J. DIFFERENTIAL GEOMETRY 83 (2009) 273-288

ISOTROPIC JACOBI FIELDS ON COMPACT 3-SYMMETRIC SPACES

JOSÉ CARMELO GONZÁLEZ-DÁVILA

Abstract

We prove that a compact Riemannian 3-symmetric space is globally symmetric if every Jacobi field along a geodesic vanishing at two points is the restriction to that geodesic of a Killing field induced by the isotropy action or, in particular, if the isotropy action is variationally complete.

1. Introduction

A Jacobi field V on a homogeneous Riemannian manifold (M, g)which is the restriction of a Killing vector field along a geodesic is called *isotropic* [10]. It means that V is the restriction of an infinitesimal motion of elements in the Lie algebra of the isometry group I(M, g)of (M, g). Moreover, if V vanishes at a point o of the geodesic then it is obtained as restriction of an infinitesimal K-motion, being K the isotropy subgroup of I(M, g) at $o \in M$. This particular situation was what originally motivated the term "isotropic" (see [2] and [3]).

The Jacobi equation on a symmetric space has simple solutions and one can directly show that all Jacobi field vanishing at two points is isotropic (see for example [4]). In the case of a naturally reductive space, the adapted canonical connection has the same geodesics and the Jacobi equation can be also written as a differential equation with constant coefficients (equation (2.7)). Using this fact, I. Chavel in [2] (see also [3]) proved that all simply connected normal Riemannian homogeneous space (M = G/K, g) of rank one with the property that all Jacobi fields vanishing at two points are G-isotropic, i.e. restrictions of infinitesimal G-motions along geodesics, are homeomorphic to a rank one symmetric space. Afterwards, W. Ziller in [10] proposed to examine conjectures like:

A naturally reductive space with the property that all Jacobi fields vanishing at two points are isotropic is locally symmetric.

Research supported by a grant from MEC (Spain), project MTM2007-65852. Received 07/12/2005.

In this paper, we consider a Riemannian 3-symmetric space $(M = G/K, \sigma, <, >)$, where G is a compact connected Lie group acting effectively and the inner product <, > determines an adapted naturally reductive metric on M, or equivalently, the canonical almost complex structure J is nearly Kählerian [5]. Then, we find geodesics on non-symmetric spaces $(M = G/K, \sigma, <, >)$ admitting Jacobi fields vanishing at two points which are not G-isotropic. It allows us to prove the following theorem:

Theorem 1.1. A compact Riemannian 3-symmetric space $(M = G/K, \sigma, <, >)$ with the property that all Jacobi fields vanishing at two points are G-isotropic is a symmetric space.

When $(M = G/K, \sigma, <, >)$ is moreover simply connected, irreducible and not isometric to a symmetric space, G coincides with the identity component $I_o(M,g)$ of I(M,g) [8, Theorem 3.6]. Then, we have

Corollary 1.2. A compact irreducible simply connected Riemannian 3-symmetric space is a symmetric space if and only if all Jacobi field vanishing at two points is isotropic.

R. Bott and H. Samelson introduced in [1] the notion of variationally complete action and they obtained that the isotropy action, i.e. the action of an isotropy subgroup K as subgroup of G, on a symmetric space of compact type is variationally complete (for the definition of variationally complete action, see section 2). Using Lemma 2.1, we can conclude

Corollary 1.3. If the isotropy action of K on a compact Riemannian 3-symmetric space $(M = G/K, \sigma, <, >)$ is variationally complete then it is a symmetric space.

2. Variational completeness. Isotropic Jacobi fields

Let (M, g) be a connected homogeneous Riemannian manifold. Then (M, g) can be expressed as coset space G/K, where G is a Lie group, which is supposed to be connected, acting transitively and effectively on M, K is the isotropy subgroup of G at some point $o \in M$ and g is a G-invariant Riemannian metric. Moreover, we can assume that G/K is a reductive homogeneous space, i.e., there is an Ad(K)-invariant subspace \mathfrak{m} of the Lie algebra \mathfrak{g} of G such that $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}, \mathfrak{k}$ being the Lie algebra of K. (M = G/K, g) is said to be naturally reductive, or more precisely G-naturally reductive, if there exists a reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ satisfying

(2.1) $< [X,Y]_{\mathfrak{m}}, Z > + < [X,Z]_{\mathfrak{m}}, Y > = 0$

for all $X, Y, Z \in \mathfrak{m}$, where $[X, Y]_{\mathfrak{m}}$ denotes the \mathfrak{m} -component of [X, Y]and $\langle \rangle$ is the metric induced by g on \mathfrak{m} , or equivalently, $[X, \cdot]_{\mathfrak{m}} : \mathfrak{m} \to$

 \mathfrak{m} is skew-symmetric for all $X \in \mathfrak{m}$. When there exists a bi-invariant metric on \mathfrak{g} whose restriction to $\mathfrak{m} = \mathfrak{k}^{\perp}$ is the metric \langle , \rangle , the (naturally reductive) space (M = G/K, g) is called *normal homogeneous*. Then, for all $X, Y, Z \in \mathfrak{g}$, we have

(2.2)
$$< [X,Y], Z > + < [X,Z], Y > = 0.$$

For each $X \in \mathfrak{g}$, the mapping $\psi : \mathbb{R} \times M \to M$, $(t, p) \in \mathbb{R} \times M \mapsto \psi_t(p) = (\exp tX)p$ is a one-parameter group of isometries and consequently, ψ induces a Killing vector field X^* given by

(2.3)
$$X_p^* = \frac{d}{dt}_{|t=0}(\exp tX)p, \quad p \in M.$$

 X^* is called the fundamental vector field or the infinitesimal G-motion corresponding to X on M. If $G = I_o(M, g)$, then all (complete) Killing vector field on M is a fundamental vector field X^* , for some $X \in \mathfrak{g}$.

For any $a \in G$, we have

$$(a\exp tX)a^{-1} = \exp(tAd_aX).$$

This implies

(2.4)
$$(Ad_a X)^*_{ap} = a_{*p} X^*_p,$$

where a_{*p} denotes the differential map of a at $p \in M$.

The K-orbit $O_p(K) = \{kp \mid k \in K\}$, for each $p \in M$, is a regular submanifold of M and, from (2.3), its tangent space $T_pO_p(K)$ at p is given by

$$T_p O_p(K) = \{ A_p^* \mid A \in \mathfrak{k} \}.$$

A geodesic $\gamma = \gamma(t)$ of (M = G/K, g) is called *K*-transversal if for each $t \in \mathbb{R}$ the tangent vector $\gamma'(t)$ is orthogonal to the *K*-orbit $O_{\gamma(t)}(K)$ at $\gamma(t)$. Since a geodesic which is orthogonal to a Killing vector field at one of its points it is orthogonal to it at all of points, this condition is equivalent to require only the existence of a $t_o \in \mathbb{R}$ such that $\gamma'(t_o)$ is orthogonal to $O_{\gamma(t_o)}(K)$ at $\gamma(t_o)$. A Jacobi field *V* along γ is said to be *K*-transversal if it is derived from a geodesic variation ϕ of γ in which all geodesic $t \to \phi(t, s_o)$ is *K*-transversal. Any restriction of a Killing field to a *K*-transversal geodesic induced by the isotropy action is *K*-transversal [1, Proposition 6.6].

The action of K on M = G/K, as subgroup of G, is said to be variationally complete [1] if every K-transversal Jacobi field V along a (transversal) geodesic γ with $V(t_0) = 0$, for some $t_0 \in \mathbb{R}$, and for which there exists $t_1 \neq t_0$ such that $V(t_1)$ is tangent to the K-orbit of $\gamma(t_1)$ is G-isotropic.

Let $K_p = \{a \in G \mid a(p) = p\}$ be the isotropy subgroup at a point $p \in M$. In particular, $K_o = K$, where o denotes the origin of G/K.

Let $a \in G$ such that p = a(o). The elements of K_p are obtained by conjugation of elements of K by a, i.e.,

$$K_n = aKa^{-1}$$

and hence, the Lie algebra \mathfrak{k}_p of K_p is given by

(2.5)
$$\mathfrak{k}_p = A d_a \mathfrak{k}.$$

From (2.4), a geodesic γ on (M, g) is K-transversal if and only if $a \circ \gamma$ is K_p -transversal and V is a K-transversal (resp. G-isotropic) Jacobi field along γ if and only if a_*V is K_p -transversal (resp. G-isotropic) along $a \circ \gamma$. Hence, taking into account that any Jacobi field V along a geodesic γ starting at a point $p \in M$ with V(0) = 0 is always K_p -transversal, we directly obtain

Lemma 2.1. If the isotropy action of K on M = G/K is variationally complete, then:

- (i) the action of the isotropy subgroup K_p at p, for all $p \in M$, is variationally complete;
- (ii) all Jacobi field vanishing at two points is G-isotropic.

Next, let \tilde{T} denote the torsion tensor and \tilde{R} the curvature tensor of the *canonical connection* $\tilde{\nabla}$ of (M, g) adapted to the reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ [7, I, p.110]. Because $\tilde{\nabla}$ is a *G*-invariant affine connection, these tensors (under the canonical identification of \mathfrak{m} with the tangent space T_oM of the origin o) are given by

(2.6)
$$\tilde{T}_o(X,Y) = -[X,Y]_{\mathfrak{m}} , \quad \tilde{R}_o(X,Y) = \operatorname{ad}_{[X,Y]_{\mathfrak{k}}}$$

for $X, Y \in \mathfrak{m}$, where $[X, Y]_{\mathfrak{k}}$ denotes the \mathfrak{k} -component of [X, Y].

On naturally reductive spaces, ∇ and $\tilde{\nabla}$ have the same geodesics and, consequently, the same Jacobi fields (see [10]). Such geodesics are orbits of one-parameter subgroups of G of type $\exp tu$ where $u \in \mathfrak{m}$. Then, taking into account that $\tilde{\nabla}\tilde{T} = \tilde{\nabla}\tilde{R} = 0$ and the parallel translation with respect to $\tilde{\nabla}$ of tangent vectors at the origin o along $\gamma(t) = (\exp tu)o$, $u \in \mathfrak{m}, ||u|| = 1$, coincides with the differential of $\exp tu \in G$ acting on M, it follows that the Jacobi equation can be expressed as the differential equation

(2.7)
$$X'' - \tilde{T}_u X' + \tilde{R}_u X = 0$$

in the vector space \mathfrak{m} , where $\tilde{T}_u X = \tilde{T}(u, X) = -[u, X]_{\mathfrak{m}}$ and $\tilde{R}_u X = \tilde{R}(u, X)u = [[u, X]_{\mathfrak{k}}, u]$. The operator \tilde{T}_u is skew-symmetric with respect to $\langle , \rangle, \tilde{R}_u$ is self-adjoint and they satisfy [4]

$$(2.8) R_u = \tilde{R}_u - \frac{1}{4}\tilde{T}_u^2.$$

A Jacobi field V along $\gamma(t) = (\exp tu)o$ with V(0) = 0 is G-isotropic if and only if there exists an $A \in \mathfrak{k}$ such that (see [4])

(2.9)
$$V'(0) = [A, u].$$

Then, $V = A^* \circ \gamma$.

We shall need the following characterization for G-isotropic Jacobi fields on normal homogeneous spaces (M = G/K, g).

Lemma 2.2. A Jacobi field V along $\gamma(t) = (\exp tu)o$ on a normal homogeneous space (M = G/K, g) with V(0) = 0 is G-isotropic if and only if $V'(0) \in (\text{Ker } \tilde{R}_u)^{\perp}$.

Proof. From (2.9), we have to show that

(2.10)
$$(\operatorname{Ker} \dot{R}_u)^{\perp} \cap \mathfrak{m} = [u, \mathfrak{k}]$$

For each $v \in \mathfrak{m}$, using (2.2), we get

$$<\tilde{R}_uv,v>=<[[u,v]_{\mathfrak{k}},u],v>=<[u,v]_{\mathfrak{k}},[u,v]_{\mathfrak{k}}>.$$

Hence, $v \in \text{Ker } R_u$ if and only if $[u, v]_{\mathfrak{k}} = 0$. But,

$$[u,v]_{\mathfrak{k}} = 0 \Leftrightarrow 0 = <[u,v]_{\mathfrak{k}}, \mathfrak{k} > = - <[u,\mathfrak{k}], v > \Leftrightarrow v \in [u,\mathfrak{k}]^{\perp}$$

Then, we obtain (2.10) and it gives the result.

q.e.d.

Next, we give conditions to obtain Jacobi fields along γ vanishing at two points which are or not G-isotropic.

Proposition 2.3. Let u, v be orthonormal vectors in \mathfrak{m} such that $[[u, v], u] = \lambda v$, for some $\lambda > 0$. We have:

(i) If $[u, v]_{\mathfrak{m}} = 0$, then the vector fields V(t) along $\gamma(t) = (\exp tu)o$ given by

$$V(t) = (\exp tu)_{*o} \left(A \sin \sqrt{\lambda} tv\right),$$

for A constant, are G-isotropic Jacobi fields with $V(\frac{p\pi}{\sqrt{\lambda}}) = 0$, for all $p \in \mathbb{Z}$.

(ii) If $[u, v] \in \mathfrak{m} \setminus \{0\}$, then the vector fields V(t) along $\gamma(t) = (\exp tu)o$ given by

$$V(t) = (\exp tu)_{*o} \Big(\Big(A \sin \sqrt{\lambda}t + B(1 - \cos \sqrt{\lambda}t) \Big) v \\ + \Big(-A(1 - \cos \sqrt{\lambda}t) + B \sin \sqrt{\lambda}t \Big) w \Big),$$

for A, B constants with $w = \frac{1}{\sqrt{\lambda}}[u, v]$, are Jacobi fields such that $V(\frac{2p\pi}{\sqrt{\lambda}}) = 0$, for all $p \in \mathbb{Z}$, which are not G-isotropic.

Proof. (i) From (2.6) we get $\tilde{T}_u v = 0$ and $\tilde{R}_u v = \lambda v$. Then it is easy to see that $X(t) = A \sin \sqrt{\lambda} t v$ is a solution of (2.7) with X(0) = 0. Because \tilde{R}_u is self-adjoint, $v \in (\text{Ker } \tilde{R}_u)^{\perp}$ and from Lemma 2.2, $V(t) = (\exp t u)_{*o} X(t)$ is G-isotropic.

(ii) Here, we obtain

$$\tilde{T}_u v = -\sqrt{\lambda}w, \quad \tilde{T}_u w = \sqrt{\lambda}v, \quad \tilde{R}_u v = \tilde{R}_u w = 0$$

and, from (2.2), $||[u, v]|| = \sqrt{\lambda}$. Then the solutions $X(t) = X^1(t)v + X^2(t)w$ of (2.7) satisfy

$$\begin{cases} Y^{1'}(t) - \sqrt{\lambda}Y^2(t) = 0, \\ Y^{2'}(t) + \sqrt{\lambda}Y^1(t) = 0, \end{cases}$$

where $Y^{i}(t) = X^{i'}(t)$, i = 1, 2. Hence X(t) with X(0) = 0 is given by $X(t) = \left(A \sin \sqrt{\lambda}t + B(1 - \cos \sqrt{\lambda}t)\right)v + \left(-A(1 - \cos \sqrt{\lambda}t) + B \sin \sqrt{\lambda}t\right)w$, for A, B constants. Hence, $V(t) = (\exp tu)_{*o}X(t)$ are Jacobi fields along γ verifying $V(0) = V(\frac{2p\pi}{\sqrt{\lambda}}) = 0$ and V'(0) = X'(0). Because $X'(0) \in \mathbb{R}\{v, w\}$ and $[u, v]_{\mathfrak{k}} = [u, w]_{\mathfrak{k}} = 0$, we have $\tilde{R}_{u}V'(0) = 0$ and Lemma 2.2

implies that these Jacobi fields V are not G-isotropic. q.e.d.

3. Compact irreducible Riemannian 3-symmetric spaces

We recall that a connected Riemannian manifold (M, g) is called a 3symmetric space [5] if it admits a family of isometries $\{\theta_p\}_{p \in M}$ of (M, g)satisfying

- (i) $\theta_p^3 = I$,
- (ii) p is an isolated fixed point of θ_p ,
- (iii) the tensor field Θ defined by $\Theta = (\theta_p)_{*p}$ is of class C^{∞} ,
- (iv) $\theta_{p*} \circ J = J \circ \theta_{p*}$,

where J is the canonical almost complex structure associated with the family $\{\theta_p\}_{p\in M}$ given by $J = \frac{1}{\sqrt{3}}(2\Theta + I)$. Riemannian 3-symmetric spaces are characterized by a triple $(G/K, \sigma, <, >)$ satisfying the following conditions:

- (1) G is a connected Lie group and σ is an automorphism of G of order 3,
- (2) K is a closed subgroup of G such that $G_o^{\sigma} \subseteq K \subseteq G^{\sigma}$, where $G^{\sigma} = \{x \in G \mid \sigma(x) = x\}$ and G_o^{σ} denotes its identity component,
- (3) <, > is an Ad(K)- and σ -invariant inner product on the vector space $\mathfrak{m} = (\mathfrak{m}^+ \oplus \mathfrak{m}^-) \cap \mathfrak{g}$, where \mathfrak{m}^+ and \mathfrak{m}^- are the eigenspaces of σ on the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} corresponding to the eigenvalues ε and ε^2 , respectively, where $\varepsilon = e^{2\pi\sqrt{-1/3}}$.

Here and in the sequel, σ and its differential σ_* on \mathfrak{g} and on $\mathfrak{g}_{\mathbb{C}}$ are denoted by the same letter σ .

The inner product \langle , \rangle induces a *G*-invariant Riemannian metric gon M = G/K and (G/K, g) becomes into a Riemannian 3-symmetric space. Then, it is a reductive homogeneous space with reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$, where the algebra of Lie \mathfrak{k} of K is $\mathfrak{g}^{\sigma} = \{X \in \mathfrak{g} \mid \sigma X = X\}$. Moreover, the canonical almost structure J on G/K is Ginvariant, (M = G/K, g, J) is quasi-Kählerian and it is nearly Kählerian if and only if (G/K, g) is a naturally reductive homogeneous space with adapted reductive decomposition $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$. In this case g is said to be an *adapted naturally reductive metric* for M.

We shall need some general results of complex simple Lie algebras. See [6] for more details. Let $\mathfrak{g}_{\mathbb{C}}$ be a simple Lie algebra over \mathbb{C} and $\mathfrak{h}_{\mathbb{C}}$ a Cartan subalgebra of $\mathfrak{g}_{\mathbb{C}}$. Let Δ denote the set of non-zero roots of $\mathfrak{g}_{\mathbb{C}}$ with respect to $\mathfrak{h}_{\mathbb{C}}$ and $\Pi = \{\alpha_1, \ldots, \alpha_l\}$ a system of simple roots or a basis of Δ . Because the restriction of the Killing form B of $\mathfrak{g}_{\mathbb{C}}$ to $\mathfrak{h}_{\mathbb{C}} \times \mathfrak{h}_{\mathbb{C}}$ is nondegenerate, there exists a unique element $H_{\alpha} \in \mathfrak{h}_{\mathbb{C}}$ such that

$$B(H, H_{\alpha}) = \alpha(H)$$

for all $H \in \mathfrak{h}_{\mathbb{C}}$. Moreover, we have $\mathfrak{h}_{\mathbb{C}} = \sum_{\alpha \in \Delta} \mathbb{C}H_{\alpha}$ and B is strictly positive definite on $\mathfrak{h}_{I\!R} = \sum_{\alpha \in \Delta} I\!R H_{\alpha}$. Put $\langle \alpha, \beta \rangle = B(H_{\alpha}, H_{\beta})$. We choose root vectors $\{E_{\alpha}\}_{\alpha \in \Delta}$, such that for all $\alpha, \beta \in \Delta$, we have

(3.1)
$$\begin{cases} [E_{\alpha}, E_{-\alpha}] = H_{\alpha}, & [H, E_{\alpha}] = \alpha(H)E_{\alpha} \text{ for } H \in \mathfrak{h}_{\mathbb{C}}; \\ [E_{\alpha}, E_{\beta}] = 0 & \text{if } \alpha + \beta \neq 0 \text{ and } \alpha + \beta \notin \Delta; \\ [E_{\alpha}, E_{\beta}] = N_{\alpha,\beta}E_{\alpha+\beta} & \text{if } \alpha + \beta \in \Delta, \end{cases}$$

where the constants $N_{\alpha,\beta}$ satisfy

(3.2)
$$N_{\alpha,\beta} = -N_{-\alpha,-\beta}, \quad N_{\alpha,\beta} = -N_{\beta,\alpha}$$

and, if $\alpha, \beta, \gamma \in \Delta$ and $\alpha + \beta + \gamma = 0$, then

$$(3.3) N_{\alpha,\beta} = N_{\beta,\gamma} = N_{\gamma,\alpha}$$

Moreover, given an α -series $\beta + n\alpha$ $(p \le n \le q)$ containing β , then

(3.4)
$$(N_{\alpha,\beta})^2 = \frac{q(1-p)}{2} < \alpha, \alpha > .$$

For this choice, E_{α} and E_{β} are orthogonal under B if $\alpha + \beta \neq 0$, $B(E_{\alpha}, E_{-\alpha}) = 1$ and we have the orthogonal direct sum

$$\mathfrak{g}_{\mathbb{C}} = \mathfrak{h}_{\mathbb{C}} + \sum_{\alpha \in \Delta} \mathbb{C} E_{\alpha}.$$

Denote by Δ^+ the set of positive roots of Δ with respect to some lexicographic order in Π . Then the \mathbb{R} -linear subspace \mathfrak{g} of $\mathfrak{g}_{\mathbb{C}}$ given by

$$\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in \Delta^+} (I\!\!R \, U_\alpha + I\!\!R \, V_\alpha)$$

Type	σ	m_i	$\Pi(H)$
Ι	$Ad_{\exp{\frac{2\pi\sqrt{-1}}{3}H_i}}$	1	$\{\alpha_k \in \Pi \mid k \neq i\}$
II	$Ad_{\exp 2\pi\sqrt{-1}\frac{(H_i+H_j)}{3}}$	$m_i = m_j = 1$	$\{\alpha_k \in \Pi \mid k \neq i, \ k \neq j\}$
III	$Ad_{\exp{\frac{4\pi\sqrt{-1}}{3}H_i}}$	2	$\{\alpha_k \in \Pi \mid k \neq i\}$
IV	$Ad_{\exp 2\pi\sqrt{-1}H_i}$	3	$\{\alpha_k \in \Pi \mid k \neq i\} \cup \{-\mu\}$

Table I

is a compact real form of $\mathfrak{g}_{\mathbb{C}}$, where $\mathfrak{h} = \sum_{\alpha \in \Delta} I\!\!R \sqrt{-1} H_{\alpha}$ and $U_{\alpha} = E_{\alpha} - E_{-\alpha}$ and $V_{\alpha} = \sqrt{-1}(E_{\alpha} + E_{-\alpha})$. Here, we get

$$(3.5) \quad [U_{\alpha}, \sqrt{-1}H_{\beta}] = -\langle \alpha, \beta \rangle V_{\alpha}, \qquad [V_{\alpha}, \sqrt{-1}H_{\beta}] = \langle \alpha, \beta \rangle U_{\alpha}.$$

Next, we shall describe automorphisms of order 3 on the compact Lie algebra \mathfrak{g} (or on $\mathfrak{g}_{\mathbb{C}}$) which do not preserve any proper ideals. First, suppose that σ is an *inner* automorphism.

(A) σ is an inner automorphism

Because \mathfrak{g} decomposes into a direct sum of an abelian ideal and simple ideals, we can assume that \mathfrak{g} is simple. Let $\mu = \sum_{i=1}^{l} m_i \alpha_i$ be the maximal root of Δ and consider $H_i \in \mathfrak{h}_{\mathbb{C}}$, $i = 1, \ldots, l$, defined by

$$\alpha_j(H_i) = \frac{1}{m_i} \delta_{ij}, \quad i, j = 1, \dots, l.$$

Following [9, Theorem 3.3], each inner automorphism of order 3 on $\mathfrak{g}_{\mathbb{C}}$ is conjugate in the inner automorphism group of $\mathfrak{g}_{\mathbb{C}}$ to some $\sigma = Ad_{\exp 2\pi\sqrt{-1}H}$, where $H = \frac{1}{3}m_iH_i$ with $1 \le m_i \le 3$ or $H = \frac{1}{3}(H_i + H_j)$ with $m_i = m_j = 1$. Then there are four types of $\sigma = Ad_{\exp 2\pi\sqrt{-1}H}$ with corresponding simple root systems $\Pi(H)$ for $\mathfrak{g}_{\mathbb{C}}^{\sigma}$ given in Table I. Denote by $\Delta^+(H)$ the positive root system generated by $\Pi(H)$. Then, we have $\mathfrak{h} \subset \mathfrak{k} = \mathfrak{g}^{\sigma}$ and

$$\mathfrak{k} = \mathfrak{h} + \sum_{\alpha \in \Delta^+(H)} (\operatorname{I\!R} U_\alpha + \operatorname{I\!R} V_\alpha).$$

Because $B(U_{\alpha}, U_{\beta}) = B(V_{\alpha}, V_{\beta}) = -2\delta_{\alpha\beta}$ and $B(U_{\alpha}, V_{\beta}) = 0$, it follows that $\{U_{\alpha}, V_{\alpha} \mid \alpha \in \Delta^{+} \smallsetminus \Delta^{+}(H)\}$ becomes into an orthonormal basis for $(\mathfrak{m}, <, >= -\frac{1}{2}B_{|\mathfrak{m}})$.

(B) σ is an outer automorphism

Let σ be an outer automorphism of order 3 on a compact Lie algebra \mathfrak{g} such that there is no proper σ -invariant ideal in \mathfrak{g} . Then \mathfrak{g} must be

semisimple [9, Theorem 5.10]. First, suppose that \mathfrak{g} is simple. Then the complexification $\mathfrak{g}_{\mathbb{C}}$ of \mathfrak{g} is of type

and the complex Lie algebra $\mathfrak{g}^{\sigma}_{\mathbb{C}}$, the set of fixed points of σ on $\mathfrak{g}_{\mathbb{C}}$, is either of type \mathfrak{g}_2 , where a Weyl basis is given by [9, Theorem 5.5]

$$\{ H_{\alpha_2}, H_{\alpha_1} + H_{\alpha_3} + H_{\alpha_4}; E_{\pm \alpha_2}, E_{\pm (\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)}, E_{\pm (\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4)}, \\ E_{\pm \alpha_1} + E_{\pm \alpha_3} + E_{\pm \alpha_4}, E_{\pm (\alpha_1 + \alpha_2)} + E_{\pm (\alpha_2 + \alpha_3)} + E_{\pm (\alpha_2 + \alpha_4)}, \\ E_{\pm (\alpha_1 + \alpha_2 + \alpha_3)} + E_{\pm (\alpha_2 + \alpha_3 + \alpha_4)} + E_{\pm (\alpha_1 + \alpha_2 + \alpha_4)} \},$$

or of type \mathfrak{a}_2 , being a Weyl basis $\{H_{\beta_1}, H_{\beta_2}; F_{\pm\beta_1}, F_{\pm\beta_2}, F_{\pm(\beta_1+\beta_2)}\}$, where

Finally, if \mathfrak{g} is semisimple but not simple then $\mathfrak{g} = \mathfrak{L} \oplus \mathfrak{L} \oplus \mathfrak{L}$ with \mathfrak{L} simple and $\mathfrak{k} = \mathfrak{g}^{\sigma}$ is \mathfrak{L} embedded diagonally.

4. Proof of Theorem 1.1

This will require some previous propositions and lemmas. We start considering, as in above section, Riemannian 3-symmetric spaces $(M = G/K, \sigma, <, >)$ where G is a compact connected Lie group acting effectively, the automorphism σ on the Lie algebra \mathfrak{g} of G does not preserve any proper ideals and <, > determines a *naturally reductive* Riemannian metric adapted to $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$. According with [5], the inner product <, > is then the restriction to \mathfrak{m} of a bi-invariant product on \mathfrak{g} . Because \mathfrak{g} is semisimple, we take $<, >= -\frac{1}{2}B_{|\mathfrak{m}}$, where B denotes the Killing form of \mathfrak{g} . Then, we have

Lemma 4.1. $(M = G/K, \sigma, <, >)$ is a normal homogeneous space.

Proof. We only have to prove that $\mathfrak{g} = \mathfrak{m} \oplus \mathfrak{k}$ is orthogonal with respect to B. Let $B_{\mathfrak{g}_{\mathbb{C}}}$ be the Killing form of $\mathfrak{g}_{\mathbb{C}}$. Because $B_{\mathfrak{g}_{\mathbb{C}}}$ is invariant under automorphisms, we get that the subspaces $\mathfrak{g}_{\mathbb{C}}^{\sigma}$, \mathfrak{m}^+ and \mathfrak{m}^- are

orthogonal in $(\mathfrak{g}_{\mathbb{C}}, B_{\mathfrak{g}_{\mathbb{C}}})$. Then the result follows taking into account that $B_{\mathfrak{g}_{\mathbb{C}}}(X, Y) = B(X, Y)$, for all $X, Y \in \mathfrak{g}$. q.e.d.

In the following, we look for geodesics on $(M = G/K, \sigma, <, >)$ with non-G-isotropic Jacobi fields vanishing at two points.

(A) σ is an inner automorphism

Lemma 4.2. If σ is of Type I then $(M = G/K, \sigma, <, >)$ is one of the following irreducible Hermitian symmetric spaces of compact type:

$$\begin{split} SU(n)/(S(U(r) \times U(n-r))), & SO(n)/(SO(n-2) \times SO(2)), \\ Sp(n)/U(n), & SO(2n)/U(n), \\ E_6/(SO(10) \times SO(2)), & E_7/(E_6 \times SO(2)). \end{split}$$

Proof. (i) Put $H = \frac{1}{3}H_i$, for some $i \in \{1, \ldots, l\}$ with $m_i = 1$. Then each $\alpha \in \Delta^+ \setminus \Delta^+(H)$ may be written as

$$\alpha = \sum_{j=1}^{l} n_j \alpha_j,$$

where $n_j \in \mathbb{Z}, n_j \geq 0$, and $n_i = 1$. It implies that $\alpha + \beta \notin \Delta$ and $\alpha - \beta \notin \Delta \setminus \Delta(H)$, for all $\alpha, \beta \in \Delta^+ \setminus \Delta^+(H)$. Hence, using (3.1) and (3.2), we get that $[U_{\alpha}, U_{\beta}]$ and $[V_{\alpha}, V_{\beta}]$ are collinear with $U_{\alpha-\beta}$ and $[U_{\alpha}, V_{\beta}]$ with $V_{\alpha-\beta}$. Then, $[\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}$ and consequently (M = G/K, g) must be locally symmetric. Because rank $G = \operatorname{rank} K$ and the center of G is trivial, it follows from [9, Theorem 6.4] that it is moreover globally symmetric. For the list of these spaces, we use [9, Theorem 3.3].

q.e.d.

Remark 4.3. Notice that on above compact symmetric spaces M = G/K, the action of G is almost effective but not necessarily effective.

As a consequence of the following results, we will prove that a compact irreducible Riemannian 3-symmetric space $(M = G/K, \sigma, <, >)$ is a Hermitian symmetric space if and only if σ is an inner automorphism of Type I.

Proposition 4.4. Let $\alpha, \beta \in \Delta \setminus \Delta(H)$ such that $\alpha - \beta \neq 0, \alpha - \beta \notin \Delta$ and $2\alpha + \beta \neq 0, 2\alpha + \beta \notin \Delta$. We have:

- (i) If $\alpha + \beta \in \Delta(H)$ then $\gamma(t) = (\exp tU_{\alpha})o$ on $(M = G/K, \sigma, <, >)$ admits G-isotropic Jacobi fields V with $V(\frac{\sqrt{2}p\pi}{||\alpha||}) = 0, p \in \mathbb{Z}.$
- (ii) If $\alpha + \beta \in \Delta \setminus \Delta(H)$ then $\gamma(t) = (\exp tU_{\alpha}) \overset{\text{"""}}{o} on (M = G/K, \sigma, < , >)$ admits Jacobi fields V with $V(\frac{2\sqrt{2}p\pi}{\|\alpha\|}) = 0, p \in \mathbb{Z}$, which are not G-isotropic.

Proof. Since $\alpha + \beta \in \Delta$, we get from (3.1) and (3.2)

$$[U_{\alpha}, U_{\beta}] = N_{\alpha,\beta} U_{\alpha+\beta}.$$

Then, taking into account that the α -series containing β is $\{\beta, \beta + \alpha\}$, (3.3) and (3.4) imply

$$[[U_{\alpha}, U_{\beta}], U_{\alpha}] = N_{\alpha,\beta} N_{-(\alpha+\beta),\alpha} U_{\beta} = (N_{\alpha,\beta})^2 U_{\beta} = \frac{\langle \alpha, \alpha \rangle}{2} U_{\beta}.$$

Hence, taking $u = U_{\alpha}$, $v = U_{\beta}$ and $\lambda = \frac{\langle \alpha, \alpha \rangle}{2}$ in Proposition 2.3, we obtain the result. q.e.d.

Next, we put

$$\alpha_{ij} = \alpha_i + \dots + \alpha_j \quad (1 \le i \le j \le l), \quad \tilde{\mu} = \sum_{j=1}^l (m_j - 1)\alpha_j.$$

It is easy to see by a case-by-case check the following.

Lemma 4.5. We have:

(a) $\alpha_{ij} \in \Delta$ except if (i, j) = (l - 1, l) in

or
$$(i, j) = (1, 2), (1, 3)$$
 and $(2, 3)$ in

$$\mathfrak{e}_6, \mathfrak{e}_7, \mathfrak{e}_8: \cdots \circ - \overset{\circ}{-} \overset{\circ}{\alpha_4} - \overset{\circ}{-} \overset{\circ}{\alpha_3} - \overset{\circ}{-} \overset{\circ}{\alpha_1}$$

(b) $\tilde{\mu} \in \Delta$ for $\mathfrak{g}_{\mathbb{C}} \neq \mathfrak{a}_l$. In \mathfrak{a}_l , $\tilde{\mu}$ is zero.

Then, we can conclude

Proposition 4.6. Let $(M = G/K, \sigma, <, >)$ be a Riemannian 3symmetric space where G is a compact simple Lie group acting effectively on M and σ is an inner automorphism on the Lie algebra \mathfrak{g} of G. If all Jacobi field vanishing at two points is G-isotropic then (M, g) is a symmetric space.

Proof. From Lemma 4.2, we only need to show that there exist $\alpha, \beta \in \Delta \setminus \Delta(H)$ satisfying the hypothesis of Proposition 4.4 (ii) for σ of Type II, III and IV.

If σ is of Type II then $m_i = m_j = 1$ $(H = \frac{1}{3}(H_i + H_j))$, for some $i, j \in \{1, \ldots, l\}, i < j$. So, the complex simple Lie algebra $\mathfrak{g}_{\mathbb{C}}$ is \mathfrak{a}_l $(l \geq 2), \mathfrak{d}_l$ $(l \geq 4)$ or \mathfrak{e}_6 . Take

$$\alpha = \alpha_{1l}, \quad \beta = -\alpha_{(i+1)l},$$

Then $\alpha + \beta = \alpha_{1i}$. Because $i \neq l-2$ for $\mathfrak{g}_{\mathbb{C}}$ of type \mathfrak{d}_l and (i, j) = (1, 6) for

it follows from Lemma 4.5 that α, β and $\alpha + \beta$ belongs to $\Delta \setminus \Delta(H)$. Moreover, taking into account that $m_i = m_j = 1$, we easily see that $\alpha - \beta$ and $2\alpha + \beta$ are not roots.

If σ is of Type III then $m_i = 2$ $(H = \frac{2}{3}H_i)$, for some $i = 1, \ldots, l$. It implies that $\mathfrak{g}_{\mathbb{C}}$ is one of the following: \mathfrak{b}_l , $(l \ge 2)$, \mathfrak{c}_l , $(l \ge 2)$, \mathfrak{d}_l , $(l \ge 4)$, \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 and \mathfrak{e}_8 . Here, we put

$$\alpha = \mu, \qquad \beta = -\tilde{\mu}.$$

Then $\alpha + \beta = \alpha_{1l}$ and from Lemma 4.5, β and $\alpha + \beta$ are non-zero roots of $\mathfrak{g}_{\mathbb{C}}$. Moreover, $\alpha, \beta, \alpha + \beta$ belong to $\Delta \smallsetminus \Delta(H)$. Because μ is the maximal root, we have that $\alpha - \beta$ and $2\alpha + \beta$ are not roots.

Finally, we consider σ of Type IV. Then, $m_i = 3$, for some $i = 1, \ldots, l$, and $\mathfrak{g}_{\mathbb{C}}$ is one of the exceptional Lie algebras \mathfrak{g}_2 , \mathfrak{f}_4 , \mathfrak{e}_6 , \mathfrak{e}_7 or \mathfrak{e}_8 . Except for \mathfrak{g}_2 , in each one of these algebras we can find, using again Lemma 4.5, α and β satisfying Proposition 4.4 (ii). Concretely, for the case $\mathfrak{f}_4: \begin{array}{c} 2\\ \alpha_1 \end{array} \xrightarrow{\alpha_2} \xrightarrow{\alpha_2} \begin{array}{c} 4\\ \alpha_3 \end{array} \xrightarrow{\alpha_2} \begin{array}{c} 2\\ \alpha_4 \end{array}$, we take $\alpha = \alpha_1 + 2\alpha_2 + 4\alpha_3 + 2\alpha_4$ and $\beta = -(\alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4)$. In \mathfrak{e}_6 , we can choose $\alpha = \tilde{\mu}$ and $\beta = -\alpha_{24}$. In

we take $\alpha = \tilde{\mu}$ and $\beta = -\alpha_{35}$ and, $\alpha = \tilde{\mu} - \alpha_4 = \alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 4\alpha_5 + 3\alpha_6 + 2\alpha_7 + \alpha_8$ and $\beta = -\alpha_{27}$, in

The corresponding Riemannian 3-symmetric space for $\mathfrak{g}_{\mathbb{C}} = \mathfrak{g}_2$: $\overset{3}{\overset{\circ}{\alpha_1}} \equiv \overset{2}{\overset{\circ}{\alpha_2}}$ is the sphere $S^6 = G_2/SU(3)$ equipped with the usual metric of constant curvature. q.e.d.

Remark 4.7. There exist geodesics on $(M = G/K, \sigma, <, >)$ with isotropically conjugate points and admitting Jacobi fields vanishing at these points which are not isotropic. This is the case of the geodesic $\gamma(t) = (\exp tU_{\alpha})o$ in M = G/K, where $\mathfrak{g}_{\mathbb{C}} = \mathfrak{a}_l$ (l > 2) and $\alpha = \alpha_{1l}$. From the proof of above Proposition, γ admits Jacobi fields vanishing at the origin and at $p = \gamma(\frac{2\sqrt{2}\pi}{\|\alpha\|})$ which are not *G*-isotropic and, taking $\beta = -\alpha_{1j}, j < l$, it follows from Proposition 4.4 (i) that *o* and *p* are moreover *G*-isotropically conjugate points.

(B) σ is an outer automorphism

Proposition 4.8. Let $(M = G/K, \sigma, <, >)$ be a Riemannian 3symmetric space where G is a compact Lie group acting effectively on M and σ is an outer automorphism on the Lie algebra \mathfrak{g} of G such that there is no proper σ -invariant ideal in \mathfrak{g} . Then there exist Jacobi fields vanishing at two points which are not G-isotropic.

Proof. Suppose that \mathfrak{g} is simple. If $\mathfrak{g}_{\mathbb{C}}^{\sigma}$ is of type \mathfrak{g}_2 , then the corresponding real form $\mathfrak{k} = \mathfrak{g}^{\sigma}$ is generated by

$$\{ \sqrt{-1}H_{\alpha_2}, \sqrt{-1}(H_{\alpha_1} + H_{\alpha_3} + H_{\alpha_4}); U_{\alpha_2}, V_{\alpha_2}, \\ U_{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)}, V_{(\alpha_1 + \alpha_2 + \alpha_3 + \alpha_4)}, \\ U_{(\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4)}, V_{(\alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4)}, U_{\alpha_1} + U_{\alpha_3} + U_{\alpha_4}, V_{\alpha_1} + V_{\alpha_3} + V_{\alpha_4}, \\ U_{(\alpha_1 + \alpha_2)} + U_{(\alpha_2 + \alpha_3)} + U_{(\alpha_2 + \alpha_4)}, V_{(\alpha_1 + \alpha_2)} + V_{(\alpha_2 + \alpha_3)} + V_{(\alpha_2 + \alpha_4)}, \\ U_{(\alpha_1 + \alpha_2 + \alpha_3)} + U_{(\alpha_2 + \alpha_3 + \alpha_4)} + U_{(\alpha_1 + \alpha_2 + \alpha_4)}, \\ V_{(\alpha_1 + \alpha_2 + \alpha_3)} + V_{(\alpha_2 + \alpha_3 + \alpha_4)} + V_{(\alpha_1 + \alpha_2 + \alpha_4)} \}.$$

Since the set Δ^+ of the positive roots of \mathfrak{d}_4 is given by

$$\begin{aligned} \Delta^+ &= & \left\{ \alpha_i \; (1 \le i \le 4), \alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \alpha_2 + \alpha_4, \alpha_1 + \alpha_2 + \alpha_3, \\ &\alpha_1 + \alpha_2 + \alpha_4, \alpha_2 + \alpha_3 + \alpha_4, \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4, \\ &\mu = \alpha_1 + 2\alpha_2 + \alpha_3 + \alpha_4 \right\} \end{aligned}$$

and the simple roots $\alpha_1, \ldots, \alpha_4$ satisfy

(4.1)
$$<\alpha_i, \alpha_i>=\frac{1}{6}, <\alpha_1, \alpha_2>=<\alpha_2, \alpha_3>=<\alpha_2, \alpha_4>=-\frac{1}{12},$$

where $1 \leq i \leq 4$, and the other inner products are zero, we obtain the following basis for $\mathfrak{m} = (\mathfrak{g}^{\sigma})^{\perp}$ in \mathfrak{g} :

$$\{ \sqrt{-1}(H_{\alpha_1} - H_{\alpha_3}), \sqrt{-1}(H_{\alpha_1} + H_{\alpha_3} - 2H_{\alpha_4}); U_{\alpha_1} - U_{\alpha_3}, V_{\alpha_1} - V_{\alpha_3}, U_{\alpha_1} + U_{\alpha_3} - 2U_{\alpha_4}, V_{\alpha_1} + V_{\alpha_3} - 2V_{\alpha_4}, U_{(\alpha_1+\alpha_2)} - U_{(\alpha_2+\alpha_3)}, V_{(\alpha_1+\alpha_2)} - V_{(\alpha_2+\alpha_3)}, U_{(\alpha_1+\alpha_2)} + U_{(\alpha_2+\alpha_3)} - 2U_{(\alpha_2+\alpha_4)}, V_{(\alpha_1+\alpha_2)} + V_{(\alpha_2+\alpha_3)} - 2V_{(\alpha_2+\alpha_4)}, U_{(\alpha_1+\alpha_2+\alpha_3)} - U_{(\alpha_2+\alpha_3+\alpha_4)}, V_{(\alpha_1+\alpha_2+\alpha_3)} - V_{(\alpha_2+\alpha_3+\alpha_4)} - V_{(\alpha_1+\alpha_2+\alpha_4)}, U_{(\alpha_1+\alpha_2+\alpha_3)} + U_{(\alpha_2+\alpha_3+\alpha_4)} - 2U_{(\alpha_1+\alpha_2+\alpha_4)}, V_{(\alpha_1+\alpha_2+\alpha_3)} + V_{(\alpha_2+\alpha_3+\alpha_4)} - 2V_{(\alpha_1+\alpha_2+\alpha_4)} \}.$$

We put,

$$u = \frac{1}{\sqrt{6}} (U_{\alpha_1} + U_{\alpha_3} - 2U_{\alpha_4}), \quad v = \sqrt{-6} (H_{\alpha_1} - H_{\alpha_3}).$$

Then, u and v are orthonormal vectors in \mathfrak{m} and using (3.1), (3.5) and (4.1), we obtain

$$[u,v] = -\frac{1}{6}(V_{\alpha_1} - V_{\alpha_3}), \quad [[u,v],v] = \frac{1}{18}v.$$

Hence, Lemma 4.1 and Proposition 2.3 (ii) imply that $\gamma(t) = (\exp tu)o$ admits Jacobi fields vanishing at the origin and at $\gamma(6\sqrt{2}p\pi), p \in \mathbb{Z}$, which are not G-isotropic.

Next, we suppose that $\mathfrak{g}^{\sigma}_{\mathbb{C}}$ is of type \mathfrak{a}_2 . Then, a basis for $\mathfrak{k} = \mathfrak{g}^{\sigma}$ is given by

$$\left\{\sqrt{-1}H_{\beta_1}, \sqrt{-1}H_{\beta_2}; \tilde{U}_{\beta_1}, \tilde{V}_{\beta_1}, \tilde{U}_{\beta_2}, \tilde{V}_{\beta_2}, \tilde{U}_{\beta_1+\beta_2}, \tilde{V}_{\beta_1+\beta_2}\right\},\$$

where

$$\begin{split} \tilde{U}_{\beta_{i}} &= F_{\beta_{i}} - F_{-\beta_{i}}, \\ \tilde{U}_{\beta_{1}+\beta_{2}} &= F_{\beta_{1}+\beta_{2}} - F_{-(\beta_{1}+\beta_{2})}, \\ \tilde{V}_{\beta_{1}+\beta_{2}} &= \sqrt{-1} \left(F_{\beta_{1}+\beta_{2}} + F_{-(\beta_{1}+\beta_{2})} \right) \\ \text{Put}, \end{split}$$

Ρ

$$u = \sqrt{-6}(H_{\alpha_1} - H_{\alpha_3}), \quad v = \frac{1}{\sqrt{2}}(U_{\alpha_1} - U_{\alpha_3}).$$

Then, using (3.1) and (4.1), we can check that $u, v \in \mathfrak{m}$ and they are orthonormal. Moreover, we get

$$[u,v] = \frac{\sqrt{3}}{6}(V_{\alpha_1} + V_{\alpha_3}), \quad [[u,v],u] = \frac{1}{6}v$$

and $V_{\alpha_1} + V_{\alpha_3} \in \mathfrak{m}$. Hence, u, v satisfy the hypothesis of Proposition 2.3 (ii).

Finally, suppose that \mathfrak{g} is semisimple but not simple, then $\mathfrak{g} = \mathfrak{L} \oplus \mathfrak{L} \oplus \mathfrak{L}$ with \mathfrak{L} simple and $\mathfrak{k} = \mathfrak{g}^{\sigma}$ is \mathfrak{L} embedded diagonally. Let α be a root of $\mathfrak{L}_{\mathbb{C}}$. Take in \mathfrak{g} ,

$$u = \frac{1}{\sqrt{6}}(U_{\alpha}, U_{\alpha}, -2U_{\alpha}), \qquad v = \frac{\sqrt{-1}}{\|\alpha\|}(H_{\alpha}, -H_{\alpha}, 0).$$

Then u, v are orthogonal to \mathfrak{k} and, from (3.1) and (3.5),

$$[u, v] = -\frac{\|\alpha\|}{\sqrt{6}}(V_{\alpha}, -V_{\alpha}, 0), \quad [[u, v], u] = \frac{\langle \alpha, \alpha \rangle}{3}v$$

and, consequently they again satisfy the hypothesis of Proposition 2.3 (ii). q.e.d.

The proof of Theorem 1.1 is now easy. Following [9, Theorem 6.4], compact 3-symmetric spaces $(M = G/K, \sigma, <, >)$ are given by

$$M = (M_0 \times M_1 \times \cdots \times M_r) / \Gamma = \{ (G_0 \times G_1 \times \cdots \times G_r) / \Gamma \} / K,$$

where

- (i) M₀ is a complex Euclidean space, G₀ is its translation group and K₀ = {I} ⊂ G₀;
- (ii) $M_i = G_i/K_i$, $1 \le i \le r$, is a simply connected 3-symmetric space, G_i is a compact connected Lie group acting effectively and $\sigma_i = \sigma_{|\mathfrak{g}_i|}$ does not preserve any proper ideals;
- (iii) Γ is any discrete subgroup of $G_0 \times Z_1 \times \cdots \times Z_r$, being Z_i the center of G_i and $\Gamma \cap G_0$ a lattice in G_0 ;
- (iv) K is the image of $(K_0 \times K_1 \times \cdots \times K_r)$ in $(G_0 \times G_1 \times \cdots \times G_r)/\Gamma$.

Hence, the subspace $\mathfrak{m} = \mathfrak{k}^{\perp}$ of \mathfrak{g} can be expressed as

$$\mathfrak{m}=\mathfrak{g}_0\oplus\mathfrak{m}_1\oplus\cdots\oplus\mathfrak{m}_r,$$

where $\mathfrak{m}_i = \mathfrak{k}_i^{\perp}$ on (\mathfrak{g}_i, B_i) , $i = 1, \ldots, r$. Then $(\exp tu)o$ with $u \in \mathfrak{m}_i$ is geodesic on (M = G/K, g) and we can again apply Propositions 4.6 and 4.8 to obtain that (M = G/K, g) must be locally symmetric. In this case, rank $G_i = \operatorname{rank} K_i$ and Z_i is trivial, for $i = 1, \ldots, r$, which implies that (M = G/K, g) is moreover symmetric. Concretely, (M, g) is given by

$$M = T \times M_1 \times \cdots \times M_r,$$

where (T, g_0) is a complex flat torus and (M_i, g_i) , is one of the irreducible symmetric spaces given in Lemma 4.2 and the metric g on M is the product metric $g = g_0 + g_1 + \cdots + g_r$.

J.C. GONZÁLEZ-DÁVILA

References

- R. Bott & H. Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. of Math. 80 (1958), 964–1029, MR 0105694, Zbl 0101.39702, Correction in: Amer. J. of Math. 83 (1961), 207–208, MR 0170351.
- I. Chavel, Isotropic Jacobi fields, and Jacobi's equations on Riemannian homogeneous spaces, Comment. Math. Helv. 42 (1967), 237–248, MR 0221426, Zbl 0166.17501.
- [3] I. Chavel, On normal Riemannian homogeneous spaces of rank 1, Bull. Amer. Math. Soc. 73 (1967), 477–481, MR 0220209, Zbl 0153.23102.
- [4] J.C. González-Dávila & R.O. Salazar, Isotropic Jacobi fields on naturally reductive spaces, Publ. Math. Debrecen 66 (2005), 41–61, MR 2128684, Zbl 1075.53046.
- [5] A. Gray, Riemannian manifolds with geodesic symmetries of order 3, J. Differential Geom. 7 (1972), 343–369, MR 0331281, Zbl 0275.53026.
- [6] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978, MR 0514561, Zbl 0451.53038.
- [7] S. Kobayashi & K. Nomizu, Foundations of differential geometry, I, II, Interscience Publishers, New York, 1963, MR 0152974, Zbl 0119.37502; 1969, MR 0238225, Zbl 0175.48504.
- [8] K. Tojo, Kähler C-spaces and k-symmetric spaces, Osaka J. Math., 34 (1997), 803–820, MR 1618665, Zbl 0899.53042.
- J.A. Wolf & A. Gray, Homogeneous spaces defined by Lie group automorphisms, I, II, J. Differential Geom. 2 (1968), 77–159, MR 0236328, MR 0236329;
 Zbl 0169.24103, Zbl 0182.24702.
- [10] W. Ziller, The Jacobi equation on naturally reductive compact Riemannian homogeneous spaces, Comment. Math. Helv. 52 (1977), 573–590, MR 0474145, Zbl 0368.53033.

Departamento de Matemática Fundamental Sección de Geometría y Topología Universidad de La Laguna La Laguna, Spain *E-mail address*: jcgonza@ull.es