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HIGHER ORDER BERGMAN FUNCTIONS AND
EXPLICIT CONSTRUCTION OF MODULI SPACE FOR
COMPLETE REINHARDT DOMAINS

RoNG DU & STEPHEN YAU

Abstract

In this article we introduce higher order Bergman functions
for bounded complete Reinhardt domains in a variety with possi-
bly isolated singularities. These Bergman functions are invariant
under biholomorhic maps. We use Bergman functions to deter-
mine all the biholomorhic maps between two such domains. As
a result, we can construct an infinite family of numerical invari-
ants from the Bergman functions for such domains in A,, variety
{(a:,y,z) €C3 oy = z"+1}. These infinite family of numerical
invariants are actually a complete set of invariants for either the set
of all bounded strictly pseudoconvex complete Reinhardt domain
in A, variety or the set of all bounded pseudoconvex complete
Reinhardt domains with real analytic boundaries in A,, variety.
In particular the moduli space of these domains in A, variety
is constructed explicitly as the image of this complete family of
numerical invariants. It is well known that A,, variety is the quo-
tient of cyclic group of order n 4+ 1 on C2. We prove that the
moduli space of bounded complete Reinhardt domains in A,, vari-
ety coincides with the moduli space of the corresponding bounded
complete Reinhardt domains in C2. Since our complete family of
numerical invariants are computable, we have solved the biholo-
morphically equivalent problem for large family of domains in C2.

1. Introduction

Let Dy and Dy be two domains in C™. One of the most fundamen-
tal problems in complex geometry is to determine conditions which will
imply that D; and Ds are biholomorphically equivalent. For n = 1,
the celebrated Riemann mapping theorem states that any simply con-
nected domains in C are biholomorphically equivalent. For n > 2, it
is well known that there are lots of domains which are topologically
equivalent to the ball but not necessarily biholomorphically equivalent
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to the ball. This problem was first studied by Poincaré in 1907 [Po]. He
worked on the perturbations of the unit ball in C? of a particular kind,
and found necessary and sufficient conditions on a first order pertur-
bation that the perturbed domain be biholomorphically equivalent to
the ball. More generally, Poincaré studied the invariance properties of
a CR manifold X of real dimension 2n — 1 which is a real hypersurface
in C™ with respect to the infinite pseudo-group of biholomorphic trans-
formations. The systematic study of such properties for hypersurfaces
with nondegenerate Levi form was made by Cartan [Ca] in 1932, and
later by Chern and Moser [Ch-Mo|. A main result of the theory is the
existence of a complete system of local differential invariants for CR-
structures on real hypersurfaces. In 1974, Fefferman [Fel| proved that
a biholomorphic mapping between two strictly pseudoconvex domains
is smooth up to the boundaries and the induced boundary mapping is a
CR-equivalence on the boundary. Thus, by the fundamental theorem of
Fefferman, the biholomorphically equivalent problem of bounded strictly
pseudoconvex domains in C™ is the same as the CR equivalent problem
of strictly pseudoconvex compact CR manifolds of real dimension 2n—1
in C".

In 1978, Burns, Shnider and Wells [B-S-W] used the Chern-Moser
theory to distinguish generic perturbations of a given strictly pseudocon-
vex domain. They were able to construct perturbations with arbitrarily
large parameters in such a way that the domains are biholomorphically
inequivalent if the parameter values of these domains are different. As
a result the “ number of moduli ” of a “ moduli space ” of a bounded
strictly pseudoconvex domain has to be infinite. On the other hand,
Webster [We] gave a complete characterization when two ellipsoids in
C™ are CR equivalent by Chern-Moser’s theory and Cartan method of
equivalence. In 1988, Lempert [Le] made a significant progress in the
subject. He considered smoothly bounded strictly convex domains con-
taining the origin of C™. He called two such domains equivalent if there
is an origin preserving biholomorphic mapping between them whose
differential at the origin is the identity. With each smoothly bounded
strictly convex domain D, Lempert associated a triple (I, H, Q) of in-
variants where [ is the Kobayashi indicatrix of D at the origin, and
the smooth hermitian form H and the smooth quadratic form @ are
defined on the rank n — 1 vector bundle of (1,0) vectors tangent to the
boundary of the Kobayashi indicatrix I. He showed that if two marked
convex domains share the same invariants, then they are equivalent. In
dimension 2, the construction may be simplified and it is possible to
reduce the number of invariants. This allows the explicit description
of the moduli space of marked strictly convex domains in C? as a sub-
domain of a suitable Fréchet bundle. Although the theory established
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by Lempert is extremely beautiful, the computation of his invariants is
quite a hard problem.

Despite the success of the Chern-Moser theory and the Lempert the-
ory, the fundamental question of distinguishing two strictly pseudocon-
vex CR manifolds remains unsolved. Let X be a compact connected
strictly pseudoconvex CR manifold of real dimension 2n — 1. In 1974,
Boutel de Monvel [Bo] (see also Kohn [Ko]) proved that X is CR-
embeddable in some CV if dimX > 5. Throughout this paper, we shall
only consider CR embeddable strictly pseudoconvex CR manifolds. In
view of a beautiful theorem of Harvey-Lawson [Ha-La], there exists a
complex variety V in CV for N sufficiently large such that 0V = X and
V' has only normal isolated singularities. It is well known that one can
use the structures of the singularities of V' to distinguish the CR struc-
ture of X (see for example Theorem 3.1 of [Ya]). Thus if two strictly
pseudoconvex CR manifolds bound non-isomorphic singularities, then
their CR structures are different. The difficult unsolved CR equivalence
problem is: how can one distinguish between strictly pseudoconvex CR
manifolds X; and X5 when they are lying in the same variety V. If V is
CN, this difficult problem is just the classical problem discussed above
and has been considered by many leading mathematicians Chern-Moser
[Ch-Mo], Fefferman [Fel], Webster [We|, Burns-Shnider-Wells [B-S-W],
etc. Even in this case, it seems that the biholomorphically equivalence
problem or moduli problem for complete Reinhardt domains remains
open, although there is a beautiful theorem of Sunada [Su] which re-
lates two such domains by a special linear map. For example, consider
the following natural family of complete Reinhardt domains

D(a1,"' s Qs b1, bgser, 7Ck) =
k
(C2 . . 41 b 47 . 24 d h
(21,22) € C*: [a;]z1]™ 4 bilzo|™ + ¢i2122]™'] < d, where
i=1
ai, -+ ,ag; b1, ¢ ,br;ci, -, ¢, and d are positive real numbers}.

It is not known how to solve the problem of biholomorphic equivalence
of this family of complete Reinhardt domains by Suanda’s theorem.
On the other hand, when V is a singular variety, the CR equivalence
problems is wide open. In [Ya], the second author discovered a novel
technique to attack CR equivalence problem. He constructed a new bi-
holomorphically invariant called Bergman function. The Bergman func-
tions put a lot of restriction on biholomorphic maps between bounded
complete Reinhardt domains, from which new holomorphic invariants
can be constructed and the automorphism groups of the bounded com-
plete Reinhardt domains can be determined. He illustrated how his new
technique works in a concrete example of Aj-variety V = {(x,y, z) €
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C?:ay = z2}. He constructed a fundamental holomorphic numerical
invariant vp (cf. Theorem 3.6 of [Ya]), for bounded complete Rein-
hardt domains D in V. He also computed the automorphism group
of D. For a one parameter family of complete Reinhardt domains
D, = {(z,y,2) € C* : zy = 2%, alz|* + |y|* + |2|* < €0, where a > 0
and gg is a fixed positive constant}, he showed that the holomorphic
numerical invariant vp, is a complete invariant in the sense that D,, is
biholomorphically equivalent to D, if and only if vp, =wvp,,.

In this paper, we introduce a higher order Bergman functions on do-
mains in varieties which are global invariants. These Bergman functions
are used to prove that biholomorphisms between two bounded complete
Reinhardt domains are necessarily special linear maps. We construct an
infinite family of numerical invariants for complete Reinhardt domains
in A,-variety. Our numerical invariants are able to distinguish any two
bounded complete Reinhardt pseudoconvex domains with real analytic
boundaries or any two bounded complete Reinhardt strictly pseudocon-
vex domains in A,-variety. Thus the moduli spaces of bounded com-
plete Reinhardt pseudoconvex domains with real analytic boundaries
or any two bounded complete Reinhardt strictly pseudoconvex domains
in A,-variety are constructed explicitly as the image of this complete
family of numerical invariants. Because each bounded complete Rein-
hardt domain in A,-variety corresponds to a unique bounded complete
Reinhardt domain in C?, we have also constructed the moduli space of
a large class of bounded complete Reinhardt pseudoconvex domains in
C2.

Before stating our result, let us recall some notations.

An open subset D C C" is a complete Reinhardt domain if, whenever
(21, ,2n) € D then (&21,- -+ ,&p2n) € D for all complex numbers &;

Let V,, = {(m,y, 2) €C3 oy = z"“}. It is well known that V;, is
the quotient of C? by a cyclic group of order n + 1, i.e. 6.(21,22) =

(0z1,0™z2), where § is a primitive (n + 1)-th root of unit. The quotient

z?+1 n+1

map 7 : C? — V is given by (21, 22) = ( 26 2129).

Definition 1.1. An open set V in the A,-variety V; = {(az,y,z) €
C?:ay = z"“} is called a complete Reinhardt domain if 771 (V) is a
complete Reinhardt domain in C2.

Recall that the minimal resolution M\; of f/; consists of n + 1 co-
ordinate charts W; = C? = {(ug,v;)},k = 0,1,--- ,n. The space of
holomorphic two forms on M,, has a basis

n
{qﬁaﬁ = ug‘z}g dug Ndvg 1 a0 > n——i—lﬂ} .
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Let M (C M) be the resolution of complete Reinhardt domain V in

Vp,. In what follows, we shall use notation |[¢agl|3; for [,; das A das-
Let

__n_ B
god) — [d10]1%” 17| ppngr || 7+
B _n=1lg
[ Baslll|dool|* ™ #F17

Theorem A. Let V;, @ = 1,2, be two bounded complete Reinhardt

domains in Ap,-variety V,, = {(:E,y,z) e C®:ay = z"“}. If V1 is
biholomorphic to Vs, then

g@B) .= gl ). gna=(n=1)8,(nt+1)a=nB)

¢@B) = gl B) 4 gna—(n—1)f,(n+1)a—nf)
p\ P9 .= (gler) — glna=(n=1jp,(n+1)a=—np)) .

(g(a,Q) _ g(na—(n—l)qv(nﬂ)a—nq))
and

Wl a2,p1,p2) . (g(oq,m) _ g(nal—(n—l)pl,(n+1)0¢1—np1)) .

(g(az,pz) _ g(naz—(n—l)pz,(n+1)0¢2—np2)),
where

1
a>1la>— ﬂ,OSp,qS[n—i_ a}p#q,
n+1 n

0<p2-<[”+1
n

are all invariants, i.e.

Oéi:|,Oéi 2 1,0&1 75012,1': 1,2,

(@.B) _ f(aB) ~(ap) _ (ap)  (apq) _  (@p,q)
£V1 = 5\/2 aCVl = CVQ » Ty =My
w%zhoczvphpz) _ w$17a27p17p2)7
where )
C)Z)l,()é) " ﬁ,ogpaqg[n—i_ O{|7p?£q7
n+1 n
1
O< 7,<|:n+ ai:|7ai>17a17éa27i:172’

n

The invariants in Theorem A determine completely the Bergman
function up to automorphisms of A, -variety.

Theorem B. Let V;, i = 1,2, be two bounded complete Reinhardt
strictly pseudoconvex (respectively C*-smooth pseudoconvexr) domains
in V= {(z,y,2) € C3: ay = 2" }. If

o, a,3 o, o, a,p, a,p,
e = g9, (0 = (0P b ) = i)
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(01, a2,p1,p2) _ w(a17a27p17p2)

1%1 - Vs )
where
n n+1
C)Z)l,()é) ﬁ,ogpaqg[ + O{|7p?£q7
n+1
n+1
0<p2<|: + Oéi:|,Oéi>1,0é1?£O£2,Z':1,2,

then there exists an automorphism VU = (11, 19,13) of Ay -variety V, =
{(z,y,2) € C3: xy = 2"} given by either

(1/}17¢271/}3) ==
<”¢10”M2 ”¢OOHM1 H‘lsn,n-l—lHMz H¢00HM1 ”¢11HM2 ”¢00”M1 z>
l¢oollary llé10llar, " lldoollar, [ énnrillan, ™ ll¢oollas, llé11llasn
or
(Y1, 2,43) =
<||¢10||M2 llé00 | ary | én,n1ll s H¢00||M1$ P11z || P00l asy z)
boollae Nonnrtllan ™ ll¢oollar,  lldtollar,  li¢oollar o1t llarn

such that ¥ sends Vq to Vs.

As an immediate corollary of Theorem B above, we have the following
theorem.

Theorem C. The moduli space of bounded complete Reinhardt strictly
pseudoconver (respectively C*-smooth pseudoconvex) domains in A, -

variety Vi, = {(z,y,2) € C* : ay = 2"t} is given by the image of the
map P : {V : V' a bounded complete Reinhardt strictly pseudoconver
(respectively C*-smooth pseudoconvex) domain in Vn} — R, where
the component function of ® are the invariant functions

é‘(orﬁ)7 C(a,ﬁ) 7 n(am,q)w(al , az,m,pz)’

1
a>1la - ﬁ,0<p7q<[n+ a}p#q,
n+1
1
0<pi<[n+ ai],ai>1,a17§a2,i:1,2.

defined in Theorem A.

We are now ready to study a large class of complete Reinhardt do-
mains in C2. The following theorem says that the biholomorphic equiv-
alence problem for bounded complete Reinhardt domains in A,-variety
V., is the same as the biholomorphic equivalence problem for the corre-
sponding bounded complete Reinhardt domains in C2.
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Theorem D. Let 7 : C? -V, = {(x,y, z) € C:ay = z"“}
be the quotient map given by w(z1,22) = (z{‘“,z;”rl,zlzg). Let V3,
1 =1,2, be bounded complete Reinhardt domains in f/; such that W; :=
7 Y(V;),i = 1,2, are bounded complete Reinhardt domain in C2. Then
V1 is biholomorphic to Va if and only if W1 is biholomorphic to Ws.
In particular, V1 is biholomorphic to Vo if and only if there exists a
biholomorphism ® : Vi — Va given by ®(x,y,2) = (a"lz, 0"y, abz)
or ®(z,y, z) = (a" 1y, 0"z, abz) where a,b > 0.

As a corollary of Theorem C and Theorem D, we have the following
theorem.

Theorem E. (1) Let W= {W : W = 7= 1(V) where V is a bounded
complete Reinhardt domain in A, -variety} be the space of bounded com-
plete Reinhardt domains in C? which are invariant under the action of
the cyclic group of order n+1 on C2. Then

g(avﬁ) , C(avﬁ) , fr](avp7Q) , w(ah 027p17p2)7

1
azl,az n ﬂao\p7Q\|:n+ 04:|7p7éQ7
n+1 n

n+1 .
0<p2< Q; ,OZZ'>1,OZ1?£O£2,Z:1,2,

defined in Theorem A are invariants of V.

(2) Let Wp = {W : W = 7= V) where V is a complete Reinhardt
pseudoconver C¥-smooth domain in Ay, -variety} and Wgp = {W : W =
7 Y(V) where V is a complete Reinhardt strictly pseudoconvex domain
in Ap-variety}. Then the moduli space of Wp (respectively Wsp) is
given by the image of the map ®p : Wp — R (respectively Pgp :
Wgsp — R*), where the component functions of ®p (respectively Pgp)
are the invariant functions

g(avﬁ) , C(avﬁ) , n(avp7Q) , w(ah 027p17p2)’

1
azlaz>— B,Oép,qé[wr a}p#q,
n+1 n
1
0< 7,<|:n+ ai:|7ai>17a17éa27i:1727
n

defined in Theorem A. In particular, the moduli space of Wp (respec-
tively Wsp) is the same as the moduli space of bounded complete Rein-
hardt pseudoconver C¥-smooth domains (respectively bounded complete
Reinhardt strictly pseudoconver domains) in Ay -variety Vy, = {(z,y,2)
€C?:ay=2"T}.
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It is an interesting question to study the geometry of the moduli
space of bounded complete Reinhardt domains in A,-variety. Here we
study two families of domains in A,-variety and solve the biholomorphic
equivalent problem. In fact we are able to construct the moduli space
of these families explicitly. More specifically, consider

d
V(El’?)’c) = {(x,y, 2): wy = 2%, alz* + by + c|2*! < 60} .

Here we assume that a,b,c are strictly greater than zero, and d is a
fixed integer greater than or equal to 1. This is a 3 parameters family
of pseudoconvex domains in Aj-variety V; = {(a:, y,2) €C3: oy = 22}.
Using our Bergman function theory, we can write down the explicit
moduli space of this family as shown in the following theorem by means
of the invariant (cf. Corollary 5.6)

(a,8) . ¢(na—(n—1)B,(n+1)a—np)
plaB) — Ve 3 ., for n=1.

V€(aa)

Theorem F. Let

VD o = {(@.2) € CF ay = 22 alaf™ + bly** + el < 20 }

Let ~ denote the biholomorphic equivalence. Then the map
d d —1.d—
@ {V(EL?;C)} — Ry, V((a,g,c) o ALY
1 injective up to a biholomorphism ~. More precisely the induced
map @: {V(Eldl)) C)} /~ — Ry is one-to-one map from {V(Sldl)) C)} /~ onto
(0, %) So the moduli space of {V(Ej?),c)} is an open interval (0, %)

The biholomorphically equivalent problem of domains in Aj-variety
is not only interesting in its own right, but also has application to the
classical biholomorphically equivalent problem of domains in C2. In
fact, let

W((zj,)b,c) = {(m,y): alz*® 4 bly|* + clzy|? < 50} .

Corollary G. The moduli space of W((:)b 0 is the same as the moduli
space of V((d) which is (O 2).

a,b,c)’ '
As an application to our theory, we compute explicitly the invari-

ant v for two domains ‘/((11)11) and V((lzil)

sequence, we see that V((ll)1 1 is not biholomorphic to V((lzi 1 and the

in Aj-variety. As a con-
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domain I/V((l1 7)1’1)
C2.

Our paper is organized as follow. In Section 2, following the idea
of [Ya], we introduce the higher order Bergman functions which are
biholomorphic invariants. In Section 3, we show how to write down the
k-th order Bergman functions for domains on A,-variety and recall the
fundamental CR~invariant 1/‘(,1 9 \which we need to use later. In Section
4, we determines all possible biholomorphisms between two domains in
Aj-variety. In Section 5, we use higher order Bergman functions to
construct numerical invariants in Theorem A. Moreover, in Theorem B,
we prove that the invariants in the Theorem A determine the Bergman
function up to automorphism of A,-variety. Theorem C, Theorem D
and Theorem E are proved also in this section.

in C? is not biholomorphic to the domain W((f )1 1) in

Acknowledgments. We are very grateful to Fornaess for describing
a proof of his Lemmas 5.11 and 5.12 to us. We also thank Lempert for
informing us the result of Sunada’s paper.

This paper is dedicated to Professor Joseph Kohn on the occasion of
his 75-th Birthday.

2. Preliminaries

In this section, we shall recall some basic definitions and results in
our previous paper [Ya] which will facilitate our subsequent discussion.
We also take this opportunity to correct some small mistakes in [Ya].

Recall that a complex manifold M is called strictly pseudoconvex if
there is a compact set B in M, and a continuous real valued function ¢
on M, which is strictly plurisubharmonic outside B and such that for
each ¢ € R, the set M, = {x € M : ¢(z) < c} is relatively compact in M.
Note that a strictly pseudoconvex complex manifold is a modification
of a Stein space at a finite many points.

Let V be a Stein variety of dimension n > 2 in CV with only ir-
reducible isolated singularities. We assume that OV is a smooth CR
manifold. Let w: M — V be a resolution of singularity with E as
an exceptional set. We shall define the k-th order Bergman function
B](\?(z) on M which is a biholomorphic invariant of M. The 15 order
Bergman function BJ(\}) (z) is the Bergman function Bj(z) introduced
in our previous paper [Ya.

Definition 2.1. Let F (respectively, Fy) be the set of all L? inte-
grable holomorphic n-forms ¥ on M (respectively, vanishing at least the
k-th order on the exception set E of M). Let {w;} (respectively, {w](k)})
be a complete orthonormal basis of F' (respectively, F)). The Bergman
kernel (respectively Bergman kernel vanishing on the exceptional set
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of k-th order) is defined to be K(z) = > w;j(z) A w;(z) (respectively,
K® () =% wék) () A w](-k)(z)).

The proofs of the following two Lemmas are exactly the same as those
in [Ya).

Lemma 2.2. F/F} is a finite dimensional vector space.

Lemma 2.3. Bergman kernel vanishing on the exceptional set of k-th
order K®)(2) is independent of the choice of the complete orthonormal
basis of Fj, and K®)(2) is invariant under biholomorphic maps.

Definition 2.4. Let M be a resolution of a Stein variety V of di-
mension n > 2 in CY with only irreducible isolated singularity at the

origin. The k-th order Bergman function B](\f,) on M is defined to be
KWKy,

The proof of the following Theorem 2.5 is the same as the proof in
Theorem 2.5 of [Ya]. However, the last statement of Theorem 2.5 of [Ya]
is not true in general. It is true when the canonical bundle is generated
by its global sections in a neighborhood of the exceptional set, which is
automorphically satisfied if V' has only rational surface singularities.

Theorem 2.5. B](\Z) 1s a global function defined on M which is invari-

ant under biholomorphic maps. Moreover, BJ(\S) 1s nowhere vanishing
outside the exceptional set of M. If the canonical bundle is generated by
its global sections in a neighborhood of the exceptional set, then the zero
set of the k-th order Bergman function B](\f,)
set of M.

is precisely the exceptional

The same argument of the proof of Theorem 1 in [L-Y-Y] will prove
the following theorem.

Theorem 2.6. Let M be a strictly pseudoconvex complex manifold of
dimension n > 2 with exceptional set E. Let A be a compact submanifold
contained in E. Let w: My — M be the blow up of M along A. Then
we have K](\flz(z) = W*Kj(\f[)(z) and Ky, (2) = 7Ky (2). Consequently

BJ(\Z (2) = w*BJ(\fj)(z).

Let mi: M; — V, i = 1,2, be two resolutions of singularities of V.
By Hironaka’s theorem [Hi|, there exists a resolution 7: M — V of
singularities of V such that M can be obtained from M;, i =1,2, by
successive blowing up along submanifolds in exceptional set. In view of
Theorem 2.5 and Theorem 2.6, the following definition is well defined if
the canonical bundle is generated by its global sections in a neighbor-
hood of the exceptional set. Moreover we can get Theorem 2.8 easily.
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Definition 2.7. Let V be a Stein variety in CY with only irreducible
isolated singularities. Let m: M — V be a resolution of singularities of
V such that the canonical bundle is generated by its global sections in
a neighborhood of the exceptional set. Define the k-th order Bergman

function B‘(,k ) on V to be the push forward of the k-th order Bergman

)

function Bj(\j by the map =.

Theorem 2.8. Let V be a Stein variety in C with only irreducible
1solated singularities. Assume that there exists a resolution M of sin-
gularities of V' such that the canonical bundle is generated by its global
sections in a neighborhood of the exceptional set. Then the k-th order

Bergman function B‘(,k ) on V is invariant under biholomorphic maps

and B‘(/k) vanishes precisely on the singular set of V.

For the convenience of the readers, we recall the following two impor-
tant theorems.

Theorem 2.9. ([Fel]) A biholomorphic mapping between two strictly
pseudoconvexr domains is smooth up to boundary and the induced bound-
ary mapping gives a CR-equivalence between the boundaries.

Theorem 2.10. (/Su/) Two n-dimensional bounded Reinhardt do-
mains D1 and Do are mutually equivalent if and only if there exists a
transformation ¢ : C* — C" given by 2z; = rize@;(ri > 0, =1,---,n
and o being a permutation of the indices i) such that ¢(Dy1) = Ds.

kth

3. Continuous invariant order Bergman function

Let X be a strictly pseudoconvex CR manifold of real dimension
2n — 1. Tt is well known [Bo] that X can be CR embedded into CV
if n > 3. For any embeddable strictly pseudoconvex CR manifold of
real dimension at least 3, the famous theorem of Harvey and Lawson
[Ha-La] implies that X is a boundary of a variety V in C" for some N
such that V has only isolated normal singularities.

Proposition 3.1. ([Ya]) Let X1, Xo be two strictly pseudoconvex CR
manifolds of dimension 2n — 1 which bound varieties Vi, Vo respectively
in CN with only isolated normal singularities. If ®: X1 — Xo is a CR-
isomorphism, then ® can be extended to a biholomorphic map from V
to V2.

In view of the above Proposition 3.1, if X7 and X5 are two strictly
pseudoconvex CR manifolds which bound varieties V7 and V5 respec-
tively with non-isomorphic singularities, then X; and X5 are not CR
equivalent. Therefore to study the CR equivalence of two strictly pseu-
doconvex CR manifolds X; and Xs, it remains to consider the case
when X7 and Xy are lying on the same variety V. The purpose of



578 R. DU & S. YAU

this section is to show that our global invariant Bergman function of
k-th order defined in Section 2 can be used to study the CR equiva-
lence problem of smooth CR manifolds lying on the same variety. As an
example,,vwe shall show explicitly how CR manifolds varies in the A,,-
variety V,, = {(az,y,z) € C: f(r,y,2) = oy — 2" = 0}. An explicit
resolution 7: M,, — V,, can be given in terms of coordinate charts and
transition functions as follows:

Coordinate charts: Wk =C% = {(ug, )}, k=0,1,--- ,n.

1 2
.. . Uk4+1 = oo Ul = Uk4+1" V41
Transition functions: + Yk 9 or
Vk41 = UkVk Yk = uia
Resolution map: 7 (ug, vg) = (ui“v,’i,uﬁ‘kvzﬂ_k,ukvk) or
_ n+1 _ _ +1
(x,y, 2) = (uo, ugvy ™, upvo) = -+ = (up" " V), Up, UnVp).

Exceptional set: E =7 (0) = Cy = {up_, = 0} U {v, = 0},
k=1---,n.

From now on, we suppose V' to be a bounded complete Reinhardt
domain in V;,. Thenlet M =74V = Ul_ Wy, where Wy, = 7 1(V)N
Wk, k =0,1,--- ,n. Observe that under 7 := 7|p;: M — V, Wo\C
is mapped biholomorphically onto V'\y-axis. In particular M\Wj is of
measure zero in the obvious sense. Hence, we may compute integrals on
M using the (ug,vg) coordinate on the chart Wy alone.

The following proposition is a general consequence of the proof of
Proposition 3.2 of [Ya] (also cf. Proposition 8 in [L-Y-Y]).

Proposition 3.2. In the above notations, let po5 = ug‘fug dug N dvy,

_ bap . _n_ } ; .
a,0=0,1,2,.... Then {”%ﬁHM' a > n+16 18 a complete orthonor:

mal base of F and {”d)ﬁ% a > nLHﬁ and o > k‘} s a complete
orthonormal base of Fy,. Therefore the Bergman kernel vanishing on
the exceptional set of k-th order K](\f[) and the Bergman kernel Ky are
given respectively by:

K (ug, v0) = OF) dug A dvo A dug A dwig

where
S i i
M aslls;
-
a>k
and

(3.1) KM(UO,'UO) =
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1 |U0|2a|vo|2ﬁ (k) . -
<H¢00||2 T 2 W+@M dug A dvg A dug A dog.

The following results generalize Theorem 3.3 in [Ya].

Theorem 3.3. In the above notations, the k-th order Bergman func-
tion for the strongly pseudoconvex complexr manifold M is given by

@(k)
(3.2) BJ(\Z)(UO,UO)Z 2|, |20
n Z |’LL(]| a|U0|
A2
ol W=y Neaslty
a211

The k-th order Bergman function for the variety is given by

o
(3.3) B¥ (2,y) =
(o, + V)
llpooll3,
where
®) 2|2~ B 1yl o
(34) S D P
az>rp TePlM
a>k
Proof.
k k
K3 _ _llowl3i@4

B(k)(uo,vo) = = ,
M Eu 14 ||gool2,0

so (3.2) follows immediately. Recall that the resolution map is given by
(2,y,2) = (ug, ufvp™, ugvg). Then (3.3) and (3.4) follow from (3.2).
q.e.d.

Lemma 3.4. Let V' be a complete Reinhardt domain in the Ay,-
variety V,,. Any biholomorphism U = (¢1,19,13): V. — V has the
following representation

P (x,y, 2) a1 a2 a3\ [z
Po(x,y,2) | = | a1 az a Yy
P3(x,y, 2) as; aga as3 z

+ higher order terms in x, y and z.
If n =1, the constants satisfy the following equations

(35) aj1ag] — a312 =0
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a12a22 — azs”® =0

a13a23 — azz® + a11azs + a1aaz — 2az1azs =0
aj1az3 + aizagy — 2az1azz =0

a12a23 + a13age — 2azza33 =0

0) det(aij) 75 0.

If n > 1, the constants satisfy the following equations

(3.11) ajrazr =0

(3.12) aj2az2 = 0

(3.13) ajzags =0

(3.14) aijazs + azag; =0

(3.15) a12a23 + aizaz =0

(3.16) anag + azaz; — ajf =0
(3.17) det(a;;) # 0.

Proof. The case of n = 1 has been proved in [Ya]. For n > 1, since
U: V — V, wehave ¢ (x,y, 2)2(x,y, 2)— "+1(a; y,z) = 0. By looking
at the quadratic part of this equation and the fact that zy = 2"*!, we
obtain (a11x + a2y + a132) (a1 + azey + agsz) — ag‘;lazy = 0. Then the
lemma follows easily. q.e.d.

Proposition 3.5. Let V;, i=1,2, be two complete Reinhardt domains
in Vo = {(z,y,2) € C*: ay = 2"}, Let M; = 7 1(V;), i = 1,2.
Suppose that ¥: Vi — Va is a biholomorphic map given by ¥(x,y, z) =
(a112 + a12y + a132, 21 + agey + agsz, a1 T + asey + assz) + higher order
term. Then

(3.18)

610113, ||¢ 134, ||€Z5n,n+1\|]\42 101134,
(3.19)

2 2

ool 3z, 2 ol + ool 3z, 2 af? + P00 I3z, langl? = l|Pool5s,

||¢10|| llonl3, 134, | Pnn+1l5s, | énnt1ll3s,
(3.20)

||€Z500||M2| s+ ||€Z500||M2| Sl + looll3s, lans|? = H¢00H?v11

610113, 611113, | Pnn+1ll3s, 113,
(3.21)

dooll3 dooll3 Pooll3

| ||M2a11a—12+ | ‘|M2a31a32+ P00 ll5z, 917055 = 0

1015, P15, [Pn.n+1l13s,
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(3.22)
boo |3 Poo || doo |3
l ||é\42 P | ||é\/12 — | HM; 17055 = 0
10115, p111l3, [Pn.n+1l13s,

(3.23)
Pool|3 doo |3 Pool|3
Wama—m+ wa&a_gg-i- | ”M§ agotizg = 0.
10115, o113, [Pn,n+1l13s,

Proof. Since By, (x,y,z) = By, (¥(z,y, 2)), we have

2 2 2

#1013, [nn+1llis, 111131,
booll3 booll3
- 7” ”é‘/‘[ﬂallx—kalgy—kalgzlz + 7H HM; lag1x + agoy + assz|?
[ é10l3, lén.n+1 3,
[[bo0ll3s, 2
5 |a31w + a2y + azzz|”.
11113,
By comparing the coefficients of |z|?, |y|?, |2|?, 27, 2Z, yZ, Ty, Tz and
7z, we can get the identities immediately. q.e.d.

Next we recall some results in [Ya].

Theorem 3.6. ([Ya]) Let V' be a bounded complete Reinhardt domain
m V= {(x,y, z) € C:oay = z2} such that OV is a smooth CR

manifold. Let % : M — V; be a resolution of Vi and M = 7 L(V). With

2
the notation in Proposition 3.2, 1/‘(/1’0) = m

invariant of V in fVYl, i.e., if Vi and Vs are two such bounded complete

Reinhardt domains in Vi which are biholomorphically equivalent, then
2 2
9111l 19111lhry , where M; =7 1(V;), i =1,2.

ld10llary Id12llar, — ld10llary [d12]lars

is a holomorphic

Corollary 3.7. ([Ya]) Let V;,i = 1,2, be two bounded complete Rein-
hardt domains in Vi = {(z,y,2) € C*: xy = z*}. If the holomorphic

. . (1,0) (1,0)
movariant Uy, orvy,

o N Theorem 3.6 is not equal to %, then the biholo-
morphic map U = (1,19,13): Vi — Vo must be one of the following
forms:
1) (¢1,%2,%3) = (a117, asey, azzz) + higher order terms and asz® =
a11a92, where a110a92a33 75 0.
2) (¥1,19,v3) = (a12y, as1x,az3z) + higher order terms and ags® =

a120921, where a110a92a33 75 0.

The following lemma generalizes Corollary 3.8 in [Ya].
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__Lemma 3.8. Let Vi,i = 1,2, be two complete Reinhardt domains in
V, = {(x,y, z) € C3:ay = z”“}, where n > 1. Then the biholo-
morphic map ¥ = (11,19,13): Vi — Vo must be one of the following

forms:

1) (¢1,2,v3) = (@11, azny, assz)+ higher order terms and asz"tl =

aiiage, where ajiazass # 0.
2) (Y1,v2,%3) = (a12y, as1x, azzz)+ higher order terms and asz"tl =
aizaz1, where ajiazazs # 0.

Proof. In view of Proposition 3.4, the constant a;; satisfies the equa-
tions (3.11) to (3.17).
Case 1: a11 #0

(3.24) (3.11) = ag = 0.

(3.25) (3.14), (3.24) = ag3 = 0.
(3.26) (3.14), (3.25) = aj3a9p = 0.
(3.27) (3.24), (3.16) = arrazn — aly™t = 0.

Since ag; = ags = 0, we have age # 0 because of (3.17). It follows from
(3.12) and (3.26) that a12 = a13 = 0. Since a1 # 0 and age # 0, asg # 0
from (3.27). Notice that a;; satisfies (3.22) and (3.23), so a3z; = 0 and
aszy = 0. We thus arrive at case (1) of the lemma.

Case 2: a;1 =0
(3.28) (3.16) = aizaz — a4yt = 0.
(3.29) (3.14) = ai3a9] = 0.

We claim that a;3 = 0. If a13 # 0, then (3.13) and (3.29) would imply
that ag; = agg = 0. From (3.15), we have agy = 0. This contradicts to
(3.17). So we have shown a3 = 0. It follows from (3.17) that ajs # 0.
So from (3.12), we get age = 0. From (3.15), we get ags = 0. So from
(3.17), a2; # 0. So a3z # 0 from (3.16). Then from (3.22) and (3.23),
we can get az; = 0 and ags = 0. We thus arrive at case (2) of the
lemma. q.e.d.

4. Biholomorphisms between two bounded complete
Reinhardt domains in A,-variety

In this section, we shall show that our Bergman function of order 1
can be used to determine the biholomorphisms between two bounded
complete Reinhardt domains in A,-variety.

Theorem 4.1. Let V;, i = 1,2, be two bounded complete Reinhardt

domains in A,-variety V, = {(x,y, 2)€C? oy = z"*l}. Ifn=1 and

V‘(/-ll’o) or 1/‘(,12’0) the holomorphic invariant defined in the previous section
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18 not equal to % orn > 1, then the biholomorphism ¥ from Vq to Vs

must be one of the following forms:

1) (¢1,%2,93) = (a117, agey, azsz) and aly' = ayags, where
(4.1) lan| = [@10llaz, [|P00llar,

~ lidoollaz, lorollar,”

pn.nt1llar, |l doollar

(42) ’a22’ = )
poollary  1|Pnnt1llan

P11 a1, |00l 7y
P00l azs 111 1|asy

(4.3) |ass| =

2) (31,19, 3) = (a12y, agix, azzz) and ald' = ajpaz where

~ Ni#rollar,  llPoollar

(4.4) la1a] = )
lpoollasy [|énn+1llan
H(bn 7L+1”M2 ||¢00||M1
(4.5) ‘agl‘ = ’ ,
Poollar,  [Ié10llasy

(4.6) lass| = P11 1|8z, [IP00 |y

~ oollaz o1 llan

Moreover, if V1 is biholomorphic to Vs, then

(47) [y _ [ '
lgoolli7; ldrollan I dnmetllng — lldoollss b0l as | énmrilla

Proof. In view of Corollary 3.7 and Lemma 3.8, we know that ¥ =
(11,12,13) must be one of the following forms:

1) (¥1,%2,13) = (a112, asny, azzz)+higher order terms and az3" ' =
a11G22.

2) (1,19,v3) = (ai2y, as1x, azzz) +higher order terms and as3" ' =
12021 .

We only need to get rid of the higher order terms in the statement of
Corollary 3.7 and Lemma 3.8. Recall that the Bergman function is of
the form

(1)
(1) _ Ov
BV (.Z',y) - ( 1 N @(1)> .
||¢OO||M 4

Since
BV1 (33‘, Y, Z) = BV2 (\Il(x? Y, Z))7



584 R. DU & S. YAU

(4.8) H%o”?wl@SR = ”QbOOH?\/Iz@%)’

Putting equations (1) and (2) above in (4.8) and comparing the 3rd
order terms in (4.8), we see that the 2nd order terms of (1, 12,13) are
zero. Repeating this argument, we see that (1,12, 13) has only linear
terms.

Except for (4.7), the rest of the theorem follows from Proposition 3.5,
Corollary 3.7 and Lemma 3.8. To see (4.7), we have two cases.

In case (1), ajy ' = ajjaz and (4.1), (4.2), (4.3) imply

lonli,  llgoollis,'  lidnnrillae ldoollan  ldrollas idoollas

Igoollih! Nlonli! Ipoollary Nénmrillan ldoollar dr0llar,
So (4.7) holds.

In case (2), ajy ' = ajpag and (4.4), (4.5), (4.6) imply

H<2511Hn+1 H‘lSOOHnJr1 _ Nénnsillaz [[doollar . [doollar, [I¢r0llar,

loooliE Tenllss — lgoollae 10l Iénneillan Idoollar
So (4.7) holds. q.e.d.

The following Corollary 4.2 corrects some misprints in Theorem 5.1
of [Ya] and generalizes the case to A, type.

Corollary 4.2. Let V be a bounded complete Reinhardt domain in
Ap-variety V, = {(az,y,z) cC3:ay = z"+1}. Let V‘(/—l’o) be the CR
invariant defined in the Theorem 3.6. Then the automorphism group of

V forn =1 and V‘(/l 0) #* % or n > 1 consists of biholomorphic map

(¢1,¢2,1/)3) of the following forms:
1) (¢1ﬂ/’27¢3) = (a11$7a22y,a332’), where ‘all‘ = ‘CLQQ‘ = ’(133’ =1.

2) (¢17¢27¢3) = (a12y,a21$7a332);

ll10llas

eollar | = #n.nt 1l
lén,n+1llar’

where |ay1| = |a1z| = lé10llar

y |a21| =1.

Now we are going to deal with the biholomorphism between complete

Reinhardt domains with 1/‘(,1 0) — %

Theorem 4.3. Let V;, i = 1,2, be two bounded complete Reinhardt
domains in Aj-variety Vi = {(az,y, 2) €C3 oy = 22} If 1/(1 0 o V‘(/l 0)
the holomorphic invariant defined in the previous section is equal to 2,
then the biholomorphism W from Vq to Vo must be one of the following
forms:

1) (b1, s, i) = <ei91 1910llaz, 1P00llary | o, I 012l0r2 H<Z500HM1y

po0llaz, lP10ll80, | poollaz, lP12lass

2502 o1 llazy [ @oollan Z>'

Iboollaz, [|d11llar,
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o 10100101, [|doollary g, 19121105, [1P00l|ams
2) (Y1,92,13) = <6291 e
) 1,92, %) 600l [812as, > " goollas, 0],
121402 (|11 [|azy [| P00l 1y

ool az, l|é11llasy

y ozre_wagl %e‘iaagg +ai3
1 . . . x
3) 1[)2 = %e“ﬁ)agl Tewagg iéemgalg yl,
3 , z
asi as2 i%ewam
where
(49) o= _”¢10”M2
P12l
(4.10)
- l|Pool| ary 7||p10llas | P12l 01 031
[@10llar, [|Boollar, (2l P10llar, + lld12las,)
(4.11)
- l|Pool|ary 7||p10lls | P12l 01 635
p12llar, 1lPoollns ([|@12llar, + r2{lé10ll )
(4.12)
a1 = 1900l 2r||¢10llas, [ 911 [l a i(3+%+%2 -0)

~olan Noollan (r2(ld1ollaz, + ll¢12laz)

0<r<oo, 0<603,035,0<2r.

Proof. By going through the proof of Theorem 3.7 in [Ya], we see that
statements (1) and (2) in the theorem follow directly from Theorem 4.1.
The remaining case that we need to deal with is the case 1 (b) in the
proof of Theorem 3.7 in [Ya]. Let us summarize the situation.

(4.13) Y = [éulhy, 1 _ L10) P11 113,
V2 dollaslldrzlle, 2 1 [érollam 1612
1
(414) a1l = riasy, a21 = HCL31
1
(4.15) a2 = 12032, G12 = gagg
T2 79 1
4.16 = _= Y
( ) a23 " a3, ass < 5 + 2r1> ais
—2 2 _
(4.17) o Aol —ldrolu,
T2 [P1211%y, 12| nrs

(4.18) ro =1 €%
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(4.19) v = are— — 90l i
”¢12”M2
Putting (4.14) into (3.18), we get
Irq |2 1 1 ool
|az1*[|ooll3s + + = L.
el lNonli, — Irl2lénli, l¢10ll3s,

By applying (4.13) in the above equation we get

|00 |2z, [r1l [910llaz, l| P12l 0,
Ié10llary [ Poollaz, (171l 12llaz, + lId10llaz,)

In view of (4.19), we have

lag1| =

[[doollan 7 l¢10llas, l|912]|as,
(4.20) lasi| = .
I¢10llar doollazy (lr0llarr® + lId12llar)
Putting (4.15) into (3.19), we get

\amz[ Iowlid,, ool \r212|r¢oouﬁ42]_u<z>oou%41

2P llprolli, — ll6nill3y, lp1ald, | len2lliy,

By applying (4.13) in the above equation, we get

6121137, + 2lr2® P10l 0, |Pr2ll 2z, + 2]l 1013,
22 lp0ll3g, 012113,

|as2|?(|bool|3s, [

_ I9oollhs,
61213,
In view of (4.18), we have
(4.21) lags] = J0ollas r lrollaslig12]lns

ozl léoollas (I612llas + r2llér0llaz)”
Putting (4.16) into (3.20), we get

o [leoollas, | lleoolliy, | (rira+ D)2 lldoollis, |r2 |
|axs] 2 2 2 2 |
Ié0ll5, — Nd11llig, 4lrq] 1215y, 171
_ ool
111131,

By applying (4.13) in the above equation, we get

2
as]? = H¢00H§41-
P13y,

12 ll610ll3s, 61234,

147172)2 '
H<Z500H%\42ﬂ7‘1\2|!¢12\\?\42+%H¢10HM2H¢12HM2+\7‘2’2H¢10H?\/12]
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In view of (4.18) and (4.19), we have

l|Pool| as, 2r [|p10 | a |11l ary '
p11llars N doollar, (r2lld10llar, + lld12llar)
Putting (4.14), (4.15) (4.16) into (3.7), we get

4r
(4.23) a%3 = a31a32—1.
T2

(4.22) |a13| =

Putting (4.20), (4.21)and (4.22) into (4.23), we get
™, b3 O

4.24 013 = =+ — + —=— —0.

( ) 13= 5 + 5 + 5

We have shown that
o are g, %e‘i9a32 +ai3 .
¢2 = %ewagl Tewagg j:ée%)alg Y
7/13 2 . z

as as2 T tleifg,
(4.25) + higher order terms,

where «, a3y, asa, ais, are described in (4.8)—(4.12). It remains to prove
that all the higher order terms vanish. In view of Theorem 2.8, we have

(4.26) By, (2,9, 2) = By, (¥(2,y, 2)).

Putting (4.25) into (4.26) and comparing the 3" order terms in (4.26),
we see easily that the 2°¢ order terms of (v1,9,13) are zero. By
repeating this argument, we see that (41,12, 13) has only linear terms.

q.e.d.

5. Continuous numerical invariants of bounded complete
Reinhardt domains

In [Ya], we have succeeded in constructing the continuous numerical
invariant of domains in Aj-variety

L0 _ llouliy
v [é10llarl[ 12l as

from 1%¢ order Bergman function. In this section, we shall construct in-
finitely many continuous numerical invariants of domains in A,-variety
from Bergman function.

Lemma 5.1. Let V;, i = 1,2, be two bounded complete Reinhardt
domains in An-variety V,, = {(a:,y,z) cC3:ay= z"“} and M; is a

resolution of Vi. If (¥1,12,13) = (a117, azy, aszsz) and aly ' = aiiass,
where

| | _ ”¢10HM2 ”¢00HM1 | | _ H¢n,n+1||M2 ”¢00HM1
| boollazy ld10llas lpoollar, 1 énnttllan’
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P11 1las, (|00 a1y
boollaz, P11 llary”

lass| =

is a biholomorphism from Vi to Va, then the following equations hold:

g L 3 L
H¢10HMl"+1 [ énnt1lly H<2510HJ\42"+1 [énnt1ll5s) n

= « 0.
n— 16_ n— 15 1’ = n 4 1
" 6as 2z, b0,

6aglar, lbooly,

Proof. From (4.8) HQSOOH%%@%) = HQ%OH%\/[Q@%) , we have

20— 2nB 28 20— 2B 28
fouolz, 3 Ty, S Bl
1O‘>Lﬁ ”¢a HMl 20!> n 5 ”éaﬁ”?wg
an>+11 ¢)¢>11
2
Comparing the coefficients of |x| ~ i |y|n+1 each side, we get
2nB 2ngB
poolla,  lldoollds, ' doolln, ™ ||¢10||M2 nﬂ'
2 20— 2ngB 2ngB
ool W9l g0 35550 ool ™
25
H%OH”“ |!¢rm+1H”+1
||<25nn+1||"+1 ||<2500||n+1
Simplifying this equation, we get
7L+1/8 nﬁrl 7L+1B nil
10llar, ™ Nbnmellir Nrollys, ™ Ibnnralliy, as g
nlﬁ__ 7L1517 /n+1
Pasl ar, 1ol 3y, " $asl ps, ool 3y, "
q.e.d.

Lemma 5.2. Let V;, i = 1,2, be two bounded complete Reinhardt
domains in A,-variety V,, = {(:E,y,z) eC?:ay = z"“} and M; is a

resolution of V;. If (1,12, ¢3) = (a12y, a212, azsz) and aly' = aizas1,
where

[@10llar, _lIPoollary laza| = [ @n.nt1llaz, [|doollar,

la2| =
P00l azz |Dnmrtllnn’ poollar,  lldrollan’

P11l a1, |00l 7y
lboollary lé11llar,

|a33| =
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s a biholomorphism from Vi to Vi, then the following equations hold:

7L+1B nil Bl n+16
o100y, I bmamst 157 10/l | nmstllng
1 _ 2 2
n— 15 1 - n— 15 1
H(ZsaﬁHMlu(bOOHM1n+l H¢na—(n—1 B,(n+1)a— nﬁ”M2”¢00|’M2n+1
where
n
> .
«z n+ 15
1 1
Proof. From (4.8), |]¢00H?\/]1@§/1) = ”%0“%\42@%,2) , we have
. il P 612275 g 7
az 8 sl o> Bl
a>l a>l
2n3 23
Comparing the coefficients of \x!za_’;_il\y]n_ﬂ each side, we get
2np 2nB
doollds, Ipo0l3s, H¢00HM1 " H¢nn+1HM2 Y
2 2 2nf3 2nf8
||¢aﬁ||M1 H‘ana—(n—l)ﬁ,(n—i-l)a—nﬁ||M2 ||¢10HM1 nt1 ||¢00||M2 n+l
H%OH"“ H<2510H"+1
[ #n, n+1||’”1 H%o\l”+1
Simplifying this equation, we get
n+lﬁ nil 51 n+16
lsollar, ™ Ibnmslliy, B 1ol 1 bmniln,
18— 1 a a—2=13_1’
H¢aﬁHM1 H¢00 ”M1 wiT H¢na—(n—1)ﬁ,(n+1)a—nﬁ ”M2 ”¢00 ”M2 e
where a > +1ﬂ g.e.d.

Theorem 5.3. (Theorem D)

Proof of Theorem D. (<) In view of Theorem 2.10, there exists a
biholomorphic map ®(z1,22) = (az1,bz2) or (aza,bz;). Observe that
the fiber of the quotient map = is of the form

{(217 22)7 (5217 5n22)7 (62217 52”22)7 T (571217 5n222)} )

where 0 is a primitive (n + 1)-th root of unit. And ® sends one fiber to
another fiber. Hence ® descends to a biholomorphic map ¥ : V3 — V5
given by

V(z,y,2) = (a""z, 0"y, abz)
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or
U(z,y,2) = (a"ly, 0" abz).

(=) Suppose ¥ is a biholomorphic map from V; to V5. Observe that
W is a simply connected domain in C2. It follows that Wi\{0} is also
simply connected. Observe also that m; : W;\{0} — V;\{0}, i = 1,2,
are n + 1-fold covering maps. The holomorphic map Yo : W1\{0} —
V5\{0} can be uniquely lifted to a holomorphic map ® : Wi\{0} —
W5\{0}. Similarly the holomorphic map ¥~=! o my : Wo\{0} — V1\{0}
can be uniquely lifted to a holomorphic map ® : W5\{0} — W;\{0}.
Thus we have the following commutative diagram.

W {0} —2= W2\ {0} —2= W1\ {0}

ml ml ml
v y-!
Vi\{0} —— V2 \{0} —— W1 \{0}
By the unique lifting property, we have Pod = Lwy\{oy and @ o o=

lw,\{0}- By Hartog theorem, ® extends to a biholomorphism from W;
to Wa. q.e.d.

Corollary 5.4. Let m : C?> — V, = {(az,y,z) € C3: zy = z"+1}

with (21, 22) = (27T 207 2129). Let V = {V: V a bounded complete

Reinhardt domain in A,-variety} and W = {W = 7=YV) : V € V}.
Then the moduli space of V is equal to the moduli space of W.

Proof. 1t is a direct consequence of the Theorem 5.3. g.e.d.

Using Lemma 5.1, 5.2 and Theorem 5.3, we can get a lot of biholo-
morphic invariants. In order to simplify the notation, we let

__n_ B

@) N1610]* 777 | pppaa || 7
B _n-lg
| Paslll ool nri-l

Theorem 5.5. (Theorem A)

Proof of Theorem A. According to the Theorem 5.3, there is a biholo-
morphism W either of the form in the Lemma 5.1 or in the Lemma 5.2.
So either

D ay;” =iy

for any o and 3 satisfying o> 2508, > 1,820, or

a, B na—(n—1)3,(n+1)a—ng
2) 95\41 ) _ 5\/[2 (n—1)B,(n+1) )

for any o and 3 satisfying o > 5508, > 1,82 0.
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For the case 1), we have

a, 8 a, 8 na—(n—1)6,(n+1)a—npg na—(n—1)6,(n+1)a—npg
95\41):95\42)andgj(\/[1( )B,(n+1) ):91(\/12( )B,(n+1) )

for any o and (3 satisfying

n
> yaz1,620.
0> —L—fa>10

n
So it is easy to see that

o, a,3 o, o, a,p, a,p,
e = g9 (0 = (0P b ) = i)

(1, 02,p1,p2) _ (01, 02,p1,p2)
1% - Vs .
For the case 2), we have

a, 3 na—(n—1)6,(n+1)a—npg na—(n—1)6,(n+1)a—ng3 a, B
95\41):91(\/12( )B,(n+1) )’95\41( )B,(n+1) ):91(\/12)

for any o and (3 satisfying
az ——PFaz21,620.
n

So it is easy to see

a,3 a,3 a,B .,
e = g0 (P = ({0,

Moreover, we notice that

(a,p) _ (na—(n—1)p,(n+l)a—np) (na—(n—1)p,(ntl)a—np) _ (a,p)
Ipm, = 9, e =9Mm, >
(a,q9) _ (na—(n—1)q,(ntl)a—ng) (na—(n—1l)g,(n+l)a—ng) _ (o, q)
Im, " = Iy e =9m, >
for .
a>L0<nq<[n+c4m#q
n
So
(a,p,q) _  (,p,q)
Vi = Thy, :
For the same reason,
(a1,p1) _ _(na1—(n—1)p1,(n+1)aq —np1)
9w, =9, )
g](\zll—(n—l)p1,(n+1)a1—np1) _ g](\;;,pl)’
(az,p2) _ (naz—(n—1)p2,(n+1)az—np2)
I, = 9, )
(nag—(n—1)p2,(n+1)az—np2) _ (a2,p2)
ng - gM2 9
where )
O gpz g |:n+ ai:|7ai 2 1,041 75052,1‘ - 1727
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implies

(o1, 2,p1,p2) _  (a1,02,p1,p2)
wvl = sz .

Therefore £(@8) ¢(@B) plara) and w(®1-a2,21.92) are all invariants.

q.e.d.

Corollary 5.6. Let V;, i = 1,2, be two bounded complete Reinhardt
domains in Ap-variety V, = {(x,y, 2) € C3:ay = z"“}. If Vi is a
biholomorphic to Vs, then

2
J@8) . |9aal ax>1,a>—3
H(ZsaﬁH : ”(bna—(n—l)ﬁ,(n—l—l)a—nﬁu n+1
are all invariants, i.e.
vy, =y,

Proof. Since

\/g(a,ﬁ) . g(na—(n—l)ﬁ,(n-‘rl)a—nﬁ)

V€(ea) ’

v(@B)g are all invariants. q.e.d.

()

Remark: The fundamental invariant vx mentioned in [Ya] is v(19).

The following corollary is an immediate consequence of Theorem 5.3
and Theorem 5.5.

Corollary 5.7. Let 7 : C? — V, = {(az,y,z) cC?:ay = z"“}
with (21, 22) = (2771, 207 21 29). Let V = {V:V a bounded complete
Reindardt domain in A, -variety V} and W = {W W o= 77 H(V):
Ve V}. Then

E(avﬁ)’ C(Q’IB) , n(avpvq)w(alyc“Z:plpr)’

n-+1
a>la & @0<nq<[_%a}p#%
n+1
1
0<p2< |:n+ Oéi:|,Oéi>1,0é1?£O£2,Z':1,2,
n

are holomorphic invariants of W.

We have seen that by the Theorem 5.5, we can get a lot of invariants
from Bergman functions. However it is natural to ask whether these
invariants are sufficient to recover the Bergman function up to auto-
morphism of A,-variety. The answer is positive. For proving this, we
need the following lemma.
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Lemma 5.8. If z;,2; € R, where 1 <i <n, i,n € N satisfying

!
(5.1) LjTn—j+1 = LjLp—ji1,
/ /
(5'2) Tj+ Tpn—jy1 = T + Lp—j+1

(5.3)  (xk = Tpk+1) (@1 = Tpo41) = (@) — 25y ) (¥ — _g41),
for alll1 < j, k,1<mn, j,k,l €N, then z; = a} for all1 < i <n or
i =a,_; 1 foralll <i<n.

Proof. If n = 2, the conditions are just zyzy = 2z} 2h, x1+x0 = 2]+,

So we get
x1 =1} x1 = @,
) or 7

If n > 3, it is easy to get

/ /
Ti = Ti = Tp i1
/ or /
Tp—i+l = Tp_jq1 Tp—i+1 = T;
However, the equation (5.3) force the result to be z; = « or ; = ], _,;
forall 1 <4 <n. g.e.d.

Theorem 5.9. Let Vi, i = 1,2, be two bounded complete Reinhardt
domains in A,-variety V,, = {(:E,y,z) eC?:ay = z"“} and M; is a
resolution of V;. If

o, a,f3 o, o, a,p, a,p,
e = e, (D = (P ) = i)

(01,02,p1,p2) _ w(a17a27p17p2)

V1 - V2 ’
where
n n+1
a>1l, a> ﬁ,ogpvqg[ i a},p;ﬁq,
n+1
n—+1
ngzg[ i Oéij|,0£i>1, C)él?é()ég,i:l,Z,

then there exists an automorphism W = (11,19,13) of Ay -variety V, =
{(fﬂay,Z) €cC3:ay= z"“} given by

(1/}17¢271/}3) =

<”¢10”M2 ”¢00HM1 H‘bn,n-i-luMz H¢00HM1 ”¢11HM2 ”¢00”M1 Z>
”¢00”M2 ”¢10HM1 7 ”¢00”M2 H‘bn,n-i-l”Ml 7”¢00”1\42 ”¢11HM1

or

(¢17¢27¢3) =

<||¢10||M2 l| 00| a1, | Pnnt1llar, H¢00||M1x P11 a1, l| P00l asy z)

I@oollaze |¢nmtallan, ™ lldoollar,  lérollan " lldoollas, lI¢rillan
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such that
BV1 (ﬂj‘,y, Z) = BV2(¢’($,y, Z))

P,r,oof' gx(;jyﬁ) — 5‘(/{;6)7 C‘(/?yﬁ) — C‘(/(;‘yﬁ) and 7]( Py 4 ) — ,r]‘(gypy Q)7 means
a, B na—(n—1)8,(n+1)a—npg a, B na—(n—1)3,(n+1)a—ng
95\/[1)91(\/[1( )B,(n+1) )_gj(wz)gg\/b( )B,(n+1) )7

gg‘zﬁ) + g(na (n=1)B,(n+1)a=npB) _ 91(\/126) + gg\zg—(n—l)ﬁ,(nﬂ)a—nﬁ)
and
(gg‘zp) g](\sz—(n—l)py(nﬂ)a—np)) (gg‘zq) g](\sz—(n—l)qy(nﬂ)a—nq))
(gj(@;p) gg\zg—(n—l)pv(nﬂ)a—np)) (91(\?2(1) gg\zg—(n—l)%(nﬂ)a—nq))
where
a>1, 1% 0<pq [nzla],p#q-
For fixed @ > 1 by Lemma 5.8, we can get
o5 = o,
for any [ > 0 satisfying o > 253 or
gg‘zﬁ) gg\zx—(n—l)@(nﬂ)a—nm’
for any 8 >

> 0 satisfying a > 25 0.

If for some different a1, as > 1, and pq,

; p2 satisfying 0 < p; <
["—Haz] 1 =1, 2, such that
91(\217171) _ 91(\3217171)’
(nar—(n—)p1,(n+1)ar—np1) _  (na1—(n—1)p1,(n+1)as—np1)
I, =9, )
(2,p2) _ (naz—(n—1)p2,(n+1l)az—np2)
Iy = 9, )
(nag—(n—1)p2,(n+1)az—np2) _ (az,p2)
9, =9, )
then
(o1, 2,p1,p2) _  (a1,02,p1,p2)
\%1 sz
forces that
(a1,p1) _ _(na1—(n—1)p1,(n+1)ar—np1)
'ng My 3
(a1,p1) _  (nar—(n—1)p1,(n+1)az—np1)
9, = 9, )
or
(o2, p2) (naz—

—1Dpa,(n+1)az—
ivs =g\ (n=1)p2,(n+1)az—np2)

)
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(naz—(n—1)p2,(n+1)az—np2) _ (a2,p2)
9, = 9, .
So we have
(oa1,p1) _  (nar—(n—1)p1,(n+1)a;—np1)
M =96
_ (a,p1) _ (noa—(n—1)p1,(n+1)az—np1)
- gMz — I M>
or
(az,p2) _ (naz—(n—1)p2,(n+1)az—np2)
Ip1, = 9,
_ (a2,p2) _ (naz—(n—1)p2,(n+1)az—np2)
= 9, = 9, .
So we only have following two cases:
1)
9v, = 9,
for any
n
21,620 a=
« 1] « . 1ﬁ
or
2)
(,B) _  (na—(n—1)8,(n+1)a—np3)
Iv, = 9, s
for any
n
>1,8>0,a>—28.
“ b @ n + 16
Therefore if for the first case, we take
(1/}17¢271/}3) ==
<H¢10HM2 oollar  Nénntillae lIPoollan lldrillas lIdoolan Z)
[Poollary I10llars " lloollar,  Ndnntillan ™ loollas, P11llar, /)

and if for the second case, we take

(Y1, 42,93) =
<||¢10||M2 |00l a1, |&n,nt1llass ||¢00||M1$ |11 |22 || Pooll asy z>
poollary 1bnnstllan ™ ldoollar,  NProllar, ™ ldoollar, lP11llan

Then we can always get

X
lovolz, S

e
a>l

= léooll}, >

n
Ol>n+1 ﬁ
azl

a— 218 1y] 25

|’¢aﬁ|ﬁ\/[1

|7/)1|2a_% |7/)2|%

16aslli,
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2ng 26
by comparing the coefficients of ]a;\2a_nL+1]y\n_+1, ie. H‘Zﬁoo”?\/[l@%) =

I600]12, 0% So B (2,y,2) = BY (¥(2,y,2), by (3.3).
q.e.d.

Theorem 5.10. (Theorem B)

Proof of Theorem B. By the Fornaess Lemma (See Lemma 5.12 be-
low), there exists a dense set in the boundary of M; such that the
Bergman kernel blows up at the points in this dense set. It follows that
the Bergman function By; is equal to 1 in a dense subset of V;. Recall
that By, is zero at the origin and 0 < By < 1 on V \ {(0,0,0)}. In
view of Theorem 5.9, By, (x,y, 2) = By, (¥(z,y, z)), we see immediately
that W preserves the level sets of Bergman functions and hence sends a
dense subset of V] to a dense subset of dV5. By continuity, ¥ sends
oVy to V. q.e.d.

Lemma 5.11. (Henkin [Hen/, Ramirez [Ra]) Let D be a bounded
strictly pseudoconvex domain in C?. Let p be a point in the boundary of
D. Then there exists an L? holomorphic function on D which blows up
only at p.

Proof. There exists, [Hen] [Ra], a holomorphic function f defined on
a neighborhood of D such that f(p) = 0,Rf < 0 on D and moreover
|£(q) — f(p)] > ¢ — p|? on D. We can then set F(z) = . Then

£

fiwes [ e Lo
D D |f|2 p |z —pl

Remark. To find a function f as in the proof of the Lemma all we
need is that p is a strictly pseudoconvex boundary point and that D
has a Stein neighborhood basis.

q.e.d.

Lemma 5.12. (Fornaess) Let D be a bounded complete Reinhardt
pseudoconvex domain with real analytic boundary in C2. Let E = {p €
OD; 3g € H?*(D) which blows up only at p}. Then E is dense in the
boundary of D, and the Bergman kernel of D blows up at points in FE.

Proof. We note that since D has a real analytic boundary it follows
that strictly pseudoconvex boundary points are dense. Moreover D has
a Stein neighborhood basis [Di-Fo]. Therefore the lemma follows from
the remark and the previous Lemma. q.e.d.

From Theorem 5.10 and Corollary 5.4, we can get the following two
corollaries easily.
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Corollary 5.13. The moduli space of bounded complete Reinhardt
strictly pseudoconvex (respectively C*-smooth pseudoconvexr) domains
in Ap-variety V,, = {(:L',y, 2) € C3iay = z"*l} s given by the image of
the map ® : {V : V a bounded complete Reinhardt strictly pseudoconvex
(respectively C¥-smooth pseudoconver) domain in V;} — R*°, where
the component function of ® are the invariant functions

g(avﬁ)’ C(Q’IB) , n(avpvq)w(al 5 012,1’17172)’

1
a>1, a>—2 B,Oép,qé[n+ a}p#q,
n+1 n
1
0<pi<[n+ ai:|7 a; =21, oq #Fag, i =1,2.

Corollary 5.14. Let Wp = {W : W = 7= }(V) where V is a com-
plete Reinhardt pseudoconver C¥-smooth domain in An—vam'ety} and
Wsp = {W : W = 7= 1(V) where V is a complete Reinhardt strictly
pseudoconvex domain in A —vam’ety} Then the moduli space of Wp
(respectively Wsp) is given by the image of the map <I>p : Wp — R®
(respectively <I>sp Wsp — R*), where the component functions of <I>p
(respectively <I>sp ) are the invariant functions

gB) c(@B) plapa) (a1, a2,p1,p2)

n+1
2]‘7 / ) \ ) < ) )
o n+1ﬁ p [ a} pPF#q
1
ngzg |:n+ Oéi:|, 052'21, 05175042, 22172
n

In particular, the moduli space of Wp (respectively Wsp) is as same
as the moduli space of bounded complete Reinhardt pseudoconver C*-
smooth domains (respectively bounded complete Reinhardt strictly pseu-

doconvex domains) in Ay-variety Vi, = {(z,y,2) € C3: zy = 2"},

6. Explicit computation of new invariant

Let a, b, c be positive real number and d be an integer greater than
or equal to 1. We shall follow the notations in our previous section. Let

V((acg’c) ={(z,y,2) € C¥: zy = 2%, alz*? + bly|* + c|2|*! < &}

Recall that (z,y,2) = (uo,uovo?, uovg). Then M((d)b o be the reso-
lution of V(( ) bo) with local coordinate chart Wy = { uo,vo): alug|? +
blug | vg|* + c|u0|2d|vo|2d < ep}. Next write up = re?, and vy = pe'®

In the following paragraphs, we denote

Viev@ o y@ @ e @

(a1,b1,c1)’ (az,b2,c2)’ (a1,b1,c1)’ (a2,b2,c2)"

First let us consider the case d = 1 and fix &.
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T Yo
' M(ab,c)

:/ luo®[2|vo® |2 dug A dvg A diig A dvig
Wo

:167T2//T2a+1p2ﬁ+1 dr dp
D

where D = {(r,p): 7 > 0,p > 0,ar® 4+ br?p* + cr?p® < g }. Then

o p—FO
lpool® = 167@/ /mmd
0 0

[e’¢)
— 82 / =P dp = deyr
0

a + cp? + bp*

rdp

et
0 a-+cp+bp? P

2 o [ Va+§+b04 3 2641
|15/ = 16 ; rep™ T dr dp

oo 26+1
= 46(2)71'2/ ( P 2 dp = 2e%7?
0

a + cp? + bp?

[’ pﬁ
/ (TErswwavkld
o (a+cp+bp?)

By calculation, we can get the following results:

If ¢ — 4ab < 0,
(6.1)

l|poo || =4eom arctan

2< 2
Vdab— 2 \/4ab—c2

27h

c
Vdab— 02>

=2 N
110l 50”( (4ab— c2a (4ab—c?)2

TC 2c

o1 ||* =2eom? +
Il 4ab 2 (dab—c2)2  (4ab—

2ma

c
)z \/4ab—c2>

4a

—92 —
121" 50”( 4ab )b (4ab )3

If ¢2 — 4ab > 0,

T arctan S
(4dab—c?)2 4ab—c?

1 c+ Ve —4dab
(6.5) [pooll* = 4eom® ‘In
V2 — 4ab c— 2 —4dab
[ ++vc2—4ab
66) ol = 2
(c? — 4ab)2



HIGHER ORDER BERGMAN FUNCTIONS

—2v/c2 — 4ab —|—cln ckvc?—dab

—Ve2—4a
(6.7) lp11]|? = 2¢3n° e
(2 — 4ab)2
cVe? — dab — 2ab ln erve —cad 62 4ab
(6.8) p12]|? = 2637 b
(c? —4ab)2b
If ¢ — 4ab = 0,
2
(6.9) |ool|* = 4eom® - -
8b
(6.10) [ pr0l|* = 257> - 33
2
(6.11) [¢11]|* = 2e57 32
2
12 2 9272,
(6.12) | p12]] 0T 5

Remark: ||¢12]|? = %H¢10||2 for all the three cases above.

Lemma 6.1. If z > 0, then

—z + V9 + 822
arctanx > .
2(1 + 22)
Proof. Let
—z + 2v9 + 822
f(x) = arctanx — ) .
Then
) (2 +3)V9 + 822 — 722 — 9
€Tr) =
2(1 + 22)%2V/9 + 8z

(22 +3)V9I+822 > 722 +9 2%+ 27 > 0.

So f'(z) >0, f(z) > f(0) =0, i.e., arctan z > —LtzvI+8z?

2(1+x2)

Lemma 6.2. [f0<z <1,

1+z S —x 4+ 2v9 — 822

lnl—aj 1 — 22
Proof. Let
f($):1nl+x_—x+w\/9—8x2
1—x 1— a2 '
Then ) — (o7
iy BoTIVIE = (9 7?)

9— 8:L'2(1 x?)?
(B3—2H)V9—-822>9—72? = z' + 25> 0.

599

q.e.d.
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600
So f'(z) >0, f(z) > f(0) =0, ie, In 2% > _“'fi S
q.e.d.

Proposition 6.3. If ¢ — 4ab < 0, let 7“1“61’_62 =z, then
P11 |2 x — arctan x

1@ = G olliend ra (- )

which is a strict increasing function in terms of x. In particular 5 <

V‘(/—l’o) < %
l[f11]?
Proof. TrolMora]
2 TC 2c c
- dab—c? (4ab 02)% * (4ab—02)% arctan 4ab—c?
a [ c 27-b _ 4b c
Ve ( a7y T+ Gab—c)F  Garc)? arctan —4ab—02>
Notice that % = IQI L
C
@) T — arctanx
;U =
V1422 (— >
and
() (—2x2 + rarctan z + (22 + 1) arctan? x)
x) = :
VI=22 (z — (1 + a2) - arctan )
By Lemma 6.1,
— 22 + zarctanz + (22 + 1) arctan® z >
g T IVOES? (o a8
2(1 + 22) 4(1 4 z2) B

So f'(xz) >0

In particular,
lim f(x) = lim
z—0t z—0% /] + x2 (_

2
So v(10 > 1. Observe that hm flz)==,s0 10 < 2,
T

DO =

N———

q.e.d.

Proposition 6.4. If ¢ — 4ab > 0, let 7”2_4‘11’ =z, then
112 —27 + In £

f(w) - ”¢10H”¢12” B \/1_1, (13522 —lnii——§>7

which is a strictly decreasing function in term of x. In particular, 0 <

10) 1
v(10) < 1
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Proof.
H¢11H2 ( 2vc? — 4ab + Cln c+'c _4a >/(C2 4ab)
- a c \/02 4a 3
@10/l @12]] \/%<C\/62 —4ab — 2abln £ + —>/a —4ab)?
Notice that %g = 1_4”02,
—2z +In 1J_r—x
flx) =
VI=2 (2 - m k)
and
x<8 —2zIn HL 4+ (22 — 1) In i+)
f(z) = :
\/1—3:2<23:—|—( - 1)1 li)
By Lemma 6.2,
1 1
(1 —2?)1n? +$—|—2:Eln e
11—z -z
(—z + 2V9 — 822)? N 23:(—96 +av9—8a?) 8% — 0,
1— a2 1— a2
So f'(x) <0
In particular,
| i —x+1n H—x 1
ol )_;3% \/—ggzln Ls g
So v1.0) < %. Observe that limx_df f(z)=0. So v(1:0) > 0. q.e.d.

Proposition 6.5. Let
‘/i = {(%?ﬁ

i =1,2. Then Vi is biholomorphic to Vs if and only if “é—%’l = azba

z) € C3:zy = zZ,ai\xP + b,-]y\z + ci]z\2 < Eo} ,

2

Proof. (=) Since v19) is a biholomorphic invariant, we can get the
result from the Proposition 6.3 and 6.4.

b
() Let w = (/12 2o, f22.

Then

az|1|? + balwhe|? + calis]? =

ay,,/i—;z).

b2(:1 1z ‘2 a c
Cbrey?

1% €1 2
g‘y’ +ca- ‘Z’
ai1C C9

= a1|:n|2 + b1|y|2 + C1|z|2,

ie.

VU maps the boundary of V; to the boundary of V5.
biholomorphic map from Vi to V5.

So v is a
q.e.d.
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Theorem 6.6. Let

VDo ={(@.9,2): ay = 2%, ala + blyl* + cl2f* < eo} -

Let ~ denote the biholomorphic equivalence. Then the map
. (1) 1) 1,0
v {V(a,bm} =Ry Vg v
s injective up to a biholomorphism. More precisely the induced map
7 {V(l)
’ (ab,c
(0,3)-
Proof. The theorem follows from Proposition 6.3, 6.4 and 6.5 directly.
q.e.d.

)}/N — R4 is one-to-one map from {V(Ell}w)}/w onto

In view of Proposition 6.5, Theorem 4.1 and Theorem 4.3, we can
simplify the forms of biholomorphic map from V; to Va.

Theorem 6.7. Let
Vi={(2,y,2) € C*: zy = 2%, a;|z|* + bily|* + ci|2]* < e0},
i=1,2.
If 1/‘(/-11’0) #+ % or 1/‘(/-12’0) # %, then the biholomorphism ¥ from Vi to Vs

must be one of the following forms:

form (1):

; by ; as C1 01+02  [C1
U = 6’91\/— C g, €02 (2 2y et —z |,
b1 ¢ ap ¢ 2
form (2):
o /b , a 0140 [c
U = |t —1y, ei2 —1:17, +ei2 [,
as by 2

If 1/‘(/-11’0) = 1/‘(,12’0) = %, then the biholomorphism ¥ from Vi to Vo must
be one of the following forms:

form (1):

. b . b .01+6
U = 6291\/—2-0—11', 6292\/—1?;, teis 2[4, ,
b1 ¢ b C2

form (2):
2

v 2\/ blng’ ¢ Co
and form (3):

U=
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U =
—2c1bavbar?  i(031-0)  2VDiba ,i(032-0) . AVCibar iy
Vbica(2bar%+c3) ’ 2b27”§+62 ’ \/7(21127“2-1—02) T
_ cico i(031+6)  2vbibar? ei(f32+0) | —=veicar —2yciear ei(013+20)|
2v/b1b2 (2bar2+c2) ’ 2b27‘2—|—62 ) 2b27“2+02 Y
civbar i3 2v/bibar ¢if32 i\/_(%zT —c2) ci(613+6) z
Vb1 (2bar2+4c2) ? 2bor? +62 \/_(21127“2-1-02)
. 4a1b 4a2bo—c2
Proof. Since aé—gl = “i#, v ai md _ Y igz 2. If ¢ — da1b; < 0,
1 2 1 2

then c%

— 4asby < 0.
Using (6.1), (6.2), (6.3) and (6.4

), we can get

3
ool Igsollar, 910l Vi lwollan v [z @
N - \/C 3 b1 ¢
[¢oollar,  N@rollan  [ldoollar, - /2 Il - /2 Lo
by a
b1 C2
/3
[d12]lar,  [ldoollan I912llar - Voo Ndoollar, - vEr  faz e
. 3
ol Torallan ~ Towl ez g, /2 Ve
. as C1
Va e
pullar, [ldoollar, _ lnillas -2 ldoollan - \/_ /
[oollaee  lId11llar, ldoollae - vez  lldnillag - e
2
=5
érollsey lidoollns, _ Iérollsy  loollus
loolaes Toralln, ~ Tl /e gnolon
o Jbe o b1 e o [y
N by co ai N ar C2 B a2
a=llé10llas
Ipr2llar, ldoollar, _ V% 2 lgoollas,
[doollar,  llérollan [oollaz, — lld10llas,
_Jaz by e Jaa o |ag
Vb Vb e Vb e Vb
If c1 4a1b1 > 0, then 02 4asby > 0.
Using (6.5), (6.6), (6.7) and (6.8), we can get the same results.
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; by : as C1 01+02  [C1
ey | 2. 2 et [ 2 2y 46l —z |,
bi ¢ ar ¢ C2
and form (2):

; bl . al 91+02
14 U=y, e |2
(6.14) <e a3 Yy, € by z, )

If ¢ — 4ayby = 0, then ¢ — 4aghy = 0. Using (6.9), (6.10), (6.11) and

So form (1):

(6.13) U

1,0 1,0
(6.12), we can get the same result. But in this case B0 _ 0 1
) 1% Va 27
the form (3) will appear.
Form (3)
are Pagq; %6_i€a32 +ai3
x
N I R i0 1,26
U = or € a3l reasn + o€ a13 vy,
ar?4+1 i o
asi as2 55" ais
_ —llgrollar, — 2bg
where a = 120, — 2
0y, — I9o0llar, rli¢10lla, - [|f12]lary 051

lp10llar, |l doollar, - (7’2H¢10HM2 + [|p12(lar,)
2 8b2
c1 30 3b202 2931
/31 / e
3c3 < 3c2 35202)

_ ‘1 \/_27" (i1
N \/E(2b2r2 + C2)
_ 2V/aib - Vbor o031
Vb1 (26972 + 2y/ashy)
_ Var - o031
Vbar? + \/ay

[[doollar, rl|@10llaz, - 91212z 032
[p12llar, Il doollas H¢12HM2+7‘2H¢00HM2)

2 8b2
_ c1 ) 302 36202 ei932
/2 / 2 / 8bz
3bic1 (T‘ 303 + 3b202)
2\/ b1 b2’r’ 2932
2b2r2 + co

_ 24/ bleT ei632
2b27’2 + 2\/ a2b2

azz =
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— LeielSQ
Voar? + \/az
ags = [ doollar, 2| b10llad, - |11 |0z, o
[o11llar, N doollas r2|]¢10|yM2 [ br2]las)
2 8by
_ o 2ry 33/ 3c2 Jions
/2 8b
3¢\ 6 (TZV ﬁ + 3b202>
e 4\/ab27" eielg
\/6 (2b27"2 + 62)
_ 4\/5\4/ aq b1 bg’r’ ei913
V2 agbs (26272 + 2v/azbs)
o 2\/@1[) \/—7’ 2613
" Vashs (Vear? + az)
So, form (1):
; b . b ,
(6.15) U (e 2.8, g 20, it O )
bl C2 b2 02
form (2):

(6.16)

U = <ei912 bley, 02 a x, iei@ €1 >
C2 2v/b1bs Co

and form (3):

(6.17) U =
—2c1b2vbar?  i(031—0)  2vbiba i(032—6) dy/erbar  ifg
\/502(262T2+C2)e ' DarZtes © ’ if@bzr +02)e T
_ cico ei(031+0) 2v/b1bor? ¢(03240) i—2\/01027‘ i(613+20)
2v/b1b2 (2bar2+c2) ’ 2b27‘2+02 ’ 2b27“2+62 .
__cavbar 1031 2v/b1bar 2032 j:\/_(zbﬂ 02) z(@13+€) z
Vb1 (2bar2+4c2) > 2bor2 +02 \/_(21127“2-1—02)

q.e.d.

Next, let’s consider the case d > 2 for
d

VD o = {(@.9,2) €Ty = 22, alaf* + by + ez < e}

From the Corollary 5.6, we know

2d-1,d-1) _ | p2a—1,24—1]1

14
ld2d—1.a-1l - || P2d—1,3d-1

is an invariant.
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Recall that
D

where D = {(r,p): 7> 0,p > 0,ar?® 4 br2dpd + cr2dp2d < 241, So

0 poage—__ *J=0
2 —— o d . p.4d 4 _
H¢2d—l,2d—1||2 — 167T2/ / a+cp“@+bp ’f'4d 1p4d 1 dr dp
0 0

_ 46(2)71'2 © p4d_1

d Jo (a+cp*+bpld)?
_ 26(2)71'2 /OO p dp
a? Jo (a+cp+bp?)?

) 2(127 =0
m _ _
I p2d—1,4-1]* = 167> / / artep®roptt  dd—1 2d—1 g g
0 0

dp

- 46(2)71'2 /oo p2d—1 J
T d o (areprTrppip
_ 2edx? [ 1 J
G A (a+cptbp22 "

2d=g

e
2 o [T [WarertioAd ad—1 6d-1
p2d-1,3a-1/" = 167 r p drdp
o Jo

_ 48(2)71'2 /oo p6d— 1 dp
d Jo (at e+ o

_ 26(2)71'2 /oo p2 dp
a? Jo (a+cp+bp?)? "

Notice that the value of the invariant
| p2d—1.2d—1]>
| p2d—1,d-11 - |P2d—1,3d-1l

is equal to

117
P10l - NP2l

as the case d = 1.
Then we can get the following proposition.
Proposition 6.8. Let
Vi = {(x,y, 2) € C3: oy = 22, a1|z]® 4 by + 1|2 < Eo} ,
and

Vo= {(,9,2) € €%y = 22, aalaf® + byl + ol < &0 }
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Then V7 is biholomorphic to Vo if and only if “é% = “i#.
1 2

Proof. (=) From the discussion above, we get

l¢2d—1,24-1 1131, _ |¢2d—1,2d-1 1131,

[b2d—1,a-1llar - l¢2a-13a-1la, — [[d2d-1.a-1llass - |P2a-1,30-11las
And using the Proposition 6.3 and the Proposition 6.4, we can get

a1b1 agbg

¢ G
(<) Just take a biholomorphic map ¥ = < ¥, % g; Y, = >

q.e.d.

Combining the Theorem 6.6 and the Proposition 6.8, we can get the
following theorem.

Theorem 6.9. Let d be a fized positive integer and

VD o= {(@.2) € CF ay = 22, alaf™ + bly* + el < &0 }

Let ~ denote the biholomorphic equivalence. Then the map
(d) (d) 2d—1,d—1
{‘/(abc)} — Ry, ‘/(a,b,c) = V( )

s injective up to a biholomorphism. More precisely the induced map

Q: {V(idz)c }/N — R4 is one-to-one map from {V(Eldg)c)}/w onto
2 )

(0, ;). So the moduli space of{ (abc)} is of dimension 1 and inde-
pendent on d.
Let
W, o = { @) € C% ala" 4+ by + cloy! < =}
then this is a special Reinhardt domain in C2. Using the Corollary 5.4,

we can get the moduli space of W((j)b o) which coincides with the moduli

space of V(Eld?) 0"
Last, as an application to our theory, we compute explicitly the in-
variant 31 for two domains V((1 )1 1) and V((1 )1 1 in Aj-variety.

We have known that for the domain V((1 )1 1y

3,1) _ 633> _ I8 e dr
. e} 2
[@a1ll - lldasll ([ mdp'fo Tz dp)
2(9 — \/3m)
437 -9 ’

o

[V
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However, for the domain ‘/2(11,)1,1)7

- Nen
p3,301* = 167T2/ / oot r'p"drdp
o Jo

00 7 1 147
:2547'('2/ p—d :E47T2'<———>7
Ty A2+ T 3T /B
o N
H¢31H2=:16”2J/ TG dr dp
0

o0 3 1 20w
:2547T2/ S A :54712-<———>,
"o W 2 BB

VEO

o0 v J
p35]° = 16772/ Vite2 ol o dr dp
0

[e'e) 11
1 207
:2547r2/ p—d :54712-<—— >
o A2+t T 2’3

Then
2 1 14m
L(3.1) _ l|$3,3]] 3 /3 162—28V3rw
o . 1 20m - .
I@aall-lldssll 5 -0 243 —40v3x

So the invariant v is different for the domains ‘/((11)11) and ‘/((12,)171)’

ie. V((ll)1 1) is not biholomorphic to v@ And by the Theorem 5.4,

(1,1,1)°
the domain W((l1 )1 1) in C? is not biholomorphic to the domain w®
in C2.

(1,1,1)

References

[Bo] Boutet De Monvel, Integration des equation de Cauchy-Riemann, Seminaire
Goulaouic-Lions-Schwartz, Ex ré IX, 1974-1975, MR 0409893, Zbl 0317.58003.

[B-S-W] D. Burns Jr., S. Shnider & R.O. Well Jr., Deformations of strictly
pseudoconver domains, Invent. Math. 46 (1978), 237-253, MR 0481119,
Zbl 0412.32022.

[Ca] E. Cartan, Sur la géometrie pseudo-conforme des hypersurfaces de deuz vari-
ables complexes, I-1I, Ann. Math. Pura Appl. (4) 11 (1932), 17-90, MR 1553196;
and Ann. Scuola Norm. Sup. Pisa (2) 1 (1932), 333-354, MR 1556687, JEM
58.1256.03.

[Ch-Mo] S.S. Chern & J. Moser, Real hypersurfaces in complex manifolds, Acta Math.
133 (1974), 219271, MR 0695473, Zbl 0302.32015.

[Di] K. Diederich, Das Randverhalten der Bergmanschen Kernfuktion und Metrik in
streng pseudokonvezen Gebieten, Math. Ann. 187 (1970), 9-36, MR 0262543,
7Zbl 0184.31302.



HIGHER ORDER BERGMAN FUNCTIONS 609

[Di-Fo] K. Diederich & J.E. Fornzess, Pseudoconvex domains with real analytic bound-
ary, Ann. of Math. 107 (1978), 371-384, MR 0477153, Zbl 0378.32014.

[D-H-O] K. Diederich, G. Herbort & T. Ohsawa, The Bergman kernel on uni-
formly extendable pseudoconver domains, Math. Ann. 273 (1986), 471-478,
MR 0824434, Zbl 0582.32028.

[Fel] C. Fefferman, The Bergman kernel and biholomorphic mappings of pseudocon-
vex domains, Invent. Math. 26 (1974), 1-65, MR 0350069, Zbl 0289.32012.

[Fe2] C. Fefferman, Monge-Ampére equations, the Bergman kernel, and geometry of
pseudoconvexr domains, Ann. of Math. 103 (1976), No. 2, 395416, MR 0407320,
7Zbl 0322.32012. Correction to: “Monge-Ampére equations, the Bergman kernel,
and geometry of pseudoconver domains”, Ann. of Math. 104 (1976), No. 2,
393-394, MR 0407321, Zbl 0332.32018.

[Ha-La] R. Harvey & B. Lawson, On boundaries of complezx analytic varieties I, Ann.
of Math. 102 (1975), 233-290, MR 0425173, Zbl 0317.32017.

[Hen] G. M. Henkin, Integral representations of functions holomorphic in strictly
pseudo-conver domains and some applications, Math. USSR Sb. 11 (1969), 597—
616, MR 0249660, Zbl 0208.35102.

[He] G. Herbort, Logarithmic growth of the Bergman kernel for weakly pseudoconvez
domains in C* of finite type, Manuscr. Math. 45 (1983), 69-76, MR, 0722923,
Zbl 0559.32006.

[Hi] H. Hironaka, Resolution of singularities of an algebraic variety over a field of
characteristic zero: I, II, Ann. of Math. 79 (1964), 109-326, MR 0199184,
Zbl 0122.38603.

[Ko] J. Kohn, The range of the tangential Cauchy-Riemann operator, Duke Math. J.
53 (1986), 525-545, MR 0850548, Zbl 0609.32015.

[Le] L. Lempert, Holomorphic invariants, normal forms, and the moduli space of
convex domains, Ann. of Math. 128 (1988), 43-78, MR 0951507, Zbl 0658.32015.

[L-Y-Y] H.-S. Luk, S. S.-T. Yau & L.-Y.Yeh, Bergman kernels on resolutions of
isolated singularities, Math. Research Letters 8 (2001), 303-319, MR 1839480,
Zbl 0994.32022.

[Oh] T. Ohsawa, Boundary behavior of the Bergman kernel function on pseudoconvez
domains, Publ. Res. Inst. Math. Sci. 20 (1984), no. 5, 897-902, MR 0764336,
Zbl 0569.32013.

[Pf] P. Plug, Quadratintegrable holomorphe Funktionen und die Serre-Vermutung,
Math. Ann. 216 (1975), 285-288, MR 0382717, Zbl 0294.32009.

[Po] H. Poincaré, Les fonctions analytiques de deux variables et la représentation
conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220, JFM 38.0459.02.

[Ra] E. Ramirez, Ein Divisionsproblem und Randintegraldarstellungen in der kom-
plexen Analysis, Math. Ann. 184 (1970), 172-187, MR 0269874, Zbl 0189.09702.

[Su] T. Sunada, Holomorphic equivalence problem for bounded Reinhardt domains,
Math. Ann. 235 (1978), 111-128, MR 0481064, Zbl 0357.32001.

[We] S. M. Webster, Pseudo-Hermitian structures on a real hypersurface, J. Differ-
ential Geom. 13 (1978), 25-41, MR 0520599, Zbl 0379.53016.

[Ya] S. S.-T. Yau, Global invariants for strongly pseudoconver varieties with isolated
singularities: Bergman functions, Math. Research Letters 11 (2004), 809-832,
MR 2106243, Zbl 1076.32024.



610

R. DU & S. YAU

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT CHICAGO

SEO, 851 S. MORGAN STREET

CHICAGO, 1L, 60607-7045

E-mail address: rdu2@Quic.edu

DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE
UNIVERSITY OF ILLINOIS AT CHICAGO

851 S. MORGAN STREET

CHICAGO, 1L, 60607-7045

FE-mail address: yauQuic.edu



