(δ, eπi(2s−1))

= ρA(δ, eπi(2s−1)) = ρAβ(eπi(2s−1)) = ρβA(eπi(2s−1))

= θ(2s− 1),

since (2s− 1) ∈ [0, 1].

Proposition 5.9. We have that: either K is a point, or K is equal
to a Jordan curve.

Proof. By Proposition 5.7 and Proposition 5.8, it is sufficient to prove
that: either θ is constant or it is a simple closed curve. By Proposition
5.8, we have that θ(0) = θ(2(1/2) − 1) = ρβA(e2πi(1/2)) = θ(2(1/2)) =
θ(1). Thus θ defines a closed curve in E. Suppose that θ is not a simple
curve, that is, θ(s′) = θ(s′′) for 0 ≤ s′ < s′′ < 1. Observe that

θ(s′) = ρπ−1Aπ(δ, eπis′) = ρπ−1A(eπis′ , δeπis′).

Writing A(eπis′ , δeπis′) = (A′
1,A

′
2) we have that

θ(s′) = ρπ−1(A′
1,A

′
2) = ρ

(
A′

2

A′
1

,A′
1

)
=

(
A′

2

A′
1

, 0

)
.

Analogously, making A(eπis′′ , δeπis′′) = (A′′
1 ,A

′′
2) we obtain

θ(s′′) =

(
A′′

2

A′′
1

, 0

)
.

Then
A′

2

A′

1
=

A′′

2

A′′

1
and we have therefore that

aA′
2 + bA′′

2

aA′
1 + bA′′

1

=
A′

2

A′
1

=
A′′

2

A′′
1
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for all a, b ∈ R such that aA′
1 + bA′′

1 6= 0. Computing as above

ρπ−1
(
aA′

1 + bA′′
1 , aA

′
2 + bA′′

2

)
=

(
aA′

2 + bA′′
2

aA′
1 + bA′′

1

, 0

)
=

(
A′

2

A′
1

, 0

)
= θ(s′),

that is,

(13) ρπ−1(a(A′
1,A

′
2) + b(A′′

1,A
′′
2)) = θ(s′).

Since 0 ≤ s′ < s′′ < 1, the vectors eπis′ and eπis′′ are real-linearly
independent. Thus, for all s ∈ [0, 1) we have that eπis = aeπis′ + beπis′′

with a, b ∈ R. Therefore:

θ(s) = ρAβ(eπis) = ρπ−1Aπ(δ, e2πis) = ρπ−1A(e2πis, δe2πis)

= ρπ−1A(aeπis′ + beπis′′ , δ(aeπis′ + beπis′′))

= ρπ−1A(a(eπis′ , δeπis′) + b(eπis′′ , δeπis′′))

= ρπ−1(aA(eπis′ , δeπis′) + bA(eπis′′ , δeπis′′))

= ρπ−1(a(A′
1,A

′
2) + b(A′′

1,A
′′
2)),

and by using (13):

θ(s) = θ(s′).

It follows that θ is constant and the assertion is therefore proved.

We denote by V and Ṽ the sets {(t, x) : |t| ≤ 2δ} and {(t, x) : |t| ≤ 2ǫ}
respectively. Let

β̃ : S1 → Ṽ

be the path defined by β̃(ζ) = (ǫ, ζ).

Proposition 5.10. The path βA is homologous to ξβ̃ in Ṽ \(L̃ ∪E),
where ξ = 1 or −1.

Proof. Let Bw be the disc {(t, x) : t = w, |x| ≤ 1} in V . Observe that

β̃ is equal to ∂B̃, where B̃ is the disc {(ǫ, x) : |x| ≤ 1} in Ṽ . Then, since
A : R

4 → R
4 preserves orientation, it follows from Lemma 3.1 that for

some w 6= 0:

(14) A(∂Bw) = ξ∂B̃ = ξβ̃ in H1(Ṽ \(L̃ ∪ E)).

Observe that ∂Bw is homologous to β in V \(L ∪ E). Then, since

A(V \(L ∪E)) is contained in Ṽ \(L̃ ∪ E), it follows that

(15) A(∂Bw) = A(β) = βA in H1(Ṽ \(L̃ ∪E)).

Thus the proposition follows from (15) and (14).

Proposition 5.11. Suppose that K is a Jordan curve and let U ⊂
{(t, 0) : |t| < 2ǫ} be the domain bounded by K. Then q = (0, 0) /∈ U.
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Proof. Making C = {(t, 0) : |t| < ǫ} and since ρ : Ṽ \(L̃∪E) → C\{p′}
is well defined, it follows from Proposition 5.10 that

ρ(βA) = ξρ(β̃) in H1(C\{p′}).

Then, since ρ(β̃) = 0 in H1(C\{p′}), we have that

(16) ρ ◦ βA = 0 in H1(C\{p′}).
If we consider ρ ◦ βA as defined on [0, 1] by s → ρβA(e2πis), it follows
from Proposition 5.8 that ρ ◦ βA = θ ∗ θ. Then

ρ ◦ βA = 2θ in H1(C\{p′})
and it follows from (16) that

θ = 0 in H1(C\{p′}),
since H1(C\{p′}) does not have torsion. Therefore p′ /∈ U.

Proposition 5.12. Let Σ be a disc in Lp containing p and such

that A = h(Σ\{p}) is contained in Ṽ \E. Let γ be a path in A, which

represents a generator of H1(A). Then γ is homologous to ξβ̃ in Ṽ \E
with ξ = 1 or −1.

Proof. Since Ṽ \(L̃ ∪ E) is contained in Ṽ \E, it follows from Propo-

sition 5.10 that βA is homologous to ξβ̃ in Ṽ \E where ξ = 1 or −1.
Therefore it is sufficient to show that γ is homologous to ξβA with
ξ = 1 or −1. Let

ϑr : S1 → Lp = {t = δ}
be the path defined by ϑr(ζ) = (δ, rζ) with 0 < r < 1 small enough
such that {(δ, x) : |x| ≤ r} is contained in Σ. Then ϑr is a generator
of H1(Σ\{p}) and consequently h ◦ ϑr is a generator of H1(A). Thus γ

is homologous to ξh ◦ ϑr in Ṽ \E, where ξ = 1 or −1. Therefore it is

sufficient to prove that h ◦ ϑr is homologous to βA in Ṽ \E. Recall that
β(ζ) = (δ, ζ). Then β and ϑr are homologous in C = {(δ, x) : 0 < |x| ≤
1} ⊂ Lp and, since A(C) ⊂ Ṽ \E, it follows that the paths A ◦ β = βA

and A◦ϑr are homologous in Ṽ \E. Then, it suffices to show that h◦ϑr

and A ◦ ϑr are homologous in Ṽ \E for some r > 0.
Let P ′ = π(Lp) and consider the path θr : S1 → P ′ defined by

θr = π ◦ ϑr, that is θr(ζ) = (rζ, δrζ). Recall that A : R
4 → R

4 is an
isomorphism, then there exist a constant c > 0 such that

(17) ||A(z)|| > c||z|| for all z ∈ C
2.

Since A is the derivate of h at 0, there exists ε > 0 such that

(18) h(z) = A(z) +R(z),



370 R. ROSAS

with |R(z)| < c|z| whenever |z| < ε. Now, assume that

r < min

{
ε√

1 + δ2
, c, c/(2ǫ + 1),

ε0√
1 + δ2

}
,

where the constant ε0 > 0 will be defined later. Then, since θr(ζ) =
(rζ, δrζ) satisfies

(19) ||θr(ζ)|| = r
√

1 + δ2 < ε,

we have that

(20) ||R(θr(ζ))|| < c||θr(ζ)||.
Therefore the map

F : S1 × [0, 1] → C
2,

F (ζ, s) = A(θr(ζ)) + sR(θr(ζ))

is such that

||F (ζ, s)|| = ||A(θr(ζ)) + sR(θr(ζ))||
≥ ||A(θr(ζ))|| − ||sR(θr(ζ))|| ≥ c||θr(ζ)|| − ||R(θr(ζ))|| > 0.

Observe that F (ζ, 0) = A(θr(ζ)) and F (ζ, 1) = A(θr(ζ)) + R(θr(ζ)) =
h(θr(ζ)). Then F defines a homotopy between A(θr) and h(θr) in
C

2\{0}. Thus, since π−1 A(θr) = A(ϑr) and π−1 h(θr) = h(ϑr), it fol-

lows that π−1◦F defines a homotopy between A◦ϑr and h◦ϑr in Ĉ2\E.

Therefore, in order to prove that A ◦ϑr = h ◦ϑr in H1(Ṽ \E), it suffices

to show that π−1 ◦ F (ζ, s) belongs to Ṽ for all s ∈ [0, 1], ζ ∈ S1. We
write F (ζ, s) = (xF , yF ), A(θr(ζ)) = (xA, yA) and R(θr(ζ)) = (xR, yR),
then

(21) (xF , yF ) = (xA, yA) + s(xR, yR).

Observe that(
yA

xA
, xA

)
= π−1(xA, yA) = π−1 A(θr(ζ)) = Aπ−1θr(ζ) = A ◦ϑr(ζ),

hence (yA/xA, 0) = ρAϑr(ζ). Then, since Aϑr(ζ) is contained in A(Lp\
{p}), it follows from Proposition 5.5 and Proposition 5.7 that (yA/xA, 0)
is contained in K. Thus, since K a compact subset of {(t, 0) : |t| < 2ǫ},
we have that

(22)
|yA|
|xA|

+ ε1 < 2ǫ

for some ε1 > 0 small enough. Take ε2 > 0 be such that

(23)
ε2(1 + 2ǫ)

(c/(1 + 2ǫ) − ε2)
< ε1.

Now, we chose ε0 be such that

(24) ||R(z)|| < ε2||z||
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whenever ||z|| < ε0. Observe that π−1 ◦ (xF , yF ) belongs to

Ṽ = {(t, x) : |x| < 2ǫ}
if and only if yF

xF
< 2ǫ, and by (21), if and only if

(25)
yA + syR

xA + syR
< 2ǫ.

An easy computation shows that

yA + syR

xA + syR
=
yA

xA
+
syR − syR(yA/xA)

xA + syR
.

Thus, in view of (22), it is sufficient to prove that

(26)
|syR − syR(yA/xA)|

|xA + syR|
≤ ǫ1.

Since that ||θr(ζ)|| = r
√

1 + δ2 < ε0, it follows from (24) that
||(yR, yR)|| = ||R(θr(ζ))|| < ε2||θr(ζ)||, hence |yR| < ε2||θr(ζ)||. Then

|syR − syR(yA/xA)| = |syR| · |1 − yA/xA|
< ε2||θr(ζ)||(1 + |yA|/|xA|)

and, by using (22), we obtain

(27) |syR − s(yA/xA)yR| < ε2(1 + 2ǫ)||θr(ζ)||.
On the other hand, also from (22) we have that |yA| < 2ǫ|xA|, hence

(1 + 2ǫ)|xA| ≥ |xA| + |yA| ≥ ||(xA, yA)|| = ||A(θr(ζ))|| ≥ c||θr(ζ)||
and therefore

|xA| ≥
c

1 + 2ǫ
· ||θr(ζ)||.

Then

|xA + syR| ≥ |xA| − |syR| ≥ |xA| − |yR| ≥
c

1 + 2ǫ
||θr(ζ)|| − ǫ2||θr(ζ)||

and so
|xA + syR| ≥ (c/(1 + 2ǫ) − ǫ2)||θr(ζ)||.

From this and (27) we obtain

|syR − s(yA/xA)yR|
|xA + syR|

≤ ε2(1 + 2ǫ)||θr(ζ)||
(c/(1 + 2ǫ) − ǫ2)||θr(ζ)||

=
ε2(1 + 2ǫ)

(c/(1 + 2ǫ) − ǫ2)

and from (23):
|syR − syA/xAyR|

|xA + syR|
≤ ε1,

which finishes the proof. q.e.d.

It follows from Proposition 5.7 and Proposition 5.9 that there exists
a subset D of the divisor E with the following properties:

(i) D is diffeomorphic to a closed disc.
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(ii) D is contained in {(t, 0) : 0 < |t| < 2ǫ}
(iii) K is contained in the interior of D.

Let p̃ be a point in the interior of D and let Lep be the fiber of ρ through

p̃. Since D is contained in a leaf of F̃0, there is a disc Σ′ in Lep containing
p̃ with the following property: if z ∈ Σ′, then there exists a closed disc

Dz in the leaf of F̃0 passing through z, such that ρ maps Dz diffeomor-
phically onto D. Let W denote the set

⋃
z∈Σ′ Dz. By Proposition 5.6,

there exists a disc Σ in Lp containing p, such that the set A = h(Σ\{p})
is contained in the interior of W . We assume Σ be small enough such
that F0 is transverse to Σ.

Proposition 5.13. There exists a disc Σ̃ ⊂ Σ′ containing p̃, with

the following property. Given x ∈ Σ̃\{p̃}, the disc Dx intersects A in a

unique point f(x). Moreover, the map f : Σ̃\{p̃} → A is continuous.

Proof. The foliation F̃0 induces a complex structure in A as follows.
Let y ∈ A and x ∈ Σ\{p} with h(x) = y. Since Σ is transverse to

F0, there exists a neighborhood Wx of x in Ĉ2\E such that each leaf
of F0|Wx intersects Σ only one time. Let Wy be a neighborhood of y

where F̃0 is trivial. Thus, there exists a disc Σ̃y (complex sub-manifold

of Wy) such that each leaf of F̃0|Wy intersects Σ̃y at a unique point.

We may assume that h−1(Wy) is contained in Wx. Let Σx ⊂ Σ ∩Wx

be a disc with x ∈ Σx and such that the closure of Σy = h(Σx) ⊂ A
is contained in Wy. If w is a point contained in Σy, the leaf of F̃0|Wy

passing through it intersects Σ̃y in a unique point ψy(w). Clearly, ψy

is continuous and we claim that ψy is a homeomorphism of Σy onto its

image. Since Σy is compact, it suffices to prove that ψy is injective on

Σy. Suppose that w1 and w2 are two different points in Σy contained

in the same leaf L of F̃0|Wy . Then, since π−1
y (Wy) ⊂ Wx, we have that

π−1
y (L) is contained in a leaf L′ of F0|Wx. Then h−1(w1) and h−1(w2)

are two different points in the intersection of L′ with Σ0, which is a

contradiction. Then we consider ψy : Σy → Σ̃y as a local chart of A.
We may assume the sets Σy be small enough such that, if Σy ∩Σy′ 6= ∅,
then Σy ∪ Σy′ is contained in an open set where F̃0 is trivial. Then it
is easy to see that the map ψy′ ◦ ψ−1

y , which preserves the leaves, is a
holonomy map and therefore holomorphic.

Given y ∈ A, denote by g(y) the point in Σ′\{p̃} such that y ∈ Dg(y).

It is not difficult to see that the map g ◦ ψ−1
y : Σ̃y → Σ′ is a holonomy

map. Therefore g : A → Σ′ is holomorphic and regular. It is known
(see [1]) that there exists a biholomorphism

ϕ : Ar = {z ∈ C : 0 ≤ r < |z| < 1} → A
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and we may take ϕ such that ϕ(z) → E as |z| → r. Hence g ◦ϕ(z) → p̃
as |z| → r. Then the map g ◦ ϕ : Ar → Σ′ extends as g ◦ ϕ ≡ p̃ on
|z| = r. This implies that r = 0. Then g ◦ ϕ extends holomorphicaly to
D with g ◦ ϕ(0) = p̃.

Assertion. The map g ◦ ϕ is regular at 0.

Proof. Let γ be a path in D\{0} which winds once around 0. It is
sufficient to prove that the path g ◦ϕ(γ) in Σ′ winds once around p̃. Let
β′ be a path in Σ′\{p̃} such that

(28) β′ = β̃ in H1(Ṽ \E).

Clearly β′ represents generators in H1(Σ
′\{p̃}) and H1(W\E). Let N

and N ′ be integers such that

(29) g ◦ ϕ(γ) = Nβ′ in H1(Σ
′\{p̃})

and

(30) ϕ(γ) = N ′β′ in H1(W\E).

We shall prove that N = 1 or −1. Observe that g is the restriction of
the map

G : W\E → Σ′\{p̃}
defined by G(Dx) = {x} for all x ∈ Σ′\{p̃}. Then, since g(β′) = β′, it
follows from (30) that

g ◦ ϕ(γ) = N ′β′ in H1(Σ
′\{p̃})

and, in view of (29), we conclude that N ′ = N . Thus, since W\E ⊂
Ṽ \E, equation (30) gives:

ϕ(γ) = Nβ′ in H1(Ṽ \E).

Then, by (28), we have that

ϕ(γ) = Nβ̃ in H1(Ṽ \E).

Thus, since ϕ(γ) is a generator of H1(A), Proposition 5.12 implies that
N = 1 or −1.

Now, since g ◦ϕ is regular at 0, there exists a disc Ω in D containing
0, such that g ◦ ϕ|Ω is a homeomorphism onto its image. Then, since ϕ
is a diffeomorphism, it follows that ḡ = g|ϕ(Ω\{0}) is a homeomorphism

onto its image. Thus we take a disc Σ̃ ⊂ gϕ(Ω) ⊂ Σ′ containing p̃

and define f = ḡ−1 on Σ̃\{p̃}. Let x ∈ Σ̃\{p̃}. Clearly f(x) ∈ A and
since g(f(x)) = x, we have that f(x) ∈ Dx and so f(x) ∈ Dx ∩ A.
If y ∈ Dx ∩ A, then g(y) = x and therefore y = f(x). Then f(x)
is the unique point in the intersection of Dx and A. This proves the
proposition. q.e.d.
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We need the following lemma.

Lemma 5.14. For each x ∈ D, we may take a homeomorphism hx :
D → D such that:

(i) hx(x) = 0 for all x ∈ D.
(ii) hx = id on S1.

(iii) hx depends continuously on x.

Proof of Theorem 1.1. From Lemma 5.14, for each x ∈ Σ̃ we may take
a homeomorphism hx : D → D such that:

(i) hx(ρ(f(x))) = p̃
(ii) hx = id on ∂D

(iii) hx depends continuously on x.

Then the homeomorphism gx : Dx → Dx defined by

(31) ρ ◦ gx = hx ◦ ρ
depends continuously on x ∈ Σ̃ ⊂ Lep. Consider the map g defined (g is
not the same function that one in previous pages) as

g = gx on Dx,

g = id otherwise.

We have that g is univalent and preserves the leaves of F̃0. Moreover,
in a small enough neighborhood of the divisor, g is continuous. Thus,
if restricted to a small enough neighborhood of the divisor, g is a topo-

logical equivalence between F̃0 and itself. Then, in a neighborhood of

the divisor, g ◦ h gives a topological equivalence between F0 and F̃0.

Therefore for some neighborhoods U and Ũ of 0 ∈ C
2, the map

ĥ = πghπ−1 : U → Ũ

is a topological equivalence between F and F̃ . Let P = π(Lp) and

P̃ = π(Lep).

Assertion. There exists a disc D in P containing 0 ∈ C
2, such that

ĥ(D) is contained in P̃ .

Proof. If y ∈ A is close enough to E, we have that y ∈ Dx for some

x ∈ Σ̃. Thus, there is a disc Σ0 ⊂ Σ containing p, such that for all y in

h(Σ0\{p}) ⊂ A we have y = f(x) for some x ∈ Σ̃. Then, from (31) and
(i) we have that

ρ ◦ g(y) = ρ ◦ g(f(x)) = hx ◦ ρ(f(x)) = p̃.

Thus g(y) ∈ Lep for all y ∈ h(Σ0\{p}) and therefore

g ◦ h(Σ0\{p}) ⊂ Lep.

Then, if D ⊂ π(Σ0) ⊂ P , we have that ĥ(D) ⊂ P̃ .
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Consider a neighborhood U′ ⊂ U of 0 ∈ C
2 homeomorphic to a ball

and such that U′∩P ⊂ D. We take U′ small enough such that ĥ(U′)∩ P̃
is contained in h(D). Thus, making Ũ

′
= ĥ(U′), it is easy to see that

h(U′ ∩ P ) = Ũ
′ ∩ P̃ .

Then,

ĥ|U′ : U′ → Ũ
′

is a topological equivalence between F0 and F̃0, which satisfies the hy-
pothesis of Theorem 1.2. Therefore Theorem 1.1 is proved. q.e.d.

Proof of Lemma 5.14. Let ψ : D → [0, 1] be such that ψ = 1 on
{|z| ≤ 1/2} and ψ = 0 on S1. Let

βr(t) : [0, 1] → [0, 1]

be a diffeomorphism with βr(0) = 0, β(1) = 1, β(r) = 1/2 and such
that βr depends continuously on r ≥ 0. Given x ∈ D, define the vector
field

Vx : D → C

Vx(z) = −ψ(β|x|(|z|))x,
and let ϕx the flow associated to Vx. Then define hx : D → D by
hx(z) = ϕx(1, z). It is easy to see that hx satisfy the conditions of
Lemma 5.14. q.e.d.
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