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ON THE GENUS-ONE GROMOV-WITTEN
INVARIANTS OF COMPLETE INTERSECTIONS

JUN L1 & ALEKSEY ZINGER

Abstract

We state and prove a long-elusive relation between genus-one
Gromov-Witten of a complete intersection and twisted Gromov-
Witten invariants of the ambient projective space. As shown in
a previous paper, certain naturally arising cones of holomorphic

vector bundle sections over the main component ﬁik(P",d) of
the moduli space of stable genus-one holomorphic maps into P™
have a well-defined euler class. In this paper, we extend this result
to moduli spaces of perturbed, in a restricted way, J-holomorphic
maps. This extension is used to show that these cones are the
correct genus-one analogues of the vector bundles relating genus-
zero Gromov-Witten invariants of a complete intersection to those
of the ambient projective space. A relationship for higher-genus
invariants is conjectured as well.
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1. Introduction

1.1. Gromov-Witten invariants and complete intersections.
Gromov-Witten invariants of symplectic manifolds have been a subject
of much research over the past two decades. A great deal of atten-
tion has been devoted in particular to Calabi-Yau manifolds. These
manifolds play a prominent role in theoretical physics, and as a result
physicists have made a number of important predictions concerning CY-
manifolds. Some of these predictions have been verified mathematically;
others have not.

If Y is a compact Kéhler submanifold of the complex projective space
P", one could try to compute GW-invariants of Y by relating them to
GW-invariants of P". For example, suppose Y is a hypersurface in P"
of degree a. In other words, if v — P" is the tautological line bundle
and £=~*® —P" then

Y = s71(0),
for some s€ H?(IP"%; £) such that s is transverse to the zero set. If g, k,
and d are nonnegative integers, let 90, (P",d) and M, (Y, d) denote
the moduli spaces of stable Jy-holomorphic degree-d maps from genus-
g Riemann surfaces with k marked points to P"™ and Y, respectively.
These moduli spaces determine the genus-g degree-d GW-invariants of

P* and Y. o
By definition, the moduli space M, (Y, d) is a subset of the moduli

space M, (P, d). In fact,
(L1) My k(Y. d) = {[C,u] €My (P, d): sou=0€ H(C;u*L)}.

Here [C,u] denotes the equivalence class of the holomorphic map w :
C — P" from a genus-g curve C with k& marked points. The relation-
ship (1.1) can be restated more globally as follows. Let

T Ug (P, d) — My x (P, d)
be the universal family and let
evi o Uy w(P",d) — P"
be the natural evaluation map. In other words, the fiber of T;l’k over
[C,u] is the curve C with k marked points, while

evg,k([C,u; z]) = u(z) if zeC.



ON THE GENUS-ONE GROMOV-WITTEN INVARIANTS 643

We define a section sg’k of the sheaf W;{ k*evgfkﬂ — My (P, d) by

(1) = [s 0]

By (1.1), M, 1(Y,d) is the zero set of this section.

The previous paragraph suggests that it should be possible to relate
the genus-g degree-d GW-invariants of the hypersurface Y to the moduli
space My (P", d) in general and to the sheaf

7737k*evgfk£ — M, 1, (P", d)
in particular. In fact, it can be shown that
GW3(ds ) = (v, [Mox(V.d)] ™)
= <1/) . e(wf{k*evgfkﬁ), [ﬁ07k(Pn, d)]>

for all 1 € H*(My (P", d); Q); this was observed early on by Beauville

[2], for example. The moduli space ﬁ07k(P", d) is a smooth orbivariety
and

(13) 71-(C)l,k>|<ev(c)l:kk2 - ﬁO,k(]va d)

(1.2)

is a locally free sheaf, i.e. a vector bundle. The right-hand side of (1.2)
can be computed via the classical Atiyah-Bott localization theorem [1],
though the complexity of this computation increases rapidly with the
degree d.

A hyperplane property, i.e. a relationship such as (1.2), for positive-
genus GW-invariants has been elusive since the early days of the Gro-
mov-Witten theory. If ¢>0, the sheaf

d d mr
Ty 1x€Vg & — My 1 (P", d)

is not locally free and need not define an euler class. Thus, the right-
hand side of (1.2) may not even make sense if 0 is replaced by g > 0.
Instead one might try to generalize (1.2) as

) WY (d: ) = (v, [y (Y, d)] ")
z (¢ e(RO7d evin € — Rimd | evis £), [Dy (P, d)]""),

where Riﬂg7k*evgfk£—>ﬁg7k(Pn, d) is the i-th direct image sheaf. The
right-hand side of (1.4) can be computed via the virtual localization
theorem of Graber-Pandharipande [10]. However,

Ni(d) = GWio(d; 1)
# (e(ROnt gevipe—R'nl y,eviy ), [ (P, @) ),

according to Graber-Pandharipade [11] and Katz [12] for a quintic
threefold Y C P4.
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In this paper we prove a hyperplane property for genus-one GW-
invariants. We denote by

M (", d) C Dy 4 (P, d)

the closure in ﬁLk(Pn, d), either in the stable-map or Zariski topology,
of the subspace

Dﬁ(l)k( ", d) = {[C,u] €My ,(P",d): C is smooth}.
If Y CP” is a hypersurface as above, let

M) (Y d) = Dy 4(Y:d) NIy 4, (B, d).

Since 9 (P",d) is a unidimensional orbi-variety, it carries a funda-

mental class. By [28, Corollary 1.6], ﬁ?7k(Y, d) carries a virtual funda-
mental class. It can be used to define reduced genus-one Gromov-Witten
invariants:

CWIY (5 0) = (v, [ (Y, d)]") € Q,

where 1) is a tautological (cohomology) class on ﬁgk(l/, d); see below.
We show in this paper that the reduced genus-one GW-invariants satisfy
a natural analogue of (1.2).

Theorem 1.1. Suppose d and a are positive integers, k is a nonneg-
ative integer, £=~v*®% —P",

7T‘1i7k:i,(17k(IP’",d) — ﬁ?,k(]}””,d) and ev‘ik: (P, d) — P

are the universal family and the natural evaluation map, respectively. If
Y CP"™ is a smooth degree-a hypersurface, then

. ” —0 n
(1.5)  GWYY (dsv) = (¢ - elnf poevi2), [ (P", d)])
for every tautological class 1) on My 1 (P",d).

The tautological classes on ﬁl,k(ﬁ’m, d) are certain natural cohomology
classes. They include all geometric classes defined in Subsection 1.3.
We describe the space of all cohomology classes 1 to which Theorem 1.1
applies in Subsection 2.2.

Implicit in the statement of Theorem 1.1 is that the euler class of
the sheaf

(1.6) v g — M (P, d)

is well-defined, even though it is not locally free. This is the case by
[27, Theorem 1.1].
The right-hand side of (1.5) should in principle be computable via lo-

. . . . 0 .
calization directly. However, since the space 9 ;(P",d) is not smooth
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and the sheaf (1.6) is not locally free, the classical localization the-
orem [1] is not immediately applicable. A desingularization of the

space ﬁgk (P™,d), i.e. a smooth orbivariety ﬁ?k (P, d) and a map
T %?,k(]?nv d) - ﬁ(1)716(]?”7 d)?

which is biholomorphic onto 931(1)7k(P",d), is constructed in [22]. This

desingularization of ﬁ?k(]}”",d) comes with a desingularization of the
sheaf (1.6), i.e. a vector bundle

\7d a0 ~ yod d d
Vig — Dﬁm( " d) s.t. TV = 7r17k*ev1fk£.
In particular,

<w ' e(ﬂ-il,k*evcll:kkg)7 [ﬁ?,k(]}m? d)] >

(1.7) . N
= <7~T*¢ ' G(Vf’k), [m(l),k(]Pm? d)] >
Since a group action on P" induces actions on ﬁ? x(P",d) and on f}f o>
the classical localization theorem is directly applicable to the right-hand
side of (1.7), for a natural cohomology class .

By itself, Theorem 1.1 does not provide a way of computing the stan-
dard genus-one GW-invariants of Y. However, the reduced genus-one

GW-invariants capture the contribution of ﬁ?,k(Y, d) to the standard
genus-one GW-invariants. Thus, the difference between the two invari-
ants is completely determined by the genus-zero invariants of Y'; see
[31, Subsection 1.2]. We give explicit formulas in some special cases in
Subsection 1.3 below.

Remark 1: Theorem 1.1 generalizes to arbitrary smooth complete
intersections in projective spaces. More precisely, if

£ =g @y®m _, pn

with ay,...,a, € ZT, s€ HO(P"; £) is transverse to the zero set in £,
and Y =s71(0), then

(1.8) CGWYY (ds0) = (0 - e(nf pevii ), [ (P, d)]),

for every geometric cohomology class ¥ on ﬁLk(]P’”, d).
Remark 2: In turn, Remark 1 generalizes as follows. Suppose (X, w,
J) is a compact almost Kéhler manifold,

A€ Ho(X;Z)*=Ho(X;Z)—{0},

(£,V)— X is a complex vector bundle with connection, and s is a V-
holomorphic section of £; see Subsections 1.2 and 2.2 for terminology.
If J is genus-one A-regular in the sense of [26, Definition 1.4], s is
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transverse to the zero set in £, and (£, V) splits into line bundles that
are (w, A)-positive in the sense of Definition 1.2 below, then

; 0 vir
GWTY (A59) = (v - e(Vily), [T 4 (X, 43 7)) ")
_ A
= (¥, PDﬁ?,k(x,A;J)e(Vlv'f»’
where Y =571(0), v is a tautological class, and the cone

Vil — D1 (X, A5 )

(1.9)

is the geometric analogue of the sheaf 7T[1i k*ev‘li*kﬂ. It consists of V-
holomorphic sections of the vector bundle 2; as defined in Subsection 1.2
below. By Corollary 1.4, the Poincare dual of its euler class is well
defined as long as (£, V) is a direct sum of (w, A)-positive line bundles.

Theorem 1.1 and Remarks 1 and 2 have a natural, but rather specu-
lative, generalization to higher-genus invariants. Suppose that the main
component

M (X, A; ) C My (X, A5 J)
is well defined and carries a virtual fundamental class. If so, it deter-
mines reduced genus-g GW-invariants GWS;};(A;¢). Suppose further
that (the Poincare dual of) the euler of the cone

Vile — Mo n(X, A7)

corresponding to the vector bundle (£, V) — X is well defined. If con-
structions of these objects are direct generalizations of the correspond-
ing constructions in Subsection 1.2 and in [26]-[28], then the proof of
Theorem 1.1 can be generalized to show that

(1.10) GWOY (Asp) = (- e(V2y), [B00 (X, A D))",

provided appropriate generalizations of the assumptions in Remark 2
hold. Along with an equally speculative generalization of [28, Theo-
rem 1.1] stated in [28, Subsection 1.2], (1.10) would, if true, provide
an algorithm for computing arbitrary-genus GW-invariants of complete
intersections.

From the point of view of algebraic geometry as described by Behrend-
Fantechi [3] and Li-Tian [16], the genus-g degree-d Gromov-Witten in-
variant GW;k(d;l/J) is the evaluation of 9 on the virtual fundamental

class (9, (Y, d)]V"". Using the more concrete point of view of symplectic
topology as described by Fukaya-Ono [6] and Li-Tian [15], GW;k(d; )
can be interpreted as the euler class of a vector bundle, albeit of an
infinite-rank vector bundle over a space of the “same” dimension. As
in the finite-dimensional case, this euler class is the number of zeros,
counted with appropriate multiplicities, of a transverse (multivalued,
generic) section. It is shown by Li-Tian [17] and Siebert [21] that the
two approaches are equivalent. In this paper, we take the latter point
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of view. Similarly, we view the euler class of the sheaf (1.6) as the
zero set of a generic section of its geometric analogue Vﬁk defined in
Subsection 1.2.

Theorem 1.1 and Remark 1 are special cases of Remark 2, which is
the same as Theorem 2.3. It is proved in Subsection 2.2 by showing
that the zero sets of two bundle sections whose cardinalities are the two
expressions in (1.9) are the same set. In fact, Theorem 2.3, just like
its genus-zero analogue, follows easily from definitions of the two sides
in (1.9), once it is established that these definitions are well-posed.

1.2. Cones of holomorphic bundle sections. Let (X,w,J) be a
compact almost Kéhler manifold. In other words, (X,w) is a symplectic
manifold and J is an almost complex structure on X tamed by w, i.e.

w(v, Jv) >0 VveTX-X.

If g, k are nonnegative integers and A€ Hy(X;Z), let M, (X, A; J) de-
note the moduli space of (equivalence classes of) stable J-holomorphic
maps from genus-g Riemann surfaces with k marked points in the homol-
ogy class A. Let ﬁ?k(X,A; J) be the main component of the moduli
space My (X, A;J) described by [26, Definition 1.1]; see also Defi-
nition 2.2 below. This closed subspace of ﬁl,k(X ,A;J) contains the
subspace MY, (X, 4; J) consisting of the stable maps [, u] such that
the domain ¥ is a smooth Riemann surface. If J is sufficiently regular,
ﬁ?k(X,A; J) is the closure of MY, (X, A;J) in My (X, 4; J).

Suppose £ — X is a complex line bundle and V is a connection in £.
If (X,7) is a Riemann surface and u: ¥ — X is a smooth map, let

V" T(Zu"8) — T(S; T E@u*L)

be the pull-back of V by u. If b= (3, j;u), we define the corresponding
0-operator by

Ovp: T(Z;u*L) — F(E;AB;T*Z(X)U*S),
= 1 e
Boo = 5 (V"€ +iV"E 0 ),
where i is the complex multiplication in the bundle u*£ and

Agb»lT*Z‘:@u*S = {neHom(TE,u*S): noj = —in}-

(1.11)

The kernel of 3v,b is necessarily a finite-dimensional complex vector
space.

We denote by X; (X, A) the space of all degree-A stable smooth
maps from genus-one Riemann surfaces with k marked points into X
and by

Vit — X1 (X, A)
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the cone, or the bundle of (orbi-)vector spaces, such that
v{fk\w = ker Oy p/Aut(b) ¥V [b] € X1 x(X, A).

The spaces X1 (X, A) and ka have natural topologies; see Subsec-
tion 2.1 below. By [27, Theorem 1.1], if (X,w,J) is the complex pro-
jective space (P™, wq, Jy) with its standard Ké&hler structure and (£, V)
is a positive power of the hyperplane line bundle, i.e. the dual of the
tautological line bundle, v* with its standard connection, then the euler
class of
Vil — D (X, A; )

and its Poincare dual are well defined. By [27, Theorem 1.2], this is
also the case if J is an almost complex structure on P" sufficiently close
to Jyp.

The argument in [27] easily generalizes to all (X,w,J), (£,V), and
A such that (£,V) is a split positive vector bundle with connection
and J satisfies a certain regularity condition. This regularity condition,
which is described by [26, Definition 1.4], implies that ﬁ?,k(X, A; J)
has the expected topological structure of a unidimensional orbivariety.
In this paper, we show that the Poincare dual of the euler class of Vf}k

over ﬁgk(X ,A; J) is well defined without any condition on J, as long
as (£,V) satisfies the requirement of Definition 1.2; see Corollary 1.4
below.

Definition 1.2. Suppose (X,w) is a symplectic manifold and A €
Hy(X;Z). A complex line bundle £ — X is (w, A)-positive if
(¢1(L£),B) >0 V BEHy(X;Z)" st. B=A or (w, B)<{(w, A).

We note that Vf}k — ﬁgk(X, A; J) is not a vector bundle, as the
fibers of Vf?k are of two possible dimensions. In [27, Subsections 1.2,1.3],
the Poincare dual of the euler class of ka is defined as the zero set
of a generic multisection ¢ of ka over ﬁ?,k(X ,A; J). This zero set
determines a homology class in ﬁ?,k(X ,A; J) if ¢ is sufficiently regu-
lar. In [27, Section 3], it is shown that ka contains a vector subbun-
dle of a sufficiently high rank over a neighborhood of every stratum of
ﬁ?7k(X ,A;J). The existence of such subbundles implies that regular
sections of Vf?k exist; see [27, Subsection 3.1].

If J does not satisfy the regularity condition of [26, Definition 1.4],
the moduli space ﬁ(1]7k(X,A; J) itself need not carry a fundamental
class. In this case, we cannot define the Poincare dual of the euler class
of ka as the zero set of a section of ka over ﬁ(1]7k(X, A;J). On the
other hand, in [28], the definition of

My (X, A; ) C Iy (X, A; )



ON THE GENUS-ONE GROMOV-WITTEN INVARIANTS 649

given in [26] is generalized to define the main component ﬁgk (X, A;J,
v) of the moduli space My (X, A; J,v) of (J, v)-holomorphic maps for

an effectively supported perturbation v of the Jj-operator; see Defini-
tions 2.1 and 2.2 below. By [28, Theorem 1.5], if v is sufficiently small

and generic, ﬁ?,k(X ,A; J,v) determines a rational homology class in
a small neighborhood of ﬁ(1]7k(X,A; J) in X1 (X, A). This rational
homology class is independent of the choice of v. We will define the
Poincare dual of the euler class of Vf}k as the zero set of a generic mul-
tisection of Vi over ﬁ?ﬂX ,A; J,v). Tietze Extension Theorem will

be used to show that Vf}k admits sections that are sufficiently nice for
this purpose.

If J is an almost complex structure on X and J = (J;)g[o,1] is a family
of almost complex structures on X, we denote by

Tk(X, A5 J)  and Tr(X, A5J)

the spaces of effectively supported perturbations of the dj-operator on
%Lk(X ,A) and of effectively supported families of perturbations of the
0j,-operators on X; ;(X, A); see Subsection 2.1 for details. If

V= (W)iep,1) € OTk(X, 4; ),
we put
T (X, A; T, v) = {(£,0) €[0, 1] x X1 (X, A): bEM (X, A; Ty, )}
We denote by ZT the set of nonnegative integers. Let
dimy (X, A; £) = dimy x(X, 4) — 2(c1(£), 4)
=2((c1(TX)—c1(L), A) + k).
Theorem 1.3. Suppose (X,w,J) is a compact almost Kdhler mani-

fold, A€ Ho(X;Z)*, k€ Z*, (£,V)— X is an (w, A)-positive line bun-
dle with connection, ka — X1 1(X, A) is the corresponding cone, and
W is a neighborhood ofﬁgk(X, A;J) in X (X, A). Ifve &P (X, A;J)
is sufficiently small and generic and ¢ is a generic multisection of ka
over ﬁik(X, A; Jv), then ¢~ 1(0) determines a rational homology class
i W. Furthermore, if J = (Jt)te[o,l} is a family of w-tamed almost com-
plex structures on X, such that Jy=J and J; is sufficiently close to J

for all t, vy and vy are sufficiently small generic effectively supported
perturbations of 05, and Jy,, and vy and @1 are generic multisections

of ka over ﬁ?k(X,A; Jo, o) and ﬁ(1)7k(X, A; Ji,11), then there exist
homotopies

es a0
v=(V)eo] € BTk(X, 45 J), O € (M 4 (X, A5 ,v); Viy)
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between vy and vy and between @y and oy such that ®~1(0) determines
a chain in W and

02~1(0) = 1 (0) — 5 (0).
Corollary 1.4. If (X,w,J), A, k, and (£,V) are as in Theorem 1.3,

the cone Vﬁk—>%1,k(X, A) corresponding to (£,V) determines a well-
defined homology class

—0
PDgo (X,A;J)G(ka) € Heim, . (x,4,0) (D1 (X, 4;.7); Q).

k

This class is an invariant of (X,w) and (£,V).

As in [27], we will describe the local structure of the cone ka. In
contrast to [27], we will not construct a high-rank vector subbundle of
ka over a neighborhood of every stratum of ﬁgk(X ,A; J,v). Instead,
we will use Tietze Extension Theorem to construct a sufficiently regular
multisection of Vf}k. Its zero set determines a homology class in a small
neighborhood of ﬁ(1]7k(X, A; J) in the space X; (X, A).

For a generic v, ﬁ?k(X,A; J,v) can be stratified by orbifolds U,
of even dimensions; see Subsection 3.4 and Remark 1 at the end of
Subsection 3.3. The main stratum of ﬁ?’k(X, A; Jv),

MY (X, A; J,v) = T (X, A; ) N XY (X, A),
is of dimension dim; (X, A), where
X (X, A) C X1 (X, A)
is the subspace of stable maps with smooth domains. In Subsection 3.5,
we describe a subcone Wfk of ka such that Wfkh,{a is a smooth vector
bundle for every stratum i/,. By analyzing the obstruction to extending
holomorphic bundle sections from singular to smooth domains in Sec-

tion 4, we show that Wfk is a regular obstruction-free cone in the sense
of Definition 3.3. By Proposition 3.6, for a generic multisection ¢ of

==0 .
Wfk C ka over M (X, A; J,v), oy, is then transverse to the zero set

in Wfkh,{a. By the rank statements of Proposition 3.9, ¢~1(0) is strat-
ified by smooth orbifolds of even dimensions. Furthermore, the main
stratum of ¢~1(0) is of dimension dim; (X, 4; £) and is contained in
Dﬁ% w (X, A; J,v). We can then choose an arbitrarily small neighborhood
U of the boundary of ¢~1(0) such that

H(U;Q) = {0} V1> dim (X, A;€) - 1.

Since ¢~1(0)—U is compact, via the pseudocycle construction of [19,
Chapter 7] and [20, Section 1], ¢~1(0) determines a homology class

[¢71(0)] € Haimy (x4, (W, U3 Q)
~ Haim, , (x,4;,0)(W;Q);
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see also [29]. The second part of Theorem 1.3 is a parametrized version
of this construction. Corollary 1.4 is an immediate consequence of The-
orem 1.3; see also Remark 2 in [28, Subsection 1.3] and the comments
at the end of [28, Subsection 1.4].

The statement of Corollary 1.4 is not needed to show that the ex-
pressions on the right-hand sides of (1.5) and (1.8) are well defined, as
this is the case by [27, Theorem 1.1]. However, the detailed statement
of Theorem 1.3 is useful for proving Theorem 1.1 and its generalizations
in Remarks 1 and 2 whenever Y is not a Fano complete intersection. If
Y is Fano, Theorem 1.1 can be obtained from [27] by working just with
J-holomorphic, instead of (J,v)-holomorphic, maps.

Remark: If £ is a direct sum of (w, A)-positive line bundles, the
Poincare dual of the euler class of the corresponding cone is defined to
be the intersection product of the Poincare duals of the euler classes of
the cones corresponding to the component line bundles. The intersection
product can be defined by intersecting pseudocycle representatives for
the above homology classes; see [27, Subsection 1.2].

1.3. Some special cases. By [28, Proposition 3.1], the difference be-
tween the standard and reduced genus-one invariants of a symplectic
manifold (Y, w) is a combination of the genus-zero invariants of Y. The
exact form of this combination in general is determined in [31].

If (Y,w,J) is an almost Kéhler manifold, for each [=1,... & let

eVlZﬁg7k(Y,A; J) — Y, [anlu"'7yk;u:| —>U(yl)7

be the evaluation map at the [-th marked point. We will call a cohomol-
ogy class ¢ on My (Y, A; J) geometric if 7 is a product of the classes
evyw for e H*(Y;Z). By [28, Theorem 1.1], if A€ Ho(Y;Z)*, then

GWY 4 (A39) — GWT (4;9)

Wgwgkmﬂp), if dimgpY =6,

for every geometric cohomology class i on ﬁLk(Y, A J).

In the rest of this subsection, we discuss some implications of The-
orem 1.1 and Remarks 1 and 2, combined with (1.12), focusing on
Calabi-Yau complete-intersection threefolds. We note that if YV is a
Calabi-Yau threefold, then the expected dimension of the moduli space
M, 0(Y, A4;.J) is zero for every g and A.

With notation as in Theorem (1.3), if a=5, Y is a quintic threefold.
It can be easily seen that ¢;(7Y)=0. Let

Ny(d) = GWYo(d; ).

Theorem 1.3 and equation (1.12) then give the following corollary.
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d 1 2 3 4
(..)) 0 2,875 | 49,355,000 | 952,691,384,375
e 32 81 256

2,875 | 407,125 | 243,388,750 366,163,353,125
Nl(d) 12 8 9 16

ni(d) | 0 0 | 609,250 |3,721,431,625

Table 1. Low-degree GW-invariants of a quintic threefold.

Corollary 1.5. Suppose d is a positive integer, L=~ —P*, and
x4y (P4 d) — ﬁ(l](]P"l,d) and evd: 4 (P*, d) — P*

are the universal family and the natural evaluation map, respectively. If
Y CP? is a smooth quintic threefold,

(1.13) Na(d) = 75 No(d) + {e(f.evi* ), [T (P, d)]).

The middle number in (1.13) can be computed using (1.2). This has
been done for every d in [5], [7], [9], [13], and [14]. As mentioned in
Subsection 1.1, the last number in (1.13) can be computed, for each
given d, via the classical localization theorem of [1]. Similarly to the
genus-zero case, the complexity of computing the last term in (1.13)
increases rapidly with the degree d, but this has been fully carried out
n [30], finally confirming the genus-one prediction of [4] for a quintic
threefold. A few low-degree values are shown in the second row of Ta-
ble 1 (these numbers were obtained by a direct localization computation
and predate the desingularization construction of [22] and the complete
computation of [30]). The numbers n(d) that appear in the last row
of this table are defined by

No(d) _ Z no(al/k)7

L3
k|d

Nl(d)zéznod/k Z oK) (k). o(k)y=3"r.

k|d kld rlk

The numbers ny(d) and nq(d) are of importance in theoretical physics.
Conjecturally, ng(d) is a count of J-holomorphic degree-d genus-g curves
in Y for a generic almost complex structure J on Y.

With notation as in Remark 1 in Subsection 1.1, if

a1+ ...+ ay, =n+1
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and Y is a corresponding complete intersection, then Y is a Calabi-Yau
threefold. Let

N (d) = GW} o(d; 1).
The identities in Remark 1 and in (1.12) then give

NY (@) = N3 (d) + (e(mheni2), [T, d)]).

Once again, both terms on the right-hand side are computable via (1.2)
and the classical localization theorem.

In the more general case of Remark 2 in Subsection 1.1, Y is a Calabi-
Yau threefold if

C1 (S) — Cl(TX) =0 and dimR X — 2rk ((32 = 6.

In such a case,
1 —0
Ny (A4) = 5 Ng (A) + {e(Vil), [P (X, 4. 0)]),

where Vf}k is the cone of “holomorphic sections” corresponding to (£, V)
and NgY(A) = GWZ;O(A; 1).

Two completely different approaches to computing positive-genus
GW-invariants of complete intersections have been proposed by Gath-
mann [8] and Maulik-Pandharipande [18]. Both approaches use degen-
erations and relative Gromov-Witten invariants. The first approach can
be used to compute the genus-one and -two GW-invariants of a quintic
threefold. The latter can in principle be used to compute arbitrary-
genus GW-invariants of a quintic threefold as well as of some other
low-degree low-dimensional complete intersections. In contrast, Theo-
rem 1.1 above and [28, Proposition 3.1] are at the present restricted to
genus-one GW-invariants only, but are applicable to arbitrary complete
intersections.

Acknowledgments. We would like to thank D. Maulik, R. Pand-
haripande, G. Tian, and R. Vakil for a number of helpful discussions.

2. Hyperplane property for genus-one GW-invariants

2.1. Review of definitions. Suppose X is a compact manifold, A €
H5(X;Z), and g,k € Z*. Let X41(X, A) denote the space of equiva-
lence classes of stable smooth maps u: 3 — X from genus-g Riemann
surfaces with k marked points, which may have simple nodes, to X of
degree A, i.e.
u[X] = A € Ho(X; Z).

The spaces X, (X, A) are topologized using LY-convergence on com-
pact subsets of smooth points of the domain and certain convergence
requirements near the nodes; see [15, Section 3]. Here and throughout
the rest of the paper, p denotes a real number greater than two. The
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spaces X4 (X, A) can be stratified by the smooth infinite-dimensional
orbifolds X7(X) of stable maps from domains of the same geometric
type and with the same degree distribution between the components
of the domain; see Subsections 3.1 and 3.2. The closure of the main
stratum, %27k(X, A),is Xy (X, A).

If J is an almost complex structure on X, let

T (X, A3 ) — Xg (X, A)

be the bundle of (T'X, J)-valued (0, 1)-forms. In other words, the fiber
of TOL(X, 4; J) over a point [b] =[S, j;u] in X4x(X, A) is the space

ngllc(X’ A; J)‘[b] =T%(b; J)/Allt(b), where
0,17 .
T (b; J) = D (S A, T* S 0u" TX).

Here j is the complex structure on ., the domain of the smooth map w.
The bundle AOJ’;T*Z‘,@u*TX over ¥ consists of (J, j)-antilinear homo-
morphisms:

AF T S@u'TX = {neHom(TE, u*TX): Jon=—10j}.

The total space of the bundle FS’}C(X,A; J) — X, 1(X,A) is topolo-
gized using LP-convergence on compact subsets of smooth points of the
domain and certain convergence requirements near the nodes. The re-
striction of Fg”i(X,A; J) to each stratum X7(X) is a smooth vector
orbibundle of infinite rank.

We define a continuous section of the bundle

Do (X, A3 T) — Zgr(X,4) by
9s([%, jsu]) = 0yju = %(du + Joduoy).

By definition, the zero set of this section is M, (X, A;J). The re-
striction of 97 to each stratum of X, 5(X,A) is smooth. The section
0y is Fredholm, i.e. the linearization of its restriction to every stra-
tum X7(X) has finite-dimensional kernel and cokernel at every point
of 5;1(0)0%7(X ). The index of the linearization of d; at an ele-
ment of Dﬁg’k(X ,A; J) is the expected dimension of the moduli space

My, (X, A5 T),
dimg (X, 4) = 2((c1 (T X), A) + (1—g)(n—3) + k),
where 2n = dimg X. This is the dimension of the cycle
My n(X, A5 J,v) = {d;4v} 7 (0)
for a small generic multivalued perturbation

v € BUL(X, A1) = D(Xg0(X, A), TUL(X, 4; )
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of 07, where (’52’,16(X ,A; J) is the space of all continuous multisections

v of Fg:i(X , A; J) such that the restriction of v to each stratum X7 (X)
is smooth. (Our term multisection, or multivalued section, corresponds
to the notion of locally liftable multi-section in [6, Section 3].) Since
the moduli space M, (X, 4; J) is compact, so is M, (X, 4; J,v) if v is
sufficiently small.

An element [3;u] of X (X, A) is an equivalence class of pairs con-
sisting of a prestable genus-one Riemann surface > and a smooth map
u: X — X. The prestable surface X is a union of the principal com-
ponent(s) X p, which is either a smooth torus or a circle of spheres, and

trees of rational bubble components, which together will be denoted
by by B- Let

(X, 4) = {[Sru) € X11(X, A): w[Sp] # 0 € Hy(X32)}.
Suppose
(2.1) [Siu] € X1k(X, 4) - %19 (X, ),

i.e. the degree of u|y, is zero. Let x(3;u) be the set of components
3; of ¥ such that for every bubble component ¥} that lies between ¥;
and X p, including ¥; itself, the degree of u|y, is zero. The set x°(X;u)
includes the principal component(s) of ¥. We give an example of the
set x"(3;u) in Figure 1. In this figure, we show the domain ¥ of the
stable map (3;u) and shade the components of the domain on which
the degree of the map u is not zero. Let

2= Uz

1€X0 (Z5u)
Every bubble component 3; C X is a sphere and has a distinguished
singular point, which will be called the attaching node of ¥;. This is the
node of Y; that lies either on X p or on a bubble X}, that lies between X;
and Xp. We denote by x(3;u) the set of bubble components ¥; such
that the attaching node of ¥; lies on XY and the degree of uly, is not
Zero.

Definition 2.1. Suppose (X,w) is a compact symplectic manifold
and J = (Ji)ejo) 1s a C'-continuous family of w-tamed almost struc-
tures on X. A continuous family of multisections v = (14)ie[0,1), With
v € @?’i(X, A; Jy) for all t €]0,1], is effectively supported if for every
clement

b=[S5u) € X1 p(X, 4)- X1} (X, 4)
there exists a neighborhood W, of X! in a semi-universal family of
deformations for b such that

v (X)) 0 V[Xu] e X (X, A), telo,1].

X'OW, =
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ho
hy  hy hs hy X°(5;u) ={ho, hs}
e hs X(Z;u)={h1, ha, hs}
“tacnode”

Figure 1. An illustration of Definition 2.2.

If b= [¥;u] is an element of X; (X, A), a semi-universal universal
family of deformations for b is a fibration

szl;lb — Ay

such that Ap/Aut(b) is a neighborhood of b in X; (X, A) and the fiber
of oy over a point [¥';u] is X', If J = (J;)sepo,] is a continuous family
of w-tamed almost structures on X, we denote the space of effectively
supported families v as in Definition 2.1 by &% (X, A; J). Similarly, if J
is an almost complex structure on X, let (’Sf{f’k(X ,A; J) be the subspace

of elements v of Qﬁ?:,lg(X ,A; J) such that the family v, =v is effectively
supported.

Suppose v € 6% (X, 4; J) and [¥; ] is an element of 9y (X, 4; J,v)
as in Definition 2.1. Since ¥; C X is a sphere, we can represent this
element by a pair (3;u) such that the attaching node of every bubble
component ¥; C Xp is the south pole, or the point co = (0,0, —1), of
S? CR3. Let e = (1,0,0) be a nonzero tangent vector to S? at the
south pole. If i€ x(X;u), we put

D;i(3;u) = d{u|gi}

00 €00 S Tu\gi(oo)X-

We note that U\zg is a degree-zero holomorphic map and thus constant.
Thus, u maps the attaching nodes of all elements of x(X;u) to the same
point in X.

Definition 2.2. Suppose (X,w, J) is a compact almost Kihler man-
ifold, A€ Ho(X;Z)*, and keZ™. Ifve &7 (X, A; J) is an effectively
supported perturbation of the 0;-operator, the main component of the
space My (X, A; J,v) is the subset ﬁ?k(X,A; J,v) consisting of the
elements [¥;u] of My (X, 4; J,v) such that

(a) the degree of uly, is not zero, or

(b) the degree of u|x, is zero and

dime Span(c ) {Di(E;u): i€ x(35u)} < [x(Z;u)l.
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By [28, Theorem 1.4], ﬁ(1]7k(X, A; J,v) is a compact space if v is ef-
fectively supported and sufficiently small. For a generic effectively sup-
ported v, ﬁ?k(){ , A; J,v) determines a homology class of the expected
dimension in a small neighborhood of ﬁ?,&X, A; J) in X4 (X, A) which
is independent of v and J; see [28, Theorem 1.5, Corollary 1.6].

If X, A g, and k are as above and (£,V)— X is a vector bundle
with connection, we denote by

Fg,k(27 A) —):{g,k(Xv A)
the cone such that the fiber of I'y 1.(£, A) over [b] =[¥;u] in X, (X, A)

is the Banach space

Iy (L, A)hb} =T'(b; £)/Aut(b), where Ly L) =LY(Z;u*L).

The topology on the total space of I'y (£, A) is defined analogously to
the topology on I'y 1 (T'X, A) of [15, Section 3]. Let

Vi = {1, €Ty i(L, A): B €Xy (X, A); E€ker Iy, C Tyr(b; L)}
C Fg7k(2, A)

The cone Vék — X, 1(X, A) inherits its topology from I'y (£, A).

2.2. Statement and proof of hyperplane property. We will call
a cohomology class 1) on X; ;(X, A) tautological if there exists a vector
bundle

W — X1 (X, A)

such that W|x, (x) is smooth for every stratum X7 (X) of Xy (X, A)
and p=e(W).

If (X,J) is an almost complex manifold and (£,V) — X is a com-
plex vector bundle with connection, we will call a section s of £ V-
holomorphic if

Ovs = %(VS—i—iVSOJ) = 0.

Theorem 2.3. Suppose (X,w,J) is a compact almost Kdhler man-
ifold, A € Hy(X;Z)*, ke Z™, (£,V)— X is a complex vector bundle
with connection, and s is a V-holomorphic section of £ such that J is
genus-one A-regular in the sense of [26, Definition 1.4], s is transverse
to the zero set in £, and (£, V) splits into (w, A)-positive line bundles. If
ka — X1 (X, A) is the cone corresponding to (£,V) and Y =s71(0),

Y
(2:2) GWT (4:9) = (¥, PDg oy pe(Vi)
for every tautological class ¢ on X (X, A).

Proof. Since J is genus-one A-regular, ﬁg (X, A; J) has the expected
structure of a topological orbivariety. By a generalization of the proof of
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the regularity statement of [26, Theorem 1.6] analogous to [28, Subsec-
tion 2.5], for all v € &% (X, A; J) sufficiently small ﬁ(1]7k(X, A; J,v) also
has the expected structure of a topological orbivariety. In particular,

it is stratified by smooth orbifolds of even dimensions as described in
Subsection 3.4 below. We will call v € &7 (X, A; J) (V, s)-compatible if

Vslyov(E;u) =0 VIS u]eX x (X, A).
We note that if v is (V, s)-compatible, then the map
(Xu) — Sﬁk(E; u)=sou € I'(3;u* L)

defines a continuous section of the cone ka over ﬁ?ﬂX JA; ).

Since the V-holomorphic section s is transverse to the zero set in £,
the (i, J)-linear map

Vs:TX — £

is surjective along Y = s71(0). Let Us be a small neighborhood of Y
in X such that Vs is surjective over Us;. The kernel of Vs over Us is
then a complex subbundle of (T'X, J)|y,, which restricts to 7Y along Y.
We denote this subbundle by TY. If v e 67 (X, A; J) is such that for
all [X;u]eX (X, A)

A0 T 7 : )
sy 4 € D(%; AT RTY), i u(®)cUs:
=0, otherwise,
then v is (V, s)-compatible. Thus, every element vy € @‘fk(Y, A; J) can

extended to a (V,s)-compatible element v of &7 (X, A;J). Further-
more, if vy is a small, then v can also be chosen to be small.

For a small generic vy € &% (Y, 4;J), ﬁ?k(Y, A; J,vy) is stratified
by smooth orbifolds of even dimensions so that the largest-dimensional
stratum is 931(1)7k(Y, A; J,vy) and

dim MY (Y, A; J,vy) = dimy (Y, A).
Let v be an extension of vy to a small (V,s)-compatible element of

‘fk(X,A; J). Suppose

W — X1 (X, A)
is a complex vector bundle of rank dim; (Y, A)/2 as in the first para-

graph of this subsection. Choose a section f of VW over ﬁ(I)JC(X, A; Jv)
such that fly, is transverse to the zero set in W]y, for every stratum

Uy of ﬁ?,k(X,A; J,v) and of ﬁ?’k(Y,A; J,vy). Then,
f_l(O)ﬂﬁ(ik(Y,A; Jyvy) C Dﬁ%k(Y, A; J,vy) and
: _ —0
(2.3) GWIL (As9) = F[f7H(0)NIMy 1 (Y, As T wy).
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On the other hand, since v is (V, s)-compatible, ka is a section of
Vil — T (X, As ).
Furthermore,
_ 0 ==0
(s 17H0) = I (X, A5 T )Xk (Y, A) =00 (Y, A5 oy) =

pay I TONYTO) = S OND (Y, A o)
' C MY (X, A5 ,v).

Note that if [b]=[%; u] Eﬂﬁ(l]’k(Y, A; J vy ),

25) ker Vsi'y|p, = {¢€ker D, Vs,06=0}
' = ker D, NT(S;u*TY) = ker Dy, s

where D, and D Jly vy are the linearizations of the sections 0+ v
and 0 7y vy at b. The second equality above is immediate from the
transversality of s. By (2.5),

dimg Im Vs‘ﬁkkg;u) = dimker D, — dimker Dy, ...
(2.6) = dimy (X, A) — dimy (Y, 4)
= 2(c1 (L), A) = dimg Vi |-

The second equality above follows from our assumption that the opera-
tors Dy ,.p and D gy, .. are surjective; the last equality is a consequence

of the (w, £)-positivity assumption. By (2.6), sfk is transverse to the
zero set in Vf‘k along Sﬁ(l] w(X,A; J,v). Since f is transverse to the zero
set in W along Dﬁ%k(X,A; J,vy), it then follows from (2.4) that

(. P e ap@Vii)) = [ O]} (0)]

= H| T ONI (V. A L)
Theorem 2.3 follows from (2.3) and (2.7). q.e.d.

(2.7)

3. Ingredients in proof of Theorem 1.3

3.1. Notation: genus-zero maps. In this subsection we describe our
detailed notation for bubble maps from genus-zero Riemann surfaces
and for related objects. In general, moduli spaces of stable maps can
stratified by the dual graph. However, in the present situation, it is
more convenient to make use of linearly ordered sets.

Definition 3.1. (1) A finite nonempty partially ordered set I is a
linearly ordered set if for all 41,49, h €1 such that i1,io <h, either iy <iq
or 19 <1y.

(2) A linearly ordered set I is a rooted tree if I has a unique minimal
element, i.e. there exists 0 I such that 0<i for all ie 1.
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If I is a linearly ordered set, let I be the subset of the non-minimal
elements of I. For every hel, denote by ¢y, €I the largest element of
which is smaller than h, i.e. ¢, =max {ie[ : i<h}.

We identify C with S2—{occ} via the stereographic projection mapping
the origin in C to the north pole, or the point (0,0, 1), in S2. Let M be
a finite set. A genus-zero X-valued bubble map with M-marked points is
a tuple

b= (M, Iz, (j,y),u),
where [ is a rooted tree, and
x:f—>C:S2—{oo}, jiM—1,

(3.1) )
y: M—C, and u:l—C(S*X)

are maps such that uy,(co) =u,, (z;) for all he I. We associate such a
tuple with Riemann surface

Xp = <|_| Eb,i)/w, where
(3.2) i€l
Spi = {i} xS%  (h,00) ~ (un,21) YheE,

with marked points
yi(b)=(ny) € Tpy,  and  yo(b)=(0,00) € Ty,

and continuous map uy: 2, — X, given by ub|2b,i =u,; for all i€ 1. The
general structure of bubble maps is described by tuples 7= (M, I;j, A),
where

A; = ui[S? € Hy(X;Z)  Yiel.

We call such tuples bubble types. Let iT(X) be the space of all bubble
maps of type 7. For [€{0}UM, let

evi: X7(X) — X

be the evaluation map corresponding to the marked point y;.
With notation as above, suppose

bE(M,I;a:, (j,y),u) € iT(X).

In particular, I is a linearly ordered set with minimal element 0 and the
special marked point is the point

yo(b) = (0,00) € -

Let x°(b) be the set of components 2y, of ¥y such that for every com-
ponent Y 5 that lies between X; and ¥, 5, including ¥, ; and ¥, 5, the
degree of uly, , is zero. The set x°(b) is empty if and only if the degree
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of the restriction of up to the component containing the special marked
point is not zero. Let

Eg = {(0,00)} U U Ebﬂ'.
iex?(b)
We denote by
x(0)=x(7T) cI

the set of components X ; of 3, such that ¥;; has a point in common
with 22 and the degree of ub|2b,i is not zero, i.e. X ; is not an element
of x°(b).

If b= (Xp;up) is a bubble map with a special marked point as above
and i€ x(b), we put

D;b = dub7i|ooeoo eT, X,

b,i(00)
where up; = upls, . Similarly, if (£, V) is a complex line bundle with
connection over X and &= (&,)ner is an element of T'(b; £), we put

Dpil = V?ﬁo&|oo € SUb,z‘(OO)’
Note that if £ € ker 5v7b,
(3.3) vg'b@ooéiL)o =c Dy VeeC.

If in addition £ is (w,up.[Sp))-positive, then the linear operator dy
and the linear map

5%)}71))2 ker 5V’b — Sevo(b)’ 5 - g(yo(b))7

are surjective. This can be seen by an argument similar to [24, Subsec-
tion 6.2].

3.2. Notation: genus-one maps. We next set up notation for maps
from genus-one Riemann surfaces. In this case, in contrast to the genus-
zero case, we also need to specify the structure of the principal compo-
nent. We describe it by enhanced linearly ordered sets.

Definition 3.2. An enhanced linearly ordered set is a pair (I, X), where
I is a linearly ordered set, N is a subset of Iy x Iy, and Iy is the subset
of minimal elements of I, such that if |[Iy| >1,

N = {(i1,42), (i2,13), - - -, (in—1,n), (in, 1)}

for some bijection i: {1,...,n}— Ij.

An enhanced linearly ordered set can be represented by an oriented
connected graph. In Figure 2, the dots denote the elements of I. The
arrows outside the loop, if there are any, specify the partial ordering of
the linearly ordered set I. In fact, every directed edge outside of the
loop connects a non-minimal element A of I with ¢;. Inside of the loop,
there is a directed edge from i; to iy if and only if (i1,42) EN.



662 J. LI & A. ZINGER

R

Figure 2. Some enhanced linearly ordered sets.

The subset N of Iyx Iy will be used to describe the structure of the
principal curve of the domain of stable maps in a stratum of X; 57 (X, A).
If X=(), and thus |Iy| =1, the corresponding principal curve Yp is a
smooth torus, with some complex structure. If N # (), the principal
components form a circle of spheres:

Sp = ( |_|{z'}><s2)/ ~, where (i1,00) ~ (is,0) if (i1,42) € N.

i€ly

A genus-one X-valued bubble map with M-marked points is a tuple
b= (M717N;Sv$7 (jvy)7u)7

where S is a smooth Riemann surface of genus one if X = () and the
circle of spheres ¥ p otherwise. The objects x, j, y, u, and (3, up) are
asin (3.1) and (3.2), except the sphere %},¢ is replaced by the genus-one
curve Yp.p = S. Furthermore, if X =), and thus Ip = {0} is a single-
element set, ug € C°°(S;X) and y; € S if j; =0. In the genus-one case,
the general structure of bubble maps is encoded by the tuples of the
form 7 =(M,I,X;j,A). Similarly to the genus-zero case, we denote by
X7(X) be the space of all bubble maps of type 7. Let

X7(X) = {[pleX1,m (X, A): beXT(X)}.
If v is an element of &%), (X, A), we put
UT,V(X; J) = {[b] E%T(X): {a]—i-l/}(b) = 0}.

If T=(M,I,R;j,A) is a bubble type such that A; =0 for all minimal
elements ¢ of I and [X;u] is an element of U7, (X;J), the map uly, is
constant. Let
evp:Ur,(X;J) — X
be the map sending each element [¥;u] of U7, (X;J) to the image of
the principal component Xp of X, i.e. the point u(Xp) in X. We note
that the map
Xr(X)—2, b— x(b),
is constant. We denote its value by x(7).
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Suppose b= (Xp;up) is an element of X; (X, A) as above and (£, V)
is a complex vector bundle with connection over X. If = (&;,)ner is an
element of I'(b; £) and i € I— I, similarly to the genus-zero case, we put

Dpi = ng,’ofz|oo € SUb,i(OO)’

where up; =up|s, ;-

Finally, all vector orbi-bundles we encounter will be assumed to be
normed. Some will come with natural norms; for others, we implicitly
choose a norm once and for all. If mg: §F — X is a normed vector bundle
and §: X — R is any function, possibly constant, let

S5 = {veg: v <d(ng(v))}.
If © is any subset of §, we take Q5= N Fs.

3.3. Topology. In this subsection we prove a general topological state-
ment, Proposition 3.6. For the sake of clarity, we state and prove it only
in the manifold/section category, but Proposition 3.6 and its proof carry
over easily to the orbifold /multisection category.

Similarly to Subsection 1.2, by a cone 7: W — 9 we mean a con-
tinuous map between two topological spaces such that W, =7 1(z) is
vector space for each & € M and the vector space operations induce
continuous functions on W x5V and CxW.

Definition 3.3. (1) A cone 7: Wjﬁ is regular if for every be I,
there exist a neighborhood Uy, of b in MM, ny €Z™, and a bundle map

Vp: W‘Ub — UpyxC™

over U, such that ¢ is a homeomorphism onto its image and the re-
striction of ¢ to each fiber is linear.

(2) A cone 7: W — 90 is obstruction-free if for every b€ M, & € W,
and a sequence b, €9 converging to b, there exists a sequence &, € W,
converging to & in W.

If W— 1 is a cone, for each r €7, let
M, (W) = {beM: tkWy=r}.

Note that if W is obstruction-free, then the set |J
in .

M, (W) is closed

r<q

Lemma 3.4. Suppose M is a compact Hausdorff space that has a
countable basis at each point, A is a closed subset of M, W —IM is a
reqular obstruction-free cone, and s is a section of W over A. If

r4 = min {rka: beﬁ—A},

s extends to a continuous section § of W over AUM,.,(W).



664 J. LI & A. ZINGER

Remark 1: Tt is enough to assume that 90 is a paracompact (Haus-
dorff) space that has a countable basis at each point.

Remark 2: An immediate corollary of this lemma is that s extends
to a continuous section of W over M.

Proof. Let {Up}peca be a finite open cover of the compact set AU
9., (W) by open subspaces of 90T as in (1) of Definition 3.3. Since I
is normal, we can choose an open cover {U]}pca of AUIM, , (W) such
that U] C U, for all b€ A. Since Uj is normal for each b€ A, by Tietze
Extension Theorem the continuous section f = ppos of Uy x C™ over
ANU] extends to a continuous section f over Uj. Let

m, : UpxC" — Im gy,
be the orthogonal projection map. We will show in the next paragraph

that the section 7, o f is continuous over (AUM,,(W))NU,. Since

AUIM,., (W) is normal, we can choose a partition of unity {n}pe4 sub-
ordinate to {U}}rc4. The section

s = an- (cpb_lmrb_of)

beA
is continuous over AUM,., (W). Since f(z)€Im ¢, for all z€ ANTY,

m f(x) =7 f(z) = f(z) Ve ANU;.

Thus, §|4=s as required. )

It remains to show that m, of is continuous over (AUM, ,(W))NU;.
Since 3

W;f’AmU{, = f‘Anga
T, f is continuous along the closed subset AﬁUé of Ué. Thus, we need
to show that if o B
z, € M., (W)NU,
is a sequence converging to x € Ué, then W;f(xr) converges to W;f(x)
Suppose first o )
r € M., (W)NUj.
We will show that 7Tb_|ﬁA(W)mUl; is continuous at x. Let {&;}ic[,,) be
an orthonormal basis for Imyp|,. By (2) of Definition 3.3, for each
i € [ra] there exists a sequence &;., € Im ¢y, converging to &;. Since
b,br € M, (W), {&irticlra) is basis for Impyl,, for all r sufficiently
large. Since &, — &; for all i € [ra] and {&;}ic}r,] is an orthonormal
basis,
1, ifi=y;

<£2;r7£j;r> - {0’ lfl#j
Thus, applying the Gram-Schmidt normalization procedure, we can find
an orthonormal basis {§;.r }ig|r ] for Im @y, such that &, —¢&; for all

lim
r—00
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i€ [ra]. It follows that 7, |;, — 7, |, as needed. On the other hand,

suppose that x € AﬂUé. We will view £, f, and T, f=m,f as C™-valued
functions. By (2) of Definition 3.3, there exists a sequence &, € Im vy |,
converging to f(z). Since 7, & =&,

7w f () — 7o, f(2)| = | f(2) — 7, f (1)
< |F(@) = & | + |ma & — T f(@)] + |0, f(2) = 700, f 0]
<2|f(z) = &| + | f(2) — fla)].
The last two terms above approach 0 by the assumption on &, and the
continuity of f,. q.e.d.
Remark: The projection 7, is not continuous over U, unless the rank

of W is constant over U,. Similarly, the section 7, o f may not be
continuous over Ué unless the rank of W is constant over UI;—A.

Definition 3.5. If M is a topological space and (A, <) is a finite
partially ordered set, a collection {U, }ac4 of subspaces of 9 is a strat-
ification of M if U, is a smooth manifold for all o€ A,

U, =U,—U, C UL[g VacA, and m = |_| U,.
B=<a acA

Proposition 3.6. Suppose M is a compact Hausdorff space that has
a countable basis at each point, {Ua}aca 15 a stratification of M, and
W — I is a regular obstruction-free cone. If Wy, — Uy is a smooth
vector bundle for all a € A, the cone W admits a continuous section s
over M such that s|y, is smooth and transverse to the zero set in Wiy,
for all a€ A.

Proof. Choose an ordering < on the partially ordered set (A, <) such
that for all a, B€ A,
(3.4) rk Wiy, <tk Wly, = B<a;
tk Wiy, =tk Wly,, <« = B<a.

Since W is obstruction-free, |J, qﬁr(W) is closed in 9, and

(3.5) Uy c | Jus  VaceA,
B<a

by the closure condition of Definition 3.5. Suppose € A and we have
defined a continuous section s of W over the closed set

A= U Us
B<a

such that sly, is smooth and transverse to the zero set in Wly, for all
B<a. By (3.4) and (3.5),

ra=min {tTk W,: beM—A} =tk W|y, .
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Thus, by Lemma 3.4, s extends to a continuous section § over

AUU, C AUM,.,(W).
Perturbing s over U,,, without changing it over A, we obtain a continuous
section s over AUU,, such that s]uﬁ is smooth and transverse to the zero

set in VV]Mﬁ for all S <. This construction implies Proposition 3.6.
q.e.d.

Remark 1: In the orbifold/multisection category as needed for the
purposes of this paper, a stratum U, locally is a union of finitely many
smooth suborbifolds of a smooth orbifold X,. We will still call such
unions smooth orbifolds. The bundle W], is the restriction of a smooth
orbibundle over X,,.

Remark 2: The cone ka is not obstruction-free, but is regular. In
Subsection 3.5, we describe a subcone Wfk C ka which is obstruction-
free and sufficiently large for the purposes of Theorem 1.3.

3.4. The structure of the moduli space ﬁ?k(X, A; J,v). In this
subsection, we describe the strata of the moduli space ﬁ?7k(X VA )
for a small generic element v of &% (X, A;J). If k € Z, we denote by
[k] the set of positive integers that do not exceed k. Let 2n=dimg X.

Lemma 3.7. Suppose (X,w,J), A, k, and v are as in Theorem 1.3.

If
T = ([F], I,R;5,A)

is a bubble type such that )", ;A; = A and A; #0 for some minimal
element i of I, then Ur ,(X;J) is a smooth orbifold and

dimUz ,(X; J) = dimy (X, A) — 2(|R|+|1]).

The statement that U7, (X;J) is smooth should be interpreted as
in Remark 1 at the end of the previous subsection. The branches of
Ur ., (X;J) correspond to the branches of v. For a generic v, the lin-
earization Dj,., of the bundle section ds+v at [b] is surjective for every
element b in ﬁ(I)JC(X, A; J,v) such that wy|s, , is not constant. Thus,
Lemma 3.7 is obtained by a standard Contraction Principle argument,
such as in [19, Chapter 3].

Lemma 3.8. Suppose (X,w,J), A, k, and v are as in Theorem 1.3.

If
T = ([k,1,%;5,4)

is a bubble type such that ) ;. ;A; = A and A; = 0 for all minimal
elements i of I, then for each meZ™,

up, (X;J) = {[b] el (X;J):

dimg Spanc, ) {Dib: i€X(T)} = [X(T)|-m |
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s a smooth orbifold and
dimUz ., (X; J) = dimy (X, A)
— 2(IR|+[I] = n + (m+n—|x(T))m).

Proof. If T is as in Lemma 3.8 and b= (Xy;up) €Ut (X5 J), wpls,,p
is constant. Let

I'p(b) = {CE€T(Zp;upTX): (|5, =0} ;
0 (b ) = {ner(zb;Ag;;T*zbm;TX); nyzwzo} .
If v is genetic, the operator
DF: Tp(b) — T (b )

induced by D, is surjective. Thus, the space Uz, (X;J) is a smooth
orbifold of dimension

dimUF 1 (X5 ) = dimy (X, A) = 2(|R[+|1]) + 2n.
We note that
(3.6) dimUf, (X:J) £0 —  max(1, (T)|—n) < m < [\(T)].
As at the end of [27, Subsection 2.3], we can construct a vector bundle
F over Ur ,,(X;J) of rank |x(7)|, a vector bundle V' over
T Grp B — UT 1 (X5 )
of rank mn, and a transverse section D,, of V such that
T Dy (0) — | U (X3 )
m'>m
is surjective, and the restriction of m, ’D;ll ) to the preimage of the space

Uz ,1(X;J) is an embedding. This observation implies the dimension
claim of Lemma 3.8. q.e.d.

The spaces Ut ,(X;J) and UF, | (X;J) of Lemmas 3.7 and 3.8 are

disjoint. By Definition 2.2, their union is ﬁ?k(X,A; J,v). Let A* be
the set of equivalence classes of bubble types 7 as in Lemma 3.7 and
A the set of equivalence classes of pairs (7, m) consisting of a bubble
type 7 as in Lemma 3.8 and an integer m as in (3.6). We define a
partial ordering on the set A=A4*1A° as follows. Suppose

T = ([k],I,%;5,4)  and  T'=([k],I',N;j', A")
are two bubble types as in Lemma 3.7 and/or in Lemma 3.8. We write
T'<T <= |2 W2 R
If 7€ A* and (T',m') € A°, we define
T<(T',m') < T<T; (T',m<T — T'<T.



668 J. LI & A. ZINGER

Finally, if (7, m), (7',m’) € A%, we define
(T, m')<(T,m) = T7'<T OR T'=T7, m'>m.
By definition of the stable-map topology,
Mz, (X; ) NUP L (X;T)#0 =  T'<T.

Thus, the closure requirement of Definition 3.5 follows from the conti-
nuity of the maps D; on X7(X) with 7 as in Lemma 3.8.

3.5. The structure of the cone Vf‘k. In this subsection, we describe
an obstruction-free subcone Wfk of the cone

ViA,k e ﬁ?k(X, A, J, V).

The cone Vf}k over %ﬁk can be shown to be regular by standard argu-

ments; see Remark 2 at the end of Subsection 4.3. Thus, Wfk is regular

as well.
If 7 is a bubble type as in Lemma 3.8 and [b] € [£y, up) €Ur (X J),
let

Fy = {(wi)iEX eCX®: N " w;y Dib= 0}

iex(7)
I_(b;8)= {ééker Ovp: Y wiDyE=0Y (wi)iex(T) GFbl};
iex(7)
Witk = {1001 €Vily: s (B:0)]

By (3.3), the subspace Wfk“b] of kahb} is well-defined. If 7 is a bubble
type as in Lemma 3.7 and [b] €Uz, (X;J), let

Wikl = Viklp

We take

Wi = U Wikl < ik
(b€, 1, (X,A; )

Proposition 3.9. If (X,w,J), (£,V), A, k, and v are as in Theo-
rem 1.3, the cone

Wit — ﬁ?,k(Xa A;J,v)

is reqular and obstruction-free. If T is a bubble type as in Lemma 3.7,
then Wfkh,{,z_yy(X;J) is a smooth vector orbibundle and

rk Wl vy = (e1(£), A).
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If T is a bubble type as in Lemma 3.8 and m is an integer as in (3.6),

then Wfk’u,}yy‘l(X;J) s a smooth vector orbibundle and

rk Wfk\ugﬁml(xu) = (c1(£),4) — (m—1)
1 1
>3 dimUz ., (X;J) — 3 dimy (X, 4; £).

If T is a bubble type as in Lemma 3.7 and [b] € U7 ,(X;J), the
operator Oy is surjective, by the positivity assumption on the bundle
£ and the same argument as in [24, Subsection 6.2]. In particular,

dim VY |p = inddyy = (c1(£), 4)  V[b] € Uz (X; ).
By standard arguments, the surjectivity of dy 4 for every [b] €Uz ., (X; J)
implies that
Wiklutr 60 = Viher L x00)
is a smooth vector bundle and that the restriction of ka to a neighbor-
hood of Uz ,,(X; J) in X, (X, A) is a vector bundle. Local trivializations
can be constructed using the homomorphisms R,, ¢ as in Subsection 4.2.
In particular, the cone Wfk satisfies the requirements of (1) and (2) of
Definition 3.3 for every [b] €Uz, (X; J).
If 7 is a bubble type as in Lemma 3.8 and [b]=[Xp; up] €Ur (X J),

upls, » is constant. Let

Ip(b; L) = {§€F(Eb;u22): Elsyp :const} :

% (b; £) = {ner(zb; AT S, @0ufL): iy, :0} .

By the positivity assumption on the bundle £ and the same argument
as in [24, Subsection 6.2], the operator

55,5,: I'pb; £) — F%l(b; £)
induced by 5V,b is surjective. In particular,
dim kahb} = dim ker Oy, = dim ker 55’1) = ind 55’1) = (c1(£),A) +1

for all [b] €eUr ,,(X;J). Thus, ka|uTyy(X;J) is a smooth vector bundle.
Similarly to [27, Subsection 3.3], for every m as in (3.6) we can construct
a vector bundle F1 — U (X;J) of rank m and a surjective bundle
homomorphism H

D: ka — Hom(F"', evpL)
over Uy, ,(X;J) such that the kernel of © is Wfk|u%nwl(x;]). Thus,

Wfﬂu’;ﬂ( x;7) 1 a smooth vector bundle of the claimed rank.
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4. Proof of Proposition 3.9

4.1. Outline. In this section we prove a generalization of Proposi-
tion 3.9. It implies that the Poincare dual of the euler class of Vf}k

defined as the zero set of a generic section of ka over ﬁ(1)7k(X VA Jv)
is independent of J and v.

Suppose (X, w) is a compact symplectic manifold, (£, V) is an (w, A)-
positive line bundle with connection over X, A€ Hy(X;Z)*, k€ Z™T, J=
(Jt)tefo,1) is a continuous family of w-tamed almost complex structures
on X, and

v=(Vt)iep,1) € BT%(X, A; )
is a family of sufficiently small perturbations of the dj-operators on
X1 (X, A). Let t, and [b,] be sequences of elements in [0,1] and in

ﬁ(1)7k(X7 A; Jy.,1,) such that
lim t, =0 and lim [b,] =[b] € ﬁ?k(X,A; o, 1%0).

r—00 r—00
We need to show that for every £ € Wfk“b] there exists a sequence &, €
W{L‘k’[br} converging to £. By the paragraph following Proposition 3.9, it
is sufficient to assume that [b] is an element of Uz ,,,(X; Jo) for a bubble
type
T = ([K],1,%;5,4)

such that A; =0 for all minimal elements i€ I.

We can also assume that for some bubble type

T = (K, I',W; 5, A")
(bl €Usr y, (X J4,) for all r. We note that by Definition 1.2, for every
map u: P! — X such that
(w, P} < {w, 4)
the linear operators
OV L(PLu*g) — F(]P’l; A?’le*]P’l@u*S),
ker 5V,u - Su(oo)y §— 6(00)7

are surjective. Thus, it is sufficient to consider two possibilities for 7":

(1) A;=0 for all i€ I and {ig[’: AL£0} = x(T);

(2) AL#0 for some i€ I} and I'=10,
where I|) is the subset of minimal elements of I’. In the first case, for
every [by] € Uz, (X;J;, ), the map w,, is constant on the principal
component X .p of X , and thus so is every element { € ker Oy ,. In
this case, the question of existence of a sequence &, as above is an issue
concerning the behavior of holomorphic bundle sections for genus-zero

(J, v)-holomorphic maps, for a certain class of perturbations v of the 9;-
operator. This class is induced from the class of effectively supported
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perturbations of Definition 2.1 and is described in Definition 4.3 at the
end of this subsection. The existence of a desired sequence in case (1)
follows from Lemma 4.1 below. In the second case, ¥, .p =23}, is either
a smooth torus or a circle of spheres, depending on whether X is empty
or not. There are no bubble components. In this case, the desired result
follows from Lemma 4.2.

Lemma 4.1. Suppose (X,w) is a compact symplectic manifold,
(£,V) is an (w, A)-positive line bundle with connection over X, A €
Hy(X;Z)*, M is a finite set, J = (Ji)iejo,1) 95 a continuous family of
w-tamed almost complex structures on X, and

v=()iefoa] € 64 qopun (X5 4; 1)

is a family of sufficiently small perturbations of the 0j,-operators on
Xoqoyum (X, A). Let t, and [b,] be sequences of elements in [0,1] and in

Emg,{o}u]\/[ (X7 A; Jtr s Vt'r) such that

lim t, =0 and lim [b] = [b] € My (o301 (X, A; Jo, o).

r—>00 r—>00
Then there exist (cr.i)iex(s) € (CXO) ¢, eRY, and isomorphisms

Ry, 1 ker 5V,b — ker 5V,br

such that
(41) ‘D@br - Zcr,i'JODib‘ < e Z‘Cr,i‘a
iex(d) iex(b)
(4.2) \Ebr,@Rbr,bs— Zcr,z@bﬂ-s(éer > leral - lI€]l VEeker vy,
i€x(b) i€x(b)

for all r€Z* and

i Tl'iTloo[Rbr,bi] =€ € Vel VEckerdyy,
(43) lim =0, |c.;] <1Viex(b).

Lemma 4.2. Suppose (X,w), (£,V), J, A, and M are as in Lemma
4.1 and

V= (Ve)iefo) € BT M (X, A5 J)
is a family of sufficiently small perturbations of the 0j,-operators on
X1,m(X,A). Lett, and [b;] be sequences of elements in [0,1] and in
ﬁ?M(X, A; Jy,. vy,.) such that
Spop =%, Y, lim t,=0, lim [b] =[] € My (X, 4; Jo, v0).

r—>00
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If b = (Xp;up) is such that the degree of uyls, , is zero, there exist
(Wi)iexv) € (C*X®) such that

Zwi-JODib =0
)

ex(b

and a subsequence of {b,}, which we still denote by {b,}, such that
& eker Oy, Th_1>1100[§r] =g eViuly = sz’@b,if = 0.

i€x(b)

Suppose {b,} and b are as in Lemma 4.2, £ €T'_ (b; £), and there exists
no sequence

(4.4) & € ker 5V,br s.t. m [§,] = [£].

li
r—>00

After passing to a subsequence of {b,} if necessary, we can assume that

(4.5) €] & U Vit © Vi

r=1
Choose w = (w;)iey () € (C*)X(®) and a subsequence of {b,}, which we
still denote by {b,}, as at the end of Lemma 4.2. Let {&} be a basis
for ker Oy p, which is orthonormal with respect to a regularization at b
as in (1) of Definition 3.3 for example. After passing to a subsequence
if necessary, for some linearly independent &/ € ker Oy 5,

lim [¢]] = [¢/] e Vil Vi

r—00

By Lemma 4.2,

el (b L w)= {ﬁékerév,bi Zwi Qb,iﬁzo}-
iex(b)

By the positivity assumption of Definition 1.2,
dimker Oy 5, = ind Oy, = (c1(L), A),
dim ' (b; £; [w]) = dimker Iy — 1 = indééb —1={(c1(£),A).

Thus, {¢/} is a basis for I'_(b; £ [w]). Since I'_(b;£€) C T_(b; £; [w]),
there exists a sequence &, € ker Oy, as in (4.4), with {b,} replaced by
a subsequence. However, this contradicts (4.5).

An element [b.] €Uz, (X;J;,), with 77 as in the first case above,
corresponds to the genus-one curve X o = Egr and genus-zero maps
{br.hthex(Tr) such that ¥, , =P If [b] is the limit of the sequence
{b,}, b corresponds to a genus-one curve X o C Zg and genus-zero maps
{bn}hey(77) such that

lim 3. 0= Xp0 and lim [b,4] = [bp] VheEX(T).

T—00
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Similarly, ér € ker 5V,br and £ € ker 5V,b correspond to &, € ker 5V7br-,h
and &, €ker Oy p, , with h€x(7"), such that

&rn(Yo(brn)) = &w (Yo(brp))  and  &n(yo(bn)) = &Enr(yo(br))
for all h, ' € x(7"). Furthermore,

lim [€ ]=[¢] € Vil < lim [&4] = [&] € Vi, o)

li
r—oo=T = r——00

for h e x(7"), where Mj, is the index set for the marked points of b, ,
and bp. We will assume that [b,] EU%”,:VW (X; Jy,) for some m' € Z* and

for all r.
With (cri)iex(b,) € (C*)x(®r) for each he x(T") as in Lemma 4.1, let

a,: CXT) _, cx) = H(CX(bh)
hex(T)
be the injective homomorphism defined by
ar((wn)hex(T)) = (Crith)iex(vy) hex(T):

We denote by F' ¢ CX(®) the image of

Fblr = {(wh)hEX(T’) ECX(T/) :
th'JODhbrE th'JODGbT,h = 0}
hex(T) hex(T")

under «,. By our assumption on b,, dim 13'7} =m’ for all r. Let

{(Ui,i)iex(b) } and {éﬁ = (& pnex(r) }

le[m’]

be orthonormal bases for F' and for
I_(b;8) = {éE (En)nex(Tr) Eker Oy p, :

> 0n®uag= 3w, , o6 =0 Ywnheir € |
hex(T) hex(T")
respectively. After passing to a subsequence if necessary, we can find

wl= (wﬁ)iex(b) e cx®) and §j = (gi)hEX(T,) € ker dy

such that
L)iexwy =w' € CX® Wi and

T,

lim [¢7] = [¢7] € Vi V4.

r—00

lim (v
r—00
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Each of the sets {w'} and {¢’} is orthonormal and thus linearly inde-
pendent. By Lemma 4.1,

va Dbl = D> D vl s Diba

iex(b hex(T") iex(bn)

ZUT Dyl SN kD8,

iex(b hex(77) iex(bp)

<€ Vi and

<é& VY],

for some sequence €, converging to 0. Thus,

wle Fl' = {(w,)ZeX(b e CX( Zw, -7, Dib= O}

iex(b

& el (b L {whepm) = {geker Ovp: Y wiDyE=0Vie [m']}

iex(b)
for all [, j. By Definition 1.2,
dim T (b; £; {wl}le[m/]) = dimker oy, —m
= dimker dy 5, —m' = dimT_(b,; £).
Thus, {¢/} is a basis for I'_ (b; £; {w'}iepm)). Since w' € F} for all I,

T (5;2) T (b8 {whiem),  Wikly € U Viule) € Vi
r=1

As in the first paragraph after Lemma 4.2, this implies that for every
el _(b; £) there exists a sequence & €T'_(b,; £) such that
lim [&,] = [¢] € Vi%ly

rT—00

Remark: In (4.1) and (4.2), the differences are taken via a parallel
transport along the shortest geodesic, with respect to a metric on X,
between evq(b,) and evg(b).

Lemmas 4.1-4.2 are proved in the next two subsections by extending
the gluing constructions of [28, Subsections 2.4,2.5] from J-holomorphic
maps to holomorphic bundle sections. These extensions parallel con-
structions in [27, Subsections 4.2,4.3]. In the rest of this subsection we
recall the definition of the type of perturbations v of the dj-operator
on space of genus-zero stable maps that appears in Lemma 4.1; see [28,
Subsection 2.1] for details.

Definition 4.3. Suppose (X,w) is a compact symplectic manifold,
J=(Jt)iejo,1) is a continuous family of w-tamed almost structures on X,
A € Hy(X;Z)*, and M is a finite set A continuous family of multi-
sections v = (V¢)sejo,1], With v € Qﬁo {O}uM(X’ A; Jy) for all t €[0,1], is
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effectively supported if for every element b of X o150/ (X, A) there ex-
ists a neighborhood W, of Eg in a semi-universal family of deformations
for b such that

Vt(b/)‘zb,my\}b =0 v [b/] € xO,{O}uM(Xv A)7 te [07 1]

We denote the space of effectively supported families v as in Defini-
tion 4.3 by ff{o}uM(X, A ). Ifve gf{o}uM(X, A; J), te0,1], [b] is

an element of
Mo royunt (X, A5 Ty, 1) = {5J+Vt}_1(0),

and 7 € x(b), then uy|s,, is Ji-holomorphic on a neighborhood of oo
in 3 ; and C- 7, D;b is determined by b, just as in Subsection 2.1. Fur-
thermore, in this case Ub|zg is a degree-zero holomorphic map and thus

is constant. Thus, u, maps the attaching nodes of all elements of y(b)
to the same point in X, as in the genus-one case of Subsection 2.1.

4.2. Proof of Lemma 4.1. In this subsection we review the genus-zero
gluing construction of [28, Subsection 2.4] and extend it to holomor-
phic bundle sections in a manner similar to [27, Subsection 4.2]. This
construction essentially constitutes the first step of the two-step gluing
construction described in Subsection 4.3. Throughout this subsection
we assume that M is a finite set, A€ Ho(X;Z), and 7 = (M, I;5,A) is
a bubble type such that 0 is the minimal element of I,
ZAi:A and (w,A;) > 0Viel.
i€l
Let (£,V)— X be an (w, A)-positive line bundle with connection.
We put
.'%T;B(X) = {(Eb; up) GZ%T(X): ub|22 :const}.
We denote by )
F=%Xrp(X)xC!
the bundle of smoothing parameters and by F? the subset of F consist-
ing of the elements with all components nonzero. For each

beXrp(X), iex(T)=x(), v=(bv)=(b,(vp),;) €F,
we put
pi(v) = th eC and zi(v) = Z (a:i/(b) th> e C,
0<h<i 0<i'<i 0<h<i’
where z;(b) is the point of 3 ,, to which the bubble X ; is attached; see
(3.2) and Figure 3.

For each sufficiently small element v=(b,v) of FO let
Qv Xy — Xy
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be the basic gluing map constructed in [25, Subsection 2.2]. In this
case, ¥, is the projective line P! with |M|+1 marked points. The
map ¢, collapses \f | circles on ¥,,. It induces a metric g, on 3, such
that (2, ¢,) is obtained from ¥ by replacing the |I| nodes of by
thin necks.
We put
Uy = UpOQy, b(v) = (Xu;uy), and Ovy = Oy pw)-

Fix a metric g on X and denote the corresponding Levi-Civita connec-
tion by VX. By the same construction as in [25, Subsection 3.3], the
map ¢, induces weighted L}-norms || - ||,»1 on the spaces

{CeT(Bu;uyTX): ((c0)=0} and I'(Ey;u,L)
and a weighted LP-norm ||- ||, , on the space I'(X,; A?”le*EU(@uZS). We
denote the corresponding completions by T'(v), T'(v; £), and T'%!(v; £).

The norms || - ||y p1 and || - ||, are analogous to the ones used in [15,
Section 3] for the bundle TX. We put

I_(v;£) = {€oqy: E€ker Dy} C D(v; £);
¢) —{£eD(u; £): £(o0)=0:
(& ENv2=0V & el _(v;£) s.t. £ (c0)=0}.

By the construction of the map ¢, in [25, Subsection 2.2],
(4.7) 0w

On the other hand, for the same reasons as in~[15, Section 3], for some
6, CEC(%T.B(X);R+) and for all v=(b,v)e F?,

(“48)  CO el 0 = 10wkl < CONell, 0 ¥ &€ TH(0:0);

see [25, Subsections 5.3,5.4]. In particular, the operators 5v,u are sur-

(4.6)

O Plllops YV EET_(152).

Up_

jective, since 5v7b and 5%) g)b) are.
If (eT'(v), we set

b(Uv C) = (Eln eXpuvg) and Uy, ¢ = eXpuUC7

where exp is the exponential map with respect to the connection VX.
Let

o T up ) — T(Ep;uy, L)
be the isomorphism induced by the V-parallel transport along the VX-
geodesics T — exp,,7¢ with 7€]0,1]. By a direct computation,

(4.9) |ITL; ¢ 09 () Lo € — Do €| CONCH pallElopa

up—
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for all £ €T(v; £) and (€T'(v); see the proof of [23, Corollary 2.3]. By
(4.7)-(4.9), for every ¢ € I'(v) sufficiently small and ¢ € ker Oy, there
exists a unique

§uc(§) €T (v; £) st Iyc(6oqutEuc(§)) € ker Dy pu.c)-

Furthermore,

(410)  [[60c(©l,n < COMIPHICIZ ) €lup ¥ E€ker oy,

We define the isomorphism

Rv,§3 ker év,b — ker 5v,b(v,§) by Ru,Cg = HU,C (SOQ’U +§v,§(§))’

We will use a convenient family of connections in the vector bundles
u* £ — %, which is provided by Lemma 4.4 below. First, if b= (3; up)
is a stable bubble map, g; is a Hermitian metric in the vector bundle
up £ — 3, and V' is a connection in uy £, we will call the pair (g, V)-
admissible if

(gV1) V? is g,-compatible and Oy p-compatible;

(gV2) gp=gu, and V*=V" on 9,
where g,, is the Hermitian metric in u;£ induced from the standard
metric in £. The second condition in (¢V1) means that

_ 1 1
vy = 5(v% +iV* o j) = §(vb +ivP o j),
where V% is as in Subsection 1.2.
If b is any genus-zero bubble map and § €R™, we put
¥)(8) =2 u U Api(0), where
(4.11) i€x(b)
Api(0) = {(i,2): |2|>6712 )2} € oy~ 52
If v=(b,v) is a gluing parameter such that the map g, is defined, let
(4.12) Zo(0) = 4, (Z5(9)).

Lemma 4.4. If (X,w), (£,V), A, M, T, 27.5(X), F are as above,
there exist .
5,C € C(Xrp(X);RT)
with the following property. For every
be Xrp(X), v=(bv)eFl, and (€T (v) st ||(|lop1 < (D)

there exist metrics gy and g, ) and connections Vb and V@O in the
vector bundles
upl — Xy and  uy L — %,
such that
(1) all pairs (g, V?) and (g(uo,v(“’o) are admissible;
(2) the curvatures of V° and V9 vanish on $9(26) and %2(26),
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respectively;
(3) for every E€T'(b; £),

T ¢V @O (M € 0gu) = VP& 0 daullop < C (1017 +Cllop1) 1€ ]Ibp1 5
(4) the map b— (gy,, V?) is continuous.

This lemma is proved by exactly the same argument as [27, Lemma 4.1].

If b € X7.5(X) and i € x(b), let w; be the standard holomorphic
coordinate centered at the point oo in ¥j; = S2. If meZt and € =
(&i)ier €L'(b; £), we put

m 1 dam
Ql(),z)g = (w;) € Sevo(b)a

m! dw!" w; =0

where the derivatives are taken with respect to the connection V°. Sim-
ilarly, for all

v=(b,v) € F), CeT(v)st. [[Cllopr<d(b), and & € T(Sy;u L),

let 1 gm
(m) _

(U7C)’()£ - %dwm (w) w=0 G 20V0(b)7

where w is the standard holomorphic coordinate centered at the point

o in ¥, ~ S? and the derivatives are taken with to the connection

vV ©:0 We note that
D¢ =Dy6 Viex(b), E€T(b;8),

(1) _ oo
D008 = Powo0f ¥ EET (B0 L),
by the second condition in (gV2) above.

A key step in understanding the obstruction to extending holomor-
phic bundle sections from singular to smooth domains is the following
power series expansion. For every

iex(b), keZ™, v=(b,v) € F}, and (el(v),

there exist

(4.13)

Z(k) (U, C) c Hom( ker év,by Sovo(b))

such that for all £ €ker 5V,b

53(( )0 Ry &
(4.14)
- Z( N >tk o) {ofe+eP(w,0¢}
zEx
and
(4.15) 15 (0, Q)€ < C5 2 ([0] P41l ) €l -

The expansion (4.14) is obtained by exactly the same integration-by-
parts argument as the expansion in [25, Theorem 2.8|; see also the
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X(b) = {h17 h47 h5}
p(’U) = (Uhl » Uh3Uhy, ’UhS’Uh5)
2ns () Tns (V) = Ty (b) + Vg Ths (b)

Thy (b) 7 Ty (D)

DL ) 5 Fu.cE = v, (D), €) + vy on, (DI}, €) +unyvn, (D41,€)

Figure 3. An example of the estimates (4.14) and (4.15).

paragraph following [27, Lemma 4.2]. We point out that €Z(~k) is inde-
pendent of m. The m =1 case of the estimates (4.14) and (4.15) is
illustrated in Figure 3.

Let t, and b, be as in Lemma 4.1. Since the sequence [b,] converges
to [b], for all r sufficiently large there exist

b, € X1.5(X), vy = (b, 0,) € PP, and ¢ € (vy)
such that
(416)  lm Y =b  lm ful=0,  lm [l =0.
and b.= (Zbr; ubr) = (EUT;eXpUW CT).
The last equality holds for a representative b, for [b.]. By [28, (2.12)]

and (4.16),
(4.17) ‘D b, — Zpl Uy) D b Z ‘pl Uy)

iex(b iex(b

for a subsequence ¢, converging to 0. Furthermore, by the m=1 case
of (4.14) and (4.15),

(4.18) ‘@b,ﬁRvmgr Z,ol (0,) Dy, 5‘ <e Zlm ()] 11€]ls,p,1

iex(b i€x(b
for all & eker 5V,b; . For the purposes of Lemma 4.1, we take
Ry, 1 ker éVb — ker 5V,br
to be the composition of
R, ¢, ker 5V,b’r — ker éVJ»
with an isomorphism

Ry p: ker éVb — ker 5V,b; sit. lim Ry & =& VEcker év,b-
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We take ¢,; = pi(vy). It is immediate that the requirements (4.3) of
Lemma 4.1 are satisfied. Since

lim ’Dzb; =D;b, lim Qb;,in;,bg = @bﬂ'f VfEker év’b, iGX(b),

the requirements (4.1) and (4.2) are satisfied as well. This concludes
the proof of Lemma 4.1.

Remark: A regularization ¢y of the cone V(fM near b, as in Defini-
tion 3.3, can be constructed using the isomorphisms R, ; as above and
a description of open subsets in Xy p/(X, A) as in [15, Section 3]. In
this case, ¢y is a homeomorphism.

4.3. Proof of Lemma 4.2.In this subsection, we review the two-
step gluing construction used in [28, Subsection 2.5] and extend it to
holomorphic bundle sections in a way similar to [27, Subsection 4.2].
We assume that
T = (M7I7N7]7A)

is a bubble type such that

> A=A, (wA)>0Viel, A;=0Vicly, and [jCI,

el
where I is the subset of minimal elements of I as before. Let (£,V)—

X be an (w, A)-positive vector bundle with connection. Throughout this
subsection we focus on the case

[br] € 0 0y (X, A3 T ),
i.e. Xy,.p=2, is a smooth torus for all 7.
Similarly to Subsection 4.2, we put
Xr.p(X) = {(Eb;ub)EZ%T(X): ub|28 =const }.
Let
L ={hel:,ely} and ko= |L|+|{leM: jielo}|.

We denote by mmo the moduli space of genus-one curves with kg
marked points and by

Tp: iT;B(X) — MLkov b— [Eb;P]’
evpirz-’B(X) —)X7 b—)ub(zb,P)7

the maps sending each element b of :%7'; B(X) to the equivalence class of
the principal component(s) X p of its domain and to the image of ¥, p
in X. Let
E— Ml,ko
be the Hodge line bundle, i.e. the line bundle of holomorphic differen-
tials.
Let _ R
F — X7r,B(X)
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h2 hl h3 h4 X(b):{h17h47h5}7

h5 p(U) = (b7 Vhy s Uh3Vhys Vhg Uhg,)

Figure 4. An example of p(v).

be the bundle of gluing parameters. It has three distinguished compo-
nents,

f = ]‘N-N D ]‘N—o D fb
where
.7?& = -%T;B(X) X (CN, f1 = -’%’T;B(X) X (Cf_ll,
ﬁo = @ fh, and ﬁh‘b = xh(b)zb;p v bG:%T;B(X).

hel;

The total space of ]-'h has a natural topology; see [26, Subsection 2.2].
We denote by F? the subset of F consisting of the elements with all
components nonzero. If i € I, let h(i) € I; be the unique element such
that % (i) <i. For each v = (b,v), where b€ X7.5(X) and v = (v;)
and i€ x(b), we put

iexul’

vo = (b, (vi)iexun ) v1 = (b, (vi);ei_p,)s
= [[weC ni)=p@) - one € Topy ) Snps
h(i)<h<i
and p(v) = (b, (p (U))zex €g= @ Fhiy-
i€x(b)

The component vy of v consists of the smoothings of the nodes of ¥
that lie away from the principal component. In the case of Figure 4,
these are the attaching nodes of the bubbles ho, hy, and hs. For each

element U= (b, (0;);ey(p)) Of 3, we define the linear map
Dy kerév » — Er (b )®£Cvp(b) by
(Do} (W) = > a0y () - Dk,

iex(b)
ifpek, p(b) N
For each sufficiently small element v=(b,v) of F?, let

QUl : E”U1 — Eb
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be the basic gluing map constructed in [25, Subsection 2.2]. In this
case, the principal component X,,.p of ¥,, is the same as principal
component ¥y p of ¥y, and ¥,,, has |I;| bubble components ¥, p,, with
he Iy, attached directly to ,,.p. The map q,, collapses |I—1I| circles
on the bubble components of 3. It induces a metric g,, on X, such
that (,,,gu,) is obtained from X by replacing |I —I;| nodes by thin
necks. Let

Uy, = Up © Guy b(Ul) - (Evl ) uv1)7 and 5V,v1 = gv,b(vl)‘

The map ¢, induces weighted L}-norms | - ||y, p,1 on the spaces
{CGF( vlvuvlTX) C’Zvl;P :O} ) {SGP( v v1 £): S‘Eul;P :O}
and a weighted LP-norm || - ||, , on

{TIGP(EU17AO ey, L ®uy, L) nls,, p :0} ;

see [25, Subsection 3.3] and the first remark in [28, Subsection 2.5].
We denote the corresponding completions by I'p(vq), I'g(vi; £), and
I (01 2).

For each (€ I'g(vy), let

Uy, ¢ = XDy, § and b(v1,¢) = (Xoy; U, ¢)-
For § € C(X7.5(X);RT) sufficiently small,
() e B ad  CeTpr) st [l < 300),

the isomorphisms R, ¢ of Subsection 4.2 corresponding to the restriction
of b(v1, () to Xy, p, with he I, induce an isomorphism

va’c : ker év’b — ker évJ,(ULO
such that
1Rl < 2l
Furthermore, by the m=1 case of (4.14) and (4.15),
‘@b(ULC),thl,cf - Z ﬁi(U)@b,if‘
iex(b),h(i)=h

<CO) (M +Cllorp1) D | ﬁ | 1€ llbp.1s
h :

iex(b

(4.19)

for all A€ I; and £ € ker 5v,b- Let V¢ and guv, ¢ be the connection and
metric in the line bundle uzl’ CS induced by the connections and metrics

of Lemma 4.4. For each h€I; and 6 €R™, let
Ay 1(8) = g5 (Apn(9)).
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From the estimates (4.14) and (4.15), we find that

HVuucRm,CSHCO(Avl,h((S(b)))vQUl
< OO+ lellorn) D

(4.20) |
i€x(b),h(7)

pi(V)] - [I€llb,p,1,
=h

for all heI; and & €ker 5V,b-

Fix a smooth function €: X7.5(X) — R* such that for every b€
iT;B(X) and h € I the disk of radius of 8¢, in ¥ p around the node
xp(b) contains no other special, i.e. singular or marked, point of . For
each

v=(b,v)= (b, (Vn) henuii € F
sufficiently small, let

Qup;2 - EU — Evl and (jvg;2: Ev — Evl

be the basic gluing map of [25, Subsection 2.2] corresponding to the
gluing parameter vy and the modified basic gluing map defined in the
middle of [26, Subsection 4.2] with the collapsing radius €,. In this case,
¥, is a smooth genus-one curve. For each h € I;, the maps g,,;2 and
Guy:2 collapse the circles of radii \Uh\l/ 2
point z(b) €X,,,p. As before, the map

and ¢, respectively, around the

quv = QU0;2O (Jul : EU — Eb

induces a metric g, on X, such that (X,,g,) is obtained from ¥, by
replacing all nodes by thin necks. Let

I =5 —{hel;: A;=0Vi>h}.

The map Guyy;2 is biholomorphic outside |X| thin necks A, p, with heR,
of (X4, 9v) and the |I;| annuli

App = A UAS,
with h € I, where
Apy = A (6(0) C SpprSy
are annuli independent of v. In addition,
Uul,dqvoqgmwh) = const VheR,
(4.21) uvlvdfho;z(ﬁb,h) = const Vhel, 17,
uv1,<|qUO;2(A;h) = const Vhelf;

gvoﬁ(-"Ib_,h) - Av1,h(‘vh‘2/5(b))7

4.22 i
) 14Gu2 | o4,y < CONenl

Vhelf,
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if the C%-norm of dGuyy:2 is computed with respect to the metrics g, on
¥, and g, on X,,. Furthermore,

(4.23) |dGug:2|| o < C(B).
If v=(b,v) € F is sufficiently small and ¢ €L g(v1), we put
Uy = Uy OGuyz and  b(v, () = (Zu; ).
The map qy;2 induces weighted L{-norms || - ||, 1 on the spaces
L(Xy;uy,  TX) and L(20;uy,  £)
and a weighted LP-norm || - ||, , on the space
D(S0; AV TS, @usy TX).
Let T'(v,¢), T'(v,¢; £), and T'%!(v,¢; £) be the corresponding comple-
tions. We put
[ (0,6 L) = { Ry €= Ruy cE0Guga: E€ker Iy} C (v, £).
By (4.20)-(4.23), for all £ € ker dy
10 b(0,0) vcﬁuup_ Z |Uh|z 1pi(V)] - € llb,p,1
(4.24) hely iex(b)h(i)=h
b)|p(w)] - l1€llb,p.1-

Let T'y(v,(; L) be the L2-orthogonal complement of I'_(v,(;£) in
I'(v,(; £). We denote by

T, ¢;—* F(Ua C; 2) I F—(U7 C; S)
the L?-projection map. For the same reasons as before,
(425) C(b)_luguup, vp — b)Héuu,p,l

for all £ € Ty (v,¢; L), if v=(b,v) € F? and ¢ € T'(vy) are sufficiently
small. Let T'% l(v ¢; £) be the image of I'y (v, (; £) under dy B(0,0)
The operator 8v b, is not surjective. We next describe its cokernel.

1 <109 sw.0él]

Since the operator 8V » is surjective, the cokernel of E?v p can be identified
with the vector space

0,1/7. _ ~ TTF
rz (ba 2) = Hb;P®2evP(b) ~ Eﬂ'P(b)®£eVP(b)7

where Hj,. p is the space of harmonic antilinear differentials on the main
component ¥y, p of ¥p. As in [27, Subsection 4.3], there exist isomor-
phisms

RS;}D: Hp,p — Hop =Hp(o,0);ps v=(b,v) € Fs,
such that the family of induced homomorphisms
Hyp — T (03 C)",
(Rt () = (Rypnn2 YneHyp, ' €T (v;C),
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is continuous on f(s, and
(4.26) Ryply=id  VbeXr,p(X).

Let 8: RT —[0, 1] be a smooth function such that

0, ift<1;
t) € _
) {1, if t>2.

If reR*, let 3.(t)=p8(t/\/T). We define 3, € C>®(Zy;R) by

1, if 2€%y;, i€x’(b);
Bo(z) = q 1= Bswy(r(2)), if z2€X4;, i€ x(b);
0, otherwise,

where 7(2) = |g5'(2)| if g5 : C — S? is the stereographic projection
mapping the origin to the south pole of S2. In other words, 3, = 1
on ¥9(6(b)/2) and vanishes outside of X9(25(b)) C 5. Let 3, = By0qy.

If € %%(26(b)), we denote by 1" the parallel transport in the line
bundle uy £ along a path from z € (jgol;z(Evl;p) to z in ¥9(25(b)) with
respect to the connection qzo;2v(“17<). For each
(4.27) v = (b,v) Gf? and nel®(y; £),
let Rgiénefo’l(v, (; £) be given by

{Rg’én}zw = Bo(2) V0. (w) € Lty e(2) 2€Xy, weT,,.

Since the curvature of (jZOQV(“l’C) vanishes over XY (25(b)), {Rg’én}zw
is independent of the choice of x and path from x to z above.
If el (b; £), we put

Inll = j{: Mﬂxhwy

hel;

where ||, ) is the norm of n,, ;) with respect to the metric g, ) on
Yp.p. If v and 7 are as in (4.27) and ||n||=1, we define by

ngé;_: F()’l(va GL) — P(i’l(b; £) by
T ) = (0 Rigon o €T (v,G; 9).

Since the space F%l(b; £) is one-dimensional, 7'('2’1__ is independent of
the choice of n. We note that since p>2, by Holder’s inequality

(4.28) [roe ]| <CO)n vy Y1 e (v, L).
Furthermore, by the proof of [25, Lemma 2.2],
(429)  ||moe_Ovpwoll < CO)p@)|IEllupr  YEET(0,G L)
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With the same restriction on the homomorphisms R P and identifica-
tion of gluing parameters as described in [26, Subsectlon 4.2], we also
have

(4.30) 06 09 b0 Ruc = —2miD )€ VEcker dyy,
by the proof of [25, Proposition 4.4].
For each v:(b,v)ef(?, ¢elp(vy), and '€l (v, (), we put
Upe ol = expuMC' and b(v,¢, (") = (Bvitucer)-
We denote by Il the isomorphisms
Dy, L) — T(Epsuy ¢ o L) and
0,1 % 0,1 %

(EU7A T 2 ®UU CS) —>F(EU7A T 2 ®UU<</£)
induced by the V-parallel transport along the geodesics 7 — exp,, <TC !
with 7€[0,1]. Let

Ly¢o =5 09 pwc.on e = Ov ) T(0, 6 €) — T (v, (5 £).
Similarly to (4.9),
431) Lo céll,, S CONCIE palléllvpr ¥ EET (0, (L),

Let J be an almost complex structure on X. With notation as at the
beginning of this subsection and in Subsection 3.2, we define the linear
bundle map

Dy.r: % — mpE*®@cevp(TX, J)
over X7.5(X) by
{Drr (b, B)iex®) } @) = D Wupy ) (@) 1 Dib € Ty i) X
i€x(b)

Suppose t, and b, are as in Lemma 4.2 and ¥, .p = %, is a smooth
torus. Since the sequence [b,] converges to [b], by [28, Subsection 2.5]
there exist C € R™ and for all r sufficiently large

¢ €RY b e Xrp(X), v =(.v)€ fg),

(4.32) ,
Gr € F('Ur)a and <r € F(Ury Cr)
such that
lim b, =b, lim |v,.| =0,
(433) . r——00 r—00
Th_I)noo HCrHum,p,l =0, HC;Hump,l < C‘P(U)‘a
(439) dim e =0, [Darp()] < elp()]

and b= (Zbr;ubr) = (va eXPy, ., C,()
The last equality holds for a representative b, for [b,].
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By (4.31) and the last inequality in (4.33), for some C' € RT and for
all r sufficiently large

(435) Lo cciélly,, <
Thus, by (4.24) and (4.25),
(4.36) [0y~ T € =TI €
for all £ €ker 5v7b7,. Since

{09 b0 c) F Lo} E =0V E€kerdyy,,

C‘ﬂ Up | 1€ orp,1 Vel (v, G £).

vrp,l = C‘p Ur H’vanp,

by (4.28)-(4.30), (4.35), and (4.36),
(4.37) 1D €| < Clo(n)|* - 1€l o

for all RUT'?CT'g € TrUT'yCT-;_HC_’,l ker 5V7br"
After passing to a subsequence if necessary, let
M/—( )ZGX € Sb {0}

be such that N
lim [p(vy)] = [w] € P§y.

Since D;bl. — D;b for all iex(b)
(4.38) Z%h( ) (W) 5 Dib =0 € Ty ) X

iex(b

for all Y €Ky 3 by (4 34). If & €ker Oy, and € €ker dy p, are such that
lim [&,] = [§] € Vi

T —00

then by (4.36) and (4.37),

(4.39) {Dw & = | D W m (@h) - Doi| < &fu[[l¥]

iex(b)

for all ¢ € Er @), for a sequence €, converging to zero. Thus, by (4.38)
and (4.39), for the purposes of Lemma 4.2 we can take

where ¢ €E, ) is any nonzero element.

Remark 1: If 3,.p = %, is a circle of spheres, i.e. X' % () in the
notation of Subsection 4.1, the proof of Lemma 4.2 is formally the same,
but some details change in a way analogous to [25, Subsection 3.9]. In
particular, in (4.32),

v, EfNoz ( Eﬁ:vh:0<:>h€N0}a

heNuI)
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for a nonempty subset Ry of V. If v Gfgo, Y., is a circle of spheres with
nodes Ng. If in addition ¢ € I'(vy), I'(v, () consists of the vector fields
on the |Xg| components of ¥, that agree at the nodes of 3,,. Similarly,
I'(v,(; £) consists of the sections of uz7<£ over the components of ¥,

that agree at the nodes. If n € I (b; £), the uy, L-valued (0,1)-form
Rg’én has poles at the nodes of ¥, with residues that add up to zero at
each node. In particular, Rg’én is not an element of I'%!(v,(; £), but

the homomorphism ﬂ'g”é;_ is well defined and still satisfies (4.28)-(4.30).
Finally, the argument of [28, Subsection 2.5] easily generalizes to show
that (vy, ¢, (L, €r) as in (4.32)-(4.34) exist in this situation.

Remark 2: A regularization ¢y of the cone VfM near b, as in Def-
inition 3.3, can be constructed using the description of open subsets
in X1 (X, A) of [15, Section 3] and the corresponding analogues of
the isomorphisms R, ¢ and the injective homomorphisms Wu,c;—HC_/I as
above.
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