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THE DIFFERENTIABLE-INVARIANCE OF THE
ALGEBRAIC MULTIPLICITY OF A HOLOMORPHIC
VECTOR FIELD

Rubpy ROsAS

Abstract

We prove that the algebraic multiplicity of a holomorphic vector
field at an isolated singularity is invariant by topological equiva-
lences which are differentiable at the singular point.

1. Introduction

Given a holomorphic curve f : (C2,0) — (C,0), singular at 0 € C?,
we define its algebraic multiplicity as the degree of the first nonzero jet
of f, that is, v(f) = v where

f=fot ot

is the Taylor development of f and f, # 0. A well known result by
Burau [2] and Zariski [15] states that v is a topological invariant, that

is, given f : (C2,0) — (C2,0) and a homeomorphism h : U — U between

neighborhoods of 0 € C? such that h(f~1(0) N U) = f~1(0) NV then

v(f) = v(f). Consider now a holomorphic vector field Z in C? with a
singularity at 0 € C2. If

Z:ZV+ZV+1+”’7 ZI/#O

we define v = v(Z) as the algebraic multiplicity of Z at 0 € C2. The
vector field Z defines a holomorphic foliation by curves F with isolated
singularity in a neighborhood of 0 € C? and the algebraic multiplicity
v(Z) depends only on the foliation F. A natural question, posed by
J.F. Mattei is: is v(F) a topological invariant of F? In [3], the au-
thors give a positive answer if F is a generalized curve, that is, if the
desingularization of F does not contain complex saddle-nodes. If F is
dicritical, that is, after a blow up the exceptional divisor is not invariant
by the strict transform of F, the conjecture is also true: in this case,
it is not difficult to show that the algebraic multiplicity of F is equal
to the index of F (as defined in [3]) along a generic separatrix. Then
the topological invariance of the algebraic multiplicity of a dicritical
singularity is a consequence of the topological invariance of the index
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along a curve, which is proved in [3]. Thus, in this paper we always
assume the non-dicritical case. Given foliations F and F with isolated
singularities at 0 € C2, we say that F and F are topologically equivalent
(at 0 € C2?) if there is a homeomorphism h : U — U, h(0) = 0 between
neighborhoods of 0 € C2, taking leaves of F to leaves of F. Such a
homeomorphism is a topological equivalence between F and F. In this
work we impose conditions on the topological equivalence h : U — U
and prove the following.

Theorem 1.1. Leth : U — U be a topological equivalence between
F and F and assume that h preserves the orientation of C2. Suppose
that h is differentiable at 0 € C? and such that dh(0) : R* — R* is a
real isomorphism. Then the algebraic multiplicities of F and F are the
same.

Let m : C2 — C? be the blow up at 0 € C2. Given a complex line
P passing through 0 € C2, we say that P is reqular for F, if the strict
transform of P by m intersects the divisor E at a regular point of the
strict transform of F. The following theorem is a key step in the proof
of Theorem 1.1.

Theorem 1.2. Leth: U — U be a topological equivalence between
F and F and assume that h preserves the orientation of C2. Let P and
P be two complez lines passing through 0 € C? which are regular for F
and F respectively. Suppose that P NU is homeomorphic to a disc and
h(PNU) = PNU. Then the algebraic multiplicities of F and F are
equal.

The paper is organized as follows. In section 2 we prove a weaker
version of Theorem 1.2. In section 3 we stay and prove a topological
lemma, fundamental for the following sections. We prove Theorem 1.2
in section 4. Finally, in section 5 we prove Theorem 1.1.
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2. A first theorem.

Let h: U — U be a topological equivalence between F and F. Let
fo and fo be the strict transforms of F ~and F respectively. Let W and
W be denote the sets 7~ 1(U) and 7= 1(U) respectively. Let

h:W\E — W\E
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be the homeomorphism defined by h = 7~'h7. We have a natural
fibration p on C2 which fibers are the strict transforms of the complex
lines passing through 0 € C2. Consider p,p € F and let L, and Ly
be the fibers of p passing through p and p respectively. This section is
devoted to prove the following.

Theorem 2.1. Suppose that p and p are regular points of Fo and
.7-"0 respectively. Let Q) be a neighborhood of p in C2. Suppose that h
extends to (W\E) U as a homeomorphism onto its image, such that

h(L,NW) = LzN W. Then the algebraic multiplicities of F and F are
the same.

Let v be the algebraic multiplicity of F at 0 and let pq, ..., pr be the
singularities of 7y on E. We have the following relation due to Ven Den
Essen (see [9], appendix I):

k
> ulFo,pi) = u(F,0) = v + v +1,
i=1

where p(F,p) is the Milnor number of F at p. Let s = Zle w(Fo, i)
In the same way, let 5 be the sum of the Milnor numbers of the sin-
gularities on E of Fo. Then, since the Milnor number is a topological
invariant, it is sufficient to prove that s = 5.

Let D C ENS) be a closed disc containing p, which does not contain
singularities of Fy and such that h(D) does not contains singularities
of fg. Let D and D be the closed discs in E equal to the closure of
E\D and E\h(D) respectively. Then h maps W\D homeomorphically
onto W\E, and the interiors of D and D contain all the singularities
of Fy and .7?0 respectively. Observe that h is a topological equivalence
between Fo|yn p and ‘%O‘W\ﬁ' Since h(L, NW) = LN W, we have the

homeomorphism
h: (W\D)\L, — (W\D)\L;.

We know that W\ L, and W\Lﬁ are isomorphic to C2, where the divisor
can be represented by the vertical line {z; = 0} and the sets W\ L, and
W\Lg give neighborhoods V and V of {z; = 0}. Thus, we may think
that the foliations Fy and fg are defined on the sets V and V in C?,
and that
h:V\DcC?>—V\Dc C?

is a topological equivalence between F{y and fg. Observe that Fy is
globally defined by a holomorphic vector field on V' and the same holds

for o on V. The disc D is contained in {z1 = 0} and we may assume
that D = {(0, z2) : |22| < r}, where r > 0.
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We proceed now to compute s. Let Z be a holomorphic vector field
which generates the foliation Fy on V. Let B be a neighborhood of
D homeomorphic to a ball, such that 9B is homeomorphic to S® and
B C V. It is well known that the Milnor number is just the Poincar-
Hopf index (considering the holomorphic vector field as a real vector
field). Then, since all the singularities of F( are contained in B, we have
([10],p. 36) that the sum of the Milnor numbers of the singularities of
Fo is equal to the degree of the map

A

Tz 08 S
7z 2
Z1% = 1zZen

Let B be a neighborhood of B homeomorphic to a ball and such that
B C V. Since V is a neighborhood of {z; = 0}, for £ > 0 small enough,
the set {|z1] < 2e,|22| < 4r}, which contains D, is contained in V.
Then, we may chose B and B such that

B C {|z1] < e,|z| < 2r}.

The last hypothesis will be only used in the proof of Lemma 2.5.
Consider the sets B = h(B\D) U D, B=h(B\D)UD and V =

(V\D) U D. Tt is easy to see that B, B and V are neighborhoods of D
in C2.

Vv Y,
B B
B

D h 5

Let
¢:D.xB—V CC?
and
ﬁ:ﬁexg—ﬂN/C({?
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be the local complex flows of Z and A respectively, where D, = {T" €
C : ||T|| < €} with € small enough. Now, we follow the ideas used in [3]
to prove the topological invariance of the Milnor number.

Lemma 2.2. There exists continuous functions 7 : B\D — (0,¢) and
T : h(B\D) — D \{0} such that for all z € B\D we have:

(1) ¢(1(2),2) € B\D.
(17) p(tT(2),2) # 2z, for any t € (0,1].
(i4i) h(p(7(2),2)) = P(T(h(2)), h(2)).

We say that a function f : U — R is lower(upper) semi-continuous
if given € > 0 and zg € U, there is a neighborhood Q2 of xy in U such
that f(z) > f(zo) — € (f(z) < f(zo) + €) for all x € Q. We need the

following lemma.

Lemma 2.3. Let U be an open set in R™ and let f : U — R and
g : U — R be an upper and a lower semicontinuous function respectively.
Suppose that f < g. Then there exists a continuous function h : U — R
such that f < h < g. In particular, if g is a strictly positive lower
semicontinuous function, then there exists a continuous function h such
that 0 < h < g.

Proof of Lemma 2.2. Clearly, given z € B\D there exists § > 0 such
that ¢(x*,z) is injective on Ds. Then define §(z) > 0 as the supremum
of ¢ < e such that ¢(x, z) is injective on Dy

Assertion 1. The function § : B\D — (0,¢] is lower semicontinuous.

Proof. Fix zp € B\D and let ¢ > 0. We will prove that for z close
enough to zp we have §(z) > d(z9) —e. Suppose by contradiction that for
2z — 20 we have that ((, 2;) is not injective on Dj(,y)_. Then there are
points tg, tj, in D, )—, With ¢, # ¢}, and such that ¢(tx, zx) = (1}, 2x)
for all k. By taking a subsequence we may assume that t, — a and
tj, — a’ with a,a’ € Dy,)—c C Ds(,,). By continuity we have

o(a,z0) = lim @(t, 2zx) = lim @(t), 2x) = p(d’, z0)
k—oo k—oo

and, since ¢(*,20) is injective on Ds(,), we deduce that a = a’. Let
2 = p(a,z) and take a neighborhood € of 2z’ and §y > 0 such that
©(*, z) is injective on Dy, for all z € Q2. For k big enough we have that
o(a,z;) € Qand (ty — a), (1), — a’) € Ds,. Then, since

Sp(tk — a, QO((I, Zk)) = Sp(tlm Zk) = @(ﬂw Zk) = (,D(t% - alv (10(&/7 zk))v
we have that ¢, —a =t} — d/, hence ¢}, = ¢}, which is a contradiction.

Assertion 2. Consider § : B\D — (0,¢], where 6(z) is the supremum of
§ < e such that p(Dy,z) C B\D. Then 0 is a lower semicontinuous
function.
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Proof. Fix zp and let € > 0. The set gp(ﬁg(z())_ﬁ, 2p) is compact and is
contained in B\D. If z is close enough to zy we have that go(ﬁg(z())_e, z)

is also contained in B\D. Then §(z) > 0(29) — € and it follows that § is
lower semicontinuous.

Consider 6 : h(B\D) — (0,¢], where d(w) is the supremum of &' < &
such that @(*,w) is injective on Dg. As in Assertion 1, we can prove
that § is a lower semicontinuous function.

Assertion 3. Define § : B\D — (0,¢], where 6(z) is the supremum of
& < e such that h(p(Dy, 2)) is contained in G(Dg(h(z)), h(z)). Then 0 is
a lower semicontinuous function.

Proof. Fix zy and let € > 0. Since h((p(]D)S(ZO),zO)) is contained in
@(Dg(h(z())),h(zo)), there is € > 0 such that h(‘p(DS(zo)—aZO)) is con-
tained in (E(]Dg(h(zo))—s” h(zp)). Let 3 be a disc passing through h(zg)
and transverse to the foliation. Since § is lower semicontinuous, we may
take 3 small enough such that @(x*, z) is injective on ]Dg(h(z()))_e, for all

z € 3. Moreover, we may take Y. small enough such that @ is injective
on D5(h(z e X Y. Let M denote the open set @(Dg(h(z()))_e, x 3) and
let M' = ¢(D, 172 X %). We may take a neighborhood € of 2z such that
h(Q) € M’ and 8(h(z)) > &(h(z 0)) — €'/2 for all z € Q, because § is
lower semicontinuous. Since h(p(Dj §(20)—c ,20)) is compact and is con-
tained in M, we may assume €2 small enough such that h(go(]DS(ZO)_E, z))
is contained in M for all z € Q. Fix z € Q. Since h(z) € M’, there
is w' € ¥ and ¢/, with |[¢/| < €//2, such that h(z) = @¢(¢',w’). Since
h((p(]D)S(ZO)_e,z)) is contained in M, we deduce that it is contained in

(ﬁ(]l))g(h(zo))_g,,w’). Then, given w in h((p(ﬁg(zo)_g,z)), we have that
w = @t", w") with |t"| < §(h(2)) — €. Thus

w=g(t" w') =" -t gt w') = a(t" —t', h(2)),
where [t"—t'| < |t"|+[t'| < d(h(z0))—€¢'+¢' /2 = d(h(z0))—€ /2 < 6(h(2)).
Then h((p(]D)S(ZO)_E,z)) is contained in (D 5(h(2))’ h(z)) and it follows

that ¢ is lower semicontinuous.

It is easy to see that the function g = min{4,J, 5 } is also lower semi-
continuous. Then, by Lemma 2.3, there exists a positive continuous
function 7 on B\D such that 7 < 4,4, 5. By the definition of 4, (7)
is satisfied. Since ¢(*,z) is injective on D5 and 7(z) € Dj, we have
that (74) holds. Now, we shall define 7. Let w = h(z) € h(B\D).
Since T < 8, we have that h(p(7(2), 2)) is contained in gE(]D)g(h(z)), h(z))
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and by injectivity there exists a unique 7(h(z)) in D5 ha) such that
he(1(2),2)) = ¢(T(h(z)), h(z)). Now, it is easy to see that T is contin-
uous and therefore (7ii) holds. q.e.d.

Proof of Lemma 2.3. Consider x € U and a, € R, such that f(z) < a, <
g(x). Tt follows from the definition of lower and upper semicontinuous
function that there exists a neighborhood V,, of  in U such that f(y) <
a; < g(y) for all y € V,. We may take a subset I C U, such that U C
Uier Vi and {Vi}icr is locally finite. Thus, we have f(z) < a; < g(x)
for all x € V;. Let {1;}icr be a partition of the unity subordinate to
{Vi}tier. Then, we define h : U — R by

h(z) = ¢i(x)a;.
el
Clearly, h is continuous. If x € Vj, then f(z) < a; < g(z), hence
Yi(x) f(z) < Yi(z)a; < ¥i(x)g(z) and it follows that f < h < g.
q.e.d.

From Lemma 2.2, we have the maps
f:B\D — B\D,
f(z) = o(7(2), 2)

and o o
f:B\D — B\D,
fw) = ¢(7(w), w)
with _
hof=/foh
and such that f and fare without fixed points.
There exists 1,1 : C2 — C? with the following properties:
(i) $(D) =0 and (D) =0. N
(ii) ¢ : C2\D — C2\{0} and v : C2\D — C?\{0} are homeomor-
phisms. N
(7i7) 1 and 1 are equal to the identity out of B and B respectively.
We define
fo= WfymB\{0} — B\{0} c C,
fo= Wfdmt i B\{0} — B\{0} c C,
W o= yhp™ V>V,
Then we have the following:
(i) f"and f’ do not have fixed points.
(i) On OB, we have f' = f and f' = f. N
(#4i) h'is a homeomorphism with A/(0) = 0 and such that h'of’ = f'ol/'.
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Thus, there are well defined maps:
(f' =id) = BV} — CA\{o},
(f' —id) : B\{0} — C*\{0}.

Observe that H3(B\{0}) C H3(C?\{0}) and this inclusion is an iso-
morphism between the groups. Then (f’ — id) induces a map

(f" —id). - H5(C*\{0}) — H3(C*\{0})
at the homology level.
Lemma 2.4. (f' —id), is the multiplication by s.

Proof. We have that 9B C B is a generator of H3(C?*\{0}). It is
known that, homologically:

(' — i)(8%) = (' — id)(9B) = nS%,
where n is the degree of the map:
g:0B — S,
(f —id)
9(2) = M(Z)-
Thus, it is sufficient to prove that deg(g) = s. Observe that g = HE;:E;H ,
since f' = f on OB. By (ii) of Lemma 2.2 the map
G :[0,1] xaB—>S3,

S elr().2) -
662 = oy T EO
T(2) _Z(2)
O =N Tz
is well defined. Evidently, G(1,z) = g(z). On the other hand:
_ T1(2) im o(tr(z),2) — 2 _1‘ im o(tr(z),2z) — z
et = Eonis| T e "
_ 7(2) lim o(s,2) — z|| - lim o(s,2) — 2
HT(Z)H s—0 S s—0 S
e 20
eI 12

It follows that G is continuous and therefore is a homotopy between

g(z) and G(0,z2) = ”:8“ . ||§8H‘ Now, since m3(S') = {0}, the map

7/|7| : @B — S is homotopic to the constant 1 € S! and g is homotopic
to Z/||Z||. Therefore deg(g) = deg(Z/||Z]|) = s.

In the same way, we have that

(f' = id). : Hy(C*\{0}) — H3(C*\{0})
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is the multiplication by 3.
Let

W H3(C*\{0}) — H3(C*\{0})

be the isomorphism induced by A’. Clearly, the following lemma implies
Theorem 2.1.

Lemma 2.5. The following diagram commutes:
"—id).
Hy(@\{0}) L0 A\ (o))

J{h/* lh,*

Hy@2\(0}) Y7 g2\ joy)

Proof. Recall that B was chosen such that
B C{lz1] <e,|za| <2r} C {|z1] < 2e,|22| <4r} cCV.

Since I/ o f' = f' o i’ we have (f' —id)oh' = f'oh/ —h' =R o f' — I
It is sufficient to prove that b’ o f' — b’ and b/ o (f' —id) : B\{0} —
C?\{0} are homotopic. For any z € B\{0} and ¢ € [0,1] we have that
f'(2),(1 = t)z € De x Dy,. Then (f'(z) + (1 — t)z) is contained in
Dy x Dy, C V. Therefore, the map:
F 2 [0,1] x (B\{0}) — C*\{0},
F(t,z) = h'(f'(z) = (1 —t)2) — I/ (tz)

is well defined. F' is continuous and F'(t,z) # 0 for all (¢,2) € [0,1] x
(B\{0}) because F(t,z) = 0 implies h'(f'(z) — (1 — t)z) = h/(tz) and
since b’ is a homeomorphism f'(2) — (1 — t)z = tz, hence f'(2) = z,
which contradicts f’(z) # z. Thus F is a homotopy between h' o f' — 1’
and h' o (f' —id). q.e.d.

3. A topological fact.

Let M be a complex manifold. We say that D is a complex disc in M,
if D € M and there is a map f : D — M, which is a homeomorphism
onto D and is holomorphic on D. Let V be any subset of M containing
OD. Themap f|g1 : St — D C M defines a 1-cycle in V and represents
an element in H; (V') which does not depend on f. We denote this 1-cycle
by D independently of the set V. For simplicity, we write v = 4/ in
Hy(M) for means that the 1—cygl\es ~ and 7/ represents the same element
in the group Hy(M). Let m : C2 — C2 be the blow up at 0 € C? and
let £ =771(0). Let p: C2 — E be the natural projection. (If L is the
strict transform by 7 of a complex line passing through 0 € C?, then
p(L) = LN E.) The following Lemma is a reason for assuming that the
topological equivalence h preserves the orientation of C2.
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Lemma 3.1. Let h : U — U’ be a homeomorphism, where U and
U’ are neighborhoods of 0 € C? homeomorphic to balls. Let P and P’
be two complex lines passing through 0 € C2. Suppose that P N U is
homeomorphic to a disc and W(PNU) = P'NU'. Let L and L' be
the strict transforms by m of P and P’ respectively. Let p and p’ be the
points of intersection of L and L' wz’éfiE respectively. Denote by W and
W' the sets m=Y(U) and 7=1(U’) in C2? and let h : W\E — W'\ E be the
homeomorphism defined by h =t~ 'hw. Let V.C W be a neighborhood
of p and let

p:DxD—-V
be a biholomorphism such that ({0} x D) = LNV and ¢(D x {0}) =
ENV. Let r with 0 <r <1 and consider the disc By, = ¢(w, |z| <7T),
where w € D. Qgt Q be a neighborhood of p’ in E, homeomorphic to a
disc. Let V' C C2 be the set p~1(Q). Let A’ C V'\E and B' C V'\L' be
complez discs transverse to L' and E respectively. Then, for |w| small
enough we have the following:

(i) If h preserves the orientation of C2, then
h(0By) = €0B" in Hy(V'\(L' UE)),

where £ = +1 or —1.
(ii) If h inverts the orientation of C?, then

h(0B,) = —280A" + ¢oB" in H1(V'\(L' UE)),
where £ = +1 or —1.

Remark. With some hypothesis on the foliation F, we have in fact
that the topological equivalence h necessarily preserves the orientation
of C?. Precisely, we have the following.

Proposition 3.2. Let F be a holomorphic foliation by curves on
U which has 0 € C? as its unique singularity. Suppose that F has
three smooth and transverse separatrices. Suppose that F is another
holomorphic foliation of a neighborhood U of 0 € C? and let

h:U = U

be a topological equivalence between F and F. Then h preserves the
orientation of C?.

Let U C C2 be an open set homeomorphic to a ball. Let P be a
complex line in C? and suppose that U N P is homeomorphic to a disc.
It follows by Alexander’s duality theorem that H;(U\P) ~ Z. Let
D C C? be a complex disc transverse to P. The 1-cycle 9D represents
an element in H;(U\P) ~ Z, which does not depends on the disc D.
We know that 0D is a generator of the group and we say that it is the
positive generator of Hi(U\P). Given a homeomorphism f : M — M’,
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where M and M’ are oriented manifolds, we define deg(f) to be 1 or
—1 depending on whether f preserves or reverses orientation.

Lemma 3.3. Let h : U — U’ be a homeomorphism, where U and
U’ are neighborhoods of 0 € C? homeomorphic to balls. Let P and
P’ be two complex lines passing through 0 € C2. Suppose that PN U is
homeomorphic to a disc and h(PNU) = P'NU’. Let a and a' be 1-cycles
in U\P and U'\ P’ representing the positive generators of Hy(U\P) and
Hy(U'\P') respectively. Then

h(a) = deg(h)deg(h |p)a’ in H(U'\P').

Proof of Lemma 3.1. If B” C V'\L' is any complex disc transverse to F,
we have that 9B” is homologous 9B’ in Hy(V'\(L'UE)). Thus, we may
change the disc B’ if necessary and assume that it is contained in W”.
Let b’ be the 1-cycle defined by &/ = w(0B'). Then, since n(B') C U’
is a complex disc transverse to P’ and w(0B') = On(B’), we have that
b is a positive generator of Hy(U'\P’). Analogously, if b = 7(9B,,),
we deduce that b is a positive generator of H;(U\P). It follows from
Lemma 3.3 that:

h(b) =¢&b' in Hy(U'\P'),

where 1 = deg(h) and ¢ = deg(h|p). Then, since 7% : U'\P' —
W'\(L' U E) is well defined, we have that

7 Hh(b) = ver YY) in H(W'\(L'UE))
and thus
(1) h(0By) = ¢¥€0B' in  Hy(W'\(L'UE)).

Observe that 7(A") is a complex disc transverse to P’. Then the cycle
or(A") = w(0A") represents the positive generator of Hy(U'\P’). Thus,
we deduce that 7(0.A") = w(0B') in H1(U'\P’) and therefore

(2) oA =08 in H;(W'\(L'URE)).

Let C be the disc (0, |z| <r)in L. Let C’ be a disc in L’ containing
p’. Since h maps C homeomorphically into L' with h(p) = p/, the cycle
h(OC) is a generator of the group Hy(L'\{p'}) and we have h(0C) =
deg(h|r)OC’. Thus, since h|f, preserves orientation if an only if h|p does,
we have that h(9C) = £€9C" in Hy(L'\{p'}). Since L'\{p'} is contained
in V/\E, we conclude that

(3) WaC) = €0C' in Hy(V'\E).

Observe that 9C' = 9B' in Hy(V'\E). Moreover, 9C = ¢(0, |z| = r) is
homologous to 9B, = p(w, |z| =) in the set T' = ¢(|z| < |wl|, |z| = 7).
It is easy to see that for |w| small enough, the set h(T') is contained
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in V\E. Then h(9C) and h(0B,,) are homologous in V'\E. It follows
from (3) and the observations above that for |w| small enough:
(4) h(0By) = 9B in  Hy(V'\E).
We know that there exists integers n and m such that
h(0By) = ndA" + moB  in  Hy(V'\(L'UE)).
Then, since V'\(L' U E) C V'\E:
h(0By) = nOA +moB  in Hi(V'\E),
hence
h(0By) =moB’ in H;(V\E),
because dA" = 0 in Hy(V'\E). From this and (4) we conclude that
m = &. Then
h(0By,) = ndA" + 0B in Hy(V'\(L' UE))
and, since V/\(E U L') is contained in W/\(E U L'), we have that
(5) h(0By) =ndA" + 0B in Hi(W'\(L' UR)).
From (2) we have 04" = 0B’ in Hy(W'\(L' U E)). Replacing in (5) we
obtain:
h(0By) =ndB' + 08" in  Hy(W'\(L' UE)).
Thus, from (1) we have:
YeoB =noB +¢oB in Hi(W'\(L' UE))

and therefore n = (¢ — 1)§. This proves the Lemma. g.e.d.

Proof of Proposition 3.2. It is known that the germ of three smooth
and transverse curves is equivalent to the germ given by its tangents
lines. Therefore we may assume that F has three transverse complex
lines P, P» and Ps as separatrices. Then h(Py), h(P;) and h(Ps) are
smooth and transverse separatrices of F and we can also assume that
they are contained in complex lines ]31, ]32 and ]33. By reducing U we
may assume that UN P, UN P, and U N P3 are homeomorphic to discs.
We may take a neighborhood U’ C h(U) of 0 € C2 such that U’ N Py,
U' NPy and U' N 153 are homeomorphic to discs and are contained in
h(U N P1), h(U N Py) and h(U N Ps3) respectively. Then if we make
U = h_l(ﬁ’), it is easy to see that U' N Py, U' N P, and U’ N P3 are
homeomorphic to discs and h(U' N P) = U' N P, h(U' N Py) = U' N Py,
h(U'NnPs) = U N P;. We may choose two of the complex lines P,
P, and Ps, say us P; and P,, such that deg(h|p,) = deg(h|p,). Let
D C P; be a disc containing 0 € C2. Then h(0D) = deg(h|p,)0h(D) in
Hy (P, nU'\{0}) and, since P, N U'\{0} C U’\ P, we have that

h(0D) = deg(h |p,)Oh(D) in H(U'\P).
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On the other hand, since 9D and 0h(D) are positive generators of
H,(U'\P,) and H,(U'\ P») respectively, we have by Lemma 3.3 that

h(9D) = deg(h) deg(h|p,)0h(D) in  Hi(U'\P).

Finally, since deg(h|p,) = deg(h|p,), it follows from the equations above
that deg(h) = 1 and therefore h preserves orientation. q.e.d.

Proof of Lemma 3.3. We only sketch the proof. Let D and D’ be
complex discs transverse to P and P’ respectively. Thus D and 0D’
are homologous to a and a’ respectively. Clearly h(0D) = £0D’, where
E=1lor —1. Le¢ L=PNU and L' = P'NU'. Tt follows from the
topological invariance of the intersection number (see [6], p.200) that

h(L) - h(D) = deg(h)L’ - D'.
On the other hand it is easy to see that
h(L) - h(D) = (deg(h|p)L') - (€D') = deg(h|p)EL' - D'

Then deg(h|p)é = deg(h) and therefore ¢ = deg(h|p)deg(h), which
proves the lemma. q.e.d.

4. Proof of theorem 1.2

Let p : C? - 771(0) be the projection associated to the natural
fibration on a neighborhood of the divisor 771(0). Let h : U — U, F,
F , P, and P be as in Theorem 1.2. We know that the strict transforms
of P and P are fibers of p. Let L, and Lz, the fibers passing through
p and p, be the strict transforms of P and P respectively. By the
hypothesis on P and P we have that p and p are regular points of Fy
and F respectively. Let W and W denote the sets 7~ 1(U) and 7 —(U)
and let E be the divisor 7~1(0). Since h(PNU) = PNU, if

h:W\E — W\E
is the homeomorphism given by h = 7~ ' h 7, we have that
h(Ly N W\{p}) = Ly N W\ ().

Now, it is easy to see that Theorem 1.2 is a direct consequence of the
following proposition.

Proposition 4.1. Let p and D be points in the divisor which are
nonsingular for Fo and Fo respectively. Let L, and Lz be the fibers
through p and p respectively and suppose that

h(L, "W\{p}) = Ly N W\{p}.
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Then there exists neighborhoods U C U and UcU of 0 € C2, and
another topological equivalence

h:U—U
between F and ,7?, for which the hypothesis of Theorem 2.1 holds.

We need some lemmas. Let U C C be the domain bounded by the
Jordan curve J. Let p € U and ¢ € J. We know that any biholomor-
phism between D and U extends as a homeomorphism between D and
U = U U J and there exists a unique biholomorphism f : D — U with
f(0) = p and such that its extension to D satisfies f(1) = ¢. In other
words, f : D — U is the unique orientation preserving homeomorphism,
which is conformal on D and maps 0 to p and 1 to {. It is easy to
prove that g : D — U defined by g(z) = f(Z) is the unique orientation
reversing homeomorphism, which is conformal on D and maps 0 to p
and 1 to ¢. Therefore we have the following.

Lemma 4.2. Let U,U’ C C be the domains bounded by the Jordan
curves J and J' respectively. Letp € U, ( € J and p' € U', ' € J'.
Then there exists exactly two homeomorphisms between U and U’ which
are conformal and maps p to p' and ¢ to {'. The first one preserves
orientation and the other one reverses orientation.

Lemma 4.3. Let J, : S' — C be a Jordan curve for all kK > 1.
Suppose that Jy, converges uniformly on S' to the Jordan curve J :
Sl — C. Let U and Uy, k > 1 be the domains bounded by J and Jy,
k > 1 respectively. Let pr € Ug and (i € Ji be such that pp — p € U
and ¢, — ¢ € Jask — oo. Let f : D — U and fp : D — Uy,
be the orientation preserving homeomorphisms which are conformal on
D and such that f(0) = p, f(1) = ¢, fe(0) = px and fr(0) = G-
Then fi, converges to f uniformly on D. If under the same hypothesis,
we change “orientation preserving homeomorphisms” by “orientation
reversing homeomorphisms”, the conclusion is also true.

Lemma 4.4. Let ¢ : X — C\{0} be a continuous function. Suppose
that ¢y : m(X) — w1 (C\{0}) is trivial. Then there exists a continuous
function log, : X — C such that %8s = .

Lemma 4.5. Let ¢ : S' — S be an orientation preserving home-
omorphism. Consider S' as a subset of C and define the closed curve
a: St — C\{0} by a(¢) = ¢(¢)/¢. Then « is homotopically trivial in
C\{0}.

Lemma 4.6. Let ¢ : S' — S be an orientation preserving homeo-
morphism and let T : S — C be such that e™©) = ¢(¢)/¢. Let A C C
be the annulus {z € C:1/2 < |z| < 1}. Then the map

g:A— A
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g(z) = ze@A=D7(/I2D)

is a homeomorphism. Moreover, g = ¢ on {|z| = 1} and g = id on

{l2l = 1/2}.

Lemma 4.7. Let f : D — C be a conformal map. Then there exists
do > 0 such that for all § < 0y the set f(|z| < §) is convex. (For
convenience, we define a set U C C to be convex if U is the domain
bounded by a smooth Jordan curve with positive curvature.)

Lemma 4.8. Let f: D — C be a conformal map. Let U be an open
set in C and let &9 > 0. Suppose for all 6 < &g the set f(|z| < 0) is
convex and contained in U. Then there exists € > 0 with the following
property: if g : D — C is a conformal map with ||f — gll{21<s} < €
then for all § < &y the set g(|z| < d) is conver and contained in U. (If
K is compact and f is continuous, ||f||x is defined as the supremum of

|f(x)| forx e K.)

Any leaf of Fy or Fy has a natural orientation induced by the complex
structure. Thus, given a leaf L of F¢ out of the divisor, we may state
if h| : L — L preserves or reverses orientation. Suppose that h|z pre-
serves orientation. Then it is not difficult to prove that h|ys preserves
orientation of any leaf L’ close enough to L. On the other hand, if h|z,
reverses orientation, the same holds for h|;, provided the leaf L' is close
enough to L. By connectedness we have in fact that: either h preserves
orientation for every leaf, or h reverses orientation for every leaf.

Proof of Proposition 4.1. Let V and V be neighborhoods of p and p and
let p:DxD—-Vandg:DxD — V be diffeomorphisms with the
following properties:
(7) If restricted to D x D, the maps ¢ and @ are biholomorphisms.
(i7) The leaves of Fy|y and the leaves of ,7?0\‘7 are given by the sets
o(D x {*}) and (D x {*}) respectively.
(iii) We have L, NV = o({0} x D), ENV = (D x {0}), L; NV =
2({0} x D) and ENV = (D x {0}).
Let o : V — D be the projection o(p(21,22)) = 21 and we also denote
by o the projection o : V — D, 0(o(z1,22)) = z1. Let ¥ be the set
L,NV = ({0} x D). We have that 2(X) C Lz and we may assume V
small enough such that h(3) C V Given 7 = (0, 22) € 3, we denote
by D, the plaque o(D x {23}) passing through z. We have that D, is
a closed disc in the leaf of Fy passing through x.

Step 1. Fix a point ¢ in 9D = S! and denote by ¢, the unique point in
0D, such that o(q,) = q. If h preserves the orientation of the leaves, by
Lemma 4.2 we may define f; : D, — h(D,) as the unique orientation-
preserving-homeomorphism which is conformal on the interior of D,
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and such that f,(z) = h(z) and f.(qz) = h(qgs). Otherwise, we define
fo i Dy — h(D,) as the unique orientation reversing homeomorphism
which is conformal on the interior of D, and such that f,(x) = h(x)

and f,(qz) = h(qz). Let o' : D — D, be the inverse of o|p, : D, — D.

Assertion 1. Let f : V\E — C2 be defined by f|p, = fz for all x €
Y\{p}. Then f is continuous.

Proof. Let g, : D — h(D,) be defined by g, = fro00;'. It is sufficient
to prove that g, varies continuously with x, precisely: fix zo € X\{p}
and let zx(k > 1) be such that x — xp as k — oo; then we shall
prove that g,, — g, uniformly on D. Since h(D,,) is a compact and
simply connected subset of a leaf of .7?0, there exits a neighborhood U
of h(Dy,) and a biholomorphism ¢ = (Z,W) : U — D x D such that
the leaves of Fy are mapped to the sets I x {z}. We may assume that
h(D,,) is contained in U for all k& > 0. Thus, we define Gy, : D — D x D

by Gy, = ¢ 0 gy, = (Z 0 gy, W 0 gs,). Since gg, (D) = h(D,,) C U
is contained in a leaf, there is z;, € D such that G (D) is contained in
D x {zx}. Thus W o g,, = z; and it is sufficient to show that Fj =
Z 0 gy, : D — D converges to Fy = W o g, uniformly on D. Observe
that Fj is a homeomorphism onto its image and is conformal on D.
Moreover, we have that
Fp(0) = Z 0 95, (0) = Z(h(wy)) — Z(h(w0)) = Z © g2, (0) = F0(0)

and

Fi(q) = Z 0 g2, (q) = Mqa,.) = P(dzy) = 9o (q) = Fo(q)-

Then Assertion 1 follows from Lemma 4.3

Let
0, : 5" — S
be the homeomorphism defined by 0, = of; 'ho,!|s1. It is easy to see

that 0, preserves the orientation of S!.
Define the function

¢: 8t x (Z\{p}) — C\{0}

_ 02(¢)

Assertion 2. At homotopy level, ¢, : m1(S* x (2\{p})) — m1(C\{0}) is
trivial.

Proof. The generators of 71(S' x (X\{p})) are represented by the
paths

a,f: 8" — 8 < (2\{p}),
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defined by a(¢) = (¢, zo) and 3(¢) = (¢,7(()), where zo € X\{p} and v
is a simple closed curve around p in ¥. Recall that ¢ € S, then |¢| =1

and we have

1, 1
br¢) (@) _ 0F50)0(0) ()

o(B(C) = d(g:7(C) =

q q
ofohlane)  ef s Fo(ae)
_ : _ :

Q(qW(C))
B q
~ 1

Then ¢.(8) = 0. On the other hand, since ,, : S — S is an orienta-
tion preserving homeomorphism, we have by Lemma 4.5 that

¢poa: St — C\{0},

o ()
soa(() ==

is homotopically trivial and thus ¢.(a) = 0.

It follows from Assertion 2 and Lemma 4.4 that there exists a con-
tinuous function

7: 8t x (Z\{p}) — C
such that e” = ¢, that is, e"($*) = 6,(¢)/¢. Consider the annulus
A={1/2 <||z]| <1} C D and define the map

g: Ax (E\{p}) — 4,

It follows from Lemma 4.6 that for all z the map

gz : A — A,

gm(z) = g(Z,ZE)
is a homeomorphism such that g, = id on {|z| = 1/2} and g, = 6, on
St. Let A, be the annulus g, *(A) in D, and let A, = o7 1(|z| = 1/2)
and 0A” = 0;%(]z| = 1) be the interior and the exterior boundary of
A, respectively. Then the map

defined by g, = fr0;'9:0: Az — f+(As) is a homeomorphism and it is
easy to see that g, coincides with f, on 0A/, and with h on JA”. Then
we may define the homeomorphism

hy : Dy — h(Dy,)
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he = fo on o' (2| <1/2),
hy = g, on A,

Clearly, h, coincides with h on 9D, and it is easy to see that h,
depends continuously on z. Finally, we define the function A’ by

W|p, = h, forall zeX\{p},

B = h, otherwise.

It is easy to see that A’ is injective and take leaves to leaves. More-
over, if we restrict A’ to a small enough neighborhood of the divisor, i’/
is continuous. Hence, h’ restricted to a neighborhood of the divisor is
a homeomorphism onto its image and is therefore a topological equiva-
lence between Fy and Fy. By definition /2’ is conformal on every plaque
07 (|z| < 1/2), because coincides with f,. In other words, there is ¢ > 0
such that A’ restricted to ¢(]z1] < 1/2,|22| < €) is conformal along the
leaves.

Step 2. From step 1 and by reducing V', we may assume that h re-
stricted to V' is conformal along the leaves. Then for all x € ¥\{p} the
map

ho;t: D — h(D,)

is conformal and maps 0 to h(z). Given z € X\{p}, since ho;1(0) =
h(zx) is contained in Lz NV, there is 6 > 0 such that the disc {|z| < 6}
in D is mapped by ho;! into the interior of V. Then the map

ohoy' :{lz| <6} — D

is well defined and assuming § be small, by Lemma 4.7 we have that for
all &’ < § the disc {|z| < &'} is mapped by oho, ! onto a convex subset
of D. Define 6(z) > 0 as the supremum of 0 < ¢ < 1 such that for all
§' < 6, the disc {|z| < ¢’} in D is mapped by oho; ! onto a convex subset
of D.

Assertion 3. The function § : X\p — R7 is lower semi-continuous.

Proof. Fix xp € X\p and let € > 0. Take dp be such that §(zg) — € <
8o < 6(x0). Then the disc {|z] < &} is mapped by oho,! onto a compact
subset of . Then, if  is a small enough neighborhood of zy in X\p,
we have that

ohoy ' {|z] <8} =D

is well defined for all z € Q. If we write f = ghg;ol, it follows from the
definition of §(zp) that for all & < §(xg) — €, the set f(|z| < §) is a
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convex subset of . Let ¢y > 0 be given by Lemma 4.8 for f = ghg;ol
and U = D. Then if

g:{ls <&} —D
is a conformal map with [|f — gl[{|2|<5(ze)—c} < €0, We have that for all
8 < d(xg) — ¢, the set g(|z| < ¢') is also convex and contained in D. By
reducing the neighborhood 2 of xg we may assume that

|lohoy, — 0hoy 1 {121<5(x0)—e} < €0

for all z € Q. Then, for all &' < §(zg) — € the set oho, '(|z| < &) is
convex and contained in D). Thus by the definition of §(z) we conclude
that

0(x) > d(xg) —e.

It follows that d is a lower semi-continuous function.

Assertion 4. There exists a positive continuous function
r: X\{p} — (0,1)
such that for all x the map
ohoz' :{lz| < r(2)} =D

is well defined and its image U, = oho, ' (|z| < r(z)) is a conver subset
of D.

Proof. We take any continuous function r < ¢ given by Lemma 2.3.
Then Assertion 4 is a direct consequence of the definition of §.

Forall 0 < r < 1let 3, : [0,1] — [0, 1] be the homeomorphism defined

by
In(1/7)

/Br(t) =t In2 .
We have that 3,(0) = 0, 5,(1) = 1 and it is easy to see that 5,(1/2) = r.
In fact

n ™ —lan
(1/2)—l o <2ﬁ> /)

In(r
g ((elnz)ﬁ) ( ) el eln(r) =T.
For each = € X\{p} we define the homeomorphism:
Ju: D — ﬁa
fa(z) = ﬁr(x)(|z|)z

Observe that f, maps each ratio of D homeomorphically onto itself and
this homeomorphism is “given” by ﬁr(x). We have that f,(0) = 0,

fr = id on OD and that f, maps the disc {|z| < 1/2} onto the disc
{lz| < r(x)}. Forall y e LNV, let ggl : D — D, be the inverse of

B5r(1/2)
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olp, : Dy — D.

Assertion 5. For each x € X\{p}, define the homeomorphism
hy = h@gzlfxg : Dy — h(D:c)

Then h, coincides with h on 0D, and maps the disc o;'(|z] < 1/2)
onto g;(lm)(Ux). Moreover, h, depends continuously on x.

Proof. If ¢ € OD,, then o(¢) € S and since f, = id on S! we have
that fz(o(¢)) = o(¢). Then
ha(C) = hoy ' fro(¢) = hog o(¢) = h(Q).
On the other hand,

ha(oz ' (12| £1/2)) = hoy ' faoler ' (12| < 1/2)) = hoy ' fall2] <1/2)
and, since f,(|z| < 1/2) = {|z] < r(z)}, we obtain:

ha(0g (12| < 1/2)) = hoy ' (|2] < r(a)).
Recall that U, = oho;'(|z| < r(x)) and so
Onny (Uz) = hoz (2] < ().
therefore
ha(03 (|21 £1/2)) = 054y (Un)-

Finally, h depends continuously on z because (3, depends continuously
on r.

We now define the function A’ by
W|p, = hy foral =,
h' = h, otherwise.
It is easy to see that A/ is injective and take leaves to leaves. Moreover, if
we restrict A’ to a small enough neighborhood of the divisor, it is contin-
uous. Hence, h' restricted to a neighborhood of the divisor is a home-
omorphism onto its image and is therefore a topological equivalence
between Fy and Fy. By definition, h’ maps each plaque o;!(|z| < 1/2)
onto Q}:(lx)(Um). In other words, any plaque o;'(|z| < 1/2) is mapped
by R’ onto a set which projection by p is a convex set U, in D.

Step 3. From step 2 and by reducing V' we may assume that h maps

each plaque D, onto Q}:(lx)(Um). Since U, C D is convex and contains 0,

given w € D there exists a unique point in the intersection of U, with
—

the ray Ow. Let r,(w) be the norm of this point. It is easy to see that

rz(w) depends continuously on x and w. We define the homeomorphism:

fm:ﬁﬂﬁ,
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fm(w) = ﬁrz(w)(|w|)w'
Observe that f, maps the ratio of D passing through w homeomorphi-
cally onto itself and this homeomorphism is “given” by 3, (). We have
that f; maps the disc {|z| < 1/2} onto U,.

Assertion 6. For each x € X\{p} define the homeomorphism
gz = Qfl(lm)fx_lg : Dy — Dha)-

Then g, = id on ODy(,) and maps g;(lw)(Ux) onto g;(lw)(]z\ < 1/2).
Moreover, g, depends continuously on x.

Proof. If € 0Dy, then o(C) € S1 and since f, = id on S* we have
that f;'(o(¢)) = o(¢). Then

92(C) = Oy f2 ' 0(C) = 2 0(C) = C.
On the other hand:
92 () (Uz)) = oy Jz 0005y (Un)) = 0 fi ' (Us)-
From the definition of f,, we have that f,1(U,) = {|z] < 1/2}. Then
92y (Un)) = Oy o (Us) = 00,y (I2] < 1/2).

Finally, g, depends continuously on x because r, depends continuously
on x.

Now, define the function g by

9Dy = 9o forall z,
g = id, otherwise.

It is easy to see that g is injective and maps leaves of ,7?0 to leaves of
.7?0. Moreover, if we restrict g to a small enough neighborhood of the
divisor, g is continuous. Hence, g restricted to a neighborhood of the
divisor is a homeomorphism onto its image and is therefore a topological
equivalence of Fo with itself. Finally we define h’ = go h. Then 1/ is a
topological equivalence between Fj and Fo and from the definition of g
we have

h/(Dx) = g(h(Dx)) = g(@}:(lx)(U:c)) = Q}:(lx)(‘zl < 1/2)'

Thus A’ maps each plaque D, onto the plaque g;(lw)(]z\ <1/2).

Step 4. From step 3 and by redefining V we may assume that for
all y € D\{0} the equivalence h maps the plaque (D x {y}) onto the
plaque the (D x {f(y)}), where f : D — D is a homeomorphism onto
its image. Therefore h|y\g : V\E — V\E is expressed as

h(p(z,y)) = p(hy (), f(y)),
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where hy : D — D is a homeomorphism such that h,(0) = 0 (because
h(¥) C Lp). As a first case we assume that the homeomorphisms h,
preserve orientation. Define the function

¢: 5" x (D\{0}) — C\{0}

e,y = 1

Assertion 7. At homotopy level, ¢, : w1 (ST x (D\{0})) — m1(C\{0}) is
trivial.

Proof. The generators of 71(S' x (D\{0})) are represented by the
paths

a,f: 8" — St x (D\{0}),
defined as a(¢) = (¢,1) and B(¢) = (1,¢). Then we have that

¢omo=wansz)

and, since hy|g1 : S' — S! preserves the orientation, we have by Lemma
4.5 that ¢ o « is homotopically trivial in C\{0}. Observe that [ is the
boundary of the disc {(1,y) : |y| < 1}. Thus, ¢(3) is the boundary of the
complex disc B = ¢(1,|y| < 1). Consider the disc By, = p(w,|y| < 1),
where w € D\{0}. By Lemma 3.1 we may chose w such that the path
h(dBy) in V does not link the fiber L. Thus, since 0B = 9B, in
Hy(V\(L,UE)) and h(V\(L, U E)) C V\(LzU E), we have that h(dB)
does not link the fiber Lz. Therefore the path ¢~ 'h(9B) in (D\{0}) x D
does not link {0} x D and, since

pThEB) = @7 h(p(B)) = ¢ h(w(1,())
= §7a(he(1), (€)= (he(D), F(Q)),

we conclude that the path ¢ — h¢(1) = ¢(5(()) is homotopically trivial
in C\{0}.

Assertion 7 and Lemma 4.4 imply that there exists a continuous func-
tion _
7: S8t x (D\{0}) —» C
such that €% = h,(¢)/¢. We define the map:
W :V\E — V\E

by:

W(e(z,y) = &, fy), for |z|<1/2, and

Wipa,y) = & (w0l o)) for o = 1/2.

By Lemma 4.6 we have that h’ maps the plaque (D x {y}) homeomor-
phically onto the plaque (D x {f(y)}). Thus A’ is a homeomorphism
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which preserves the plaques and it is easy to see that A’ coincides with
h on (0D x (D\{0})). Moreover A’ extends to p(|z| < 1/2,y =0) C E
as h'(¢(x,0)) = @(z,0). It is easy to see that this extension is a home-
omorphism onto its image. We now define:

h = W on V\E,

h = h otherwise.

As before, on a neighborhood of the divisor, h is also a topological
equivalence between Fy and Fy. Moreover, from above h extends to the
open set ¢(|z| < 1/2,|y| < 1) and Proposition 4.1 is therefore proved
in this case. We now suppose that the homeomorphisms h, inverts
orientation. Then we define

W :V\E — V\E

by:

W(p(z,y) = &, f(y), for |v|<1/2, and

Wipa,y) = @ (a0 o)) for ol = 1/2
and the proof follows in the same way. q.e.d.

Proof of Lemma 4.3. This lemma is a direct consequence of a theorem
of Rado (see [11], p.26). q.e.d.
Proof of Lemma 4.4. Fix xy € X. There is a neighborhood €2 of zp¢(x)
in C\{0} where a branch of logarithm function is well defined. Then
there exist a holomorphic function

f:Q—-C
such that ef(¥) = z for all z € Q. We know that f can be analytically
continued along any path v in C\{0} with v(0) = 2zp and 7(1) = z €
C\{0}. This analytic continuation has a value at (1) = z, which we
denote by f,(z). Let x € X. Take a path a in X connecting zg to

z. Then we define F,(z) = fgoa(¢(z)). Let o be other path in X
connecting xg to x. Then, since

¢x: m(X) — m(C\{0})
is trivial, it follows that ¢ o & and ¢ o o/ are homotopic in C\{0}. Then

f¢oa(¢(x)) = f¢oa’(¢(x))

and so Iy (z) = Fu (7). Therefore we define log,(z) = F,(z) for any a.
q.e.d.

Proof of Lemma 4.5. It is known that a map ¢ : S* — S™ is ho-
motopically determined by its degree (Brouwer). Thus, a preserving-
orientation homeomorphism of S! is homotopic to the identity map
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id : S — S, that is, there exists a map
F:8'%x0,1] — S*
such that F(¢,0) = ¢(¢) and F(¢,1) = ¢ for all ¢ € S'. Then the map
G:S'x 0,1 — St c C\{0}

defined by
F((t
G, = &0
is a homotopy between a and the constant 1. g.e.d.

Proof of Lemma 4.6. We first observe that each circle {|z| = r} in A is
mapped into itself. Let z € A with |z| = r. Since

e =p(Q)/C e8!
for all ¢ € S, it follows that 7(z/|z|) = 2mit with t € R. Then

(2lz[=1)7(2/12]) 2[z|-1)(2mit)

l9(2)] = |z = [2] | =4 =

Now, it is sufficient to prove that g maps each {|z| = r} homeomorphi-
caly onto itself, which is equivalent to prove that the map h : S* — S*
defined by h(¢) = g(r¢)/r is a homeomorphism. We have that

h(¢) = g(r¢)/r = (r$)ePIrdl=0rr¢/Irc) . — ¢er=17(C)

where 1/2 < r < 1. Since ¢ is a homeomorphism and preserves
the orientation, there exists a homeomorphism f : R — R such that
(™) = 2™ ) and f(t + 1) = f(t) + 1 for all t € R. Then, since
e™© = ¢(¢) /¢, we obtain

eT(eQTrit) — ¢(e27rit)/e27rit — 627rif(t) /627rit — eQﬂ'i(f(t)—t)'

Hence 7(e?™) = 2mi(f(t) —t + N), where N € Z. Then
h(em’t) _ e27rite(2r—l)7'(ez7rit) — 2mit o (2r—1)(2mi)(f(t)—t+N)

_ @)t @r—1) (1) (2r—1)t+(2r—1)N)

(6) —  2m)(2r=1)f()+(2-2r)t+(2r-1)N)

and we have therefore
h(627rit) — e27rif(t)

)

where f(t) = (2r — 1) f(t)+(2 — 2r)t+(2r — 1)N. An easy computation
shows that f(t + 1) = f(t) + 1. Moreover, since f is increasing, it is
easy to see that f also is. Then f : R — R is a homeomorphism and

the lemma follows. q.e.d.

Proof of Lemma 4.7. Since the conjugation z — z preserves the convex
sets, by replacing f with f we may assume that f is holomorphic. For
r > 0 small enough, define g, : D — C, g¢,(z) = f(rz/a)/r, where
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a = f'(0). It is easy to see that g.(z) — z as r — 0 for all 2. Then
gr converges uniformly on compact sets to the identity id : D — I as
r — 0. Hence there is rg such that for all » < ry we have

1id —grll{21<1/2) <€

where € is given by Lemma 4.8 for §y = 1/2. Therefore g,(|z] < 1/2) is
convex for all » < rg. But

el <172 =g (M) g (1< )

a

which is convex in and only if the set g(|z| < r/|2a|) is convex. Then,
if we take 09 = r9/(2]al), we have that the set g(|z| < §) is convex for
all § < 4. g.e.d.

Proof of Lemma 4.8. We may assume that f is holomorphic. Thus, if
the conformal map g is close enough to f, it will be holomorphic too.
If a: (a,b) — C is a smooth curve, the curvature of a at the point «(t)
is given by

0= d(“ﬂﬂzwwmwm_d@W®m

o/(8) (B
e @) - o) (LOTe@) |
B RICIK
" @le (0P — @ (@ (1))
" - DL ‘

Let » > 0 and parametrices the boundary of the disc {|z| < r} by
vr(t) = re’/" t € R. Let g : D — C be any holomorphic conformal map
and let a,g be the curve apy = go~y,. We have a).,(t) = ¢'(-(t))7,.(t),
g (t) = g" () (1(1)* + 9" (3 ()7 (1), [y (1)) = 1 and |y,()] = 1/r.
Then from (7):

(9" () (0)? + ' ()Y ()| = 9" (v )il ()|

ka,,(t) =
! 19" ()2
_ 19O 1g i)+ 9" () () ?Lg ()| = 9 (v )l g ()
|9’ ()2 ’
Hence
19 ()P /r = 19" (w)llg' (vl = 19" ()19’ ()
Fary (£) 2 g ()

(8) 19 e)l/7 = 19" (v )l = 19" ()

g ()]
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Observe that

9" (v )vg (v) + ' (v)g" (e )1
19’ ()

g (ve)l" =
and thus
g ()] < Ll )l + 19" (n)llg™ ()
- g ()
Replacing in equation (8) we obtain

lg' (v )l/7 = 19" (v)| = 29" ()]
o) = 700

= 1/r=3lg"(w)I/lg ().

We know that if ¢ — f, then ¢" /¢’ — f”/f' (uniformly on the compact
sets). Then there is € > 0 such that |[f—g|[{z|<r,)} < €1 implies k() >
/e =3[f"/ f'1l§1z1<s0y — 1 for all » € (0,80). Thus we make take 7o €
(0,00) such that kq,,(t) > 0 whenever ||f — g|[{|zj<ry} < € and 7 < 7.
On the other hand, clearly if ¢ — f then ¢'(v,) — f/'(7») and ¢"(v,) —
1" (v) uniformly on {rg < |r| < &}, t € R. Consequently, from (8),
we have kg, (t) — ka,,(t) uniformly on ¢t € R, r € [rg, dp]. Then, since
E(arf(t)) > 0 for all t € R, r € [rg, 0] (from convexity), we may reduce
€ in order to have kq,,(t) > 0 for all £ € R, r € [rg, do]. Thus g(|z| < 6)
is convex for all § < §p. Clearly we may assume e small enough such
that g(|z| < dp) is contained in U, which finishes the proof. q.e.d.

< 2[g" ()]

5. The differentiable case.

In this section we prove Theorem 1.1. As before, let 7 : C? - 2
be the blow up at 0 € C? and let E be denote the divisor 771(0). Let
p : C2 — FE be the natural projection associated to the fibration on

C2 which fibers are given by the strict transforms of the complex lines
passing through 0 € C?.

Definition 5.1. Let {z;} be a sequence of points in C?\{0}. Let
L be a complex line passing through 0 € C? . We say that {z} is
tangent to L at 0 if z; — 0 and every accumulation point of {zx/||zk||}
is contained in L.

Lemma 5.2. Let {z;} be a sequence of points in @\E Letx € E
and let P, = w(Ly), where L, is the fiber of p through x. Then xj —
x € E if and only if {m(xy)} is tangent to P, at 0.

Let C be an irreducible separatrix (That is: an irreducible holomor-
phic curve invariant by F) of F (It exists by Separatrix Theorem, see

[4]). Then C = h(C) is an irreducible separatrix of F. Let P and P be
the tangents lines at 0 € C? of C' and C respectively.
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Proposition 5.3. Denote by A the derivative dh(0) : R* — R,
Then A(P) = P.

Proof. Given v € P\{0}, there exits a path v : [0,1) — C, with
7(0) = 0 and such that 7'(0) = v. Then the path hoy is contained in
C and therefore

(hoy)'(0) = dh(0)(v'(0)) = A(v)

is contained in P. It follows that A(P) C P, and so A(P) = P, since A
is a isomorphism. q.e.d.

Let L and L denote the strict transforms by 7, of P and P respec-
tively. Let ¢ and ¢ be the points of intersection of L and L with E. We
may assume without loss of generality that

P=P=1{(z1,2) € C*: 2 = 0}.

Let U = 7= %(21 # 0) and consider holomorphic coordinates (¢,z) in U
such that 7 is given by 7 (¢, x) = (x,tx). Then the fibers of p are given
by the sets {t = cte} and , the fibers L and L are represented by {t = 0},

that is, ¢ = ¢ = (0,0). Since Fy has a finite number of singularities on
E, we may take ¢ > 0 such that the set {(¢,0) : 0 < |[t| < 2¢} C E does

not contain singularities of Fy. let
A: @\E — @\E
be the homeomorphism defined by A = 7~ 1Ax.

Proposition 5.4. There exists § > 0 such that the set
{(t,z) : [t| < 20}\E

is mapped by A into {(t,x) : |t| < 2¢}. Clearly, we may take § such that
the set {(t,0) : 0 < |t| <28} C E does not contain singularities of Fy.

Proof. Let A(z) = (A1(2),Az2(2)) for all z = (21,22) € C2 Since
A(P) = P, it follows that Ag(z1,0) =0 for all z; € C. Hence:

Al(C7 O)

for all ¢ € S*. Then there exists § > 0 such that
A2(<7 252)

9 — = < 2

®) G )

for all ¢ € S! and all 25 € C with |2;] < 2§. Since A is real linear:

Ax(21,22)  |zi|Aa(z1 /|21, 22/121])  Aa(z1/|21], 22/|21)

= = < 2e
Ai(z1,22)  |z|Ar(21/|2), 22/121])  Ar(zn/|21], 22/]21])
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and, since z1/|z1| € S, it follows from (9) that
Ag (21, 22)
Ai(z1,22)
If we {(t,z) : [t| < 20}\E, then m(w) = (z1,22) with 23 # 0 and
|z2/z1| < 28. Therefore

Aw) = 7 tAn(w) = 77 A(21, 22) = 7 AL (21, 22), Aa(21, 22))

Ag(21, 22)
(T =),

and it follows from (10) that A(w) is contained in {(¢,z) : [t| < 2¢}.
q.e.d.

(10) < 2¢ whenever |z9/z1] < 20.

Let p = (6,0) € E and let L, = {t = d} (its fiber). Consider the path
B:S'— L,

B(¢) = (6,0,
and let B4 : St — {(t,7) : [t| < 2¢} given by 34 = Ao 3.

Proposition 5.5. The set p(A(L,\{p})) is equal to p(Ba(S1)).

Proof. Evidently pBa(S') C p(A(L,\{p})). On the other hand, let
(0,z) € Ly\{p}, then
pA,z) = prntAn(s,z) = prtA(x,dx)
= pr Y (Ay(@, 6z), As(z, 82)) = p (%ﬁ:gg,m(w, &c))
Ag(z,0x) _ Ag(z/|z|, 6x/|x])
(Res) - (Renr s )
_ Ag(a/|z|, 0z/|x)
= o (e saiy el o2/ )
= pr H(An(x/|x], 0x/|x)), Ag(z/|2], 62 /|2]))
= pr 'A(z/|xl, 62/ |x|) = pr " Am (6,2 /|x])
= pA(B(z/|z])) = p(Ba(z/|z])).
Therefore p(A(L,\{p})) C pBa(S1). q.e.d.

Define K as the set of points y € E such that there exists a sequence
{zx} in Ly\{p} with h(zy) — y as k — oc.

Proposition 5.6. Given a neighborhood 2 of K in (6\2, there exist a
disc ¥ in Ly, containing p, such that the set h(X\{p}) is contained in
Q.
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Proof. Is a direct consequence of the definition of K. g.e.d.

Proposition 5.7. The set K is equal to pBA(SY). Thus, since B4 (S1)
C A(Ly\{p}) does not intersect L, the set K is contained in {(t,0) : 0 <
|t] < 2¢}.

Proof. Let y € K. Then there exist a sequence {z;} in L,\{p} with
h(zy) — y as k — oo. Let P, = mw(L,), where L, is the fiber of p
through y. It follows from Lemma 5.2 that the sequence {m(h(xy))} is
tangent to P, at 0. Since 7(z;) — 0 as k — oo and A is the derivate of
h at 0, we have that

h(m(zr)) = Am(zr)) + R(m(zi)),
where R(m(xg))/||m(xr)|| — 0 as k — oo. Therefore

" hix(ey)) _ Alr(e)) | R(x(oy)
Iw(@ll (el (@)l

with R(7(xg))/||7(zk)|| — 0 as k — oo. Since the sequence {hm(zx)} =

{mh(zy)} is tangent to P, at 0, we have by definition that any accumu-

lation point of

h(m (1))
[ h(m ()l

is contained in P, and the same holds for the sequence

h(m(zx)) _ h(r(zy))  [[hr()l]

Iw(@)ll — [Th(x(@)]] e (@)]]
Then, it follows from (11) that any accumulation point of the sequence
A(m(zr))
[l (k)

is contained in P, and the same property is satisfied by

Alm(zy)) _ Alm(zg))  [lm(en)l|

A @)~ Tl AT @)

Then the sequence

Alr(aer) _ 7(Alr))
A (@)l (7 (Alz)]

is tangent to P, at 0. By Lemma 5.2 we have that A(zy) — y as
k — oo, hence p(A(zr)) — y as k — oo. Then y is a limit point of
P(A(LNpY). But p(A(L\{p})) is equal to pa(S") by Proposition
5.5. Then, since pB4(S!) is compact, we have that y € pB4(S!) and
therefore K C pBa(S'). On the other hand, let y € pBa(S'). Then
y = p(A(0,¢)). For all k € N let z, = (0,5,() € Lp, where s > 0
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and sp — 0 as k — oo. Clearly zx — p = (0,0) as £ — oo. Then
m(xy) — 0 € C? as k — 0o and we have that

h(m(zx)) = Alr(ax)) + R(m(ex))

with [|R(7(xx))||/||7(zk)|| — 0 as k — oo. Therefore

hm(z) _ Alr(zr)) | B(m(zr))
(@l Alw(@ll ()l

Hence, since

Alm(zr) _ AlskG,8260) sk A(GC0) A ¢9)

Im(@o)ll 1I(skC,s2Co)ll— Isklll(C. ¢l TI(, Coll

and [[R(7(2x))[|/||7(zx)|| — 0 as k — oo, we have that

hr(o))  A(CH)
el T ¢l

as k — oo. Let Ly be the fiber of p through y and let P, = 7(L,). Since
p(A(9,()) =y we have A(4,() € Ly, hence T1A(6,¢) € Py. Then

(12)

A6 ¢0) _ A((6,¢)) _ TA(5,¢)

1 EOll N3, Ol 11(m (6, O]

is contained in P, and it follows from (12) that any accumulation point
of the sequence

m(h(zx)) _ h(m(zr))  [[hmw(z)l]
(i)l el ()]

is contained in P,. Then, by Lemma 5.2 we have that w(h(xy)) — vy as
k — 0o. Thus y € K and therefore pBa(St) C K. q.e.d.

Proposition 5.8. Define 0 : [0,1] — E by 0(s) = pBa(e™) for all
s €10,1]. Then

poBa(e®™) = 6(2s), if 0<s5<1/2,
pofa(e?™) = 0(2s—1), if 1/2<s<1.

In particular, pB(S') = 6([0,1]) and, by Proposition 5.7, we have that
K =0([0, 1)),
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Proof. If s € [0,1/2], then pB4(e*™5) = pBa(e™?9)) = 6(2s). Sup-
pose now that s € [1/2,1]. Then, since A is real linear:

w = ,()Aﬁ(€27ris) — p7T_1A7T(5, e2m’s) — pﬂ_lA(€2m5,5e2ms)
= DA, (—1)5en)
— pﬂ_l(—l)(Al(e_“ezm‘*, e—m'562m'8)’ A2(e—7rie27ri57 e—7ri562m'8))
_ pw‘l(—Al(e”(QS_l),567”(25_1)), _Az(em'@s—l)’ 5e7ri(2s—1)))
Ag(em2s71), emi2s1)) mi(2s—1) 5 mi(25—1)
= P <A1 (e7ri(2s—1) , 5e7ri(25—1)) ’ _Al(e , de )

A2(e7ri(2s—1)’ 5e7ri(2s—l))
A (e7ri(2s—1)’ 5e7ri(2s—l)) 0

<A2(e7ri(2s—1),5e7ri(25—1))
A (emis—1)_germi(2s—1))
— LA (€MD) emi@s1)) 7y (pmi2s=1) | semi(2s=1)y)
— prTA(em2D) gemi2s=1)) — prl Ag(g, 25— ))
— DA, €™ D) = pAB(em DY = pBu(emi5D)
= 0(2s—1),
since (2s — 1) € [0, 1].

A4 (ewi(2s—1) 7 667”'(23—1) ))

Proposition 5.9. We have that: either K is a point, or K is equal
to a Jordan curve.

Proof. By Proposition 5.7 and Proposition 5.8, it is sufficient to prove
that: either 0 is constant or it is a simple closed curve. By Proposition
5.8, we have that 8(0) = 6(2(1/2) — 1) = pBa(e*™(1/2)) = 9(2(1/2)) =
6(1). Thus 6 defines a closed curve in E. Suppose that € is not a simple
curve, that is, 6(s") = 0(s") for 0 < s’ < s” < 1. Observe that

0(s') = prTAT(5,e™) = prTA(e™, 5.
Writing A(e™', 6e™*') = (A}, A}) we have that

/ /
o) = o (0 8g) = (5700 ) = (§70)
Analogously, making A(e™" §e™s") = (AY, AY) we obtain

"
9(s") = <A_?”O> .

Then 2—:2 = 2—% and we have therefore that
1 1
ahh 1Ay Ay A
aAl +0A] A} A
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for all a,b € R such that aA} + bA{ # 0. Computing as above
B aA/ + b 2 /
pr (@A) + AT, aAl + bAY) = <ﬁ,0> = <A—z,0> =0(s'),
that is,
(13) pr(a(A], A) + (AT, AT)) = 6(s").

Since 0 < s’ < " < 1, the vectors ¢™ and ™" are real-linearly
independent. Thus, for all s € [0,1) we have that ™ = ae™s’ + pemis”
with a,b € R. Therefore:

0(s) = pAB(e™) = pn tAx(8,e*™%) = prTLA(eT, 5e2™)
o A (ae™ + be™" | 5(ae™ + be™"))
— o A(a(e™ 567 ) 4 b(e™, 56 Y)
= pr YaA(e™,6e™) + bA (e 5e™"))
= pr(a(A], AY) +b(AT, AD)),
and by using (13):
0(s) = 0(s").

It follows that @ is constant and the assertion is therefore proved.

We denote by V and V the sets {(¢, ) : [t| < 26} and {(¢,z) : || < 2¢}
respectively. Let

B:8' =V
be the path defined by 3(¢) = (¢, ¢).

Proposition 5.10. The path 54 is homologous to 55 n V\(Z UE),
where £ =1 or —1.

Proof. Let By, be the disc {(¢t,z) : t = w, |z| < 1} in V. Observe that
(3 is equal to OB, where B is the disc {(e,z) : |#] <1} in V. Then, since
A : R* — R* preserves orientation, it follows from Lemma 3.1 that for
some w # 0:

(14) A(OB,) =¢B=¢B in Hi(V\(LUE)).

Observe that 9B, is homologous to 8 in V\(L U E). Then, since
A(V\(LUE)) is contained in V\(L U E), it follows that

(15) AOBy) = A(B) =4 in Hi(V\(LUE)).
Thus the proposition follows from (15) and (14).

Proposition 5.11. Suppose that K is a Jordan curve and let U C
{(t,0) : |t| < 2€} be the domain bounded by K. Then q = (0,0) ¢ U.
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Proof. Making C' = {(£,0) : |t| < €} and since p : V\(LUE) — C\{p'}
is well defined, it follows from Proposition 5.10 that

p(Ba) =&p(B) in Hi(C\{p'}).
Then, since p(3) = 0 in H;(C\{p'}), we have that
(16) pofBa=0 in Hi(C\{p'}).

If we consider p o 34 as defined on [0,1] by s — pBa(e?™*), it follows
from Proposition 5.8 that po 54 = 0 6. Then

pofa=20 in Hi(C\{p'})
and it follows from (16) that
=0 in H(C\{p'}),
since H1(C\{p'}) does not have torsion. Therefore p’ ¢ U.

Proposition 5.12. Let ¥ be a disc in L, containing p and such
that A = h(X\{p}) is contained in V\E. Let v be a path in A, which

represents a generator of Hi(A). Then 7 is homologous to 55 in V\E
with £ =1 or —1.

Proof. Since V\(L U E) is contained in V\E, it follows from Propo-
sition 5.10 that B4 is homologous to {6 in V\E where £ = 1 or —1.

Therefore it is sufficient to show that ~ is homologous to {84 with
E=1or —1. Let

Oy St — L, = {t =0}
be the path defined by 9,(¢) = (d,r¢) with 0 < r < 1 small enough

such that {(d,2) : |z| < r} is contained in 3. Then ¥, is a generator
of H1(X\{p}) and consequently h o ¢, is a generator of H;(.A). Thus v
is homologous to £h o ¥, in V\E, where £ = 1 or —1. Therefore it is
sufficient to prove that h o, is homologous to G4 in V\E . Recall that
B(¢) = (0,¢). Then § and ¥, are homologous in C' = {(4,z) : 0 < |z| <
1} C L, and, since A(C) C T7\E, it follows that the paths Ao 3 = (34
and Ao, are homologous in TN/\E . Then, it suffices to show that ho},
and A o 1, are homologous in V\E for some r > 0.

Let P’ = 7(Ly,) and consider the path 6, : S — P’ defined by
0, = 7oV, that is 6,(¢) = (r(,0r¢). Recall that A : R* — R* is an
isomorphism, then there exist a constant ¢ > 0 such that

(17) I|A(2)|| > ¢||z|| forall ze C2
Since A is the derivate of h at 0, there exists ¢ > 0 such that
(18) h(z) = A(z) + R(z),
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with |R(z)| < c|z| whenever |z| < . Now, assume that
. € €0
r < min ——,c,c/(2e + 1), },
{\/1—1—52 / ) V1+ 62

where the constant g9 > 0 will be defined later. Then, since 6,(¢) =
(r¢,0r¢) satisfies

(19) 10- (Ol =rV1+6% <e,
we have that
(20) |R(0- ()] < cl|6r(O)]]-

Therefore the map
F:St'x[0,1] — C?
F(¢,s) = A(0:(¢)) + sR(6:(C))
is such that

(¢ s)ll = [A(6r(C)) + sR(0:(C))l|

> | AG- ()] = [IsRE-()I| = el|0-(OI] = [[R(O-(O)]] > 0.
Observe that F(¢,0) = A(6,(C)) and F(C,1) = A(8,(C)) + R(6.(C) =
h(6,(¢)). Then F defines a homotopy between A(f,) and h(f,) in
C?\{0}. Thus, since 71 A(0,) = A(¥,) and 7~ h(6,) = h(J,), it fol-
lows that 7~ o F' defines a homotopy between Ao, anc}vhoz9r in C2\E.
Therefore, in order to prove that Aod, = hod, in Hy(V\E), it suffices
to show that 7—! o F(¢,s) belongs to V for all s € [0,1], ¢ € St. We

v;rite F(¢, s) = (zr,yr), A(6:(C)) = (za,ya) and R(6-(C)) = (¥R, yr),
then

(21) (‘TF7yF) = (‘TAayA) +3(33R7?JR)-
Observe that
(i—i,:@;) = 7T_1($A,yA) =71 A6,(0Q)) = ATF_IQT(C) = A 09,(C),

hence (ya/za,0) = pA9,(¢). Then, since A, (() is contained in A(L,\
{p}), it follows from Proposition 5.5 and Proposition 5.7 that (ya/xa,0)
is contained in K. Thus, since K a compact subset of {(¢,0) : |t| < 2¢},
we have that

(22) M + &1 < 2
|zal
for some €1 > 0 small enough. Take €5 > 0 be such that
1+2
(23) e(lt+l)

(c¢/(1+ 2€) — e3)
Now, we chose ¢y be such that

(24) IR(2)|] < e2]lz]]
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whenever ||z|| < g9. Observe that 77! o (zr,yr) belongs to
V ={(t,z) : |z < 2¢}

if and only if g—i < 2¢, and by (21), if and only if

YA + SYR

TA + SYR

An easy computation shows that
YA+ SYR _ YA | SYR = SYR(YA/Ta)
za+Syr A za+syr

Thus, in view of (22), it is sufficient to prove that

(25) < 2e.

syr — syrlya/za)| _ ]

(26) [TA + syr| -

Since that [|6,(¢)]] = rV1+6 < ¢, it follows from (24) that

(yr,yr)ll = |R(E-(O)I] < 2[|6r(C)l; hence [yr| < 2]|6,(C)||. Then
lsyr — syr(ya/za)l = Isyrl-[1 —ya/zal

< &[0 (Ol + [yal/lzal)
and, by using (22), we obtain

(27) syr — s(ya/za)yr| < e2(1 + 2€)[|6-(C)]]-
On the other hand, also from (22) we have that |ya| < 2¢|za[, hence

(L+2¢)[zal = |zal + |yal = [|(a, ya)ll = [[AG-(O)I] = cll6-(O)]]

and therefore

> . .
oAl = 1o 18,
Then
c
|za + syr| = [za| = [syr| = [zal — |yr] > ——=-110-(O)|] — €20 ()]
1+ 2¢
and so

[za + syr| = (¢/(1 4 2¢) — €2)[|6-(C)]|-
From this and (27) we obtain

[syr — s(ya/za)yr| _ _ e2(1 + 20)[|6- ()] 2(1 + 2¢)

[za + syg] T (c/(T+2¢) —e)]|0: (Ol (¢/(1+2¢) —€2)
and from (23):
|syr — sya/Tayrl
|zA + syr]
which finishes the proof. q.e.d.

Sgly

It follows from Proposition 5.7 and Proposition 5.9 that there exists
a subset D of the divisor E with the following properties:

(7) D is diffeomorphic to a closed disc.
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(74) D is contained in {(¢,0) : 0 < [¢| < 2¢}
(791) K is contained in the interior of D.

Let p be a point in the interior of D and let Ly be the fiber of p through
p. Since D is contained in a leaf of ,7?0, there is a disc ¥’ in L containing
p with the following property: if z € >, then there exists a closed disc
D, in the leaf of Fy passing through z, such that p maps D, diffeomor-
phically onto D. Let W denote the set |J ¢y, D.. By Proposition 5.6,
there exists a disc ¥ in L,, containing p, such that the set A = h(X\{p})
is contained in the interior of W. We assume ¥ be small enough such
that Fy is transverse to X.

Proposition 5.13. There exists a disc Y cy containing p, with
the following property. Given x € ¥\{p}, the disc D, intersects A in a
unique point f(x). Moreover, the map f : X\{p} — A is continuous.

Proof. The foliation Fo induces a complex structure in A as follows.
Let y € A and z € ¥\{p} with h(z) = y. Since ¥ is transverse to
Fo, there exists a neighborhood W, of x in @\E such that each leaf
of ~7'—0|Wz intersects ¥ only one time. Let W, be a neighborhood of y
where Fy is trivial. Thus, there exists a disc Z (complex sub-manifold
of W,) such that each leaf of fo\wy intersects Z at a unique point.
We may assume that h=1(WW,) is contained in W,. Let ¥, C SN W,
be a disc with € ¥, and such that the closure of ¥, = h(¥;) C A
is contained in W,. If w is a point contained in X, the leaf of ~7?0|Wy
passing through it intersects i‘,y in a unique point ¥, (w). Clearly, 1,
is continuous and we claim that 1, is a homeomorphism of ¥, onto its
image. Since iy is compact, it suffices to prove that 1, is injective on
iy. Suppose that wy and ws are two different points in Ey contained
in the same leaf L of ﬁo\wy- Then, since m, ' (W,) C W,, we have that
7Ty_1(L) is contained in a leaf L' of Fo|w,. Then h~!(wy) and h~!(ws)
are two different points in the intersection of L’ with Xy, which is a
contradiction. Then we consider v, : ¥, — iy as a local chart of A.
We may assume the sets 3, be small enough such that, if ¥, N3, # 0,
then ¥, U X,/ is contained in an Open set where Fy is trivial. Then it
is easy to see that the map 1, o ¢y , which preserves the leaves, is a
holonomy map and therefore holomorphic.

Given y € A, denote by g(y) the point in X'\{p} such that y € D).
It is not difficult to see that the map g o, . iy — X' is a holonomy
map. Therefore g : A — Y’ is holomorphic and regular. It is known
(see [1]) that there exists a biholomorphism

p: A ={z€eC:0<r<|z]<1} - A
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and we may take ¢ such that p(z) — E as |z| — r. Hence gop(z) — p
as |z| — r. Then the map go ¢ : A, — ¥/ extends as go ¢ = p on
|z| = r. This implies that 7 = 0. Then g o ¢ extends holomorphicaly to
D with g o ¢(0) = p.

Assertion. The map g o ¢ is reqular at 0.

Proof. Let v be a path in D\{0} which winds once around 0. It is
sufficient to prove that the path goy(+) in ¥’ winds once around p. Let
B’ be a path in ¥'\{p} such that
(28) B'=p in Hi(V\BE).

Clearly [ represents generators in Hy(X'\{p}) and H;(W\E). Let N
and N’ be integers such that

(29) gow(y)=Np" in Hi(X\{p})
and
(30) e(y) =N'G in Hi(W\E).

We shall prove that N = 1 or —1. Observe that g is the restriction of
the map
G : W\E — X\{p}

defined by G(D,) = {z} for all x € ¥'\{p}. Then, since g(8') = /', it
follows from (30) that

gow(y)=N'8" in Hi(Z\{p})
and, in view of (29), we conclude that N’ = N. Thus, since W\E C
V\E, equation (30) gives:

p(7) = NG in H\(V\E).
Then, by (28), we have that
p(7)=NB in Hy(V\E).

Thus, since ¢() is a generator of H;(A), Proposition 5.12 implies that
N =1or —1.

Now, since g o ¢ is regular at 0, there exists a disc 2 in D containing
0, such that g o p|g is a homeomorphism onto its image. Then, since ¢
is a diffeomorphism, it follows that g = g\w(g\{o}) is a homeomorphism

onto its image. Thus we take a disc ¥ C gp(Q2) C X’ containing p
and define f = = on S\{p}. Let z € S\{p}. Clearly f(z) € A and
since g(f(x)) = z, we have that f(x) € D, and so f(z) € D, N A.
If y € D, N A, then g(y) = x and therefore y = f(x). Then f(z)
is the unique point in the intersection of D, and A. This proves the
proposition. q.e.d.
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We need the following lemma.
Lemma 5.14. For each x € D, we may take a homeomorphism hy :
D — D such that:
(1) hy(x) =0 for all z € D.
(ii) hy =id on S!.
(#i1) hy depends continuously on x.

Proof of Theorem 1.1. From Lemma 5.14, for each z € 5 we may take
a homeomorphism h, : D — D such that:
(1) ha(p(f(2))) =P
(#3) hy =id on 0D
(791) h, depends continuously on x.
Then the homeomorphism g, : D, — D, defined by
(31) poge=hzop
depends continuously on x € S C L. Consider the map g defined (g is
not the same function that one in previous pages) as
g = gz on Dy,
g = 1id otherwise.

We have that ¢ is univalent and preserves the leaves of ,7?0. Moreover,
in a small enough neighborhood of the divisor, g is continuous. Thus,
if restricted to a small enough neighborhood of the divisor, g is a topo-
logical equivalence between .7?0 and itself. Then, in a neighborhood of
the divisor, g o h gives a topological equivalence between Fy and .7?0.
Therefore for some neighborhoods U and Uof0 € C2, the map

fl:ﬂghﬂ_l U—U
is a topological equivalence between F and F. Let P = m(Ly,) and
P =m(Lp).

Assertion. There exists a disc D in P containing 0 € C2, such that
h(D) is contained in P.

Proof. 1If y € A is close enough to E, we have that y € D, for some
x € ¥. Thus, there is a disc Xy C ¥ containing p, such that for all y in
h(3o\{p}) C A we have y = f(x) for some z € X. Then, from (31) and
(1) we have that

pog(y) =poyg(f(x)) = heop(f(x)) =p.
Thus g(y) € Ly for all y € h(Xo\{p}) and therefore
goh(Zo\{p}) C Lp.

Then, if D C (%) C P, we have that h(D) c P.
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Consider a neighborhood U’ € U of 0 € C? homeomorphic toa ball
and such that U'NP C D. We take U’ small enough such that h(U')n P

is contained in h(D). Thus, making U = h(U’), it is easy to see that

MU'NP)=0nP.

Then,

B’U/ : U, — ﬁ/
is a topological equivalence between Fy and .7?0, which satisfies the hy-
pothesis of Theorem 1.2. Therefore Theorem 1.1 is proved. q.e.d.

Proof of Lemma 5.14. Let ¢ : D — [0,1] be such that ¢ = 1 on
{]z| <1/2} and ¢y = 0 on S'. Let

Br(t) : [0,1] — [0, 1]

be a diffeomorphism with 5,(0) = 0, 8(1) = 1, B(r) = 1/2 and such
that . depends continuously on r > 0. Given x € D, define the vector
field

Vy,:D—C

Va(2) = = (Bz(]2])),

and let ¢, the flow associated to V,. Then define h, : D — D by
h:(z) = pz(1,2). It is easy to see that h, satisfy the conditions of
Lemma 5.14. q.e.d.
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