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Abstract 
We prove a fixed point theorem for a class of discrete group acting on man­
ifolds of nonpositive curvature by isometry. These discrete groups include 
cocompact lattices in simply connected semisimple p-adic groups of rank at 
least two and large p. Hence it gives a geometric generalization of Margulis' 
superrigidity theorem for the Archimedean representation of these groups. 

1. Introduction 

Let N be a complete simply connected Riemannian manifold of non-
positive sectional curvature. N has a natural compactification N = 
N U dN by the sphere at infinity which is defined as the equivalent 
classes of geodesic rays [1]. Any group action on N by isometry extends 
to an action on N. 

Definition 1.1. A group T is said to have property (F) if any 
isometric action of T on any complete simply connected manifold of 
nonpositive sectional curvature N has a fixed point in N. 

In term of representations of T, property (F) has the following inter­
pretation. Let H be a simple noncompact Lie group with trivial center. 
If r has property (F), then any homomorphism p :T t-> H with Zariski 
dense image is precompact in H. This is because the symmetric space as­
sociated with H has nonpositive curvature and the image being Zariski 
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dense implies the action has no fixed point in the boundary. A classical 
theorem of Cartan states that every compact group has property (F). 

We consider discrete groups that can be realized as fundamental 
groups of simplicial complexes satisfying certain combinatorial proper­
ties. Namely, in §2, we define a notion called "admissible weight" for 
simplicial complexes, and "local first eigenvalue" Ai;loc for such admissi­
ble weights. These can be viewed as combinatorial analogues of "metric" 
and "curvature" on Riemannian manifolds. Our main theorem is the 
following: 

T h e o r e m 1.1. If F can be realized as ni (S) of a finite simplicial 
complex S with admissible weight c such that Ai ;loc(£,c) > \, then F 
has property (F). 

A special case of our theorem can be formulated more transparently. 
Let S be a two-dimensional simplicial complex. The link Lk(v) of each 
vertex v is a graph. Let 8ij (v) denotes the incidence matrix of Lk(v) 
and deg v(i) the degree (or valence) of the i - th vertex in Lk(v). Then 
we have: 

T h e o r e m 1.2. If each simplex ofT. is contained in some 2-simplex, 
and the smallest nonzero eigenvalue of Id— d x ,^ôij (v) is greater than 

| for each vertex v o fE , then IÏ\ (S) has property (F). 

This condition is satisfied by many graphs including all complete 
graphs. In [16], we prove these groups have Kazhdan's property (T). 
After the work in [16] was completed, we were informed by Professor 
Margulis that Ballmann and Swiatkowski [2] also proved property (T) 
for these simplicial complexes (see also [15], [20]). Our formulation 
is different from theirs and is well-suited for the nonlinear situation 
considered here. 

The local first eigenvalue is a generalization of "p-adic curvature" in 
[8], where Garland showed the inequality in Theorem (1.1) is satisfied by 
p-adic buildings under the assumption that the cardinality of the residue 
field of the defining field is large enough. Based on this, he deduced the 
vanishing theorem of cohomology of cocompact lattices of p-adic groups. 
Our theorem is in some sense a nonlinear version of Garland's. Along 
this line, our theorem can also be viewed as a geometric generalization 
of Margulis' superrigidity theorem for the Archimedean representation 
of cocompact lattices in semisimple p-adic groups of rank at least two 
except we could not get rid of the residue field assumption. 
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T h e o r e m (Margulis) [12] [19]. Let Y be a discrete cocompact sub­
group of a simply connected semisimple p-adic group G of rank at least 
two. Let H be a simple Lie group with trivial center. If p : Y \—> H is 
a representation with Zariski dense image, then p (Y) is precompact in 
H. 

The theorem was proved by Margulis in the early 1970's using er-
godic theory and linear algebraic groups theory. Actually he proved 
the theorem for lattices in both semisimple real Lie groups and p-adic 
groups of rank at least two, and superrigidity is true for Archimedean 
representations as well as non-Archimedean ones. It turns out that su­
perrigidity is also true for lattices in semisimple Lie groups of rank 1 
except for SO(n, 1) and SU(n, 1). In the Archimedean case, this was 
proved by Corlette [5] , while the other case was proved by Gromov and 
Schoen [9] later. Their methods involve vanishing theorems for har­
monic maps from manifolds with special holonomy. Then Jost-Yau [11] 
and independently Mok-Siu-Yeung [14], gave the first geometric proofs 
of Margulis superrigidity theorem for lattices in simple Lie groups. Both 
groups of authors used harmonic maps, and their results were deduced 
from a Bochner type formula together with a Matsushima vanishing 
argument. This kind of argument was used by Calabi [4], Weil [18], 
Matsushima [13], etc. in proving the vanishing theorem of cohomology 
groups of locally symmetric spaces. In [8], Garland found a surpris­
ing formula for Bruhat-Tits buildings, which are p-adic analogues of 
Riemannian symmetric spaces, and applied this to prove his vanishing 
theorem. 

The strategy we adopt here involves "harmonic maps" on simplicial 
complex . The present paper is organized as follows: §2 contains a 
definition of the local first eigenvalue for a simplicial complex with an 
admissible weight. In §3, we develop harmonic map theory for simplicial 
complexes and prove the main theorem. In §4, we show the local first 
eigenvalue condition was satisfied by a class of Bruhat-Tits buildings. 
§5, gives new examples having property (F) which are not cocompact 
lattice of p—adic groups. 

I would like to thank Professor S.-T. Yau. Without his advice and 
encouragement, this paper would never have been completed. 
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2. T h e admiss ible weight and the first e igenvalue for 
Simplicial C o m p l e x e s 

In this section, we define "admissible weight" for a simplicial com­
plex and "local first eigenvalue" for such weights. First we fix our no­
tation. Let E be a simplicial complex of dimension l, E (i) the set of 
i simplices of E, C i(E) the vector space over R o f i chains of E, and 
C i(E) the vector space of i cochains. We write r < a if r is a face 
of a. The coboundary operator d on C i(E) and boundary operator d 
on C i(E) are defined as usual. Also for any simplex v , St(v) is the 
subcomplex formed by simplices containing v, and Lk(v) is the union 
of the faces of St(v) that do not meet with v. 

Defini t ion 2 .1 . An admissible weight is a positive function c on 
UE (i) such that 

(2.1) X c(a)=c(r) 
o-eE(i+l),T<cr 

for any r G E (i). An admissible weight defines an inner product on the 

vector space C i(E) by (f, g) = P c(T)f (T) g (i~). 
reS(i) 

We say two cochains f, g are perpendicular if (f, g) = 0. 

E x a m p l e 2 .1 . Let m < n < l and c(a) be the number of n­
dimensional simplices containing a. By a simple computation, we check 
that P c (a) = (n — i)c (r) for any r G E (i) and i + 1 < m. 

0-e£(i+l),T<cr 

If c(cr) T^ 0 for all simplices a of the m skeleton of E, and let c (er) = 
n(n—1) • • • (n—i)c (er) , then it is not hard to check that c is an admissible 
weight on the m skeleton of E . 

E x a m p l e 2.2. If E is endowed with an admissible weight c, then c 
induces an admissible weight v(T) := c(v * r ) on each Lk(v). Here v * r 
denotes the join of v and r . Condition (2.1) is verified by the following 
computation: 

(2.2) X c v(a) =X c(v*a) =c(v*T) =v(T) 
<TELk(v)(i+l),T<(T 

For each vertex v , we also define a "localizing operator" on C 1 (E) : 

LOv(u) = Lü((u,v)) 
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for any uj G C ^ S ) . 
An admissible weight on E also gives the adjoint operator to d, 

denoted by ö : 

(2.3) 5uj{v) = -L- J2 c (T) [T :v ]U, (T) 
1 ' TGS(i ) 

for any v £ E(i - 1), where [r : v] is the incidence number of r and v 
which is 0, 1, or —1 depending on the orientation of r and v . 

In particular, if LO G C 1 ( E ) , then 

(2.4) dio{v) = —- V v{T)Lv{T) 
civ) ^—' v ' ueLk(v)(o) 

for any v G E(0). 
We also define the Laplace operator A = dö + (d, and there are two 

invariants associated with the Laplace operator: 

Definit ion 2.2. For an admissible weight c on S , we define 
the global first eigenvalue, denoted by Ai (£ , c ) , to be the infimum of 
(df, df) I (f, f ) over all f e C° (S) satisfying P veS(o) c (v) f (v) = 0 . 

Definit ion 2 .3 . The local first eigenvalue of (E, c) denoted by 
Ailoc(E,c) is defined to be the infimum of \i(Lk(v),c v) over all v G 
E ( 0 ) . 

These \i(Lk(v),c v) 's are always nonnegative numbers. We remark 
that if E is finite and each Lk(v) is connected, then Ai;loc(E,c) is posi­
tive. 

For any inner product space V, we also consider C i (E, V) := C i (E)(g> 
V with the product metric, d and 8 can be extended to operators on 
C i (E, V ) . We prove some lemma which will be used in the vanishing 
theorem for harmonic maps. 

L e m m a 2.1 . I f E is finite, and c is an admissible weight on E ; then 
for any LO G C 1 (E, V) , we have 

(2-5) AMoc (2 IMI2 - HM!2) < Yl H^l lLkv-
ves(o) 

Proof. By definition, we have 
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{du>v, duv)Lk(v) = X c v (Tï (du}v (T) 'du)v (T^ • 
TeLk(v)(i) 

From the definition of admissible weights it follows that 

X c v(u)= X c(T) = c(v). 

ueLk(v)(o) reS(l),v<T 

Therefore the definition of ou yields 

X c v(u) (uv (u) — ÖüJ (v)) = 0. 

ueLk(v)(o) 

That is, uv — ou (v) , as an element in C°(Lk(v)) , is perpendicular to 
constant cochains. By the definition of Ailoc and notice that d(uv — 
ou (v)) = du>v, we obtain 

v 

= Ai ) loc(X(v,v)Lk ( v ) - (uv,öu(v))Lk{v)), 
v 

where the equality follows from (uv — öu> (v) , öu (v))Lkrv\ = 0. However, 

the first term P v ( v , v ) L k ^ = 2 ||w|| because each edge contains two 
vertices. While the second term, 

X (v j 8u{v) )Lk { v ) 

v 

= X OU (v) X (c v (u) Uv (u)) 
v u 

= X Su (v) c (v) ou (v) 
v 

by the definition of ou again. The last term is \\ôu\\ and the lemma is 
proved. 
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Lemma 2.2. For (X,c) as above, if co G C1 (S, V) satisfies: 

(2-6) I M T I ) - W ( T 2 ) | | < | | U ; ( T 3 ) | | , 

whenever there exists an oriented two-simplex a with da = T\ — T<I + T%, 
then 

(2-7) E II^IILkv ^ INI2-

Proof. For any v G S (0) , squaring both sides of (2.6) and summing 
up over Lk(v)(l) lead to 

E c{(v,u,w))\\u((v,u))-u{{ v,w))\\ 

(2 8) (u,w)eLk(v)(i) 

< E c((viuiw))\\u((ui 
(u,w)eLk(v)(l) 

w))\\2 

Now summing up (2.8) over all v G S (0), we get, 

7 , \\duv\\Lk(v) 
vez(o) 

(2.9) 
< E E c((v,u,w)) ||u;((u,w))||2 

ves(o) {u,w)eLk(v)(i) 

which is 

E E c((v*T))\\U;(T)\\2 

veZ(0) r£Lk(v)(l) 

= E ( E c ( ( v * T ) ) ) | | O ; ( T ) | | 2 

T G S ( I ) veLk(r)(0) 

By the definition of admissible weights, 

E c((v*T)) = c(T). 
v£Lk(r)(0) 

Thus the last term is \\co\\ , and the lemma is proved. 
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The relation between the global and local first eigenvalues lies in the 
following theorem: 

T h e o r e m 2 .3 . If T, is finite and connected, and c is an admissible 
weight on E with Ai;loc (S,c) positive, then 

(2.10) A i ( E , c ) > 2 
Al,loc(S,c) . 

Proof. Let A = Ai (S ,c) , and h be the corresponding eigencochain, 
i.e., h G C° (E) and ôdh = Xh. Denote dh by u>. Then duo = o. Hence 
(2.6) is true. Combining Lemma 2.1 and Lemma 2.2 gives 

(2.11) Ai,loc(2 (Ml2 - \\Xhf) < (Ml2 . 

Using the facts ôdh = Xh and ö is adjoint to d , it is easy to check 
\\Xh\\ = A ||u>|| . Substituting these in (2.11), we get 

A / o II 11^ \ II 11 ^ \ ^ II 11^ 

i,loc(2||w|| - A||o;|| ) < ||w|| 

and the result follows. 

3. Harmonic m a p s on simplicial c o m p l e x e s 

Let E be a finite dimensional finite simplicial complex equipped with 
an admissible weight c and T = ni (E) . Let N be a complete simply 
connected Riemannian manifold of nonpositive sectional curvature, and 
p : r i—> I(N) a homomorphism into the isometry group of N. We 
consider the class of maps 

S = n f : E (0) i-)- N, f is equivariant with respect to o . 

By equivariance, which means that for any v G E (0) and 7 E T, 
f (7 (v)) = P (7) f (v)Î any f £ S is determined by the restriction to a 
fundamental domain of T on E. Therefore S can be identified with m 
copies of N, where m is the number of vertices in E. We define the 
energy of f G S to be 

file:////Xhf
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Definit ion 3 .1 . f i s called a harmonic map if f is a critical point 
of the functional E. 

Before proving the existence of harmonic maps, we recall the def­
inition of simplicial distance. Given any two vertices u,v G E , the 
simplicial distance df.(v,u) is defined to be the minimum of d such 
that there exists a sequence of vertices v = vQ, v\,-• • ,v d = u with 
hv i,v i+ii G E (1). Suppose the simplicial distance between v and 7 (v) 
is realized by a path v = vo, vi • • • v d = 7 (v). Then 

d-l 

d N (f(v)f (7 (v))) < X < N ( f ( v ) , f ( v • + ! ) ) 
i=o 

d - l 

< c p EJfjdxiv^iv)), 

where c\ is the maximum of ^ y for all T G S ( l ) . 

T h e o r e m 3 .1 . If the action of F does not fix any point on the 
sphere at infinity of N, then the harmonic map exists in S. 

Proof. We think of E as a function on N m and we are going to prove 
E is proper and convex. Then E has a minimum which is a harmonic 
map. Convexity follows from the fact that the distance function on 
nonpositively curved space is convex . Suppose E is not proper. Then 
there exists a sequence ff i g —> 00 in S = N m with E (f i) < K, for some 
constant K. In particular, there exists a vertex v such that i (v) —> 00 
in N. By the above computation, we see that 

,_ u d N (f i (v),7(f i (v))) =d N (f (v),f i (7 (v))) 

^ c i p K d ^ (v ,7 (v)). 

The right-hand side is independent of i, therefore i (v) and 7 (fj (v)) 
define the same limit in dN. Since this is true for all 7 G F, lim f i (v) is 
a fixed point in <9N, a contradiction. 
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For a harmonic map, we define f ( T ) to be the unique minimal 
geodesic segment joining v and u if r = (v, u) 

Defini t ion 3 .2 . The differential of f at vQ is defined to be : 

Df\vo:Lk(v0)(0)^T f{vo)N 

such that exp(Df\vo (vi)) = f (v\), where exp is the exponential map 
on T f{vo)N. 

In particular, we have\\Df\vo (vi)\\ = \\Df\vl (v0)\\ = d{f (v0), f (vi)) 
if T = (v0,vl) . 

Let us derive the harmonic map equation in our context. 

L e m m a 3.2. The differential of a harmonic map f satisfies the 
following weighted center of mass equation: 

(3.2) J2 c vo(u)Df\vo(u)=0 
ueLk(vo)(0) 

for a l lvo e S ( 0 ) . 

Proof. We consider the variation at vQ given by X G T f ^ N : 

- Y, c « v u » d 2 ( e x p ( t X ) , f ( u ) ) 
\ueLk(vo)(0) J 

= Yl c((v0iu))(X,2Df\vo(u))T f(vo)N; 
ueLk(vo)(0) 

the equality holds since f((vo,u)) is a minimal geodesic, 

r d 2 ( - , u ) | f v = 2Df\v0(u). 

Since f is a critical point, this is zero for all X. Hence the equation 
follows. 

Now we proceed to prove our main theorem: 

T h e o r e m 1.1. If (S,c) has \noc > \, then -ÏÏ\ (S) has property 

Proof. Given any N and isometry action of T on N, we may assume 
there is no fixed point in dN, otherwise we are done. Therefore the 
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harmonic map f exists and we are going to prove that this harmonic 
map is actually a constant map, so that its image is the desired fixed 
point. Fixing a vo G E (0), by the nonpositive curvature assumption on 
N, we have 

\\Df\v0(u)-Df\v0(w)\\<d(f(u)f(w)) 

for any {u,w) G Lk(vo)(l). Thus 

E c((vo,u,w))\\Df\vo(u)-Df\vo(w)\\2 

(u,w)eLk(v0)(l) 

< E c((vo,u,w))d2(f(u),f{w)). 

(u,w)eLk(v0)(l) 

Denoting the left hand side by | |d(Df)v0 | | and summing over all 
v 0 6 S (0) yield 

(3 3) v° 
< E E c((vo,u,w))d2(f(u)f(w))=E(f). 

v0 (u,w)eLk(vo)(l) 

On the other hand, since P ueLk(vo)(o) c vo(u)Df\vo (u) = 0 , Df\vo 

as an element in C° (Lk(vo)) is perpendicular to constant cochains, so 

E c((vo,u,w))\\Df\vo(u)-Df\vo(w)\\2 

(u,w)eLk(v0)(l) 

> Ai (Lk(vo))c«vo,u» HDf v (u)||2 . 

Summing over all vertices vQ again, we get 

El ld(Df vII2^A i loc-2E(f). 
vo 

By (3.3) and the assumption \iloc > \, this cannot happen unless 
E(f) = 0, i.e., f is a constant map. 

|2 
vo 11 



260 MU-TaO w a n g 

4. A fixed point t h e o r e m for cocompact lat t ices of p-adic 
groups 

In this section, k denotes a non-archimedean completion of either 
an algebraic number field or an algebraic function field in one variable 
over a finite field. 

Let G be the group of k-rational point of a simply connected alge­
braic group which is defined and simple over k with k rank l + 1, and T 
be a discrete torsion free cocompact subgroup of G. Y acts freely on the 
Euclidean building X associated to G. X is a contractible locally finite 
simplicial complex of dimension l, hence T is the fundamental group of 
X = T\X. 

There is a natural weight function on a building. Let E be a l 
dimensional building, which may be of Euclidean or spherical type. For 
a simplex a, let cs (a) be the number of l dimensional simplices of E 
having a as a face. Let cE(<T) = l• (l — 1) • • • (l — i )cs (a) if a G E (i + 1). 

Then cE is an admissible weight. 

Defini t ion 4 .1 . c ̂ ((x,y)) is called the canonical admissible weight 
of S. 

Given any vertex x of S. On Lk(x) there is a function cs,x defined 
on the set of simplices by cS,x(T) := c ̂ (x * r ) . cs,x is called the induced 
weight on Lk(x). 

Now Lk(x) is isomorphic to another spherical building S ' of dimen­
sion l — 1. Let <f> : Lk(x)(0) >->• S'(0) be the isomorphism between the 
vertices of them. It is not hard to see 

(4.1) c E ) x ( a ) = c E / ( $ ( a ) ) . 

Actually since cj],x and c ̂ v o <f> agree on any (l — l)-dimensional 
simplices and satisfy the same additive law (2.1) for admissible weights, 
by induction they must equal on all simplices. Therefore, we have the 
following: 

L e m m a 4 .1 . The first eigenvalue of Lk(x) with respect to the in­
duced weight cY,,x from E is the same as that of E ' with respect to the 
canonical weight, i.e., Ai(E' ,c ̂ y) = Xi(Lk(x),cstx). 

L e m m a 4.2 . For any spherical building E of dimension greater 
than or equal to two, we have A I ( E , c E ) > \ if the cardinality of the 
residue field of k is large enough. 
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Proof. By the induction on the dimension of E, we will show that 
A I ( S , c E ) > 1 — e if the cardinality of the residue field of k is large 
enough. If l = 2, this is a theorem of Feit-Higman [7] and Garland [8]. 
Suppose the theorem is true for all spherical buildings of dimensional 
l — I. In particular, this is true for any Lk(x), i.e., 

(4.2) A I ( S ' , c E / ) = Xi(Lk(x),c^) > 1 - e', 

if the cardinality of the residue field of k is large enough. By (2.10), we 
have 

A 1 ( S ) c E ) > 2 - - ^ = l - - ^ - 7 ) 
1 — e 1 — e 

and the lemma is proved. 

We are ready to prove the main theorem in this section. 

T h e o r e m 4 . 3 . For any integer l > 1, there is an integer M such 
that if k has residue field of cardinality at least M, G is the group of 
k—rational point of a simply connected algebraic group which is defined 
and simple over k with k rank l + 1, and F is a discrete cocompact 
subgroup of G, then F has property (F). 

Proof. F always has a finite index torsion free normal subgroup F 
by the theorem of Garland [8]. Suppose this theorem is true for r". 
The action of the finite group T/T' has a fixed point by Cartan 's fixed 
point theorem. Therefore this theorem is also true for F. Hence we may 
assume F is torsion free. According to the vanishing theorem in the 
previous section, it suffices to show there is an admissible weight on E 
with \ijoc > \. By the previous lemma, the theorem is proved. 

5. E x a m p l e s o ther t h a n p-adic bui ldings 

We show some 2-dimensional simplicial complexes which come from 
" surgery" of the quotient of p-adic building. Their fundamental groups 
also satisfy property (F). Let E be a 2-dimensional finite simplicial 
complex. We are going to take the admissible weight in Example 2.1 
when m = n = l = 2. We notice that the induced weight on each Lk(v) 
is just the degree (or valency) of each vertex of Lk(v) as a graph. A 
special case of our main theorem is the following: 
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Corollary 5.1. If c(T) > 0 for all r and the first eigenvalue of each 
link is greater than | , then 7ri(S) satisfies property (F). 

We recall our definition of first eigenvalue for a graph with admissible 
weight. Let the vertices be indexed by i = 1 • • • n, öij be the incidence 
matrix, i.e., öij = 1 if vertex i and j are joined by an edge, öij = 0 
otherwise. A zero cochain is just a sequence a = fa i g. Then 

\ i [a Ai = min 2 — — 2 , 

where the minimum is taken over all fa i g with P deg(i)a i = 0. Our 
Laplacian can be computed in the following way: 

a j) hAa, ai = - ^2 sij (a i - a j 

= ^2deg{i)a i -a i^Si 

= J2deg(i)a i • [a i - d e g ^ ^ Sij a jj . 

jij a j 

Therefore, 

( A a ) i = a i - d e g ( i ) ^ a ' -

We are going to construct our examples from the Euclidean building 
S associated with PGL(3, Q p). For materials on building, we refer to 
[3]. S is a two-dimensional simplicial complex, and the links are iso­
morphic to the spherical building G associated to PGL(3,Z/pZ). G is 
a finite homogeneous biparte graph with degree p + 1. The vertices of 
G are parametrized by the p2 + p + 1 points and p2 + p + 1 lines in the 
projective plane over Z/pZ, the edges are determined by the incidence 
relations, and PGL(3, Z/pZ) acts on G through the projective action. 
Each chamber complex of G is a hexagon and any two vertices are con­
tained in some chamber. A picture of G can be found on page 82 of [3] 
when p = 2, and in [10] when p = 3. 

The first eigenvalues can be easily computed using Hecke operators, 
see [8], and the space of zero cochains which is isomorphic to R2(p +p+1) 
has the following spectral decomposition C°(G) = I®P®E\(BE2, where 
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I corresponds the one-dimension constant cochain with eigenvalue zero, 
P corresponds to the one-dimension parity cochain with eigenvalue two, 
and E\, E-i are each p2 +p dimension eigenspaces with eigenvalues 1+-pn-

and 1 — -pn-, respectively. Now we consider a torsion free cocompact 

lattice r in PGL(3, Q p). Let S = T n S be the quotient. Our new 
example E' is formed by taking away a 1-simplex r and those 2-simplices 
containing r from S. This has two possible effects on the links of a 
vertex v : either r contains v, and Lk(v) loses one vertex and p + 1 
edges containing it, or r lies in Lk(v) and Lk(v) loses one edge, we 
called the resulting graphs type (I) and (II). 

Proposition 5.2. Both type (I) and (II) have first eigenvalue 
greater than ^ when p is large. 

Proof. Type (I): The new graph is denoted by G' and has 2p2+2p+l 
vertices. We assume the vertex which we take away is vQ, and the those 
adjacent to it are v\ • • • v p+\. We may also assume vQ corresponds to a 
line. C°(G') has dimension 2p2 + 2p + 1, and is canonically embedded 
in C°(G). Let W be the codimension p + 1 linear subspace in C°(G) 
defined by the equations 

(5.1) x0 = - X x k, for i = l,--- ,p+l. 

Let E[ = LI (W n E\), where IT is the projection map from C°(G) 
to C°(G') by forgetting the value at vo. We claim E[ is an eigenspace 
of the Laplacian on G' of eigenvalue A = 1 + -p - . Suppose a G E[. 
Then a i — —n- P a j = Aa i for all i and ao = ^ P a j? for i = 

1, • • • , p + 1, which implies —k- a j = p P a j - In particular, for 
Sij P l Sij=l,j^0 

i = 1,- • • ,p + l, a i — ^ P a j = ^a i- i-e-5 a is an eigencochain of the 

Laplacian on G' with the same eigenvalue. Likewise E'2 = Tl (W n ^ ) is 
an eigenspace of eigenvalue 1 — -p - . In C°(G'), the constant cochain and 
parity cochain are still eigencochains of eigenvalues 0 and 2, respectively. 
Besides, we have an eigencochain which is defined to be a i = 0, if i is a 
line, a i = — p if ii is a adjacent to vo , and a i = I otherwise. It is easy to 
check that this has eigenvalue 1. So far we have demonstrated linearly 
independent eigencochains which span a subspace of codimension at 
most 2p in C°(G'). We need a lemma to find the complement to this. 
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L e m m a 5.3. Given any a i, i = 1, • • • ,p + 1 such that P a i = 0 
and a i not all zero, there exist exactly two eigencochains with the value 
a i at v i, and the corresponding eigenvalues are 1 + p + 1 and 1 p== 

respectively. 

Proof. We set for k 7̂  0, 

a k = (1 — X)a i if (ik = 0 for some i, i = 1, • • • ,p + 1 

= 0, otherwise. 

Then since a i — ^ P a k = a i~~ ( 1~~ ^)a i = ^a i •> and the equation 

is satisfied at v i, for i = 1, • • • ,p + I. For those v such that oik = 0 for 
some, i,l < i < p + 1, one of its neighbor is v i, and none of its other 
neighbor can be adjacent to another v j with 1 < j < p + 1 because 
chamber complexes are hexagons. Therefore the equation at these v k 
are 

( 1 - A ) a i - - a T = A ( 1 - A ) a i. 

Since at least one of the a i is nonzero , we can solve for A = 1 + • 

or 1 = f . For the rest vertices, their neighbors consist of v i' , 
p+T 

1, • • • ,p + 1 such that v i is adjacent to i i . Since P a i = 0, it is easy to 
see the eigencochain equation is also satisfied at these vertices. 

Those eigencochains constructed in the lemma has dimension 1p. By 
dimension counting, we get all the eigencochains in C°(G'), and their 
eigenvalues are all greater than ì . q.e.d. 

Proof. Type (II) : The new graph G" has 2p2 + 1p + 2 vertices and 
C°(G) and C°(G") are canonically identified. We assume the edge we 
take away has end vertices vQ and v\ . Let W now be the codimension 
2 subspace defined by xQ = ^ P x and x1 = ^ P x k- We claim 

now E[ = Wn E\ is an eigenspace of the Laplacian on G" of eigenvalue 

A = 1 + p£n- The verification is similar to the calculation in type I 

and we omit it here. We also have the subspace E'2 of eigenvalue 1 + 

-pn-. Constant cochains and parity cochains survive too. Our task is to 

demonstrate a four-dimensional subspace of different eigenvalues. This 

is achieved by the next lemma. 
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l+p i+4p 
2(p+1) or 1 

l-pT+ïp 
2(p+l) 

Lemma 5.4. Given ao and a\ such that ao — a\ = 0 (respectively 
ao + ai = 0 ) ; with ao 7̂  0, there exist exactly two eigencochains with 

the prescribed values. Their eigenvalues are 1 

i r p ) (respectively 1 - (±±p p ) or 1 -

Proof. We set 

afc = (1 - A)a0 if <50k = 1 

= h - A)ai if oik = 1 

(p + 1) (1 — A) — 1 — if v k is adjacent to some v l with #0l = 1? 
i p 

or = (p + 1) (1 — A) — 1 — if v k is adjacent to some v l with on = 1. 
J p 

The equation satisfied by A is the following 

(p + 1) (1 - A)2 - l i ^ - - j - n(1 - A)ai + h(p + 1) (1 - A)2 - l i aoo 
J p p + 1 L J 

We plug in ao = a\ to get 

Aai 
p 

(p + l ) ( l - A ) 2 - l 

(p + l ) 2 (1 - A)3 -p(p + 1)(1 - A)2 - (2p + 1)(1 - A) + p = 0 

Solving for A yields A = 0,1 - (~1+(p) , 1 - ( " 2 " p ) ^ ) • We 
throw away A = 0 since it corresponds to constant eigencochains. As 
for ao = —ai, we obtain 

(p + l ) 2 (1 - A)3 +p{p + 1)(1 - A)2 - (2p + 1)(1 - A) - p = 0 

In this case A = 2,1 l + p I+4p , 
2(p+1) ' X 2(p+\\p ) and we throw away 

A = 2 as it corresponds to parity eigencochains. The lemma is proved. 
q.e.d. 

In [17], we show this is true for any buildings, i.e., Ai > \ is preserved 
under type (I) and (II) surgeries if p is large enough. 



266 MU-TaO w a n g 

References 

[I] W. Ballmann, M. Gromov & V. Schroeder, Manifolds of Nonpositive Curvature, 
Birkhauser, Basel, 1985. 

[2] W. Ballmann & J. Swiatkowski, On L2-cohomology and property (T) for automor­
phism groups of polyhedral cell complexes, Geom. Funct. Anal. 7 (1997) 615-645. 

[3] K. Brown, Buildings, Springer, Berlin, 1989. 

[4] E. Calabi, & E. Vesentini,On compact, locally symmetric Kahler manifolds, Ann. 
Math. 71 (1960) 472-507. 

[5] K. Corlette, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988) 
361-382. 

[6] ,Archimedean superrigidity and hyperbolic geometry, Ann. of Math. 135 
(1992) 165-182. 

[7] W. Feit & G. Higman, The nonexistence of certain generalized polygons, J. Alg. 1 
(1964) 114-131. 

[8] H. Garland, p-adic curvature and the cohomology of discrete subgroups of p-adic 
groups, Ann. of Math. 97 (1973) 375-423. 

[9] M. Gromov & R. Schoen, Harmonic maps into singular spaces and p-adic super-
rigidity for lattices in groups of rank one, Inst. Hautes Etudes Sci. Publ. Math. 
76 (1992) 165-246. 

[10] T. Hattori, Geometry of quotient spaces of SO(3)nSL(3, R) by congruence sub­
groups, Math. Ann. 293 (1992) 443-467. 

[II] J. Jost & S-T. Yau, Harmonic maps and superrigidity, Proc. Sympos. Pure Math., 
Amer. Math. Soc, Vol. 54, Part I, 1993, 245-280. 

[12] G. A. Margulis, Discrete subgroups of semisimple Lie groups, Springer, Berlin, 
1991. 

[13] Y. Matsushima, On the first Betti number of compact quotient spaces of higher 
dimensional symmetric spaces, Ann. of Math. 75 (1962) 312-330. 

[14] N. Mok, Y.T. Siu & S. K. Yeung, Geometric superrigidity, Invent. Math. 113 (1) 
(1993) 57-83. 

[15] P. Pansu, Formule de Matsushima, de Garland, et propriete (T) pour des groupes 
agissant sur des espaces symetriques ou des immeubles, Preprint, Orsay, 1996. 

[16] M. Wang, Fixed point theorems and property (T), Preprint, 1997. 

[17] , On a generalization of the first eigenvalue of a graph, Preprint, 1998. 

[18] A. Weil, Discrete subgroups of Lie groups II, Ann. of Math. 75 (1962) 578-602. 



a f i x e d p o i n t t h e o r e m 267 

[19] R. Zimmer, Ergodic theory and semisimple groups, Birkhauser, Berlin, 1984. 

[20] A. Zuk, La propriete (T) de Kazhdan pour les groupes agissant sur les polyedres, 
C. R. Acad. Sci. Paris, Ser. I, 323 1996, 453-458. 

Harvard University 


