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HAMILTONIAN STATIONARY SHRINKERS AND

EXPANDERS FOR LAGRANGIAN MEAN CURVATURE

FLOWS
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Abstract

We construct examples of shrinkers and expanders for Lagran-
gian mean curvature flows. These examples are Hamiltonian sta-
tionary and asymptotic to the union of two Hamiltonian station-
ary cones found by Schoen and Wolfson in [SWO]. The Schoen-
Wolfson cones Cp,q are obstructions to the existence problems of
special Lagrangians or Lagrangian minimal surfaces in the varia-
tional approach. It is known that these cone singularities can-
not be resolved by any smooth oriented Lagrangian submani-
folds. The shrinkers and expanders that we found can be glued
together to yield solutions of the Brakke motion-a weak formu-
lation of the mean curvature flow. For any coprime pair (p, q)
with p > q > 1, we construct such a solution that resolves one
single Schoen-Wolfson cone Cp,q. Note that Cp,q is stable only
if p − q = 1. It thus provides an evidence to Schoen-Wolfson’s
conjecture that the (2, 1) cone is the only area-minimizing cone.
Higher dimensional generalizations are also obtained.

1. Introduction

The existence of special Lagrangians in Calabi-Yau manifolds re-
ceived much attention recently due to the critical role it plays in the
T-duality formulation of Mirror symmetry of Strominger-Yau-Zaslow
[SYZ]. Schoen and Wolfson took up the variational approach of con-
structing special Lagrangians by minimizing volumes in suitable La-
grangian classes. They discovered non-flat Lagrangian cones that are
Hamiltonian stationary [SWO]. The existence of special Lagrangians
can be established once these cone singularities are excluded. However,
these singularities do occur in the Lagrangian minimizers in some K-3
surfaces, see [WO]. Another potential approach to the construction of
special Lagrangians is the mean curvature flow- as the negative gradi-
ent flow of the volume functional. However, the long-time existence of
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such flows can only be verified in some special cases, see for example
[SM], [SWA], [WA1], and [WA2]. In this article, we construct special
weak solutions of the Lagrangian mean curvature flows and show that
the union of two related Schoen-Wolfson cones can be resolved by these
flows.

Our ambient space is always the complex Euclidean space C
n with co-

ordinates zi = xi+
√
−1yi, the standard symplectic form ω =

∑n
i=1 dx

i∧
dyi, and the standard almost complex structure J with J( ∂

∂xi ) = ∂
∂yi .

On a Lagrangian submanifold Σ, the mean curvature vector H is given
by

(1.1) H = J∇β

where β is the Lagrangian angle and ∇ is the gradient on Σ. By the
first variation formula, the mean curvature vector points to the direction
where the volume is decreased most rapidly. In this case, β can be
defined by the relation that

∗Σ

(

dz1 ∧ · · · ∧ dzn
)

= eiβ

where ∗Σ is the Hodge *-star operator on Σ. We recall:

Definition 1.1. A Lagrangian submanifold Σ is called Hamiltonian
stationary if the Lagrangian angle is harmonic. i.e. ∆β = 0 where ∆ is
the Laplace operator on Σ. Σ is a special Lagrangian if β is a constant
function.

A Hamiltonian stationary Lagrangian submanifold is a critical point
of the volume functional among all Hamiltonian deformations and a
special Lagrangian is a volume minimizer in its homology class.

As the special Lagrangians are volume minimizers, it is thus natu-
ral to use the mean curvature flow in the construction of special La-
grangians. Equation (1.1) implies that the mean curvature flow is a
Lagrangian deformation, i.e. a Lagrangian submanifold remains La-
grangian along the mean curvature flow. In a geometric flow, the singu-
larity often models on a soliton solution. In the case of mean curvature
flows , one type of soliton solutions of particular interest are those moved
by scaling in the Euclidean space. We recall:

Definition 1.2. A Lagrangian submanifold in the Euclidean space
is called a self-similar solution if

F⊥ = 2cH

for some constant c, where F⊥ is normal projection of the position
vector F in the Euclidean space and H is the mean curvature vector. It
is called a self-shrinker if c < 0 and self-expander if c > 0.
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It is not hard to see that if F is a self-similar solution, then Ft de-

fined by Ft =
√

t
c
F is moved by the mean curvature flow. By Huisken’s

monotonicity formula [HU], any central blow up of a finite-time sin-
gularity of the mean curvature flow is a self-similar solution. In this
article, we find Hamiltonian stationary self-shrinkers and self-expanders
of the Lagrangian mean curvature flow that are asymptotic to the union
of two Schoen-Wolfson cones. Altogether they form a Brakke flow (see
§3 ) which is a weak formulation of the mean curvature flow proposed
by Brakke in [BR]. To be more precise, we prove:

Theorem 1.1. For each Schoen-Wolfson cone Cpq , there exists a

corresponding Schoen-Wolfson cone C ′
pq and a solution Vt,−∞ < t <∞

of the Brakke motion without mass loss so that Vt, t < 0 is a smooth

Hamiltonian stationary self-shrinker and Vt, t > 0 is a smooth Hamilton-

ian stationary self-expander. Moreover, Vt approach the union Cpq∪C ′
pq

as t→ 0 from either direction.

Definition 1.3. We call such a solution Vt,−∞ < t < ∞, a Hamil-
tonian stationary self-similar eternal Brakke motion.

Without loss of generality, we can assume that p > q. When q > 1, we
show that a single Schoen-Wolfson cone can be resolved by self-similar
Brakke motion.

Theorem 1.2. For any Schoen-Wolfson cone Cp,q with p > q > 1,
there exists a Hamiltonian stationary self-similar eternal Brakke motion

Vt such that Vt approaches Cp,q as t→ 0 from either direction.

Schoen and Wolfson show that Cp,q is (Hamiltonian) stable only if
p−q = 1 and they conjecture that only the C2,1 cone is area-minimizing
(in oriented Lagrangian). The first author were informed by R. Schoen
that this is the first time when C2,1 can be distinguished from all other
stable Cp,q cones.

We remark that self-similar solutions of Lagrangian mean curvature
flows were constructed by Anciaux [AN] using a different ansatz. His
examples approach special Lagrangian cones while ours approach Hamil-
tonian stationary cones. Haskins [HA3] also observed these solutions
are Hamiltonian stationary based on a Hamiltonian formulation similar
to the one used by Harvey and Lawson [HL] in their construction of
examples of special Lagrangians. Special Lagrangians and Hamiltonian
stationary Lagrangians are constructed by many authors.

Our theorem is analogous to the Feldman-Ilmanen-Knopf [FIK] glu-
ing construction for the Kähler-Ricci flows. Unlike the mean curvature
flow, a notion of weak solutions of Ricci flow has not yet been estab-
lished.

This article is organized as the follows. Our examples are presented
in §2 and the formulation of Brakke motion is recalled in §3. In section
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§4 and §5, we prove theorem 1.1 and theorem 1.2, respectively. Higher
dimensional examples are presented in §6.

Acknowledgments. Both authors thank Mark Haskins for enlight-
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for Mathematical Research at ETH during her visit. The second author
wishes to thank the support of the Taida Institute for Mathematical
Sciences during the preparation of this article.

2. Examples of self-similar solutions

2.1. Schoen-Wolfson cones. Let p and q be two co-prime positive
integers. The close and embedded curve

γpq(θ) =

(√

q

p+ q
eipθ , i

√

p

p+ q
e−iqθ

)

, 0 ≤ θ < 2π

is Legendrian and Hamiltonian stationary in S3. The cone over γpq(θ)
is Lagrangian and Hamiltonian stationary, and is denoted by Cpq. It
is stable if and only if |p − q| = 1. As such properties are invariant
under U(2), the cone over any U(2) image of γpq is again Lagrangian
and Hamiltonian stationary. These are possible cone singularities for
the Lagrangian minimizers studied in [SWO].

2.2. Self-shrinkers and self-expanders. We take the same ansatz
as Schoen-Wolfson and consider the surfaces

F (µ, θ) =
(

z1(µ) eipθ , z2(µ) e−iqθ
)

,

where 0 ≤ θ < 2π, µ ∈ R, and z1(µ) and z2(µ) are curves in the
complex plane. A direct computation shows that a sufficient condition
for F (µ, θ) to be Lagrangian is that p|z1(µ)|2 − q|z2(µ)|2 is a constant.
One can further investigate the condition for F (µ, θ) to be Hamiltonian
stationary, and the condition for F (µ, θ) to be self-similar. We will
not explore the general situation here. Instead we show directly in the
following that the surface

F (µ, θ) =
(

coshµ
√
qeipθ , i sinhµ

√
pe−iqθ

)

,

where 0 ≤ θ < 2π and µ ∈ R, is Hamiltonian stationary and self-similar.
We compute

∂F

∂µ
=

(

sinhµ
√
q eipθ , i cosh µ

√
p e−iqθ

)

,
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and
∂F

∂θ
=

√
pq

(

i cosh µ
√
p eipθ , sinhµ

√
q e−iqθ

)

.

It is easy to check that
〈

J ∂F
∂µ
, ∂F
∂θ

〉

= 0, and thus the surface is

Lagrangian. The components of the induced metric on the surface are

g11 =

∣

∣

∣

∣

∂F

∂µ

∣

∣

∣

∣

2

= p cosh2 µ+ q sinh2 µ,

g22 =

∣

∣

∣

∣

∂F

∂θ

∣

∣

∣

∣

2

= pq
(

p cosh2 µ+ q sinh2 µ
)

,

and g12 = 0. Therefore the area form is given by
√
pq

(

p cosh2 µ+ q sinh2 µ
)

dµdθ

A simple calculation shows that the Lagrangian angle β = (p − q)θ.
Thus ∆gβ = 0, it follows that the surface is Hamiltonian stationary.
On a Lagrangian submanifold, we have the mean curvature vector H =
J∇β. Since β depends only on θ,

H =
1

g22
J
∂β

∂θ

∂F

∂θ
=
p− q

g22
J
∂F

∂θ
.

To calculate F⊥ we note that the normal bundle of the surface is
spanned by J ∂F

∂µ
and J ∂F

∂θ
. We compute

〈

F, J
∂F

∂µ

〉

= Re (−iq coshµ sinhµ− ip sinhµ coshµ) = 0

and
〈

F, J
∂F

∂θ

〉

=
√
pqRe

(

− cosh2 µ
√
pq + sinh2 µ

√
pq

)

= −pq.

Hence

(2.1) F⊥ =
−pq
g22

J
∂F

∂θ
= − pq

p− q
H

and F is a self-similar solution. We summarize the calculations in this
section in the following proposition.

Proposition 2.1. If p > q are two co-prime positive integers, then

S(µ, θ) =
(

coshµ
√
qeipθ , i sinhµ

√
pe−iqθ

)

,

where 0 ≤ θ < 2π and µ ∈ R, is a Hamiltonian stationary shrinker and

E(µ, θ) =
(

sinhµ
√
qeipθ , i coshµ

√
pe−iqθ

)

,

where 0 ≤ θ < 2π and µ ∈ R, is a Hamiltonian stationary expander. S

satisfies F⊥ = −2cH while E satisfies F⊥ = 2cH, where c = pq
2(p−q) .
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We notice that E can be obtained by switching p and q in the expres-

sion for S, taking bar, and multiplying by

[

0 i

i 0

]

. As µ → +∞, both

S and E approach the Schoen-Wolfson cone Cpq over the curve γpq.

2.3. Asymptotics of the flow. By the remark in the introduction,

we have
√

−t
c
S for t < 0 is a smooth solution of the mean curvature

flow, so is
√

t
c
E for t > 0.

Proposition 2.2. If p > q are two co-prime positive integers, then

St(µ, θ) =

√

−t
c

(

coshµ
√
qeipθ , i sinhµ

√
pe−iqθ

)

,

for t < 0 is a smooth solution of the mean curvature flow and so is

Et(µ, θ) =

√

t

c

(

sinhµ
√
qeipθ , i cosh µ

√
pe−iqθ

)

,

for t > 0.

Denote by h(St) the mean curvature vector of St and d||St|| the area
element of St, then

(2.2) |St|2 =

(−t
c

)

(

q cosh2 µ+ p sinh2 µ
)

,

(2.3) |h(St)|2 =

(

c

−t

)

(p− q)2

pq

1

p cosh2 µ+ q sinh2 µ
,

(2.4) d||St|| =

(−t
c

)√
pq

(

p cosh2 µ+ q sinh2 µ
)

dµdθ.

For positive co-prime integers p and q with p > q, we define

C++(y, θ) =
(

y
√
q eipθ , iy

√
p e−iqθ

)

,

C+−(y, θ) =
(

y
√
q eipθ , −iy√p e−iqθ

)

,

C−+(y, θ) =
(

−y√q eipθ , iy√p e−iqθ
)

, and

C−−(y, θ) =
(

−y√q eipθ , −iy√p e−iqθ
)

,

for y ≥ 0 and 0 ≤ θ < 2π. Here C++ = Cpq.
Note that St, as t→ 0−, approaches C++∪C+− while Et, as t→ 0+,

approaches C++∪C−+. The asymptotic cones of St and Et do not match
unless p and q are both odd. In other cases, we can modify St and Et
so their asymptotic cones agree at t = 0. This allows us to construct a
Brakke flow Ft that is a Hamiltonian stationary self-shrinker for t < 0,
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a Hamiltonian stationary self-expander for t > 0, and a pair of cones at
t = 0 in all cases.

3. Brakke motion

A family of varifolds Vt is said to form a solution of the Brakke motion
[BR] if

(3.1) D̄||Vt||(φ) ≤ δ(Vt, φ)(h(Vt))

for each φ ∈ C1
0 (Rn) with φ ≥ 0, where D̄||Vt||(φ) is the upper deriva-

tive defined by limt1→t
||Vt1 ||(φ)−||Vt||(φ)

t1−t
and h(Vt) is the generalized mean

curvature vector of Vt. In the setting of this paper,

δ(Vt, φ)(h(Vt)) = −
∫

φ|h(Vt)|2 d||Vt|| +
∫

Dφ · h(Vt) d||Vt||.

In our case, the singularity happens at the t = 0 slice. We formulate
the following proposition as a criterion to check the solutions of Brakke
motion in this case.

Proposition 3.1. Suppose the varifold Vt, a < t < b forms a smooth

mean curvature flow in R
n except at t = c ∈ (a, b) and ||Vt|| con-

verges in Radon measure to ||Vc|| as t → c. If limt→c−
d
dt
||Vt||(φ) and

limt→c+
d
dt
||Vt||(φ) are both either finite or −∞ and

(3.2) lim
t→c±

d

dt
||Vt||(φ) ≤ δ(V0, φ)(h(V0))

for any φ ∈ C1
0 (Rn) then Vt forms a solution of the Brakke motion.

Proof. Since ||Vt||(φ) is continuous on the interval (a, c] and differen-
tiable on (a, c). By the mean value theorem, we have

lim
t→c−

||Vt||(φ) − ||Vc||(φ)

t− c
= lim

t→c−

d

dt
||Vt||(φ).

The case for t→ c+ can be treated similarly. Therefore the assumption
(3.2) implies that (3.1) holds.

q.e.d.

4. Proof of Theorem 1.1

The proof of Theorem 1.1 is divided into three cases according to the
parities of p and q. In each case, we show that (3.2) holds with equality.

Before going into the details of the proof, we first make some obser-
vations on the asymptotic cones. Consider shrinkers of the form

{

√

−t
c

(

x1
√
qeipθ, ix2

√
pe−iqθ

)

: x2
1 − x2

2 = 1, t < 0

}
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and expanders

{

√

t

c

(

x1
√
qeipθ, ix2

√
pe−iqθ

)

: x2
1 − x2

2 = −1, t > 0

}

.

As t → 0 both of them converge to C++ ∪ C+− ∪ C−+ ∪ C−−. By
shifting θ to θ + π, it is easy to see that

(i) When both p and q are odd, C++ = C−− and C+− = C−+.
(ii) When p is odd and q is even, C++ = C−+ and C+− = C−−.
(iii) When p is even and q is odd, C++ = C+− and C−+ = C−−.

That is, the shrinkers and expanders converge to the double of two
cones. In the following, we manage to arrange St and Et so that they
converge to a single copy of the two cones. More precisely, when p and
q are both odd, the asymptotic cones are C++ ∪ C+−. When p is odd
and q is even, the asymptotic cones are C++ ∪ C+−. When p is even
and q is odd, the asymptotic cones are C++ ∪ C−+.

4.1. Case 1: both p and q are odd. We start with t < 0. By change

of variable y =
√

−t
c

sinhµ, it is not hard to see St as t→ 0− converges

to the varifold S0 defined by

S0(y, θ) =
(

|y|√q eipθ, iy√p e−iqθ
)

, y ∈ R, 0 ≤ θ < 2π.

The norm square of S0 is given by

(4.1) |S0|2 = y2(p + q).

The norm square of generalized mean curvature vector and the area
element of S0 are given by:

(4.2) |h(S0)|2 =
(p− q)2

pq(p+ q)

1

y2
,

and

(4.3) d||S0|| = |y|√pq(p + q) dydθ.

Since for a smooth mean curvature flow, we have

d

dt
||St||(φ) = δ(St, φ)(h(St)) = −

∫

φ|h(St)|2d||St|| +
∫

Dφ · h(St) d||St||.

To apply Proposition 3.1, it suffices to show

lim
t→0−

−
∫

φ |h(St)|2d||St|| +
∫

Dφ · h(St) d||St||

= −
∫

φ |h(S0)|2d||S0|| +
∫

Dφ · h(S0) d||S0||
(4.4)
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and the limit is either finite or −∞. From (2.3) and (2.4), we obtain

(4.5) |h(St)|2 d||St|| =
(p− q)2√

pq
dµdθ

and

(4.6) |h(St)| d||St|| = (p− q)

√

(−t
c

)

(

p cosh2 µ+ q sinh2 µ
)

dµdθ.

We first show that
∫

Dφ · h(St) d||St|| is always finite. By (4.6), this
integral is bounded above by

∫

|Dφ| |h(St)| d||St||

= (p− q)

∫

|Dφ(St(µ, θ))|
√

(−t
c

)

(

p cosh2 µ+ q sinh2 µ
)

µdθ.

(4.7)

Suppose φ vanishes outside B(0;R) and recall the expression (2.2)
for |St|, we see the integral is supported in the domain

(−t
c

)

(

q cosh2 µ+ p sinh2 µ
)

≤ R2, 0 ≤ θ < 2π.

Thus (4.7) is bounded above by

(4.8) C1

∫

(−t
c )(q cosh2 µ+p sinh2 µ)≤R2

√

(−t
c

)

(

p cosh2 µ+ q sinh2 µ
)

dµ

for some constant C1 > 0 depending on the upper bound of |Dφ|.
Consider the change of variable y =

√

−t
c

sinhµ, we have

dy =

√

−t
c

coshµdµ and

√

−t
c

coshµ = y
coshµ

sinhµ
.

Hence (4.8) becomes

C1

∫

|y|≤

r

R2+( t
c )q

p+q

√

p+ q tanh2 µ dy

which is finite as tanh2 µ ≤ 1.
Next we claim the limit limt→0− −

∫

φ|h(St)|2 d||St|| is finite if φ(0) = 0
and −∞ if φ(0) 6= 0.

By (4.5),
∫

φ |h(St)|2d||St|| =

∫

φ(St(µ, θ))
(p− q)2√

pq
dµdθ.
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When φ(0) = 0, we may assume φ is supported in B(0;R) and
φ(St(µ, θ)) ≤ C2 |St(µ, θ)| for some C2 > 0, therefore

∫

φ(St(µ, θ)) dµdθ

≤ C3

∫

(−t
c )(q cosh2 µ+p sinh2 µ)≤R2

√

(−t
c

)

(

q cosh2 µ+ p sinh2 µ
)

dµ

for some C3 > 0.
This is similar to (4.7) and can be shown to be finite by the change

of variable y =
√

−t
c

sinhµ.

On the other hand, when φ(0) > 0, we may assume φ(0) ≥ C4 > 0
on B(0; ǫ), thus

∫

φ(St(µ, θ)) dµdθ ≥ 2πC4

∫

(−t
c )(q cosh2 µ+p sinh2 µ)≤ǫ2

dµ

= 2πC4

∫

|y|≤

r

ǫ2+ t
c q

p+q

1
√

y2 + (−t
c

)
dy

which tends to ∞ as t→ 0− by observing 1
q

y2+(−t
c

)
≥ 1

|y|+
q

−t
c

.

Equations (4.1), (4.2), and (4.3) imply that
∫

φ|h(S0)|2 d||S0|| is finite
if φ(0) = 0 and −∞ if φ(0) > 0. Now (4.4) follows from the change of

variable y =
√

−t
c

sinhµ, the fact that h(St) → h(S0) , and the dominant

convergence theorem.
For t > 0, we consider Et with

(4.9) |Et|2 =

(

t

c

)

(

p cosh2 µ+ q sinh2 µ
)

,

(4.10) |h(Et)|2 =
(c

t

) (p− q)2

pq

1

q cosh2 µ+ p sinh2 µ
,

(4.11) d||Et|| =

(

t

c

)√
pq

(

q cosh2 µ+ p sinh2 µ
)

dµdθ.

As t→ 0+, Et converges to the varifold E0 defined by

E0(y, θ) =
(

y
√
qeipθ , i|y|√pe−iqθ

)

, y ∈ R, 0 ≤ θ < 2π.

E0 coincides with S0 by the change of variable

(4.12) E0(y, θ) = S0(y, θ + arg y).

when p and q are both odd (note that arg y = 0 or π).
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The identity

lim
t→0+

−
∫

φ |h(Et)|2 d||Et|| +
∫

Dφ · h(Et) d||Et||

= −
∫

φ |h(E0)|2 d||E0|| +
∫

Dφ · h(E0) d||E0||
(4.13)

can be checked similarly.

4.2. Case 2: p odd and q even. In this case, for t < 0, Vt is defined

to be St as before. Thus by change of variable y =
√

−t
c

sinhµ, St as

t→ 0− converges to the varifold S0 defined by

S0(y, θ) =
(

|y|√q eipθ, iy√p e−iqθ
)

, y ∈ R, 0 ≤ θ < 2π.

Moreover, the identity (4.4) holds.

For t > 0, we define Vt to be ei arg µEt

(

µ, θ + arg µ
q

)

(note that argµ =

0 or π). By change of variable y =
√

t
c
sinhµ, it is not hard to see Vt as

t→ 0+ converges to the varifold V0 defined by

V0(y, θ) =







(

y
√
q eipθ, iy

√
p e−iqθ

)

, y ≥ 0, 0 ≤ θ < 2π

−
(

y
√
q e

ip(θ+ π
q
)
, i|y|√p e−iq(θ+

π
q
)
)

, y < 0, 0 ≤ θ < 2π

V0 coincides with S0 by the change of variable

(4.14) V0(y, θ) = S0

(

y, θ +
arg y

q

)

.

The angle shift of Vt for µ < 0 is to make the parametrization contin-
uous at µ = 0. Although the tangent plane from µ → 0+ and µ → 0−

do not agree. The induced volume form and mean curvature vector
from both sides are the same. Hence Vt can still be considered as a self-
expander for t > 0. In fact, the image of Vt for t > 0 can be regarded
as two complete non-oriented smooth surfaces intersecting at one circle.
We claim that when Vt is considered as a Radon measure, its generalized
mean curvature vector h(Vt) is the same as the usual mean curvature
vector. That is, there is no contribution from the singular set {µ = 0}.
To compute the generalized mean curvature vector, we choose a family
of ambient diffeomorphism ψs with ψ0 = id and dψs

ds
|s=0 = W and derive

the first variation formula d||(ψs)∗(Vt)||
ds

|s=0.
We can divide the image into µ < 0 and µ > 0 with boundary curve

{
√

t
c
(0, i

√
pe−iqθ) : 0 ≤ θ < 2π

}

, and calculate separately. To prove the

claim, the essential part is to compute the contribution from the bound-
ary. Note that the unit normal of the boundary from the µ > 0 side
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is (eipθ, 0), while it is
(

−eip(θ+
π
q
)
, 0

)

from the µ < 0 side. We observe

that each of θ, θ + 2π
q
, · · · , θ + 2π(q−1)

q
determines the same boundary

point for 0 ≤ θ < 2π
q

. Thus the contribution of the boundary to the

first variation from the µ > 0 side is

∫ 2π

0
W · (eipθ, 0)

√

tp

c
dθ

=

√

tp

c

∫ 2π
q

0
W · (eipθ, 0)

(

1 + e
i 2πp

q + · · · + e
i
2πp(q−1)

q

)

dθ = 0.

The last equality follows from the fact that

1 + e
i
2πp

q + · · · + e
i
2πp(q−1)

q = 0

for p, q being two co-prime integers and q > 1. Since q is a positive even
number, this is certainly the case. The contribution of the boundary
from the µ < 0 side is also zero for the same reason. Thus the usual mean
curvature vector agrees with the generalized mean curvature vector for
Vt. We have

|h(Vt)|2 =
c

t

(p − q)2

pq

(

p cosh2 µ+ q sinh2 µ
)

which is bounded for any fixed t > 0. Thus by the dominate convergence
theorem, we still have

(4.15)
d

dt
||Vt||(φ) = −

∫

φ |h(Vt)|2 d||Vt|| +
∫

Dφ · h(Vt) d||Vt||

for t > 0.
Hence to apply Proposition 3.1, it suffices to show

lim
t→0+

−
∫

φ |h(Vt)|2 d||Vt|| +
∫

Dφ · h(Vt) d||Vt||

= −
∫

φ |h(V0)|2 d||V0|| +
∫

Dφ · h(V0) d||V0||.
(4.16)

This identity can be checked similarly using the following equations:

(4.17) |Vt|2 =

(

t

c

)

(

p cosh2 µ+ q sinh2 µ
)

,

(4.18) |h(Vt)|2 =
(c

t

) (p− q)2

pq

1

q cosh2 µ+ p sinh2 µ
,

(4.19) d||Vt|| =

(

t

c

)√
pq

(

q cosh2 µ+ p sinh2 µ
)

dµdθ.
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4.3. Case 3: p even and q odd. In this case, for t > 0, Vt is defined

to be Et as in case 1. Thus by change of variable y =
√

t
c
sinhµ, Et as

t→ 0+ converges to the varifold E0 defined by

E0(y, θ) =
(

y
√
qeipθ , i|y|√pe−iqθ

)

, y ∈ R, 0 ≤ θ < 2π.

Moreover, the identity (4.13) holds.

For t < 0, we define Vt to be ei arg µSt

(

µ, θ + argµ
p

)

(note that argµ =

0 or π). By change of variable y =
√

−t
c

sinhµ, it is not hard to see Vt

as t→ 0− converges to the varifold V0 defined by

V0(y, θ) =







(

y
√
q eipθ, iy

√
p e−iqθ

)

, y ≥ 0, 0 ≤ θ < 2π

−
(

|y|√q eip(θ+
π
p
)
, iy

√
p e

−iq(θ+ π
p
)
)

, y < 0, 0 ≤ θ < 2π

V0 coincides with E0 by the change of variable

(4.20) V0(y, θ) = E0

(

y, θ +
arg y

p

)

.

By similar discussions as in case 2, it can be shown that for t < 0, Vt is
still a self-shrinker and satisfies (4.15).

Moreover, for t < 0, we have Vt with

(4.21) |Vt|2 =

(−t
c

)

(

q cosh2 µ+ p sinh2 µ
)

,

(4.22) |h(Vt)|2 =

(

c

−t

)

(p− q)2

pq

1

p cosh2 µ+ q sinh2 µ
,

(4.23) d||Vt|| =

(−t
c

)√
pq

(

p cosh2 µ+ q sinh2 µ
)

dµdθ.

The identity

lim
t→0−

−
∫

φ |h(Vt)|2 d||Vt|| +
∫

Dφ · h(Vt) d||Vt||

= −
∫

φ |h(V0)|2 d||V0|| +
∫

Dφ · h(V0) d||V0||
(4.24)

can be checked similarly.

5. Proof of Theorem 1.2

It is important to determine which cone constructed in [SWO] is area
minimizing among Lagrangian competitors. Only these cones can occur
as blow-up profiles for the singularities in the Lagrangian minimizers.
Schoen and Wolfson show that a (p, q) cone is (Hamiltonian) stable if



40 Y.-I. LEE & M.-T. WANG

and only if p − q = 1 and conjectured that only (2, 1) cone (assuming
p > q) is area minimizing. From the proof in section 4.2, we can in
fact show that this is the case infinitesimally. In the following, we prove
Theorem 1.2.

Proof. Suppose p > q > 1 and µ ≥ 0, 0 ≤ θ < 2π. Define Vt =
St(µ, θ) for t < 0, Vt = Et(µ, θ) and V0 = Cpq. Both St and Et
converge to Cpq as t → 0. When t 6= 0, the image of µ = 0 is the
boundary of Vt. Because both p and q are greater than one, there
is no boundary contribution on the generalized mean curvature vec-
tor. We take the case t > 0 as an example. The boundary curve is
{

√

t
c

(

0, i
√
pe−iqθ

)

: 0 ≤ θ < 2π
}

and the unit normal vector is
(

eipθ, 0
)

.

We observe that each of θ, θ + 2π
q
, · · · , θ + 2π(q−1)

q
determines the same

boundary point for 0 ≤ θ < 2π
q

. Thus the contribution from the bound-

ary to the first variation is

∫ 2π

0
W ·

(

eipθ, 0
)

√

tp

c
dθ

=

√

tp

c

∫ 2π
q

0
W ·

(

eipθ, 0
)

(

1 + e
i
2πp

q + · · · + e
i
2πp(q−1)

q

)

dθ = 0

if q is an integer greater than one. Because p > 1, there is no contri-
bution from the boundary to the first variation when t < 0 either. The
same arguments as in last section show that Vt forms a solution of the
Brakke motion. q.e.d.

As a generalization of the mean curvature flow, the Brakke motion
decreases area. Theorem 1.2 thus suggests that the cone Cp,q may not
be area minimizing when q > 1. Wolfson’s counterexample [WO] shows
that one of the (p, q) cone must be area minimizing. This leaves the (2, 1)
cone as the only candidate for area minimizers. However, we remark this
observation does not resolve the conjecture because, in classical sense,
one needs to find Lagrangian competitors with the same boundary.

6. Higher dimensional examples

In the two-dimensional case, after multiplying by the matrix

[

1 0
0 −i

]

∈ U(2), our example can be rewritten in the form

{(

x1e
ipθ, x2e

−iqθ
) ∣

∣

∣
px2

1 − qx2
2 = pq, (x1, x2) ∈ R

2, 0 ≤ θ < 2π
}

⊂ C
2.
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Now consider the following generalization to higher dimensions: for
any n nonzero real numbers λ1, · · · , λn, consider the submanifold Σ of
C
n defined by

{

(

x1e
iλ1θ, · · · , xneiλnθ

)
∣

∣

∣

n
∑

i=1

λix
2
i = C, (x1, · · · , xn) ∈ R

n

}

for some constant C.
It is not hard to check that Σ is Lagrangian in C

n with Lagrangian
angle given by β = (

∑n
i=1 λi)θ + c for some constant c . Therefore Σ

is Hamiltonian stationary and is special if
∑n

i=1 λi = 0. Such special
Lagrangians were studied by Haskins in [HA1] [HA2] (for n = 3) and
Joyce in [JO1] (for general dimensions). We were also informed by Pro-
fessor Joyce that the Hamiltonian stationary ones may also be obtained
by applying his method of “perpendicular symmetries ” in [JO2].

If
∑n

i=1 λi 6= 0, the position vector F satisfies

F⊥ =
−C

∑n
i=1 λi

H.

That is, the submanifold Σ is a Hamiltonian stationary self-similar so-
lution of the mean curvature flow. Similar procedures as in this paper
can be applied to show that when λi are all integers,

Σt =

{

(

x1e
iλ1θ, · · · , xneiλnθ

)
∣

∣

∣

n
∑

i=1

λix
2
i = (−2t)

n
∑

i=1

λi

}

with (x1, · · · , xn) ∈ R
n and 0 ≤ θ < 2π form a Brakke flow without mass

loss. We shall discuss further properties of these higher dimensional
examples in a forthcoming paper [LW].
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