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VIRASORO ACTIONS AND HARMONIC MAPS
(AFTER SCHWARZ)

Mihaela Vajiac & Karen Uhlenbeck

Abstract

The actions of a half Virasoro algebra have appeared in many
integrable systems. In this paper we show that there is an action
of a (Half) Virasoro algebra on the space of (2+0) harmonic maps
into a Lie group. This action is generated by a natural action
on the frames. A similar calculation on the space-time (1+1)
harmonic maps yields formulas generated by John Schwarz.

1. Introduction

The influence of theoretical physics on geometry and topology at
this point in time is overwhelming. A great many mathematicians are
working to verify conjectures made by physicists or suggested by physics.
However, the most difficult problem facing mathematicians is to clarify
or translate the intuition from quantum field theory or string theory
which lies behind these ideas. In this article, we interpret a series of
papers by John Schwarz, a leading originator and proponent of string
theory, on Virasoro actions from a decade ago [9, 10]. We hope to shed
some light on the mathematical origins of Virasoro actions constructed
in physics.

Our main result is that there is (formally) an infinitesimal action of
a complex half-Virasoro algebra on the space of harmonic maps from a
simply connected domain in C∪(∞) to the Lie group SU(n). This action
is an example of a family of actions defined on integrable systems. The
action on KdV is probably the best known of these [11]. We spend some
time describing the origin of these type of actions. They occur in the
context of a loop group which is split via Riemann-Hilbert factorization.
The half-Virasoro algebra acts infinitesimally on the group and restricts
to one factor of the splitting. The action we are interested in is the
derived action on the second factor. We give a description in terms of
groups which is quite transparent and does not involve formulae. This
description works well in the context of harmonic maps, and leads to
the more complicated formulas in the Lie algebra setting.
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The plan of the paper is as follows. After this introduction, we review
the structural background on harmonic maps into a Lie group which
originates in a paper of one of us [13] and can be found in the text
by Guest [6]. In Chapter 3 we review the definitions of triples of Lie
groups and algebras and describe the loop groups factorization used for
harmonic maps. Section 4 shows how the half-Virasoro actions arise in
these factorizations. The main results in the paper are in 5.1 and the
following corollaries. Section 6 outlines the results in the Wick rotated
version of harmonic maps from R

1,1 into SU(n) and makes contact with
the formulae of Schwarz.

This is a small part of a project on Virasoro actions on integrable
systems which is joint with Chuu-Lian Terng. We thank Dan Freed
for much needed inspiration and encouragement. We apologize for our
non-inclusive reference list. The literature on harmonic maps, integrable
systems and Virasoro actions is immense and quite splintered.

Our results are incomplete, since to obtain the full Virasoro action
and the coupling to gravity proposed by Schwarz [10], it is necessary
to extend the actions to include the L−1 generators. From comparison
to the Virasoro actions on other integrable systems, these generators
include second flows in their description, if we regard the harmonic
maps as first flows. We hope to extend the description in this direction,
as well as to treat the extension to harmonic maps in other contexts.

2. Background

We give a brief description following Guest [6] to Lie-group valued
harmonic maps.

Definition 2.1. A harmonic map s : Ω −→ G, (where Ω is a simply
connected domain in C∪{∞} and G is a matrix Lie group) is a solution
to the Euler-Lagrange equation:

∂

∂x

(
s−1 ∂s

∂x

)
+

∂

∂y

(
s−1 ∂s

∂y

)
= 0.

The map s satisfies the reality condition s−1(q) = s∗(q), if G =
SU(n).

Let L(SU(n))={s : Ω −→SU(n), s harmonic}. The Euler-Lagrange
equations are equivalent to the following:

(s−1sz̄)z + (s−1sz)z̄ = 0.

Write A = s−1sz and B = s−1sz̄; then the harmonic map equation
becomes Az̄ + Bz = 0, where A, B : C −→ g ⊗ C, and B = −A∗. An
equivalent description becomes:
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Proposition 2.2. The harmonic map equation is equivalent to the

system:

Az̄ + Bz = 0

Az̄ − Bz = [A, B],

where A, B : C −→ g ⊗ C, and B + A∗ = 0.

The generalized solution associated to the harmonic map equation
can be constructed as follows. Let λ ∈ C, Aλ = 1

2(1 − λ−1)A, Bλ =
1
2(1−λ)B, and B = −A∗. With this notation the harmonic map equation
is equivalent to the equation:

(Aλ)z̄ − (Bλ)z = [Aλ, Bλ], ∀λ ∈ C − {0}.

Note that λ is a spectral (or twistor) parameter and should be care-
fully distinguished from the spatial parameters z, z̄. It is easy to see
that this represents the flatness condition of the associated connections
Dλ = {d + A(λ)}, which admit a frame of flat sections. Let Eλ be this
frame.

Then, the harmonic map equations are equivalent to the following
system for the flat frame Eλ of the associated connection:

Eλ
−1∂̄Eλ = Eλ

−1(Eλ)z =
1

2
(1 − λ−1)A,(2.1)

Eλ
−1∂Eλ = Eλ

−1(Eλ)z̄ =
1

2
(1 − λ)B.

The harmonic map can be easily reconstructed from the flat frame
Eλ as s(z) = E−1(z). More precisely, for the case of SU(n), which we
treat in the rest of the paper, we have:

Theorem 2.3 ([13]). If s is harmonic and s(p) ≡ I, then there exists

a unique E : C
∗ × Ω −→ SL(n, C) satisfying equations (2.1) with

(a) E1 ≡ I,

(b) E−1 = s,

(c) Eλ(p) = I.

(d) E−1
λ−1 = E∗

λ̄
.

Moreover, E is analytic and holomorphic in λ ∈ C
∗. Note that Eλ is

unitary for |λ| = 1.

Theorem 2.4 ([13]). Suppose E : C
∗ × Ω −→ SL(n, C) is analytic

and holomorphic in the first variable, satisfying the reality condition

E−1
λ−1 = E∗

λ̄
, E1 ≡ I, E(p) = I, and the expressions

E−1
λ (Eλ)z̄

1 − λ
,

E−1
λ (Eλ)z

1 − λ−1

are constant in λ. Then s = E−1 is harmonic.
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Thus, from the harmonic map s we have obtained the “extended
solution” E : Ω −→ ΩG, where ΩG is the loop group of G.

Remark 2.5. The choice of basepoint affects the extended solution,
and hence the Virasoro actions. It is standard in integrable systems for
the choice of basepoint to affect the constructions.

3. Manin triples of groups and Riemann-Hilbert
Factorization

Let (X+, X−, X) be a triple of Lie groups with X± ⊂ X and µ :
X+ × X− −→ X a diffeomorphism, where µ(s+, s−) = s+s−. Then
(X+, X−, X) is a (Manin) triple of Lie groups. We say that (X+, X−, X)
is a local (Manin) triple if

µ : X+ × X− ≃ X̃ ⊂ X

is a diffeomorphism onto an open dense subset X̃ ⊂ X.

We define projections

P±(s) = (µ−1(s))±,(3.1)

P± : X̃ −→ X±,

from the open set X̃ onto the subgroups X±.

The standard example of a Manin triple is

(X+, X−, X) = (SU(n), ∆(n), SL(n, C)),

where ∆(n) is the group of upper triangular matrices with real diago-
nal elements. The projection P+ : SL(n, C) −→ SU(n) is realized by
applying the Gramm-Schmidt process to the columns of a matrix.

In general, the projections P± do not have nice formulae. However,
at the Lie algebra level, the projection operators are easily described.
The triple of groups (X+, X−, X) gives rise to a triple of Lie algebras
(X+, X−, X). At the Lie algebra level X± ⊂ X and X = X+ + X−. The
projection operators Π± : X −→ X± exist everywhere, even when the
group triple is only local. Note that

(3.2) dPs+(s+V ) = s+Π+V,

for s+ ∈ X+, V ∈ X. These are infinitesimal formulae which appear
later in the paper.

The examples of interest to us are local triples of groups where the
projections P± are realized by the Riemann-Hilbert factorization. We
refer to Guest [6] and Pressley-Segal [8] for a more detailed analysis of
the sketch we give of such factorizations.

For the general setting, we have a contour (not necessarily connected)
Γ ⊂ S2 = C∪{∞} and a sequence of open sets O±

ǫ ⊂ O±
δ for 0 < δ < ǫ,
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where

S2 ⊂ O+
ǫ ∪ O−

δ , ∀ǫ, δ

Γ =
⋂

ǫ

O+
ǫ ∩ O−

ǫ .

Regard O−
ǫ as a thickening of the interior of Γ and O+

ǫ as a thickening
of the exterior. We define:

X = {Q : Γ −→ SL(n, C) analytic}

= {Q : O+
ǫ ∩ O−

ǫ −→ SL(n, C) holomorphic},

X+
c = {E : O+

ǫ −→ SL(n, C), holomorphic for some ǫ > 0,

E(p) = 1, for some p ∈ Oǫ},

X− = {F : O−
ǫ −→ SL(n, C), holomorphic for some ǫ > 0}.

The Riemann-Hilbert problem is to factor Q ∈ X into a product Q =
E · F, where E ∈ X+

c , F ∈ X−. This can be done on a big cell.

Theorem 3.1. (X+
c , X−, X) is a local Manin triple of groups.

The usual Riemann-Hilbert factorization scheme is given by the fol-
lowing choices:

Γ = {λ : |λ| = 1}(3.3)

O+
ǫ = {λ : |λ−1| ≤ 1 + ǫ}

O−
ǫ = {λ : |λ| ≤ 1 + ǫ}

with p = ∞ ∈ O+
ǫ chosen as the normalizing point.

It is useful to keep in mind that the projection operators at the Lie
algebra level are given by Cauchy integral formulae. We have for V ∈
X = {V : S1 −→ sl(n, C) analytic}

Π+V ∈ X+ = {W : O+
ǫ −→ sl(n, C) holomorphic , W (∞) = 0}.

For |λ| < 1,

(3.4) Π+V (λ) = W (λ) =
1

2πi

∮

|λ|=1

V (ξ)

λ − ξ
dξ.

Note that Π+V extends to a neighborhood of Γ when V is analytic on
|λ| = 1.

We now procede to describe the more complicated Riemann-Hilbert
problem useful for harmonic maps. Now we have

Γǫ = {|λ| = ǫ} ∪ {|λ−1| = ǫ}(3.5)

O+ = C − {0}

O−
ǫ = {|λ| < ǫ} ∪ {|λ−1| ≤ ǫ}.

The normalization point is chosen as 1 ∈ O+. We also have a reality
condition.
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Definition 3.2. A map Q : O −→ SL(n, C) satisfies the harmonic

map reality condition (HMRC) if

(a) λ −→ λ̄−1 maps O −→ O,

(b) Q(λ) =
(
Q(λ̄−1)∗

)−1
.

This condition is compatible with the domains O+,O−
ǫ and Γǫ, as

well as the notion of holomorphicity. Let

Y − = {F : O−
ǫ −→ SL(n, C) holomorphic, F satisfies the HMRC}

(3.6)

Y + = {E : C − {0} −→ SL(n, C) holomorphic, E satisfies the HMRC}

Y = {Q : O−
ǫ − ({0} ∪ {∞}) −→ SL(n, C) holomorphic,

Q satisfies the HMRC}.

As a special case of factorization, we have

Theorem 3.3. (Y +, Y −, Y ) is a local Manin triple.

In the infinitesimal version, we have Lie algebras (Y+, Y−, Y), where
SL(n, C) is replaced by sl(n, C). The reality condition becomes

W (λ) = −W (λ̄−1)∗.

For W ∈ Y, the formula for the projection at the Lie algebra level is

(3.7) Π+W (λ) =
1

2πi

∫

|γ|=δ∪|γ|=δ−1

W (λ)(λ − 1)

(λ − γ)(γ − 1)
dγ

where δ < λ < δ−1, δ < ǫ,

and

Y = {W : O−
ǫ − ({0} ∪ {∞}) −→ sl(n, C), W (λ) = −W (λ̄−1)∗}.

Since W (ξ) is holomorphic in O−
ǫ − ({0} ∪ {∞}), the domain of analyt-

icity of Π+W extends to C − {∞}.

4. Derived Group Actions and (Half) Virasoro Actions

We now turn to a useful observation on passing automorphisms of
X, which restrict to automorphisms of X−, to diffeomorphisms of X+.
Assume (X+, X−, X) is a local triple of groups.

Definition 4.1. We call G ⊂ Hom(X, X) a negative automorphism
group if G

∣∣
X−

⊂ Hom(X−, X−). For f ∈ G, define f# ∈ Diff X+ by

(4.1) f#(s+) = P+f(s+).

Theorem 4.2. # : G −→ Diff X+ is a (local ) homomorphism.
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Proof. Note that by local we mean f#g# = (f · g)#, where f# and
g# are defined.We expect f# and g# to be well-defined close to 1 ∈ G.

(g ◦ f)(s+) = (g ◦ f)#(s+)r1

f(s+) = f#(s+)r2

g
(
f#(s+)

)
= g#

(
f#(s+)

)
r3,

where r1, r2, r3 ∈ X−. Since g is a group homorphism,

g (f(s+)) = g
(
f#(s+)r2

)

= g
(
f#(s+)

)
g(r2)

= g#
(
f#(s+)

)
r3g(r2).

By uniqueness, r1 = r3g(r2) and g#
(
f#(s+)

)
= (g ◦ f)#(s+). q.e.d.

Corollary 4.3. Let g and (X+, X−, X) be the Lie algebras of G and

(X+, X−, X). Then the infinitesimal generator of the group action for

σ ∈ g is given by

(4.2) σ#(s+) = s+Π+
(
s−1
+ σ(s+)

)
,

where

# : X+ × g −→ T (X+).

Moreover, # maps Lie brackets of elements in g to the Lie brackets of

the vector-fields of the image.

Proof. This is the infinitesimal version of the group action. Hence,
the Lie bracket formula is a consequence of the composition law. To
see the correctness of the formula for the infinitesimal generator, choose
σ ∈ g. Hence, for small t,

eσts+ = s+(t)s−(t)

where (s+(t), s−(t)) = µ−1
(
eσts+

)
. But

σ(s+) = σ#(s+)s−(0) + s+(0)
d

dt

∣∣∣∣
t=0

s−(t).

Since s−(0) = 1 and
d

dt

∣∣∣∣
t=0

s−(t) = V− ∈ X−. Notice also that s+(0) =

s+, so we have

s−1
+ σ(s+) = s−1

+ σ#(s+) + V−,

which implies

Π+
(
s−1
+ σ(s+)

)
= s−1

+ σ#(s+).

Finally,

σ#(s+) = s+Π+
(
s−1
+ σ(s+)

)
.



334 M. VAJIAC & K. UHLENBECK

Note that one may start with this formula and prove directly that # is
consistent with the Lie brackets if one wishes. q.e.d.

The familiar example of a derived group action is the dressing action
of X− on X+. Here the group action is

Ad X ⊆ Hom(X, X)

AdX− ⊆ Hom(X+, X+).

The formula for the dressing action of s− ∈ X− on s+ ∈ X− is

s
#
−s+ = P+(s−s+) = P+(s−s+s−1

− )

= P+ (Ad s−(s+)) .

The action can be thought of as derived either from left multiplication
or an Ad action. For more on dressing actions, see either the book of
Guest [6] or the lecture notes of Terng [11].

We turn now to Virasoro actions. We persist in describing the actions
at the group level for conceptual simplicity, although we are ultimately
interested in infinitesimal formulae. The Virasoro algebra is described
in terms of generators

V = span{. . . , L−j , . . . , L−1, L0, L1, . . . }

with the bracket operation [Lj , Lk] = (k − j)Lj+k. These are sugges-

tively written as Lj = λj+1 ∂

∂λ
. The span can be over the complex

numbers, yielding VC, or the real numbers, giving VR. The algebras we
will discover are half-Virasoro algebras:

V
+
C

= spanC{L−1, L0, . . . , Lj}

V
+
C,0 = spanC{L0, . . . , Lj , . . . }

V
−
C

= spanC{. . . , L−j , . . . , L0, L1}

V
−
C,∞ = spanC{. . . , L−j , . . . , L0}.

We will meet the corresponding real Virasoro algebras V
±
R
, etc., in Sec-

tion 5.
The Virasoro algebra is not the Lie algebra for a Lie group. However,

it can be considered as infinitesimal generators of holomorphic map-
pings, which have composition properties modulo difficulties in keeping
track of domains and images. Since we are interested in holomorphic
mappings which are near the identity mapping, it is possible to keep
track of this, although we will be sloppy about it. Choose a large set
O = {λ : |λ| ≤ N} and let

G+
hol = {f : f(λ) = λ + v(λ), v small and holomorphic in O}.
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If f, g ∈ G+
hol , f ◦ g is defined and holomorphic, with possibly a smaller

domain. Let

G+
hol ,0 = {f ∈ G+

hol , f(0) = 0}.

Then V
+
C

is the infinitesimal algebra for G+
hol , and V

+
C,0 is the infinites-

imal algebra for G+
hol ,0.

Recall the usual triple (X+
c , X−, X) for the Riemann-Hilbert split-

ting, with the domains given in (3.3).

Lemma 4.4. G+
hol acts by composition as a negative family of auto-

morphisms on (X+
c , X−, X).

Proof. This is straightforward, except there is a real problem, which
we do not try to solve, of keeping track of domains. Note that we have
the notation

(4.3) LjF =
d

dt

∣∣∣∣
t=0

F
(
λ + tλj+1

)
= λj+1 ∂

∂λ
F

is the infinitesimal action of generators on X− or X. q.e.d.

Corollary 4.5. G+
hol has a derived action on X+

c , where for f ∈

G+
hol , E ∈ X+

c

f#E = P+(E ◦ f).

For V = v
∂

∂λ
∈ g+

hol ,

V #E = EΠ+

(
E−1v

∂

∂λ
E

)
.

Proof. This follows from (2.1), (3.2), and (4.2). Note that we have
the explicit formula from (3.4).

(4.4) V #E(λ) =
1

2πi
E

∮

|γ|=1

E−1(γ)v(γ) ∂
∂γ

E(γ)

(λ − γ)
dγ

q.e.d.

We are now ready to construct the more complicated version of the
Virasoro action used for harmonic maps. First we construct G+

hol ,0 and

V
+
C,0 on (Y +

c , Y −, Y ) defined in (3.6). The domains O−
ǫ consist of two

pieces, a small neighborhood about 0, {|λ| ≤ ǫ} and a small neighbor-
hood about ∞, {|λ|−1 ≤ ǫ}. G+

hol ,0 acts on {|λ| ≤ ǫ}. We induce the

action on {|λ|−1 ≤ ǫ} by f(λ) =
(
f

(
λ̄−1

))−1
. Now the action of f is

compatible with the HMRC (2.2).

Theorem 4.6. G+
hol ,0 acts by composition as a negative family of

automorphisms on (Y +
c , Y −, Y ).
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Corollary 4.7. G+
hol ,0 has a derived action on Y +

c , where for f ∈

G+
hol ,0,

f#E = EP+
(
E−1(E ◦ f)

)
,

and for V ∈ V
+
hol ,0, V = v

∂

∂λ
,

V #E = EΠ+

(
E−1v

∂

∂λ
E

)
.

Proof. The proof is the same as (2.1) and (3.2), despite the difficulties
of keeping track of domains. However, we haven’t really finished, as we

are interested in explicit formulas. V = v
∂

∂λ
is the correct expression at

λ = 0. However, at λ = ∞, the transformation v(λ) = −v
(
λ̄−1

)
gives

v
(
λ̄−1

)
λ2 ∂

∂λ
. q.e.d.

Proposition 4.8. If V = v(λ)
∂

∂λ
, then

V #E(λ) =
1

2πi
E

[∮

|γ|=ǫ

E−1(γ)v(γ) ∂
∂γ

E(γ)(λ − 1)

(λ − γ)(γ − 1)
dγ

+

∮

|γ|=ǫ−1

E−1(γ)v(γ̄−1)γ2 ∂
∂γ

E(γ)(λ − 1)

(λ − γ)(γ − 1)
dγ

]
.

Notice that the change of variable gives a correspondence between
V

+
C,0 and V

−
C,∞:

∞∑

j=0

cjλ
j+1 ∂

∂λ
−→ −

∞∑

j=0

c̄jλ
−j+1 ∂

∂λ
.

We are, in fact, choosing the graph of this representation in V
+
C,0×V

−
C,∞,

where the first Virasoro factor acts at λ = 0 and the second at λ = ∞.
The full algebra V

+
C,0 × V

−
C,∞ would act on harmonic maps s : Ω −→

SL(n, C), i.e., maps without the reality condition s∗ = s−1.
We give the formula for the generators. Take note that constants

multiply the second formula by the complex conjugate, so the formula
is a bit misleading. For j ≥ 0, we have

Lj(E)(λ) =
1

2πi

[∮

|γ|=ǫ

E−1(γ)γj+1 ∂
∂γ

E(γ)(λ − 1)

(λ − γ)(γ − 1)
dγ(4.5)

+

∮

|γ|=ǫ−1

E−1(γ)γ−j+1 ∂
∂γ

E(γ)(λ − 1)

(λ − γ)(γ − 1)
dγ

]
.
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Note that the singularities in the contour integral are at (0,∞, 1, λ).
Hence, there are many deformations of the contour possible if we wish
to compute Lj(E)(λ) for |λ| = 1 only.

5. Virasoro Actions on Harmonic Maps

We associate to every harmonic map s : Ω −→ SU(n) the extended
harmonic map E : C − {0} × Ω −→ SL(n, C) as in Theorem 2.3. The
Virasoro action acts on the extended harmonic map via its dependence
on the variable λ ∈ C − {0}. The special variable z = x + iy is carried
along as an auxiliary variable.

Theorem 5.1. Let f ∈ G+
hol ,0 be a holomorphic map near the iden-

tity, which we extend to O−
ǫ by f(λ) =

(
f

(
λ̄−1

))−1
. Define

(5.1) Ê = f∗E = P+(E ◦ f).

Let Ω̂ = {z ∈ Ω : f#E•(z) is defined}. Then Ê is an extended harmonic

map on Ω̂.

Proof. We need to show that Ê satisfies the conditions of Theo-

rem 2.4. We have used Corollary 4.5 to define Ê.

Certainly Ê1(z) = I and Êλ(p) = I by construction. The HMRC en-

sures that Êλ(z) =
(
Êλ̄−1(z)

)∗−1
. It is sufficient to show that Ê−1

λ
∂
∂z

Eλ

has a simple pole at 0 (and no poles at ∞). Then Ê−1
λ

∂
∂z

Eλ = α+λ−1β,

but β = −α since Ê−1
1

∂
∂z

E1 = 0. The HMRC gives a relationship be-

tween Ê−1
λ

∂
∂z

Eλ and Ê−1
λ

∂
∂z̄

Eλ which finishes the proof.

First, by construction, Êλ(z) ∈ Y +
c is holomorphic in λ ∈ C − {0}.

Hence ∂
∂z

Êλ and Ê−1
λ and their products are holomorphic for λ ∈ C −

{0}. We need only worry about the singularity at 0 and ∞. To handle
this case, we look at the factors

Ef(λ)(z) = Êλ(z)Rλ(z),

where Rλ(z) ∈ Y − will be smooth in z. Hence, we can write Êλ =
Ef(λ)R

−1
λ and

Ê−1
λ

∂

∂z
Êλ = Rλ

∂

∂z
R−1

λ + RλE−1
f(λ)

∂

∂z
Ef(λ)R

−1
λ .

The terms Rλ, R−1
λ , ∂

∂z
R−1

λ are all holomorphic at 0 and ∞. Hence the
singularities at 0 and ∞ come from the term

E−1
f(λ)

∂

∂z
Ef(λ) =

(
1 − f(λ)−1

)
α.
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This expression is holomorphic at ∞. At λ = 0, since f(0) = 0 and
f is “close to the identity”, we have E−1

f(λ)
∂
∂z

Ef(λ) has a simple pole at

λ = 0. The result follows. q.e.d.

Corollary 5.2. Let V = v ∂
∂λ

∈ V
+
C,0. Then

V #Eλ(z) =
1

2πi
Eλ(z)

[∮

|γ|=ǫ

Eγ(z)−1v(γ) ∂
∂γ

Eγ(z)(λ − 1)

(λ − γ)(γ − 1)
dγ(5.2)

+

∮

|γ|=ǫ−1

Eγ(z)−1v(γ̄) ∂
∂γ

Eγ(z)(λ − 1)

(λ − γ)(γ − 1)
dγ

]

is tangent to the space of extended harmonic maps.

Proof. While for a holomorphic map f ∈ G+
hol ,0, the factorization

defining the new extended harmonic map cannot always be done, if
f(λ) = λ + tv(λ), the factorization can be done if t is sufficiently small.

Since f
#
t E is an extended harmonic map for small t,

V #E =
d

dt

∣∣∣∣
t=0

f
#
t E

is tangent to the space of extended harmonic maps. q.e.d.

Corollary 5.3. For V ∈ V
+
hol ,0 the map V −→ V # given in (5.2) is

a representation of V
+
hol ,0 on vector fields tangent to extended harmonic

maps.

Proof. This is an application of Corollary 4.5 and Corollary 5.2.
q.e.d.

Corollary 5.4. Let

Lj(Eλ)(z) =
1

2πi
Eλ(z)

[∮

|γ|=ǫ

E−1
γ (z)γj+1 ∂

∂γ
Eγ(z)(λ − 1)

(λ − γ)(γ − 1)
dγ

+

∮

|γ|=ǫ−1

E−1
γ (z)γ−j+1 ∂

∂γ
Eγ(z)(λ − 1)

(λ − γ)(γ − 1)
dγ

]

generates a representation of V
+
hol ,0 on the space of vector fields tangent

to extended harmonic maps.

Proof. This is a result of Corollary 5.3 in terms of specific generators.
Note multiplication by a constant acts via multiplication by itself on
the first factor, and to complex conjugate on the second. q.e.d.
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Corollary 5.4 is the main result of the paper. The reader is invited to
prove it directly and to decide whether the route we have taken sheds
light on the formula.

6. The Results of Schwarz

We now turn to the Virasoro action on harmonic maps from R
1,1

to SU(n) treated by John Schwarz [9]. The results are stated without
proof, as the construction is identical, except for the different reality
conditions.

Theorem 6.1. Let E : C
∗ × R

1,1 −→ SL(n, C) be holomorphic in

λ ∈ C
∗ and smooth for (ξ, η) ∈ R

1,1. Assume Eλ(0) = I and

(a) Eλ =
(
E−1

λ̄

)∗
.

(b) E1 = I.

(c) E−1
λ

∂
∂ξ

Eλ and E−1
λ

∂
∂η

Eλ have simple pols at 0 and ∞, respectively.

Then s = E−1 : R
1,1 −→ SU(n) is harmonic. Moreover, any harmonic

map s : R
1,1 −→ SU(n) with s(0) = I has an unique extended harmonic

map associated with it.

The different reality condition f(λ) = f(λ̄) results in the decoupling
of the Virasoro action at 0 and ∞, as well as a new restriction that the
Virasoro actions are real.

Theorem 6.2. Let W = w ∂
∂λ

∈ V
+
R,0 and V = v ∂

∂λ
∈ V

−
R,∞ be the

elements of the product of two half-Virasoro algebras. Then

δv,w(Eλ) =
1

2πi
Eλ

[∮

|γ|=ǫ

E−1
γ w(γ) ∂

∂γ
Eγ(λ − 1)

(λ − γ)(γ − 1)
dγ

+

∮

|γ|=ǫ−1

E−1
γ v(γ) ∂

∂γ
Eγ(z)(λ − 1)

(λ − γ)(γ − 1)
dγ

]

is a representation of V
+
R,0 × V

−
R,∞ on the vector fields tangent to the

space of extended harmonic maps.

Now Schwarz’s formulae are quite different from these formulae. How-
ever, a simple transformation t = λ−1

λ+1 and τ = γ−1
γ+1 will transform our

integrals into his integrals. However, because he is working with a dif-
ferent complex parameter, the natural choice of Virasoro generators are
Lj = tj+1 ∂

∂t
, which are in principle allowable, since the expression in λ

is holomorphic at t = ±1, or λ = 0,∞.

Proposition 6.3. VR ⊂ V
+
R
× V

−
R
.

Proof. This embedding is achieved by expressing the generators tj ∂
∂t

in terms of the coordinates adapted to ±1, or t = λ−1
λ+1 . The algebra V

+
R
×
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V
−
R

is actually larger, as the linear fractional transformations Lj , j =

−1, 0, 1 correspond to 3 generators in VR and 6 generators in V
+
R
×V

−
R
.

q.e.d.

Unfortunately, Schwarz fails to obtain a representation of the full
Virasoro algebra for the same reasons that we fail. We generate V

+
R,0 ×

V
−
R,∞ ⊂ V

+
R
× V

−
R
. A careful check of the conditions of Schwarz shows

that he also imposes the constraint that the vector fields fix (0,∞) ∼
(1,−1) and hence miss a full realization. If we transform the description
to one in terms of scattering data, the harmonic maps correspond to first
flows. The missing L−1 ∈ V

+
R

and L1 ∈ V
−
R

will be written in terms of
second flows.

References

[1] B. Dubrovin, Integrable systems in topological field theory, Nuclear Phys. B 379

(1992) 627–689, MR 1175565.

[2] , Geometry of 2D topological field theories, in ‘Integrable Systems and
Quantum Groups’ (Montecatini Terme, 1993), Lecture Notes in Mathematics,
1620, Springer Verlag, Berlin, 1996, 120–348, MR 1397274.

[3] , Flat pencils of metrics and Frobenius manifolds, in ‘Integrable Sys-
tems and Algebraic Geometry’ (Kobe/Kyoto, 1997), World Scientific Publishing,
River Edge, NJ, 1998, 47–72, MR 1672100, Zbl 0963.53054.

[4] B. Dubrovin & Y. Zhang, Frobenius manifolds and Virasoro constraints,
preprint, 1998, math.AG/9808048.

[5] E. Getzler, The Virasoro Conjecture for Gromov-Witten Invariants, in ‘Alge-
braic Geometry Hirzebruch 70’ (Warsaw l998), Cont. Math., 241, Amer. Math.
Soc., 147–176, MR 1718143, Zbl 0953.14034.

[6] M. Guest, Harmonic Maps, Loop Groups and Intergable Systems, London Math.
Society student texts, 38, Cambridge University Press, l997, MR 1630443,
Zbl 0898.58010.

[7] N. Hitchin, Frobenius manifolds, in ‘Gauge Theory and Symplectic Geometry’
(eds. J. Hurtubise, F. Lalonde), Kluwer Academic Publishers, Netherlands, 1997,
69–112, MR 1461570, Zbl 0867.53027.

[8] A. Pressley & G. Segal, Loop Groups, Oxford Mathematical Monographs,
Clarendon Press, Oxford, l986, MR 0900587, Zbl 0618.22011.

[9] J. Schwarz, Classical Duality Symmetries in Two Dimensions, Nuclear Phys. B
447 (l995) 137–182.

[10] , Classical Symmetries of Some two-dimensional Models Coupled to Grav-

ity, Nuclear Phys. B 454 (l995) 427–448, MR 1360413, Zbl 0925.81294.

[11] C.-L. Terng, Loop Groups and Integrable Systems, Lecture Notes (preprint).

[12] C-L. Terng & K. Uhlenbeck, Poisson Actions and Scattering Theory for Inte-

grable Systems, Surveys in Differential Geom. 4 (1998) 315–402, MR 1726931,
Zbl 0935.35163.

[13] K. Uhlenbeck, Harmonic Maps into Lie Groups, J. Differential Geom. 30 (l989)
1–50, MR 1001271, Zbl 0677.58020.



VIRASORO ACTIONS AND HARMONIC MAPS 341

[14] E. Witten, Two dimensional gravity and intersection theory on moduli space,
Surveys in Differential Geom. 1 (1991) 243–310, MR 1144529, Zbl 0808.32023.

Department of Mathematics
University of Texas at Austin

E-mail address: mbvajiac@chapman.edu

E-mail address: uhlen@math.utexas.edu


