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P U ( 2 ) M O N O P O L E S . I: R E G U L A R I T Y , U H L E N B E C K 
C O M P A C T N E S S , A N D T R A N S V E R S A L I T Y 

PAUL M. N. FEEHAN & THOMAS G. LENESS 

1. In troduct ion 

At seminars at Harvard and MIT, during October 1994, Edward 
Wit ten introduced the U(l ) monopole equations and the Seiberg-Witten 
invariants to smooth four-manifold topology and conjectured their re
lationship with Donaldson invariants on the basis of new developments 
in quantum field theory [19], [98]. The conjecture, recently extended 
in [60], has been verified for all four-manifolds whose Donaldson and 
Seiberg-Witten invariants have been independently computed. Within 
two months of Wit ten 's announcement, a program was outlined by V. 
Pidstrigach and A. Tyurin and others, which should lead to a math
ematical proof of the relationship between these two invariants [68], 
[71], [74]. This approach is unrelated to the quantum field-theoretic 
arguments of [60], [98] and uses a moduli space of PU(2) monopoles to 
construct a cobordism between links of Seiberg-Witten moduli spaces of 
U(l ) monopoles and the Donaldson moduli space of anti-self-dual con
nections, which appear as singularities in this larger stratified moduli 
space. 

It was soon recognized, however, that despite the appeal and ele
gance of the PU(2) monopole program, its implementation involves sub
stantial technical difficulties due to the contributions of moduli spaces 
of U(l ) monopoles in the lower levels of the Uhlenbeck compactification 
of the moduli space of PU(2) monopoles. Many of these difficulties had 
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never been resolved even in the case of Donaldson theory where similar 
problems arise, albeit in a rather simpler form, in a t tempts to prove the 
Kotschick-Morgan conjecture for Donaldson invariants of four-manifolds 
X with b+(X) = 1. That conjecture asserts that the Donaldson invari
ants computed using metrics lying in different chambers of the positive 
cone of H2(X; R)/R* differ only by homotopy-invariant terms [45]. In 
the case of the Kotschick-Morgan conjecture, the heart of the problem 
lies in describing the links of the lower-level reducibles via gluing and 
then in calculating the pairings of the Donaldson cohomology classes 
with those links. Thus far, such links have been described and their 
pairings with cohomology classes computed only in certain special cases 
[14], [15], [16], [20], [21], [32], [58], [99]. The methods used to obtain 
these special cases fall very far short of the kind of general analysis 
needed to prove the Kotschick-Morgan conjecture. On the other hand, 
by assuming the Kotschick-Morgan conjecture, L. Gottsche computed 
the coefficients of the wall-crossing formula in [45] in terms of modular 
forms by exploiting the presumed homotopy invariance of the coeffi
cients [35]. A related approach to the Wit ten conjecture was proposed 
by Pidstrigach and Tyurin [72]. Certain aspects of the PU(2) monopole 
program have been considered from a quantum-field theoretic viewpoint 
in [13], [38], [39], [50], [51], [52], [53]. 

In the present article and its sequels [25], [26], [27] we address the 
analytical problems associated with constructing the links of lower-level 
Seiberg-Witten moduli spaces and in establishing the analogues of the 
Kotschick-Morgan conjecture for PU(2) monopoles needed to compute 
the pairings of cohomology classes with these links. We hope to return 
to the actual computations and a verification of Wit ten 's conjecture [60], 
[98] in a subsequent paper. In this article we describe the basic regular
ity, Uhlenbeck compactness, and transversality results we need for the 
moduli space of PU(2) monopoles, and in the sequels [26], [27] we de
velop the gluing theory required to construct the links of the lower-level 
Seiberg-Witten moduli spaces. An announcement of the main results of 
this article appeared in [24]. 

1.1. S t a t e m e n t of results 

1.1.1. P U ( 2 ) m o n o p o l e s and ho lonomy per turbat ions . We 
consider Hermitian two-plane bundles E over X whose determinant line 
bundles det E are isomorphic to a fixed Hermitian line bundle over X 
endowed with a fixed C°°, unitary connection. Let (p,W+ ,W~) be a 
spin c structure on X, where p : T*X —> End W is the Clifford map, and 
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the Hermitian four-plane bundle W = W+ © W~ is endowed with a C°° 
spin c connection. 

Let k > 3 be an integer and let A E be the space of L k connections 
A on the U(2) bundle E all inducing the fixed determinant connection 
on d e t E . Equivalently, following [48, §2(i)], we may view A E as the 
space of L k connections A on the PU(2) = SO(3) bundle su(E). We 
pass back and forth between these viewpoints, via the fixed connection 
on det E, and rely on the context to make the distinction clear. Given 
a connection A on su(E) with curvature F A G L2k_x(k

2 ®so{su{E))), 
then ad~ (F A) G L2k_1{K+ ® su(E)) is its self-dual component, viewed 
as a section of A + ®su(E) via the isomorphism ad : su(E) —> so(su(E)). 
When no confusion can arise, the isomorphism ad : su(E) —> so(su(E)) 
will be implicit, and so we regard F A as a section of A + (g> su(E) when 
A is a connection on su(E). Let D A : L2k(W+ <g> E) ->• L k_x(W~ <g> E) 
be the corresponding Dirac operator. 

For an L k section $ of W+ <g> E, let $* = (•,$) be its pointwise 
Hermitian dual and let (<& 0 ^*)oo be the component of the Hermitian 
endomorphism $ <g) $* of W+ (8> E which lies in s u ( W + ) (g> su(E) . The 
Clifford multiplication p defines an isomorphism p : A + —> su(W+) and 
thus an isomorphism p = p®id su(E) of A+®su(E) w i t h s u ( W + ) ® s u ( E ) . 
Then 

(1.1) F + - p - 1 ( $ ® * * ) o o = 0, 

D A$ = 0, 

are the unperturbed PU(2) monopole equations considered in [67], [68], 
[71], [74], with a slightly differing trace conditions (see below), for a pair 
(A, $ ) consisting of a connection on su(E) and a section $ of W+ ® E. 

Donaldson's proof of the connected-sum theorem for his polynomial 
invariants [18, Theorem B] makes use of certain 'extended anti-self-dual 
equations' [18, Equation (4.24)] to which the Freed-Uhlenbeck generic 
metrics theorem does not apply [18, §4(v)]. These extended equations 
model a neighborhood of the product connection appearing in the Uh-
lenbeck compactification of the moduli space of anti-self-dual SU(2) con
nections. As the zero locus of the extended equations may not be trans
verse, Donaldson employs holonomy perturbations which give gauge-
equivariant C°° maps A*E(X) —> Q+(su(E)) and thus perturbations of 
the extended anti-self-dual equations [17, §2], [18, pp. 282-287]. These 
perturbations are continuous with respect to Uhlenbeck limits and yield 
transversality not only for the top-level moduli space, but also for all 
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lower-level moduli spaces and all intersections of the geometric repre
sentatives defining the Donaldson invariants. 

In §2.5.2 and the Appendix we describe a generalization of Donald
son's idea which we use to prove transversality for the moduli space of 
solutions to a perturbed version of the PU(2) monopole equations (1.1). 
Unfortunately, in the case of of PU(2) monopoles, the analysis is consid
erably more intricate and the method we employ here is rather different 
from the one developed in [18]. We use an infinite sequence of holonomy 
sections defined on the infinite-dimensional configuration space of pairs; 
when restricted to small enough open balls in the configuration space, 
away from reducible connections, only finitely many of these perturbing 
sections are non-zero and they vanish at reducible connections. 

Let G E be the Hilbert Lie group of L k + l unitary gauge transfor
mations of E with determinant one. Let S Z denote the center of U(2) 
and set °G E '•= S Z ^<{±\AE} G E, which we may view as the group of 
L k+i unitary gauge transformations of E with constant determinant. 
The stabilizer of a unitary connection A on E in °G E (which coincides 
with its stabilizer in the full group Aut E of unitary automorphisms of 
E) always contains the center S Z C U(2), corresponding to the con
stant, central, unitary automorphisms of E. We call A irreducible if its 
stabilizer is exactly S Z and reducible otherwise. 

It is also possible, as in [71], [74], to fix a smooth representative 
w e ! i 2 (X, R) for c\ (E) and instead consider the space of unitary con
nections A on E satisfying the trace condition tr F A = —2-KiLO, mod
ulo the action of the full group Aut E of unitary automorphisms of 
E. The resulting moduli space of nonabelian monopoles is then a 
torus bundle over the moduli space which we define below, with fibers 
H1(X;R)/Hl (X; Z) . These tori complicate the analysis of the links of 
singularities when bl (X) > 0 and do not contain any additional informa
tion, so we choose to eliminate them by instead imposing the stronger 
fixed-determinant-connection trace condition and working with a com
patible group of gauge transformations. A similar framework is used in 
[68], [92]. 

We refer to §2.5 for a detailed account of the construction of our 
holonomy perturbations. The large number of technical points involving 
regularity and uniform estimates for these perturbations (which still 
allow us to obtain an Uhlenbeck compactification) are discussed in the 
Appendix. We fix r > k + 1 and define gauge-equivariant C°° maps (see 
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x2.5), 

(1.2) 

A E(X) - • L2k+1(X,gl(A+) ®R so(su(E))) , 

A ^ T-m(A), 

A E(X) - • L2k+1(X,Hom(W+,W-) ®C s l E ) , 

A ^ ë-m(A), 

where f := (Tjy;Q) is a suitably convergent sequence in C r(X, g l(A+)) , 
and ê := {'&j,l,a) is a suitably convergent sequence in C r(X, A1 (g) C), 
while m(A) := (m j l ^ A ) ) is a sequence in L ^ 1 ( X , s u ( E ) ) of holonomy 
sections constructed by extending the method of [17], [18], and 

T-m(A) := ^ j y ; Q ( 8 ) R ad(m jy !Q(A)), 
j,l,a 

We call a point (A, $ ) in the pre-configuration space of L k pairs 
C\V,E '•= A E x L k (W + <g> E) a PU(2) monopole if it solves 

F + - (id + T0 <g> id su(E) + f • miAfip-1^ <g> $*)oo = 0, 

D A$ + p(tf0)$ + # • m(A)$ = 0. 

We let M W,E be the moduli space of solutions cut out of the configu
ration space of pairs C W,E '•= C W,E/°G E by the equations (1.3). We let 
M ^E C M W,E be the subspace of pairs [A, <&] such that A is irreducible 
and the section $ is not identically zero. The sections f • m(A) and 
ê • m(A) vanish at reducible connections A by construction; plainly, the 
terms in (1.3) involving the perturbations f-m(A) and i^-mA) are zero 
when $ is zero. 

1.1.2. U h l e n b e c k c o m p a c t n e s s . The holonomy-perturbation 
maps in (1.2) are continuous with respect to the Uhlenbeck topol
ogy (see x4.5), just as those of [18]. Suppose fAßg is a sequence in 
A E(X) which converges in the Uhlenbeck topology to a limit (A,x) in 
A E_I(X) x Sym (X), where E_£ is a Hermitian two-plane bundle on X 
with det(E-i) = det E and c L { E - I ) = c2(E) — I, and t > 0 is an integer. 
The sections f • m(Aß) and 1? • m(Aß) then converge in L k + 1 (X) to a 
section r - m ( A , x ) of gl(A+) ®R so(su(E_£)) and a section ê • m(A, x) of 
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Hom(W+ ,W ) ®C sl(E-(), respectively. For each £ > 0, the maps of 
(1.2) extend continuously to gauge-equivariant maps 

A E_t(X) x Sym X - • L2k+1(X,gl(A+) ®R so(su(E_*))), 

A E_t(X) x Sym(X) - • L k+ 1(X,Hom(W+ ,W-) C sl(E./)) , 

given by (A, x) H- r • m(A, x) and (A, x) H- ê • m(A,x), which are C°° 
on each C°° stratum determined by Sym (X). 

Our construction of the Uhlenbeck compactification for M W,E re
quires us to consider moduli spaces 

M WtE_t C C W,E_t x Sym'(X) 

of triples [A, <&, x] given by the zero locus of the °G E_<,-equivariant map 

S : Cw,E_e x Sym(X) ->• L ( A + ® su{E_e)) © L ( W " <g> E_€) 

defined as in (1.3) except using the perturbing sections r • m and ê • m 
in (1.4) instead of those in (1.2). We call M W,E_t a lower-level moduli 
space if £ > 0 and call M W,E_0 = M W,E the top or highest level. 

In the more familiar case of the unperturbed PU(2) monopole equa
tions (1.1), the spaces M W,E_t would simply be products M W,E_t x 
Sym (X). In general, though, the spaces M W,E_t are not products 
when £ > 0 due to the slight dependence of the section S(A, $,x) on 
the points x G Sym (X) through the perturbations f • m and ê • m. 
A similar phenomenon is encountered in [18, x4(iv)-(vi)] for the case 
of the extended anti-self-dual equations, where holonomy perturbations 
are also employed in order to achieve transversality. 

We define M W,E to be the Uhlenbeck closure of M W,E in the space 
of ideal PU(2) monopoles, 

N N 

( J M W,E_t C ( J (Cw,E_t x Sym(X)) , 
e=o e=o 

for any integer N > N p, where N p is a sufficiently large integer to be 
specified below. 

Theorem 1.1. Let X be a closed, oriented, smooth four-manifold 
with C°° Riemannian metric, spin c structure (p, W+,W~) with spin c 
connection on W = W+ © W~, and a Hermitian two-plane bundle E 
with unitary connection on det E. Then there is a positive integer N p, 
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depending at most on the curvatures of the fixed connections on W and 
detE together with c2(E), such that for all N > N p the topological 
space M W,E is compact, second countable, Hausdorff, and is given by 
the closure of M W,E in ^ NoM W,E_r 

Remark 1.2. The existence of an Uhlenbeck compactification for 
the moduli space of solutions to the unperturbed PU(2) monopole equa
tions (1.1) was announced by Pidstrigach [71] and an argument was 
outlined in [74]. A similar argument for equations (1.1) was outlined 
by Okonek and Teleman in [68]. Theorem 1.1 yields the standard Uh
lenbeck compactification for the system (1.1) and the perturbations of 
(1.1) described in [23], [93] — see Remark 1.4. An independent proof 
of Uhlenbeck compactness for (1.1) and certain perturbations of these 
equations is given in [92], [93]. 

1.1.3. Transversality. The space Sym (X) is smoothly stratified, 
the strata being enumerated by partitions of I. If E C Sym (X) is a 
smooth stratum, we define 

M WyE_ejj; := f[A,$,x] G M WjE_t : x G Eg, 

with M W,E-O '•= M W,E when £ = 0. We then have the following 
transversality result for equations (1.3), at least away from the solu
tions where the connection is reducible or the spinor vanishes. Let 
M E sd denote the moduli space of anti-self-dual connections on su(E). 

Theorem 1.3. Let X be a closed, oriented, smooth four-manifold 
with C°° Riemannian metric, spin c structure (p, W+,W~) with spin c 
connection on W = W+ ®W~, and a Hermitian line bundle det E with 
unitary connection. Then there is a first-category subset of the space 
of C°° perturbation parameters such that the following holds. For each 
A-tuple (TO, $0,7,$) in the complement of this first-category subset, the 
corresponding moduli space M ̂ E is a smooth manifold of the expected 
dimension, 

dim M W°E = dim M E sd'* + 2 Ind C D A - 1 

=-2pl(su(E_e)) - l(e(X) + a(X)) 

+ lpl(su(E_e)) + \((cl(W
+) + c l(E)f - a(X)) - 1. 

Moreover, for each integer I > 0, and smooth stratum E C Sym (X), the 
moduli space M WE js is a smooth manifold of the expected dimension, 

dimM W,E_j = dimM W,E_t + dimE. 
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R e m a r k 1.4. Different approaches to the question of transversal-
ity for the PU(2) monopole equations (1.1) with generic perturbation 
parameters have been considered by Pidstrigach and Tyurin in [74] and 
Teleman in [92]. More recently, a new approach to transversality for 
(1.1) has been discovered independently by the first author [23] and 
Teleman [93]: the method uses only the perturbations (TO,#O) together 
with perturbations of the Riemannian metric g on X and compatible 
Clifford map p. 

A choice of generic Riemannian metric on X ensures that the moduli 
space Mjs '* of irreducible anti-self-dual connections on su(E) is smooth 
and of the expected dimension [20], [30], although the points of M E s '* 
need not be regular points of M ^ WE as the linearization of (1.3) may not 
be surjective there. A choice of generic parameter TO ensures that the 
moduli spaces M ^E L of non-zero-section solutions to (1.3) which are 
reducible with respect to the splitting E = L\® (det E)®L\ are smooth 
and of the expected dimension [25]. Again, the points of M ^E L need 
not be regular points of M ^ WE since the linearization of (1.3) may not 
be surjective there. 

We note that related transversality and compactness issues have 
been recently considered in approaches to defining Gromov-Witten in
variants for general symplectic manifolds [59], [75], [79]. 

1.2. Out l ine . We indicate how the remainder of our article 
is organized. In §2.2 we prove a slice result for the configuration space 
C W,E (Proposition 2.8) while in §2.6 we describe the elliptic deformation 
complex for (1.3) and compute the expected dimension of M W,E- We 
develop the regularity theory for a generalization of the PU(2) monopole 
equations (1.3) (obtained by allowing additional inhomogeneous terms) 
in §3: the main technical result there is that an L\ solution to an in-
homogeneous version of (1.3) and the Coulomb gauge equation is C°° 
(Corollary 3.4). By combining this with the slice result of Proposition 
2.8, we then show that any L k PU(2) monopole (A, $ ) is L k + l gauge-
equivalent to a C°° PU(2) monopole (Proposition 3.7). 

We establish local estimates for L\ solutions to the inhomogeneous 
version of (1.3) in §3.3 and §3.4. We use the sharp L\ regularity result 
of Corollary 3.4 in §4 to prove the removability of point singularities for 
PU(2) monopoles (Theorem 4.10). In the sequels [26], [27], these regu
larity results and estimates are needed to prove that L\ gluing solutions 
to (1.3) are C°° and to analyse the asymptotic behavior of Taubes' glu
ing maps and their differentials near the lower strata of the Uhlenbeck 
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compactification. 

The proof of Theorem 1.1 relies heavily on both the regularity theory 
of §3 and the fact that solutions (A, <&) to (1.3) satisfy a 'universal energy 
bound' , with constant depending only on the data in the hypotheses of 
Theorem 1.1. The section $ also satisfies a universal C° bound: these 
bounds are the analogues for PU(2) monopoles of the now well-known 
a priori estimates for Seiberg-Witten monopoles [47], [62], [77], [98] and 
follow, in much the same way, from the maximum principle and the 
Bochner-Weitzenbock formula for D A provided k > 3 (see §4.1). In §4 
we prove the removability of point singularities for solutions to (1.3) 
(Theorem 4.10) using our a priori bounds and regularity results. While 
the PU(2) monopole equations are not conformally invariant, they are 
invariant under constant rescalings of the metric (in the sense of §4.2) 
and, as in the case of anti-self-dual connections, this scale invariance is 
exploited in the proof of Theorem 1.1, whose proof is completed in §4.6. 

Theorem 1.3 is initially established in §5 for C r perturbations for 
any fixed 3 < r < oo, in order to avail of the Sard-Smale theorem for 
Fredholm maps of Banach manifolds [80], while in §5.1.2 we show that 
generic C°° perturbation parameters are sufficient for transversality. 
(See Corollary 5.6 for the special case £ = 0 and §5.1.3 for its extension 
to the general case £ > 0.) 

As we shall explain in §5, our proof of Theorem 1.3 ultimately hinges 
on the fact that if (A, $ ) is a PU(2) monopole and A is reducible on 
a non-empty open subset containing the support of the holonomy per
turbations depending on A, then A is reducible over X. The proof of 
this result (Theorem 5.11) occupies §5.3; the result follows from the 
Agmon-Nirenberg unique continuation theorem after the system (1.3) 
has been transformed into an ordinary differential equation for a one-
parameter family of pairs over S3. The unique continuation property 
holds for both the perturbed PU(2) monopole equations (1.3), when the 
initial open subset of X contains the balls in X supporting holonomy 
perturbations, and the unperturbed equations (1.1) for any initial open 
subset. 

1.3. Other approaches t o transversal i ty. As we noted in Re
mark 1.4, transversality for the PU(2) monopole equations (1.1) has also 
been proved very recently using only the perturbations (TO, t?o)) together 
with perturbations of the Riemannian metric g on X and compatible 
Clifford map p [23], [93]. The transversality proof given in [23] is more 
delicate than the method we employ in the present article. When using 
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holonomy perturbations, the main technical difficulties are due to the 
noncompactness of the moduli space of PU(2) monopoles, and the core 
transversality argument itself is more straightforward, whereas in [23] 
the situation is entirely reversed. To place these various transversality 
results in a suitable context, we briefly discuss some other approaches to 
transversality, both for the PU(2) monopole equations and the closely 
related 'spin-ASD' equations of [73], which Pidstrigach and Tyurin used 
to define spin polynomial invariants. 

Suppose (A, $ ) is a solution to either equations (1.1), equations (1.1) 
with perturbations (TO,#O)) or the holonomy-perturbed equations (1.3). 
If A is reducible, then $ has rank less than or equal to one (see Lemma 
5.22). However, as observed by Teleman [69], [92], if $ is rank one, then 
A is not necessarily reducible and he describes a simple counterexample 
for equations (1.1) when X is a Kahler manifold with its canonical spin c 
structure. 

It is not too difficult to prove that M ^E is a smooth manifold of 
the expected dimension away from the locus of irreducible, rank-one 
solutions using the perturbation parameters (TO,#O) alone. However, 
as irreducible, rank-one solutions to (1.3) could be present in M ^E, 

it appears impossible to prove that the entire space M ^E is a smooth 
manifold of the expected dimension using only the parameters (TO,I?O)-

A similar problem arises in the proof of transversality for the spin-ASD 
equations given in [73, Proposition I.3.5]; a version of these equations 
can be obtained from equations (1.1) by omitting the quadratic term 
p~l(Q <g> <i>*)oo- In the proof of [73, Proposition I.3.5] it is claimed 
that if D A& = 0 and $ is rank one, then A is reducible [p. 277]: 
Teleman's counterexample shows that this claim is incorrect, and he 
points out an error in their argument [69], [92]. On the other hand, 
the possible presence or absence of irreducible, rank-one solutions to 
the PU(2) monopole equations makes no difference to the transversality 
argument which we describe in §5 using holonomy perturbations, as 
these perturbations are strong enough to yield transversality without a 
separate analysis of the locus of irreducible, rank-one solutions. 

1.4. Appl icat ions . In [25] we discuss the singularities of the 
moduli space M W,E- We introduce cohomology classes and geomet
ric representatives on M ^E, construct the links of the strata of anti-
self-dual and Seiberg-Witten moduli spaces in M W,E, and compute the 
Chern characters of their normal bundles in suitably defined ambient 
manifolds. We thus obtain a relation between Donaldson and Seiberg-
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Witten invariants when the reducible solutions appear only in the top 
level of the Uhlenbeck compactification. In [26], [27], we develop the 
gluing theory for PU(2) monopoles: this is used to construct links of 
the lower-level Seiberg-Witten moduli spaces, to show that the pairing 
of the cohomology classes with this link is well-defined, and to eliminate 
the requirement of [25] that the reducible solutions appear only in the 
top level. A survey of some of the results contained in the present article 
and its sequels [25], [26], [27] is provided in [24]. 
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2. T h e P U ( 2 ) m o n o p o l e equat ions 

We develop a framework for gauge theory for pairs in §2.1 and §2.2. 
In §2.1 we define the Hilbert spaces of pairs and gauge transformations, 
while in §2.2 we establish the main slice result which we require for 
the configuration space of pairs modulo gauge transformations, paying 
particular attention to the structure near 'reducibles'. The relationship 
between the groups of SO(3) and SU(2) gauge transformations is dis
cussed in §2.3. A few linear algebra issues which will be important for 
later compactness and transversality arguments are discussed in §2.4. 
The PU(2) monopole equations and their holonomy perturbations are 
introduced in §2.5. The role of the perturbations in obtaining transver
sality results will be explained in §5. To preserve continuity a detailed 
discussion of the technical points which need to be addressed when us
ing holonomy perturbations in the present context is deferred to the 
Appendix. The moduli space and the elliptic deformation complex for 
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solutions to the PU(2) monopole equations are described in x2.6. 

2 . 1 . C o n f i g u r a t i o n s p a c e s of c o n n e c t i o n s a n d p a i r s . In this 
section we define the spaces of connections, pairs, gauge transforma
tions, and configuration spaces which we will use throughout our work. 

2 .1 .2 . C o n n e c t i o n s o n H e r m i t i a n t w o - p l a n e b u n d l e s . We 
consider Hermitian two-plane bundles E over X whose determinant line 
bundles det E are isomorphic to a fixed Hermitian line bundle over X 
endowed with a fixed C°°, unitary connection A e. The Hermitian line 
bundle over X and its unitary connection A e are fixed for the remainder 
of this article. 

Let k > 2 be an integer and let A E be the space of L k connections 
A on the U(2) bundle E all inducing the fixed determinant connection 
A e on detE. Equivalently, following [48, x2(i)], we may view A E as 
the space of L k connections A on the PU(2) = SO(3) bundle su(E). 
We shall pass back and forth between these viewpoints, via the fixed 
connection on det E, relying on the context to make the distinction 
clear. Explictly, if A is a unitary connection on E and s G Q°(X,E), 
then r A s G SI1 (E). For ( G n°(X,u{E)), then r A( G ^(X,uE)) is 
determined by 

(r AC)s = r A(Çs)-Ç(r A s)i 

so, if AT G Q1(U,u(2)) denotes the local connection matrix defined by 
a choice of local frame for E over an open subset U C X, then 

r A s = ds + ATsJ 

r AQ = dC + [A\Q = dQ + adAT)C. 

Similarly, the connection A on E induces connections on su(E) and 
detE. For example, if f G Q°{X,su{E)), then r A£ G ft^su^)) is 
also given locally by 

r AC = di + [A\ i]=di + [(AT)0, e] = dCo + ( a d A K o , 

while if A G n°(X, det E) then r A A G ül{X, det E) is given by 

r A\ = d\+{trAT)\. 

The above local connection matrices are related by 

AT = (AT)o + i ( t r A T ) i d c 2 G 0 1 (U,u(2)) , 
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where {AT)Q = AT — | ( t r AT) id C2 C ft1(U,su(2)) is the traceless compo
nent of AT, while tr AT C ft1 (U,u(1)) = Œ1 (U,iR) is the induced local 
connection form for d e t E given by the trace component of AT. Note 
that (AT)0 G Q1{U,su(2)), and that ad(AT ) 0 = adAT G Q1(U,so(3)) is 
the induced local connection matrix for the SO(3) bundle su(E), where 
we use the standard identification so(3) = ad(su(2)). 

Conversely, given a unitary connection A e for det E and a Rieman-
nian connection A for su(E), we obtain a unitary connection for E given 
in terms of local connection matrices by 

AT = a d - ^ A " ) + \ATe id C2 G Q}-{U,u{2)). 

The curvatures of these connection matrices are related by 

F Ar = ad-\F AT) + \F A e id C2 G n2(U,u(2)), 

with F AT G Q2(U,so(3)) and F A e G 0 2 ( U , u ( l ) ) . Thus, (F Ar)0 = 
a d _ 1 ( F AT) and tr F AT = F A e = F(tr AT). Therefore, globally we have 
(F A)0 = ad~1F A G Q2(X,su(E)) and trF A = F A e G Q 2 (X ,u ( l ) ) = 
n2(X,iR), so that 

F A = a d " 1 F ) + \F A e id E G ft2(X,u(E)), 

as u(E) = su(E) © (iR) id E. 
When we are not explicitly discussing connections which are re

ducible with respect to some splitting of E, it is generally more con
venient to view our connections as being defined on su(E) rather than 
E as we can then avoid explicit mention of the otherwise unimportant 
choice of fixed connection on det E. Of course, these viewpoints are 
equivalent via the choice of this fixed determinant connection. The 
isomorphism ad : su(E) —> so(su(E)) will remain implicit when no con
fusion can arise so that , given a connection A on su(E), we write its 
curvature as F A G Q2(su(E)) and associated deformation complexes 
on Q'(su(E)) rather than F A G ü2(so(su(E))), with deformation com
plexes on Çi'(so(su(E))) (see [30, Chapter 10], for comparison). 

2.1.2. Spin c s tructures . The minimal, axiomatic approach 
to the definition of spin c structures and the Dirac operator employed 
by Kronheimer-Mrowka [49] and Mrowka-Ozsvath-Yu [66] is extremely 
useful for our purposes, so this is the method we shall follow here. 

Recall that a real-linear map p+ : T*X —> H o m ( W + , W~) defines a 
Clifford map p : A*(T*X) <g> C - • End(W), with W := W+ © W~, if 
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and only if [57], [77] 

(2.1) p+(a)yp+(a)=g(a,a)id W+, a £ C°°(T*X), 

where g denotes the Riemannian metric on T*X. The real-linear map 
p : T*X —> E n d ( W + © W~) is obtained by defining a real-linear map 

p. :T*X ^Hom(W-,W+), a ^ p-{a) :=-p+{a)y 

and setting 

(2-2) p(a) := ( ° '">> 
p+{a) 0 

This extends to a linear map p : A*(T*X) ® C ->• End(W+ © W~) and 
satisfies 

p(a)y = - p ( a ) and p{a)y p{a) = g{a,a)id W, 
1 ' ' a e C°°(T*X). 

A unitary connection r on W and g-compatible Clifford map p 
induce a unique SO(4) connection r g on T*X by requiring that 

(2.4) [ r „ p ( « ) ] = / 9 ( r g , 

for all 7] G C°°(TX) and a G Q 1 (X,R) ; the sign above is opposite to 
that used in [66]. The unitary connection r on W uniquely determines 
a unitary connection on det W+ ~ det W~ in the standard way [43]. 
Conversely, the preceding data uniquely determines a unitary connec
tion r on W. The connection r on W is called a spin c connection 
if the connection r g on T*X is also torsion free, that is, if Vg is the 
Levi-Civita connection for the metric g. 

Given a unitary connection A on an auxiliary Hermitian two-plane 
bundle E, we let r A denote the induced unitary connection on W ® E. 
The corresponding Dirac operator D A is defined by 

4 

D A:= J > v ) r A^, 
ß=i 

where fvßg is a local frame for TX and fvßg is the dual frame for T*X 
defined by vß{vß) = 8ßU. 
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2.1.3 . Pre-conf igurat ion spaces and a u t o m o r p h i s m groups 
We denote A* := A'(T*X). For any fixed L k connection A0 G A E we 
therefore write 

A E = A0 + L k (A 1 ®su (E) ) , 

for either fixed-determinant, unitary connections on E or determinant-
one, orthogonal connections on su(E). Our pre-configuration space of 
pairs is given by 

C w , E : = A ExL2k(W+®E), 

and for any fixed L2k pair (AQ, $ O ) £ C W,E, we have 

(2.5) C W,E = (A,, $o) + L kik1 ® su(E)) © L k{W+ ® E), 

for the cases of either fixed-determinant, unitary connections on E or 
determinant-one, orthogonal connections on su(E). 

Given any C°° connection AQ G A E, our Sobolev norms are defined 
in the usual way: for example, if a G 0 1 ( su (E) ) , we write 

I/p 

kak L A O (X) := E k r Aoak p X) 

and if (a, 4) G Q1(su(E)) © Q°(W+ © E ) , we write 

M J k L A X : = kak L p>Ao(X) + kKAiX) 

I/p 

for any 1 < p < oo and integer I > 0. 
For convenience, we let iR^ = (iR) id C2 C u(2) denote the center of 

the Lie algebra u(2), and let S Z = exp(iR^) C U(2) denote the center 
Z(U(2)) of the Lie group U(2) given by 

<2'6> Z = { i o » ) : 9 e R } ' S Z e e ) : « e 

Following [48, x2], we consider the induced action for connections on 
su(E) by the group G E of determinant-one, unitary L2k+1 automorphisms 
of E rather than the group GSU(E) of determinant-one, orthogonal L k + l 

automorphisms of su(E) to define quotient spaces of connections on 
su(E). The reasons for this choice are explained further in [25]; see also 
x2.3. We have 

G E '•= fu G L k+1(gl(E)) : u u = id E and d e t u = 1 a.e.g, 



280 p a u l m . n . f e e h a n & t h o m a s g . l e n e s s 

and 
°G E •= S Z X{±id E} G E. 

One can define the action of °G E on A E either by push-forward or 
pullback, and obtain equivalent quotient spaces in either case; but the 
choice does affect the orientation of moduli spaces, so we specify the 
action here: for u G °G E and (A, $) G C\y,E, the action of °G E is 
defined by 

u(A,$) := (u(A),u$) = (u*A,u§) = {(u1)* A,u§). 

The push-forward action, u(A) = u*A, agrees with the conventions of 
[9], [20]. For the associated covariant derivative r A on E and u G Aut E, 
we have 

r u(A) = u ° r A ° u " 1 , 

so that u(A) = A — ( r A u)u - 1 . In terms of a local connection matrix 
AT G Q1(U,u(2)), this gives u(AT) = uATu~1 — (du)u~l, where we use u 
to denote both the gauge transformation and the element ofii°(U, U(2)). 

In order to define quotients by the action of °G E, we need to choose 
k > 2, so gauge transformations are at least continuous. The proof 
of the following proposition is a standard application of the Sobolev 
multiplication theorem; see [30, Propositions A.2, A.3, A.9]. 

Proposition 2.1. Let X be a closed Riemannian four-manifold, E 
be a Hermitian vector bundle over X, and k > 2 be an integer. Then 
the following hold: 

(1) The space °G E is a Hilbert Lie group with Lie algebra T id°G E = 
L k+1(su(E)) ® iR Z • 

(2) The action of °G E on C W,E is smooth. 

(3) For (A,$) G C W,E, the differential, at the identity id E G °G E, of 
the map °G E —> C\Y,E given by u ^ u(A, <£>) = (A— (d A u)u~l-,u&) 
is Ç i-)- —d ̂  A$C : = (—d ACÎC^") as a map 

L2k+1(su(E)) © iRz ->• L ( A 1 ®su(E))®L k (W + ®E) . 

We denote B E = A E/G E = A E/°G E- The configuration space of 
pairs is given by C W,E '•= C W,E/°G E, that is, 

C W,E •= {A E x L2k(W+ ® E)) /°G E = A E x=E L2k(W+ ® E), 
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and is endowed with the quotient L2k topology. 
If 7T denotes the projection C W,E —> C W,E, a base for the quotient L2k 

topology of C W,E is given by open subsets -K~1H{B(A^(E)) D B(A,$) ( £ )> 

where B(A,$) (e) is the L ̂ -ball of radius e and center (A, <&) in C W,E 

given by { ( A I , $1) £ C W,E : \\(AU $1) - (A, $) | |L2^ < e}. 

2.1.4. Stabil izers . The space C WE is not a manifold — it has 
singularities at points [A,$] with non-trivial stabilizer Stab A,* C °G E-
Recall that the stabilizer subgroup (of the group of bundle automor
phisms) for a connection on a G bundle always contains the center 
Z(G) C G [20, §4.2.2]. We let S Z C °G E denote the constant, central 
automorphisms of E. 

Definit ion 2 .2 . Suppose (A,$) is a point in C W,E- The stabilizer 
Stab A,# C °G E of (A ,$ ) in °G E is given by {7 G '°G E : 7 ( A , $ ) = 
(A, $ ) } , while the stabilizers of A and $ are denoted by Stab A and 
Stab$, respectively. 

(1) The point (A, <&) is a zero-section pair if $ = 0; 

(2) The point (A, $ ) is an irreducible pair if the connection A has 
minimal stabilizer Stab A = Z(U(2)) = S Z C °G E and is reducible 
otherwise, that is, if Stab A D S ^ . 

The point (A, <&) is a reducible, zero-section pair if (A, $ ) is both a 
reducible and zero-section pair. 

As usual, the stabilizer subgroup Stab A C °G E may be identified 
with a closed subgroup of U(E xo) ~ U(2) for any point xo G X by 
parallel translation with respect to the connection A [20, §4.2.2], [61]. 
The following lemma implies that the stabilizer in Aut E of a unitary 
connection on E coincides with its stabilizer on °G E. 

L e m m a 2 .3 . Let E be a Hermitian two-plane bundle over a con
nected four-manifold X, let A be a unitary connection on E, and let u 
be a unitary automorphism of E such that u G Stab A C Aut E. Then 
det u : X —> S1 is a constant map. 

Proof. The gauge transformation u may be viewed as an Ad-equivari-
ant map u : P —>• U(2), where E = P XU(2) C2 , so d e t u may be viewed 
as a map from P to S1. Since detu is constant on the fibers of P , it 
descends to a map on X. Over a small enough open set U C X, we 
may write u = expC, where Ç G Q°(adP) , and a d P := P xad g ~ u(E), 
with G = U(2) and g = u(2). Differentiating the action of u on A 
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we see that r AC = 0, so that Ç is covariantly constant over U. Thus 
detu = exp(tr£) and r ( d e t u ) = t r ( r AC) = 0) so detu is constant on 
U and therefore on X, since X is connected. q.e.d. 

For a pair {A,$) on (E, W+ © E) or (su(E),W+ © E), the Lie 
algebras of Stab A and Stab A,* are given by 

H°A := Kerfd A : L2k+1(su(E)) © iR Z 

^L2k(Al®su(E))g, 

H Ap := Ker A)# : L2k+1(su(E)) © iR z 

- • L^A 1 (g) su(E)) © L2k{kl © W+ © E)g. 

The first identification is standard (see [20, x4.2.2], [30, Chapter 3], or 
[61]) and the second follows by the same argument. 

From [20, x4.2.2] and [30, Theorem 10.8] we have the following char
acterization of the stabilizer Stab B C G V = Aut V of a connection B 
on an SO(3) bundle V. Note that the four-manifold X below need not 
be simply-connected or closed and that H B = Kerfd B '• L k+1(so(V)) —> 
L k(Al®so(V))g. 

Lemma 2.4. Let B be an orthogonal connection on an SO(3) bun
dle V over a connected smooth four-manifold X. The following are 
equivalent provided B is not flat: 

(1) Stab B ^ SO(2) ~ S1; 

(2) H°B ? 0; 

(2) B is reducible with respect to an orthogonal splitting V = N © R., 
where N is a complex line bundle over X and R = X x R (that 
is, B reduces to an SO(2) connection); 

(4) Stab B 7̂  fid V g. 

Finally, B is flat if Stab B = SO(3). 

Remark 2.5. Note that the 'twisted reducible' (that is, locally 
reducible) connections on su(E) discussed by Kronheimer and Mrowka 
in [48, x2(i)] are globally irreducible in the sense that they have minimal 
stabilizer fid su(E)g. The condition that B is not flat is used in the proof 
that (4) implies (1) [30, p. 48]: the stabilizer Stab B is isomorphic to the 
centralizer of the holonomy group Hol B so, if Stab B 2 S1, then Hol B Ç 
S1 and hence Hol B is discrete. Since the Lie algebra of Hol B vanishes, 
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the Ambrose-Singer holonomy theorem implies that the connection B 
is flat. In particular, we only need X to be a connected four-manifold 
for these arguments to hold. 

As customary, we call an SO (3) connection B on V irreducible if 
Stab B = fid V g. We say that a unitary connection A on E is projectively 
flat if the induced connection A on su(E) is flat. By modifying the 
proofs of Theorem 3.1 in [30] and Proposition II.8.10 [56], we obtain 
the following relation between (i) the stabilizers Stab A in °G E of U(2) 
connections A on E or their induced SO(3) connections A on su{E) 
and (ii) the stabilizers Stab A ad in GSU(E) of SO(3) connections A ad on 
su{E). 

L e m m a 2.6. Let A be a U(2) connection on a Hermitian two-plane 
bundle E over a smooth, connected four-manifold X, and let A ad be the 
induced SO(3) connection on the bundle su(E). Then the following are 
equivalent: 

(1) Stab A ad ~ Sl ; 

(2) Stab A ~ S1 x S Z; 

(3) H°A ~ i R © i R Z; 

(4) H ^ ^ i R z ; 

(5) A is reducible with respect to an orthogonal splitting E = L\ ®L ^, 
where L\ and L ̂  are complex line bundles over X (that is, A 
reduces to a T2 = S1 x Sl connection); 

(6) Stab A D S Z . 

Finally, the connection A on E is projectively flat (or the connection 

A ad on su(E) is flat) if Stab A = U(2). 

Proof (1) =*• (2): Let TT : U(2) ->• SO(3) = U(2) /S ̂  be the 
projection u H- ± ( d e t u ) ~ l ' 2 u . Then 7r_ 1(Stab A ad) ~ Stab A ad xS Z and 
so Stab A ad ~ Sl implies that Stab A ~ Sl * S Z . 

(2) ==>• (3): Immediate from the identification of H A as the Lie 
algebra of Stab A-

(3) =$• (4): Trivial. 
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(4) =>• (5): We argue as in the proof of Theorem 3.1 in [30]. Note 
that Kerfd A : L2k+1(X,u(E)) ->• ^ ( X ^ u ^ E ) ) g is isomorphic to 

Kerfd A : L2k+1(X,su(E))g ®Kerfd : L2k+l(X,iR Z)g 

= Kerfd A ad : L2k+1(X,su(E))g ® iR Z. 

Given (4), we may choose 0 ^ ( G Kerfd A : L2
+1Q° {X, su{E))g. The 

pointwise traceless, skew-Hermitian endomorphism £ of E has eigenval
ues iX1,iX2 = ±iX for some 0 ^ A G L2

+1(X,R). On the open subset 
of X where A / 0, let £j, j = 1, 2, be L k + 1 eigenvectors of £ such that 
C(£j) = iAj£j and h £ j ? k i = ^ jk- Just as in [30, p. 47], we find that A 
is constant, the eigenvectors £j are globally defined and d AÇj = 0 for 
j = 1,2. In particular, we have an orthogonal splitting E = L\ © L2, 
where £j G L k + 1 (X , E ) is a section of L j and d = d Ax © d A2 with 
respect to this splitting, so this gives (5). 

(5) =>• (6): Given (5), the connection A reduces to A\ © A ^ with 
respect to the splitting E = Li © L<2 and so has stabilizer S L x S L , 
where we identify the constant maps in Map k+1{X,Sl) with S L. for 
i = 1,2. Since S ^ x S L2 ~ S 1 x S Z, this gives (2). 

(6) =^> (1): Given u G Stab A and u £ S Z , we obtain u\ = 
± ( d e t u ) ~ 1 ' 2 u G Stab A ad. (By Lemma 2.3, the determinant d e t u is 
a constant map.) If u\ = id su(E) then we would have u\ = ± id E and 
u = ± (de t u)1'2u\ G S Z , so ui ^ id su(E). Therefore, Stab A ad D fid su(E)g 
and Lemma 2.4 implies that Stab A ad ~ S1. 

Lastly, A is projectively flat if Stab A ad = SO(3) (by Lemma 2.4) and 
Stab A ad = SO(3) ~ U(2) /S ̂  if and only if Stab A = U(2). q.e.d. 

The equivalence of (1) and (2) above can alternatively be seen by 
noting that H A ad ~ iR if and only if H A ~ iR © iR Z, so Stab A ad ~ S1 

if and only if Stab A ~ Sl * S Z . 

From Lemmas 2.4 and 2.6 we see that A is an irreducible U(2) 
connection if and only if A ad is an irreducible SO(3) connection. Note 
that Stab A,* = Stab A n Stab$. The stabilizer Stab A,* of a zero-section 
pair (A, $ ) contains S Z . The stabilizer Stab A,* of a reducible pair (A, $ ) 
need not contain the stabilizer Stab A since Stab A may not fix $ . 

We write C WE (respectively, W Ê) for the complement of the re

ducible pairs (respectively, zero section pairs) in C W,E, and let C ̂ E = 

CyvE ^C WE- The quotients C ̂  WE, C ̂  WE i and C ̂ E are similarly defined. 

If (A,$) G C^rE, then Stab A,* = fid E , as the stabilizer of an 

irreducible connection A will be S Z and if S g stabilizes the section $ 
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then e iö$ = 0 for all 6 G R and so $ = 0 G L k(X, W+ ®E) (note that $ 
need not be continuous). Therefore, °G E acts freely on C ̂ E and, as we 

shall see in the next section, the quotient C ̂ E is a Banach manifold. 
Conversely, if (A, <&) is a PU(2) monopole, A is reducible, and $ ^ 0, 
then Lemma 5.22 implies that Stab A,* — S1. 

2.2. A slice for the action of the group of gauge transfor
mations. Let k > 2 be an integer. The slice S A,* C C W,E through a 
pair (A, <&) is given by S A,* := (A, <&) + K A , where 

(2.7) K A)# :=Kerd A C L ( A 1 ® su{E)) © L2k{W+ © E). 

If 7T is the projection from C WE onto C WE = C W,E/°G E, denoted by 
(A,$) !->• [A, $], we let 

B A,$(£) = 7T_1B A,$(e) n S A,<s> 

be the open L2k ball in S A,* with center (A, <&) and radius e, so that 

B A,*(e) := f(A!,$i) G S A,# : k(Ai,$i) - ( A ^ ) k L A < g 

= (A,$ ) + f(a,</>) G K A ;# : k(a ,0)k L2jA < eg. 

The Hilbert Lie group °G E has Lie algebra 

L2k+1(su(E)) ®iR Z C L k+1(su(E)) 

and exponential map exp : L k+l(su(E)) ffiiR Z —>• °G E given by £ >->• u = 
exp(. Let 

Stab A # := exp((Kerd°A)#)-
L) C °G E, 

where 

(Ker A ^ L ) ^ = Im(d A j L,+2) C L2k+1(su(E)), 

noting that 

d°A% : L k+2Sl\su{E)) -+ L k+1(su(E)) © L2(W+ © E) 

has closed range. Recall that Stab A,* C °G E is given by 

f 7 G ° G E:I(A^) = (A^)g 

and has Lie algebra 

H°A^ = Ker(A ) $ j L2 ) C L + 1 s u E ) ) 9 i R z , 
' fc + 1 
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so that 

(2.8) L k+1(su(E)) ®iR Z = (Ker(d Açj LÎ J ^ ® H A . 

The subspace Stab A $ C °G E is closed and is a Banach submanifold of 
°G E with codimension d i m i A # . 

T h e m a p A : L2
+1(su(E))®iR Z -+ L k iA 1 ®su(E))®L2(W+®E) 

has closed range and so we have an L2-orthogonal decomposition 

(2.9) T A^ C W>E = I m A J L 2 ) © K A,# 
re + 1 

of the tangent space to the space of L2k pairs at the point (A, $ ) . 
The proof that the quotient space C W,E is Hausdorff and our later 

proof of removable singularities for PU(2) monopoles make use of the fol
lowing well-known technical result [20, Proposition 2.3.15], [30, Proposi
tion A.5], [56, Theorem II.7.11]. Note that the space of L\ unitary auto
morphisms of E is neither a Hilbert Lie group nor does it act smoothly 
on the space of L\ unitary connections on E. 

L e m m a 2.7. Let E be a Hermitian bundle over a Riemannian man
ifold X and let k > 2 be an integer. Suppose that fAag and fBag are 
sequences of L2k unitary connections on E, and that fuag is a sequence 
of unitary automorphisms of E such that ua(Aa) = Ba. Then the fol
lowing hold. 

(1) The sequence fuag is in L2k+l. 

(2) If fAag and fBa converge in L2k to limits A ^, B ^, then there 

is a subsequence g 1 g C fag such that fua/g converges in L k + l to 

uQO and Boo = uooAoc)-

The following slice result was established by Parker [70], but only 
for pairs which are neither zero-section nor reducible; see also [9]. It is, 
of course, the analogue of the usual result for the topology and manifold 
structure of the configuration space B E = A E/G E of connections. The 
proof we give here is modelled on the corresponding arguments for con
nections given in [20, Proposition 2.3.4], [30, Theorems 3.2 & 4.4], and 
[56, Theorem II.10.4]. We will ultimately need a rather more involved 
version of this method in order to show that our gluing maps are diffeo-
morphisms, so we give the argument in the simpler model case below in 
some detail and establish some of the notation and conventions we will 
later require. 
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Propos i t i on 2 .8 . Let X be a closed, oriented, Riemannian spin c 
four-manifold, let E be a Hermitian two-plane bundle over X, and let 
k > 2 be an integer. Then the following hold. 

(1) The space C W,E is Hausdorff. 

(2) The subspace C ̂ E C C W,E is open and is a C°° Hilbert manifold 

with local parametrizations given by n : B A0)$0(e) —> C ̂ E for 
sufficiently small e = e(Ao, &o,k). 

(3) The projection n : C ̂ E —> C ̂ E is a C°° principal °G E bundle. 

(4) For (A) ,$o) G C W,E, the projection n : B Ao ,$0(e)/ Stab A0,$0 ->• 
C W,E is a homeomorphism onto an open neighborhood of[Ao, 3>o] G 
C W,E and a diffeomorphism on the complement of the set of points 
in B A0j$0(e) with non-trivial stabilizer. 

Proof. The stabilizer Stab A0j$0 (which we can identify with a Lie 
subgroup of U(2)) acts freely on °G E and thus on the Hilbert manifold 
°G E x S A 0 , $ 0 by (u, A, $ ) \-^ 7 • (u, A, $ ) = (uy'1, j(A, $ ) ) , and so the 

quotient °G E XStab A $ S A 0 , $ 0 is again a Hilbert manifold. We define a 
smooth map 

* : °G E XStab Ao,*0 S Ao,#0 - • C WtE, [u,A,$] h-». u(A,$). 

Our first task is to show that the map ^ is a diffeomorphism onto its im
age upon restriction to a sufficiently small neighborhood °G E XStab A $ 
B A0)$0(e). Given ö > 0, let B id(ö) be the ball 

fu G °G E • ku - i d E k L2 < Sg, 
k + l,A0 

and let B ^(S) = B id(ô) n Stab A0 ) # 0 . 

Claim 2.9. For small enough S = ô(A0, $ 0 ) k), the ball B id(ô) is dif-

feomorphic to an open neighborhood in B ^(ô) x Stab A0,$0, with inverse 

map given by (u0,7) H- u = uo7-

Proof. The differential of the multiplication map 

Stab A0,$o x Stab Ao,#o ~^ °G E, (uQ,I) ^ uo7 

at (id E, id E) is given by 

Ker(A 0 ) * 0 j L2 y © H°Aot*0 ->• L + 1 ( s u ( E ) ) (C,x) ^ C + X, 
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and is just the identity map with respect to the L2-orthogonal decom
position (2.8) of the range. Hence, the Hilbert space implicit function 
theorem implies that there is a diffeomorphism from an open neighbor
hood of (id E, id E) onto an open neighborhood of id E G °G E- For small 
enough ö, we may suppose that if u G B id(ô), then u can be written 
uniquely as u = uo7 with uQ G B ̂ (ô) and 7 G Stab A0,$0- q.e.d. 

Claim 2.10. For small enough e = e(Ao,Qo,k), the map ^ is a 
diffeomorphism from °G E XStab A * B A 0 , # 0 ( £ ) onto its image in C W,E-

Proof. We first restrict the map ^ to a neighborhoodB id ((5) XStab A $ 
S A0,$O' which is diffeomorphic to the neighborhood B ̂ (ô) x S A0 ,$0 in 
Stab ̂  $ 0 X S A0 ,$0 by Claim 2.9. The differential of the induced map 

* : Stab A0;<j,0 x S Ao,$0 ->• C W,E, (u, A, $) ^ u(A, $) 

at (id E, A0, $0) is given by 

(D*)(id,A0 ,$o) : T id S t a b A0,$o © T A0,$oS Ao,$o ^ T A O A ^ E I 

where we recall that T A0 J$0S A0)$0 = K A0)$0 and 

T id Stab A0)#0 = (Ker(A0;#0j L2+i))± =Im(Ao*# o j L2+2). 

Using the L2-orthogonal decomposition (2.9) of the range we see that 
the map 

- A o , * o © i d E : (Ke r (Ao ,$o j L + 1 ) ) ± © K Ao,*o ->• I m ( A o , $ o j L + 1 ) © K Ao,*o 

given by (Ç,b,ip) H- — d ̂  $ C + (bVO is a Hilbert space isomorphism. 
So, by the Hilbert space implicit function theorem, there are positive 
constants e = e(Ao,Qo,k) and ö = ö(Ao,&o,k) and an open neighbor
hood U A0,$0 C C W,E such that the map 

* :B ^(6) xB Ao^0(e) ^U Ao,<s>0, (u,A,$) >->u(A,$) 

gives a diffeomorphism from an open neighborhood of (id E, AQ, $0) onto 
an open neighborhood of (AO,<Ì>O)- In particular, we obtain a map 
U A0,#o ~~*• Stab A0 # 0 , given by (A, $) i-> u = u A,$, such that 

tf-1A, $) = (u,u"1A, $)) e B idW x B Ao;#0(e) 
cStab A0)#0 xB A i $0(£). 
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Hence, for any (A,<&) G U A0,$0 there is a unique u G B ^(ô) such that 

u-1(A,^)-(A0,^o) É K A A : 

(2.10) d A ^ i u - 1 (Ai,^>i) - (A 0 ,$o)) = 0 . 

The neighborhood B A0)$0(e) is Stab A0j$0-invariant: if (A, <&) G B A0)$0(e) 
and 7 G Stab A0,$0, then 

k 1 ( A 1 , < I > 1 ) - ( A ^ ) k LÌ = k ( A 1 ) $ I ) - 7 - 1 ( A * ) k L2 

= k ( A 1 ) $ 1 ) - ( A , $ ) k L2 < e , 

and 

A*o (7(A * ) - (A), *o)) = 7 (d -A 0 , * 0 ) ((A * ) - (A), *o))) 

= 7 A * o ( ( A ^ ) - ( A , ^ o ) ) ) = o , 

s o 7 ( A , ^ ) G B Ao ,# 0(e). 
The group °G E acts on °G E X S A 0 , $ 0 by (u, A, <&) >->• (vu, A, <&), and 

so gives a diffeomorphism 

B id((J) x B Ao;#0(e) - • B„(<*) x B Ao ) # 0(e), ( u , A , $ ) ^ ( v u , A , $ ) , 

and as this action commutes with the given action of Stab A0,$0, it de
scends to a diffeomorphism 

B id{8) xStab Ao,*0 B Ao,$0(e) ->• B v(8) xStab Ao,*0 B A0,*o(£). 

[u, A, $] >->• [vu, A, $ ] , 

for each v G 0G E. Consequently, the °G E-equivariant map 

°G E XStab A0,*0 B A0,$0(e) ^ C W,E 

is a diffeomorphism onto its image, as desired. q.e.d. 

Plainly, [7(A,$)] = [A,$] for each 7 G Stab A0,$0 and (A, $ ) G 
B A 0 , #O( £ ) and hence, the projection n : B A0)$0(e) —> C W,E factors 
through B A o ,$ 0(e) /Stab A0,$0. 

Claim 2 .11 . There is a positive constant ö = Ô(AQ, $0? k) with the 
following significance. If (A i, <£>i) G B A0)$0(e) for i = 1, 2 and there is a 
gauge transformation u G B id(<5) such that u(Ai,<I>i) = (A2, $2)) then 
u G Stab A0 $0 . 
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Proof. For small enough ö, Claim 2.9 implies that u G B id(ö) can be 
written uniquely as u = u17 with u\ G B i ̂ (ô) and 7 G Stab A0j$0. Thus, 
(A2, $2) = u i 7 ( A i , $ i ) G B A 0 ) $ 0 (E) . But the neighborhood B Ao,i>0(e) is 
Stab A0j$0-invariant, so we also have 7(A1, $1) G B A0)$0(e). Therefore 
ui = id E by the uniqueness assertion of Claim 2.9 and so u = 7 G 
Stab A0j$0. This completes the proof of the claim. q.e.d. 

Claim 2.11 shows that B A0 )$0(e)/ Stab A0j$0 injects into the quotient 
C W,E modulo the assumption that the gauge transformations are close 
to id E- It remains to show that if (A i, <£>i) G B A0)$0(e) for i = 1, 2 and 
there is a gauge transformation u G °G E such that u(A\, $1) = (A2, $2), 
then u is necessarily close to id E and hence that B A 0 )$ 0 (e) /Stab A0,$0 

injects into the quotient C W,E-

Claim 2.12. For small enough E(AQ,^Q), the projection 

TT : B A 0 ,$ 0(e) /Stab A0,$0 —>• C W,E 

is injective. 

Proof. Suppose that (A i,$i) G B A0,$O(£) for i = 1,2 and that 
[A1,^1] = [A2, $2] G C W,E, so that u(Ai,<i>i) = (A 2 ,$2) for some u G 

Since u(Ao) = AQ — (d A0u)u~l, we see that u G Stab A0,$0 if and 

only if d°A # u = ( d 0 u ? — u<&Q) = (0, —^0) or, equivalently, if and only 

if d°A # (u — id E) = 0, since id E G Stab A0,$0- Here, we view u G 

L k + 1 ( g l ( E ) ) via the isometric embedding °G E C L k+ 1(gl(E)) and write 

u - id E = u0 - 7, 

where uo G (Kerd A # )-*- and 7 G Kerd # . Our first task is to 
estimate ku — id E k L 2 

By assumption, d 0 ; # 0 7 = (d A07,7$) = °, so d 0 7 = ° and 7 $ 0 = 0. 
Since u(A\) = A\ — (d A±u)u~l = A ^, we have 

A2u = A\u — d A-i_u = A\u — d A0u — [Ai — AQ,u], 

and therefore, using d A id E = 0 = d 0 7 ? we have 

d Aou0 = d Aou = u(Ai - A0) - (A2 - A0)u. 
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As d A { A i - A0) = (-$o)*(*i - $o), we obtain 

d*A0d A0uo = - * (d Aou A *(A1 - A0)) + ud*Ao(Ai - A0) 

- (d*Ao(A2 - A0))u + *(*(A2 - A0) A d Aou) 

= - * (d Aou0 A *(Ai - Ao)) + u(-$o)*(*i - $o) 

- ((-$o)*($2 - $o))u + *(*(A2 - A0) A d 0 u o ) -

We define the Laplacian A ^ # by setting 

A A * o = A * o A,,*o = <A,<A + ( - *0 ) * *0 . 

Now uo = u — id E + 7 and d Aoid E = 0 = d 0 7 and 7^0 = 0 so, using 
u$i = $2, we obtain 

AA0,$ouo = A^ 0 ; < J > 0 (u - id E + 7) 

= d d Ao (u - id E + 7) + (•$())*(u - id E)$o 

= d*Aod Aou + (-$o)*(u*o - u $ i + u $ i - $o) 

= cA0d A0uo + (•$<))* u $ o - $ i ) + ($2 - $o)) • 

Our assumption that (A i, <£>i) G B A0)$0(e) and the embeddings L2k C L | 
imply that for i = 1, 2 we have 

k K A , ^ ) - A , ^ ) k L < k(A is^)-(Ao,^o)k L ? l <e. 
2,A0 k,A0 

Since uo G (Ker<A ^o $ )"*", the standard elliptic estimate for the Lapla

cian A^ Ao $ , the fact that juj = 1 as u G °G E, the Sobolev embedding 

L2 C L q, 2 < q < oo, and multiplication Ll x L i —>• Lf, and our 

expression for d*A d Aou = d*A d Aouo combine to give 

kuOk L Ì >AO<CkA^0)$0uOk L A 

< Ckd Aod Aou0k LÌ A + Ck(-$o)*(u(*o - <&i) + ($2 - $o))k 

< Ckd Aou0k L2 ( k A l - A 0 k L2 + k A 2 - A 0 k L2 ) 
Z , A Q AAO -^'A0 

+ Ckuk L|A k*Ok L| A ( k * I - * O k L| A + k $ 2 - $ o k L2 ) 

< C k u O k L2 e + Ckuk L2 k^ok A e 

<Ckuok L2 £ + Ck$Ok L2 e. 
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for some constant C = C(AQ, 3>O). For small enough e we can rearrange 
the preceding inequality and use the Sobolev embedding L\ C C° to 
yield 

k u k L2, A < C k $ o k e and ku 0 k Co < C k $ 0 k L2 £. 

Therefore, as juj = 1, we have the pointwise bounds 

1 - juoj < jid E - 7j < 1 + ju0j, 

and thus, for e small, jid E — 7j > 0; the pointwise norm of z = jid E —1j 
is constant since d A0(id E — 7) = 0. Consequently, 70 = z~1(id E — 7) 
lies in °G E'- clearly, d A07O = 0, so 70 G Stab A- If $0 = 0, we trivially 
have 70 G Stab$0. If $0 ^ 0, then the equalities j7o^oj = j^oj (as 7o is 
a unitary gauge transformation) and 70^0 = z~1(id E — 7)^0 = z~l&0, 
so j7o$oj = z 1j<l>oj implying that z = 1 (it is enough to have equality 
of L2 norms here as z is constant). Hence, we also have 70 G Stab$0 

and in particular, 70 G Stab A0,$0 = Stab Ao nStab$0 . 
We now write 7 "̂ u = 7g~ uQ +7Q~ (id E — 7) = 7g~ uO + zid E, so that 

70"1u - id E = {z- Vjid E + 7o~1uo-

Clearly, (z — l)id E G Kerd ̂  # by the remarks of the last paragraph, 
while 70"

1uO G (Kerd A ^ ) - 1 since u0 G (Kerd A ^ ) - 1 and 
7g"1 G Stab A0,$0. Similarly, 70~

1u(Ai, $1) = 70~
1(A2, $2) G B Ao,$0(e), 

as the neighborhood B A0)$0(e) is Stab A0j$0-invariant. Thus, replacing 
u by 7^"1u and (A2, $2) by (A2, $2) = 7o~1(A2, $2) in our L ̂ Ao estimate 
for uo yields 

bcT^ok L2 <Ck$0k L2 e, 
3,A0 2,A0 

while jz — 1j < kuok C° ^ Ck^Ok L2 e? so we find that 
2,A0 

h o u - i d E k L ̂  < C k $ O k L2 £• 
3,A0 2,A0 

If e is small enough that Ck<I>Ok L2 £ < S, where ö = Ö(AQ,$O) is the 
2>A0 

constant of Claim 2.11 with k = 2, then 7 "̂ u G Stab A0)$0 and so u lies 
in Stab Ao^o, as desired. q.e.d. 

Claim 2.13. The quotient space C W,E is Hausdorff. 

Proof. Let V be the subspace ff(A $),u(A, $)g : (A, $) G CW,E and 
u G °G E g of C WE X C^E. If f(Aa,$a),ua(Aa,$a)g is a sequence in T 
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which converges in L2k to a point f(Aoo, $00)) (B00 ^00)g) then Lemma 
2.7 implies that there is a subsequence f « ' g C fag such that f u a 

converges in L2k+l to u ̂  G °G E and u00(A00) = B ^. But then u a /<Ig 
converges in L k to u 00 $00 and so ^ ^ = uQO^OO. Thus, (Boo, ^00) = 

u00(A00) ^00) for some u(X) G °G E, and therefore Y is closed. Hence the 
quotient C W,E/°G E is Hausdorff. q.e.d. 

Claim 2.13 gives Assertion (1) of the proposition. Thus Assertions 
(2), (3), and (4) now follow from the preceding arguments and Claim 
2.12. This completes the proof of the proposition. q.e.d. 

R e m a r k 2 .14 . (1) Alternatively, one can show that the quotient 
L2k topology on C W,E is metrizable via the L2 metric (exactly as in [20, 
Lemma 4.2.4]) and thus C W,E is Hausdorff. 

(2) As Mrowka pointed out to us, one can sharpen the assertions 
of Proposition 2.8, at least for the quotient space B E- one finds that 
charts are provided by L4-balls in Ker d*A rather than the much smaller 
L2k A -balls usually employed; see [22]. 

It is convenient to extract the following global, Coulomb gauge-fixing 
result (analogous to Proposition 2.3.4 in [20]) which we established in 
the course of proving Proposition 2.8: 

L e m m a 2.15. Let X be a closed, oriented, Riemannian spin c four-
manifold and let E be a Hermitian vector bundle over X. Suppose that 
k > 2 is an integer and that (AQ,^Q) £ C W,E- Then there is a positive 
constant e = E(AQ, $0, k) such that for any (A, $ ) G C W,E with 

k { A , $ ) - (Ao,$0)k L2iAo{X) < e, 

there is a gauge transformation u G °G E, unique up to an element of 

Stab A0,$o> such that 

A o % o ( u ( A , $ ) - ( A 0 , $ o ) ) = 0. 

2.3. Connec t ions on SO(3) bundles and groups of gauge 
transformat ions . For some local patching arguments over simply-
connected open regions Y C X in x3 and x4 it is very useful to be able 
to lift gauge transformations in GSU(E)(Y) to gauge transformations in 
G E(Y). The following result tells us that this is always possible when 
Y is simply connected; it is an extension of Theorem IV.3.1 in [61] from 
SU(2) to U(2) bundles. 
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Proposition 2.16. Let E be a Hermitian two-plane bundle over a 
connected manifold X. Then there is an exact sequence 

i - • f±id E g^G E ^ su(E) -+ H X ( X ; Z J 2 Z ) . 

Proof. Let P be the U(2) principal bundle underlying E so P = 
P/S Z is the SO(3) principal bundle underlying su(E). We can view 
elements of G E as maps u : P —>• SU(2) satisfying u(pg) = g~1u(p)g 
for p G P and g G U(2), and similarly for elements of G su(E)- The map 
G E —> G su(E) is then given by u —> Adu. Because X is connected, the 
kernel of this map is f±id E g, giving the exactness of all but the last 
terms in the sequence. 

Let ^ GH1(SO(3);Z/2Z)bethe non-trivial cohomology class given 
by the double cover SU(2) —> SO(3). Then a map u : V —> SO(3) lifts 
to SU(2) if and only if u*U2 = 0. We would like to define the map 
a : G su(E) ^ Hl(X;Z/2Z) by a(u) = u*v<2- It is not immediately clear 
that a(u) actually lies in H1(X;Z/2Z). The homotopy exact sequence 

7 T 1 ( S O ( 3 ) ) ^ 7 T 1 ( P a d ) ^ 7 r 1 ( X ) ^ l 

gives an exact sequence in cohomology H1 (• ; Z/2Z) = Hom(vri(-),Z/2Z), 

1 - • H1(X;Z/2Z) -+ H1(P ad;Z/2Z) -+ H1(SO(3); Z/2Z). 

Thus u*V2 is pulled back from a unique element of HX(X; Z/2Z) if and 
only if i*x u*V2 = 0, where i x : SO(3) —> P ad is the inclusion of a fiber. 

Because u*v^ depends only on the homotopy class of u, the map 
a is constant on connected components. Let G x urE\ be the subgroup 
of elements of G su(E) which are the identity over x G X. The exact 
sequence of groups 

1 ->• G ̂ E ) ->" su(E) -»• SO(3 ) ^ 1 

and the corresponding exact sequence of homotopy groups (no to be 
specific) show that the inclusion G x uiE\ induces a surjection of connected 
components. Now if u G G x urE\ then i*x u*V2 = 0, and so i x u*^2 = 0 for 
all u G G su(E)- This implies that the map a takes values in Hl(X; Z/2Z). 

By the defining property of v<i, we have a(u) = 0 if and only if there 
is a lift of u to SU(2). Because fztid E g is central, any Ad-equivariant 
map u : P -)• SU(2) descends to P ad ->• SU(2). Thus u G G su(E) is 
induced by some u G G E if and only if a(u) = 0. q.e.d. 
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R e m a r k 2 .17. One can also show that the map 

is surjective. 

2.4. Quadrat ic forms for coupled spinor bundles . Give gl{E) 
(respectively, g l (W ± ) ) the Hermitian fiber inner product and norm 

(M,N) :=^tr(M y N) and jMj2 = ( M , M ) , 

for M,N G n°(gl(E)) (respectively, g ^ W * ) ) , so that jid E j = 1, etc. If 
$ G n°(W+ <g> E), then $* G ft°((W+ g> E)*) = tt°((W+)* g> E*) is 
defined by $*(*) := (*, $ ) for * G Ü°(W+ g> E ) . 

With respect to the induced Hermitian fiber inner products on 
g l (W + ) and gl(E), we have fiber-wise orthogonal direct sums, 
gl(W+) = Cid W+ © sl(W+), and similarly for gl(E) and thus 
g l (W + ) <giC gl(E). Let W+ (respectively, ITE) be the fiber-wise orthog
onal projection from g l (W + ) (respectively, gl(E)) onto the subspace 
s l (W+) (respectively, sl(E)), so that 

TTW+M := M- \trMid W+ and nE N := N - \ t r N i d E 

are the projection onto the traceless components of M G g l (W + ) and 
N€gl(E), and 

W+M := \ tr M id W-n and E ^ N := \ tr N id E 

are the projections onto the trace components of M G g l (W + ) and 
N G gl{E). The orthogonal projection from g l (W + ) g>C gl(E) onto 
s l ( W + ) ®C sl(E) is obtained by writing -W+ = id W+ — 71"W+ and TIE = 
id E — TE, so that 

•ÏÏW+ ® KE = id W+ g> id E - 7TW+ (g) 7E + 7W+ g) 7E 

Consequently, if 0 G Ü°(W+) and $ G Ü°(W+ ®E), we may define 

(4>®4>*)o :=iW+{4>®4>*), 

($ g> $*)oo := (vW+ g> 7 E ) ( $ (g $*). 

Note that 

g l ( W + ) ®C gl(E) = u(W+) ® R u(E) + iu(W+) g>R u(E). 

Plainly, (cf> g) 0*)o is a section of sl(W+) n iu(W+) = isu{W+). The 
following identities are now well-known [47], [77, Chapter 8]: 

(2.12) 
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Lemma 2.18. For every <j> G Ü°(W+) or Q°(E), T G Ü°(sl(W+)), 
and r] G 02(X, C); the following hold. The endomorphism ((f> ® (f)*)o is 
a section of Ci°(isu(W+)) and satisfies: 

(i) K0®^)oj2 = i H j , 
(2) jp(v)j = 2jri+j2 and jp~xTj2 = \jTj2. 

Similarly, $ (g> $* is a section of iu(W+ (8>C E) = u(W+) ®R u(E) and 
($(8>$*)oo is a section of su(W+) <S)R su(E). We then have the following 
analogue of Lemma 2.18: 

Lemma 2.19. For every $ G Q°(W+ <g) E) and 

M £Q°(gl(W+ ®E)), 

the following identities hold: 

(1) h$®$*,Mi = ±hM$,$i, 

(2) ( ! - p ) j$j4 < h(<& ® $*)oo*, * i < p j^ j 4 , 

(3) ( § - p ) j * j 4 < j ( ^ W < p j -

Proof. Using $ = c a$a (we employ the summation convention), so 
M $ = c a M$a and $*$a = h$a, $i = c a, we have 

h$<g)$*,Mi = ±tr(($®$*)ÎM) = ±h($<g)$*)M<ï>a,$a i 

= ±hM$a, ($ (g) $*)$a i = ±hM$a, $($*$a)i 

= ^hMSa ,a i = ihc a M $ a , $ i = ±hM$,$i , 

which gives (l). Next, we see that 

j$ (g)$*j2 = h$<g) $*,<!> ® $*i = ±h($<g) $* )$ ,$ i 

= l j a i 2 h * cbi = i j ö j 4 
2 v | ^ , ^ 2 ^ , 

and so the upper bound in (2) is obtained by 

jh($<g>$*)oo$,$ij < j ( $ ® $ * ) o o j j $ j 2 < j $ ® $ * j j $ j 2 

< (1/p2)j$j < § j $ j , 

where we use the fact that ( • )oo = T^W+^^ E is an orthogonal projection 
to obtain the second inequality. 
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To obtain the lower bound in (2), suppose that $ = (f>a (g£a (implied 
summation), where fcf>a g C Q°(W+) and f£a g C tt°{E), then $ <g $* = 
(</>a<g</b<*)<g(£a<geb'*) and 

(7W ^ + ® E) ($ ® $*) = TW a ® </b>*) ® 7E ^(ea ® Cb'*) 

= I tr(0a ® </b>*) tr(ea ® e V ) 'W+E 

i h 0 a ® a , b ® e b iid W+0E 
= i h $ , $ i i d W+0E. 

Using the last identity together with ($ (g) $* )$ = $h<!>, $ i = $ j $ j 2 and 
(2.11) gives 

h($ <g $*)oo$, $i = h($ ® $*)$, $i 
- h(7W+ <g 7E + 7W+ <g 7ìE)($ (g $ * ) $ , $ i 

+ h±j$j2$,$i 
j * j h(TT W+ -ÏÏE+-ÏÏW+ ® 7 E ) ( $ ® $ * ) $ , $ i . 

B u t 7T W+ 7iE + KW+ (g 7E ^ is just the orthogonal projection onto the 
middle two factors of the orthogonal decomposition of ß I (W + ) ®£QI(E), 

so 

«TT W+ -ÏÏE + KW+ ® * E ) ( $ ® $ * ) $ , $ i 

j$j (TW ^ + <g 7E + 7W+ <g 1TE){® ® $ * 

< j$<g$*jj$j2 < (l /p2)j$j < § j$ j , 

and therefore 

m ® $*)„<,$, $ij > !ĵ >j - (i/p2)j$j4 > Ìj$j4. 

Consequently, using ($ (g $*)y0 = ($ <g $*)oo, we have 

i h ( $ (g $*)oo$, $ i = h($ ® $*)oo, $ <g $*i = h($ (g $*)oo, ( $ ® $* )ooi 
($ $* loo 

which gives (3). q.e.d. 

The fact that j($<g$* 
to show that the moduli space of PU(2) monopoles has an Uhlenbeck 

The fact that j($<g$*)oj2 > | j $ j 4 , for $ G Ü°(W+®E), is used in x4 
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compactification. (The analogous equality, j{<f> ® </>*)oj2 = j j 0 j for 
(f) G Q°(W+), is used in [47], [98] to show that the moduli space of 
Seiberg-Witten monopoles is compact.) 

We adapt some terminology from the proofs of Proposition 3.4 in [30] 
and Lemma 4.3.25 in [20] which we will need for our proof of transver-
sality for the PU(2) monopole moduli space in §5: 

Defini t ion 2 .20. The rank of a section $ G Ü°(W± ® E) at a 
point x G X is the rank of $j x considered as a complex linear map 
(W ̂ ) * x —> Ej x (that is, its rank as a complex two-by-two matrix). We 
say that $ is rank one on a subset U C X if it has rank less than or equal 
to one at all points in U. Similarly, for v G Q°(A+(T*X) ®su(E)), the 
rank of v at a point x G X is the rank of v considered as a real linear 
map from A+(TX)j x —> su(E)j x (that is, its rank as a real three-by-
three matrix). The rank of v on a set U C X is the maximum rank of 
vj x over all points x G U. Finally, for M G tt°(su(W+) ®su(E)), the 
rank of M at a point x G X is the rank of M considered as a real linear 
map f romsu(W + )* j x —> su(E)j x (again, its rank as a real three-by-three 
matrix). The rank of M on a set U C X is the maximum rank of Mj x 
over all points x G U. 

For the proof of Lemma 2.21 below we shall need a simple linear 
algebra identity. Suppose that <1> = 0 (g> ^, for some 4> £ 0,°(W+) and 
£ G fi°CE), and that tf = V ® C, with 0 e ^ ° ( W + ) and £ G fi0(E). 
Then 

$ ® tf* = (0 <g> £) ® (V ® C)* = (0 ® */>*) ® (C ® O e gl(W+) ®c gKE-

Writing B G g l (W + ) (or gl(E)) a s B = B h + B s, where B h = \{B + B y) 

is Hermitian and B s = ^(B — B y) is skew-Hermitian, we have 

^>®^* = l((ß®iß* + ip®(/)*)®^®C + C®C) 

+ ±(</> ® V* - -4> ® </>*) ® (£ ® C* - C ® C) 

+ \{4>®Ì>* +^®4>*)®{^®C ~Q®C) 

+ \{<t> ® *l>* - if> ® <t>*) ® (t ® C + C ® D , 

and similarly for \I/ (g) <£>*. Therefore, 

$ (g) <F + ^ (g» $* = ±(</> <g> v* + ^ ® <t>*) ® (£ ® C* + C ® D 

+ ±(</> ® V* - V> ® </>*) ® (t® C - C ® C) 

(2.13) = -\i(<p ®ip*+ip®4>*)®i(ç®e + c® c) 

+ \((j> ® V>* - ip ® (/)*) ® (ç® C - C ® €)• 
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We shall need the following elementary observation in our proof of 
transversality for the moduli space of PU(2) monopoles in §5. Note 
that as p : A + —> su(W+) is an isomorphism, the rank of a section v of 
A + ®su(E) is equal to the rank of the section p(v) ofsu{W+) ®su(E). 

L e m m a 2 .21 . If $ G C°(W+ <g> E) and x G X, then the following 
hold: 

(1) Rank R($(x) <g) $*(x))oo = 1if and only i fRank C §{x) = 1, 

(2) Rank R($(x) ® $*(x))oo = 3 if and only i fRank C §{x) = 2. 

Proof. For convenience we write <£>, W+, and E for <J>j x, W + j xî and 
Ej x. If $ G H o m ( W + , E) has complex rank one, we can write <3> = </><8>£, 
for 0 G W+ a n d £ G E. Then ($<g>$*)00 = - i ( 0 ® 0 * ) o ® i ( £ ® f ) o and 
so (<£ <g> $*)oo £ Hom(su (W + ) , su (E) ) has real rank one. 

Conversely, suppose (3>(g><i>*)oo has real rank one. Let {^1,^2 be an 
orthonormal basis for E and write <£> = 0i (g> £1 + 02 <8> £2: if (pi, g2 € E 
are linearly dependent, then $ has complex rank one and we are done, 
so suppose that 0 i ,02 are linearly independent. Using the standard 
basis {cri, 0-2,03g of Pauli matrices (2.14) for su(2), namely 

<-) * = ( i » ) . - ( ^ j ) . -.=(i i)• 
we obtain bases for the real vector spaces s u ( W + ) and su(E): 

oe = i(Xx®eî-6®C2), °e = & ® C 2 - 6 ® e * , 
o3e = i(£i®e2* + 6 ^ î ) , 
ow = i(01 ® 0* - 02 ® 02)) ^w = 01 ® 02 - 02 ® 01, 

erw = i ( 0 i ® 0 $ + 0 2 ® 0 î ) . 

Writing $ = $1 + $2, we have 

( $ a ® a)00 = - i ( 0 a ® 0a)o ® i ^ a ® a)o 

for a = 1,2 and 

($<g>$*)oo = (^1 ® ^1)00 + ( $ 1 (81 ̂ 2 + ^ 2 ® ^1)00 + (^2 ® ^2)00-

So, by the identity (2.13) and noting that 

i(£i ® eî)o = | i (£i ® ÉÎ - 6 ® C2) = \°e = - i ( & ® £2*)o, 
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and 

Ufa ® 0î)o = \i{4>i ®4>\-4>2® 4>l) = &w = -i(h <g 02)0 

we see that 

( $ <g $*)oo = -i(<£i g> 0*)o ® i ( 6 ® ÉÎ)o - i(02 ® 02)o g> i ( 6 ® e2*)o 

- \i{<pi ®<& + <fa® (pi) ® i ( a » e2* + 6 ® e*) 
+ Ì(</>i g> $; - 02 <g 0î) <g (a <g e2* - 6 ® £*) 

= " ï ^ w ® e ^ - ±aw ® ae - ±w ® ae + w ® e 
1 „w <-,, _e i 1 „w icy, _e 1 „ .o. „e 

= —2 e r ! g1 ul + 2CT2 g1 0̂ 2 — 2w ® °3" 

Thus, (<£> g) 3>*)oo would have real rank three, a contradiction, and so $ 
must have complex rank one, which proves Assertion 1. 

The preceding argument also shows that if $ has complex rank two, 
then ($ (g $*)oo has real rank three. Conversely, if (<£> g) $*)oo has real 
rank three, then <b cannot have complex rank one by Assertion 1, so $ 
has complex rank two. q.e.d. 

2.5. T h e P U ( 2 ) m o n o p o l e equat ions and ho lonomy per
turbat ions . In §2.5.1 we describe the PU(2) monopole equations 
in their unperturbed form, following [71], [74]. In §2.5.2 we introduce 
the holonomy perturbations and the perturbed PU(2) monopole equa
tions, deferring a detailed discussion of most of the technical regularity 
issues concerning holonomy perturbations to the Appendix. In Donald
son's application to the extended anti-self-dual equation, some impor
tant features ensure that the requisite analysis is relatively tractable: 
(i) reducible connections can be excluded from the compactification of 
the extended moduli spaces [18, p. 283], (ii) the cohomology groups for 
the elliptic complex of his extended equations have simple weak semi-
continuity properties with respect to Uhlenbeck limits [18, Proposition 
4.33], and (iii) the zero locus being perturbed is cut out of a finite-
dimensional manifold [18, p. 281, Lemma 4.35, & Corollary 4.38]. For 
the development of Donaldson's method for PU(2) monopoles described 
here, none of these simplifying features hold and so the corresponding 
transversality argument is rather complicated. Indeed, from Proposi
tion 7.1.32 in [20] one can see that because of the Dirac operator, the 
behavior of the cokernels of the linearization of the PU(2) monopole 
equations can be quite involved under Uhlenbeck limits. The holonomy 
perturbations considered by Donaldson in [18] are inhomogeneous, as 
he uses the perturbations to kill the cokernels Coker eA ^ directly. In 
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contrast, the perturbations which we consider in (1.3) are homogeneous 
and we shall argue indirectly in §5 that the cokernels of the linearization 
vanish away from the reducible and zero-section solutions. 

2.5 .1 . T h e u n p e r t u r b e d P U ( 2 ) m o n o p o l e equat ions . Re
call that we consider Hermitian two-plane bundles E over X whose 
determinant line bundles det E are isomorphic to a fixed Hermitian line 
bundle over X endowed with a fixed C°°, unitary connection A e. Let 
(p, W+, W~) be a spin c structure on X, where p : T*X —> End W is the 
Clifford map, and the Hermitian four-plane bundle W = W+ © W~ is 
endowed with a C°° spin c connection. Given a connection A on E with 
curvature F A G L k_ t (A 2 ®u(E)), then (F A ) 0 G L ̂ _X(A+ ® su(E)) de
notes the traceless part of its self-dual component. Equivalently, if A is 
a connection on su(E) with curvature F A G L k_x{h? ®so{su{E))), then 
F A G L2k_1(h

+ ®su(E)) is its self-dual component, viewed as a section 
of A + (g) su(E) via the implicit isomorphism ad : su(E) —> so(su(E)). 
Let D A : L k (W + ® E) -> L k_1{W~ <g> E) be the corresponding Dirac 
operator. 

For an L k section $ of W+®E, let $* be its pointwise Hermitian dual 
and let ( $ <S) ^*)oo be the component of the Hermitian endomorphism 
$ <g> <F of W + <g> E which lies in su(W+) ® su(E). The Clifford map 
p defines an isomorphism p : A + —> su(W+) and thus an isomorphism 
p = p® id su(E) of A+ <g> su(E) with su(W+) (g) su (E) . Then 

, 2 1 5 x J A + - p - 1 ( $ ® $ * ) 0 0 = 0, 

D A$ = 0, 

are the unperturbed equations considered in [67], [68], [71], [74] (with 
slightly differing trace conditions) for a pair (A, $ ) consisting of a con
nection A on su(E) and a section $ of W + <g> E . Equivalently, given 
a pair (A, $ ) with A a fixed-determinant connection on E, equations 
(2.15) take the same form except that F ̂  is replaced by (F A)o-

2.5.2. T h e p e r t u r b e d P U ( 2 ) m o n o p o l e equat ions . We next 
introduce perturbations of the PU(2) monopole equations (2.15) which 
will enable us to prove the transversality result described in Theorem 
1.3. The perturbations in question make use of holonomy and their 
construction is partly modelled on related perturbations introduced by 
Donaldson, Floer and Taubes [8], [17], [29], [18], [86]. All of these con
structions require that a unitary connection A on a Hermitian two-plane 
bundle E over X be regular enough that parallel translation along a C°° 
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path in X is well-defined. For example, Floer employs a configuration 
space of L\ connections modulo L\ gauge-transformations over a three-
manifold, so these connections are at least continuous (as L\ C C° in 
dimension three) and the standard theory of ordinary differential equa
tions applies to define parallel translation without further qualification 
[29]. In dimension four, parallel translation can be defined without dif
ficulty using L k connections with k > 3. With a little more care one 
can see that parallel translation can be defined by L\ connections, even 
though L\ <t C° [61, §3.2]. These regularity issues become rather more 
intractable, as one can see from the Sobolev restriction theorem, for 
connections which are only L\ [2, Theorem V.5.4]. As explained in the 
Appendix — to which we refer the reader for a discussion of the more 
technical points — we shall ultimately restrict our attention to config
uration spaces of L2k connections with k > 3. The perturbations will, 
by definition, be zero on a neighborhood of a point in X where the 
curvature is large and so our regularity theory for L\ monopoles will 
apply near points where curvature has bubbled off in order to prove 
removability of singularities (see §4.5.2). 

We follow standard convention by saying that a connection A on a 
G bundle E over a connected manifold Y is 'irreducible' if its stabilizer 
Stab A is trivial, that is, the center of the Lie group G [20, p. 133], 
rather than saying (more correctly) that its holonomy group Hol A(yo) 
is not a proper Lie subgroup of Aut ( -y 0 ) ~ G, where yo G Y is any 
basepoint. However, the holonomy will be our primary concern in this 
section, so some care is required as the two notions do not coincide in 
general. Recall from [20, Lemma 4.2.8] that Stab A is isomorphic to the 
centralizer of Ho A ^yo ) in G. If Y is simply connected, then Ho A ^ y o ) is 
a connected Lie subgroup of G [44, Theorem II.4.2]. Thus, if G = SU(2) 
or SO(3) and Y is simply connected, then A has trivial stabilizer in G 
if and only if Ho A(yo) - G [20, p. 133]. Indeed, if G = SO(3) and 
Stab A = {id}, then H := Hol A(yo) = SO(3); otherwise, we would have: 

• H = SO(2), with centralizer Z(H) = SO(2) (by [11, Theorem 
IV.2.3(ii)]), contradicting Stab A = {id}, or 

• H = {id}, with centralizer Z(H) = SO(3), again contradicting 
Stab A = {id}. 

The same argument holds for G = SU(2), but not for higher-dimensional 
Lie groups. For example, if G = U(2) = SU(2) X{±id} S1, we cannot 
exclude the possibility that a U(2) connection A with Stab A = S Z 
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reduces to an SU(2) connection, that is, A has holonomy Hol-^yo) = 
SU(2). 

With the preceding comments in mind, the first ingredient in our 
construction of the holonomy perturbations is a local section of su(E) 
given by the holonomy of an SO(3) connection A on su(E). Let 7 C X 
be a C°° loop based at a point xo G X and let 

h7,x0(A)ESO(su(E))\x0 

be the holonomy of the connection A around the loop 7. The exponential 
map exp : so(3) —> SO(3) gives a diffeomorphism from a ball IB around 
the origin in so(3) to a ball around the identity in SO(3). Let ip : R ^ 

[0,1] b e a C°° cutoff function such that V( jCj) = 1 for ( G ±B, ^(jCj) > 0 
for ( G B , and ip(jÇj) = 0 for ( G so(3) - B. Then 

(2.16) h , x 0 (A ) := V j e x p - 1 h x A))j) - a d - H e x p - 1 h x A))) 

defines a gauge-equivariant map A E(X) —> su(E)\xo, where ad : su(E) —> 
so(su(E)) is the standard isomorphism. 

L e m m a 2.22. Let U C X be a simply connected open subset and let 
xo be a point in U. If Aj U is an irreducible SO(3) connection on su(E)j U, 
then there are loops f l g l = 1 C U, depending on A, such that the set 
fh l x0(A)g l= l C SO(su(E))j xo lies in the open subset of SO(su(E))j xo 

given by the image under exp of the ball B C so(su(E))j xo around the 
identity. The set ff)l,xo(A)g l = i is then a basis for su(E)j xo. 

Proof. Since Aj U is an irreducible SO(3) connection over a sim
ply connected manifold U, the holonomy group Ho AU xo) is equal to 
SO(su(E))j xo by the remarks preceding the statement of the lemma. 
Hence, there are three loops 71,72,73 such that the holonomies 

h ̂ ,x0(A) £ B cSO(su(E))j x0 

give a basis fhyl,x0(A)g l=i for su(E)\xo. q.e.d. 

For a C°° connection A we may extend h>xo(A) to a C°° section 
h ( A ) of su(E) by radial parallel translation, with respect to A over 
a small ball B(xO,2RQ) and then multiplying by a C°° cutoff function 
ip on X which is positive on B(xo,Ro) and identically zero o n X -
B(xo,Ro). Thus if the set fh l,xo(A)g l - i spans su(E)\xo, then the set 
f^hyl{A)j y g l_ l will span su(E)j y for y G B(xo,Ro). The constant RQ is 
chosen so that 4Ro is smaller than the injectivity radius of (X,g). 
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In general, for an L k connection A with k > 2, the section h ( A ) 
will not be in L k + l and so we use the Neumann heat operator, for fixed 
small t > 0, 

K t(Aj B{xoßRo)) : L2(B(x0,2Ro),su(E)) -»• L k + 1 (B(x 0 ,2R 0 ) ,su (E)) , 

as discussed in Appendix A.I to construct an L k + l section 

(2.17) ^(A) := K t(Aj ) h ( A ) 

of su(E) over B(xo,2Ro) which converges to h ( A ) in C°(B(xoiRo)) as 
t —> 0. Therefore, for small enough t = t(A), the set f^h ^ (A)j y g l = 1 , 
will span su(E)j y for all y G B(xo, Ro) just as before. 

L e m m a 2 .23 . Let k > 2 be an integer and let AQ be an L k unitary 

connection on Ej B^xOJ2R0)- Let 71,72,73 be loops in B(xO,2RQ) based 

at xQ such that fh i.,x0(Ao)g l= l spans su(E)\xo. Then there is a posi

tive constant S(AQ, f l g) such that if A is an L k unitary connection on 

Ej B(xO,2RO) satisfying 

kA-AOk LIAO(B(x0,2RO)) < e > 

then the set fh/,,xo(A)g l - i spans su(E)\xo. 

Proof. According to Lemma A.3 the holonomy maps 

h , x 0 : A E(X)^U(E)\x0 

are continuous and so the maps h / hx o '• A E ( X —> su(E)j xo are contin
uous on small open neighborhoods of AQ G A E(X). Hence, for small 
enough e, the set fh<y{,x0(A)g l= l spans su(E)j xo. q.e.d. 

We now specify the loops to be used in this construction, essentially 
following the argument used in the proof of Lemma 2.5 in [17]. Let 
fB(x j,4:Ro)g j:N1, be a disjoint collection of open balls, where N b is a 
fixed integer to be specified later (see 4.5.2). According to the slice 
results of [20, p. 192], [87, Proposition x.1] for manifolds with bound
ary, the quotient space B*E(B{XjJ 2Ro)) of irreducible L k connections on 
Ej B(x ,2R0) is a C°° manifold modelled on a separable Hilbert space. 
The quotient L k topology on B E(B(Xj,2RQ)) is clearly metrizable and 
so Stone's Theorem implies that B'E(B(Xj,2RQ)) is paracompact and 
thus admits partitions of unity [55, Corollary II.3.8]. 

For each j = l , . . . , i b and each point [AQ] in B'E(B(Xj,2RQ)), we 
can find loops f7j,l,A0g l=i? contained in B(Xj, 2RQ) and based at x j such 
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that fl)j l A (Ao)g l=1, spans su{E)j x j . For each such point [A)]? Lemma 
2.23 implies that there is an L k A ball 

B[A0](ZA0) := f[A] G B*E(B(x jì2R0)) : dist L2 A ([A],[A0]) < sAog 

such that for all [A] G B[A0]{£A0)I the set fh j l A (A)g l=1 spans su(E)\x j . 
These balls give an open cover of B E(B(Xj,2RQ)), and hence there is 
a locally finite refinement of this open cover, fU,ag2Li, and a positive 
partition Xj,a (see Proposition A.12) subordinate to fU jjag^>

=1 in the 
sense that 

E j ̂ Aì > °> A G B E B(x j , 2R0)). 
a 

Hence, for each U j t 0 , we obtain loops f7j,l,ag l=i C B(Xj, 2RQ) such that 
for all [A] G U j,a, the sections h j l Q (A) span su(E)j ; j . 

Let ß be a smooth cutoff function on R such that ß(t) = 1 for 
t < \ and /3(t) = 0 for t > 1, with ß{t) > 0 for t < 1. Then the C°° 
gauge-invariant maps A E ( X ) -s-R, Ai-> ßj[A] given by 

(2.18) /j[A :=ßUB ß dist R > ) jF A j*dV) 

are zero when the energy of the connection A is greater than or equal to 
^£Q over a ball B(Xj,2RQ). Here, eo is the constant of Corollary 3.16. 
Finally, we define C°° cutoff functions on X by setting 

(2.19) ifjix) := ß f R x_xZJ , x G X, 

so that ipj is positive on the ball B(Xj, Ro) and zero on its complement 
inX. 

We can now define a gauge equivariant C°° map 

A E(X) - • L 2 + 1 ( X , s u ( E ) ) , A ^ m jM(A) 

by setting 

(2.20) m j ; l , a(A :=j[A}Xja[Aj B(x j,2R0)j h j,l,JA). 

Thus at each point A G A E ( X ) only a finite number of the m jlta(A) are 
non-zero and each map m jy,a is C°° with uniformly bounded derivatives 
of all orders on A E(X) (see Appendix A.4). 
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To define the perturbation of the Dirac operator in (2.15), we need 
elements of Q°(HovC(W+ ,W~)) and these are conveniently provided 
by complex one-forms using the Clifford isomorphism 

p: A ^ H o m C ( W + , W ~ ) , 

where AC = A ^ R C . These one-forms are parametrized by the following 
Banach space: Let A be the index set 

f(jl,a):l<j<N bA<l<3,a£Ng, 

let ö = (<5a)^L1 G £1(R) be the sequence of positive weights described in 
Appendix A.4, let r > k + 1, and let 

(2.21) P : = t \ { A C r{X,hC)) 

be the set of sequences d := (i?j,l,a) in C r(X, AC) such that 

0kl(C r(X)) •= ^8äl¥j,l k C r{X) < oo. 
j,l,a 

Then P r is a Banach space with respect to the above norm [40, x1.7]. 

R e m a r k 2 .24. 

1. Note that we measure reducibility of connections and allow the 
loops 7j,l,a to be contained in the larger balls B(Xj, 2RQ) while the 
perturbations are supported on the smaller balls B{Xj,RQ). Thus, 
if A G A E(X) is a connection such that Aj B^x.^RQ) is reducible 
for all j G f 1 , . . . , N b g such that ßj[A] > 0 and 4' ^ 0, then [A, $] 
cannot be a point in M ^E: our unique continuation result for 
PU(2) monopoles (see Theorem 5.11) which are reducible on an 
open subset of X containing all balls B(Xj,RO) with ßj[A] > 0 
would imply that A is reducible on all of X and so (A, <&) would 
be a reducible PU(2) monopole. Consequently, if [A,$] G M ^E 
then A must be irreducible on some ball B(Xj, 2RQ); otherwise, A 
would be reducible on all balls B(Xj,2RQ) with ßj[A] > 0 and so 
reducible on X. 

2. Note that the sections trijyja are defined on the entire space A E(X): 
They are zero for connections A G A E(X) which are reducible 
when restricted to B(Xj, 2RQ). 
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3. Our energy bound (4.2) for solutions (A, <&) to the perturbed 
PU(2) monopole equations ensures that there is always at least one 
ball B(x j , RQ) where the sections fm j,l,a(A)g l=1 spansu(E)j B(x ,R0); 
see x4.5.2. 

Because only a finite number of the sections m jy)0,(A) are non-zero 
at each A G A E(X), the sum 

(2.22) ê-m(A) := ^ p f j l , a ) ®C m jM(A) 
j,l,a 

gives a well-defined L2k+l section of 

Hom C(W+, W-) <g>C sl(E) ~ AxC <g>C sl(E), 

noting that although each m jli0l(A) is a section of su(E), we have 
sl(E) = su{E) ®R C. The map 

A E(X) ->• L + 1 ( X , Hom C(W+, W " ) ®C s l (E)) , A .->• # • m(A) 

is C°° and gauge equivariant and so defines a C°° section of the vector 
bundle 

A E(X) XG E L2k+1(X,Hom C(W+,W-) ®C sl(E)) -»• B*E{X). 

By construction (see Appendix A.4) the sum ê • m(A) satisfies a C° 
estimate of the form 

sup k 0 - m ( A ) k L2 ,X) < Ckëk{C r{X)) 

(2.23) A€A E(X) k+1'Ay 

and kbk l (C r(X)) < £ ö, 

where C = C(g,k), and e# is a positive constant which we are free to 
specify. 

We shall also need to construct a gauge equivariant C°° map from 
A*E(X) to L k+ 1(gl(A+) ®R so{su{E))). This map will define a perturba
tion of the quadratic form in (2.15) using the representation 
ad : su(E) —> so(su(E)) and is parametrized by the Banach space 

(2.24) P rT:=e1
s(A,C r(X,gl(A+))) 

of sequences r := (j , l ) 0 , ) in C r(X, gl(A+)) such that 

kTki(C r(X)) : = ^ ^ k jV^IIC-X < oo. 
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Then the sum 

(2.25) f • m(A) := J ^ TjM <g>R ad(m jtl,a(A)) 

j,l,a 

is pointwise finite and gives a well-defined L k+l section of 

gl(A+)(g)R so(su(E)). 

The map 

A E{X) - • L2k+1(X, gl(A+) ®R so(su(E))), A^r- m(A) 

is C°° and gauge equivariant and so defines a C°° section of the vector 
bundle 

A E X) *G E L2k+1(X,gl(A+) ®R so(su(E))) - • ^ ( X ) . 

By construction (see Appendix A.4) the sum r • m(A) satisfies C° esti
mates 

(2.26) AeA E(X) 

and k^k4(C(X)) < £r, 

where C = C(g,k), and eT is a positive constant which we are free to 
specify. 

Our perturbed PU(2) monopole equations for a pair (A, $) on 
(su(E), W+ <g> E) then take the form 

S i (A, $) :=JA+ - (id + TO (g) id su(E) 

(2.27) +f-m(A)) /9-1($(g)$*)oo = 0, 

S2(A, $) : = D A $ + p(i?o)$ + # • m(A)$ = 0, 

where TO G C r(X, gl(A+)) and i?o £ C r X,kC) are additional perturba
tion parameters. For brevity, we shall often denote TA '•= ? • m(A) and 
•&A :=ë-m(A). 

Remark 2.25. 

1. In [25] we consider the question of transversality of the spaces of 
reducible solutions or U(l) monopoles, which are identified with 
moduli spaces of Seiberg-Witten monopoles. In particular, we 
show that the moduli spaces of U(l) monopoles are cut out trans
versely for generic TQ G 0°(gl(A+)). 
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2. If the section $ is identically zero, then the PU(2) monopole equa
tions reduce to those for a projectively anti-self-dual unitary con
nection A on E. If the connection A is reducible, then all of 
the sections m jlja(A) are identically zero on X; the perturbations 
T • m(A) and ê • m(A) in (2.27) are then zero. 

3. We emphasize that the holonomy sections in the sequence m(A) 
are always L2k+l by construction for L2k connections A (with k > 2) 

and that the sums defining r • m(A) and ê • m(A) are always finite 
for each A, although the number of terms may tend to infinity as 
A approaches a reducible connection. 

The proof of the existence of an Uhlenbeck compactification for 
M W,E in §4 requires the perturbations r • m(A) and ê • m(A) to sat
isfy the following estimates in order to obtain universal a priori L2 A 

bounds for $ and L2 bounds for F A (see Lemmas 4.2 and 4.3): 

sup ||f-m(A)||Loo(X) < 1, 
AEA E 

(2.28) 
sup \\ê-m(A)\\LHX) < 1 . 

AeA E 

To obtain the more delicate universal a priori L°° bounds for $ and 
F A (see Lemmas 2.26 and 4.4) required by our Uhlenbeck compactness 
argument in §4, the perturbations TO, f-m(A), and ê-m(A) must satisfy 
the following stronger estimates: 

l |TolL°°X)+ sup \\T-m{A)\\L ^(X) < ^ , 
AEA E 

(2.29) 
I I # O | | L « > X + sup \\ê • m(A)\\Lco ,X) < 1. 

AeA E 

We take a constant 1 on the right-hand sides of (2.28) and the sec
ond inequality in (2.29) for notational convenience only: these bounds 
do not need to be 'small'. There are continuous Sobolev embeddings 
Ll(X,R) C L°°(X,R) and Ll(X,R) C Lf(X,R) over a four-manifold 
X. The estimates (2.29) then follow from the estimates (2.23) and (2.26) 
when k > 3. Therefore, to obtain the inequalities (2.29), we require that 
k > 3 in our configuration spaces of L2k connections B E and pairs C W,E', 
see §A.4. The bounds in (2.29) then follow for small enough choices of 
eT and e# in the inequalities (2.23) and (2.26). 

We shall need a slight generalization of Lemma 2.19 which applies to 
the perturbed quadratic form Tp~l(<b (g> $*)oo when r ^ idA+. Without 
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P • 
loss of generality, we may restrict our attention to automorphisms r 

pTp~l of su(W+) such that \TP — id su(W+) I = \PTP~1 — id| < eT and thus 

( $ i , $ 2 ) - e T | $ i | | $ 2 | < ( T ( $ I ) , $ 2 ) < ($1 ,^2) + e T | $ i | | $ 2 | 

for some universal positive constant E T « 1 and all 

Hence, Lemma 2.19 yields the following bounds for the perturbed quadratic 
form: 

L e m m a 2.26. There is a universal positive constant E r « l such 
that for all \\T — idA+||c*°(x) < £T and $ G Q ° ( W + (g> E) the following 
inequalities hold: 

(1) èl$|4<M$®$*)0o$,$><f|$|4 , 
(2) i l^ | 4 <|T p ($®^)oo | 2 <| |^ | 4 -

R e m a r k 2.27. The constant eT = 1/64 will suffice. The constraint 
\\T — id 11 co p n < £r is only used in §4.1 and consequently in §4.6, where 
we establish the 'universal' a priori bounds for PU(2) monopoles and 
prove the existence of an Uhlenbeck compactification, respectively. 

2.6. T h e modul i space and t h e el l iptic deformat ion com
plex . We define the moduli space of PU(2) monopoles and compute 
the index of its elliptic deformation complex. 

For any integer k > 2, the PU(2) monopole equations (2.27) define 
a C°° map S := (S1 , S2) of Hilbert manifolds, 

(2.30) S : CWtE ->• Ljfe_i(A+ ®suE)) © L\_x(W- <g> E), 

given by 

F+ - (id + T0 <g> id su(E) + f • m{A))p-l{§ <g> $*)0 0 

D A$ + +p ($o )$ + # • m(A)$ 

We can then define the moduli space of PU(2) monopoles by setting 

(2.31) M WtE := {(A, $ ) G W,E : S(A, $ ) = 0} /°£E 
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and denote the moduli space of PU(2) monopoles which are neither 
reducible nor zero-section pairs by 

M WE := M W,E n C WE. 

We let M E sd := f[A] : F A = 0g C B E be the moduli space of anti-self-
dual connections on su(E). 

The SO(3) bundle su(E) has first Pontrjagin number and second 
Stiefel-Whitney class given by 

( 2 3 2 ) « := -ÌpiisuE)) = c2(E) - \cl(Ef 

w2(su(E)) = ci(E) (mod 2), 

and, for a connection A on su(E), we have the following Chern-Weil 
integral identity, 

(2.33) ipi(su(E)) = - L Z (jF-j2 _ jF+j2) dVi 
8 7 r X 

where we view F A as a section of A2 ® su(E) via the isomorphism ad : 
su{E) ~so(su(E)) (see [20, x2.1.4]). 

Since the map S is °G E-equivariant, it defines a section of the Hilbert 
vector bundle V over C ̂ E with total space 

(2.34) V : = C $ E X o G E ( L t i ( A + ® s u ( E ) ) © L t i ( W ® E ) ) -

While the equation S[A, $] = 0 is, of course, defined on C W,E, V does 

not extend from C ̂ E to a vector bundle over C W,E- The moduli space 

M ̂ E C C WE is then the zero locus of the section S of Hilbert vector 

bundle V over the Hilbert manifold C ̂ E: it will be a regular submani-
fold if S vanishes transversely, that is, if the differential 

(2.35) (DS)A,t> : T[AMC WiE -+ L2_i(A+ ® su(E)) © L k_X{W~ ® E) 

is surjective at all points [A, $] in S_ 1(0) C\C ̂ E; recall from x2 that the 
tangent space T ̂ A^]C WE is canonically identified with Ker d A^ C C ^E. 

Suppose (A, <1>) is a pair in A E X fî°(W+ (g) E) . Recall from Propo
sition 2.1 that the differential at the identity id E G °G E, of the map 
°G E ^ A E * tt°(W+ <g> E) given by u ^ u(A, $) is 

ft°(su(E)) © i R z - • 01(su(E)) © Q°(W+ <g> E) , 

c->-A,*c = (-dc,c$)-
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Similarly, the differential (a, 0) H- d A$(a,(j>) := (DS)A a,^), 

n^suiE)) © n°(W+ ®E) ^ n+(su{E)) © Q°(W- © E), 

of the map S at the point (A, $) is given by 

(2 36) (d A a-T- (Jm)(a)($<g>$*)oo-(id + To<8>id su(E) 
:= +T-m(A) )p~ 1 ($©cf+ </>©$*)00 

D ^ + p(i?o)0 + tf • m(A)0 + /9(a)$ + 1? • (£m)(a)$ 

where #m = öm/öA. (In the sequels we also find it convenient to use 
L A,$ to denote the linearization of the map S at the point (A, $).) The 
differential of the composition °G E H- fì+(su(E)) © Q ° ( W © E) given 
by 

u ^ u ( A , $ ) h^S(u(A,$)) = u(S(A,$)) = ( u S I ( A , $ ) u _ 1 , u S 2 ( A , $ ) ) 

is then 

Q+(su(E)) 
ft°(su(E0)©Z ->• © 

n°{W- ®E) 

C H- d,* o d A ç = ([c, Si(A, $)], cS2(A $)) • 
Therefore, d A # o d ̂  # = 0 if and only if S(A, $) = 0, that is, if and 
only if (A, $) is a PU(2) monopole. Consequently, the sequence 

d0 üHsuiE)) dl Q+(su(E)) 

(2.37) n°(su(E))®iR Z - ^ © ^ ^ © 
Q°(W+©E0 n°(W-®E) 

is a complex if and only if (A, $) is a PU(2) monopole. The L2 adjoint 
of — d A $ is given by 

(2.38) - d A,*(a, 0) = -d*A a + (•$)*</>• 

The operator 

n°(su(E))©iRz 
01(su(E)) © 

(2.39) D A^:=d A\ + d A : © —• ft+(su(E)) 
0° (W+©E) © 

n°{W- ®E) 
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is elliptic (thus Fredholm) and so (2.37) is an elliptic deformation com
plex for the PU(2) monopole equations (2.27), with cohomology groups 

H A<S> := Kerd A<s>, HlAq> : = K e r d A / I m d A , H A<S> := Cokerd1A, 

analogous to the usual elliptic deformation complex [20, Eq. (4.2.26)] 
for the anti-self-dual equation, F A = 0. (An elliptic deformation com
plex for stable pairs for holomorphic bundles is given by Bradlow and 
Daskalopoulos in [9, 2].) 

Recall that H A # x Ker d A $ is just the Lie algebra of the stabilizer 

Stab A,* of the point [A, $] G M W,E and H A # is the Zariski or formal 

tangent space. Thus, for any point [A,$] G M ^E we have H A # = 0. 

If H A $ = 0, then Coker(DS)A,$ = 0 and so [A, $] is a regular point of 

the zero locus of the section S of V over C WE. Thus, if H A<i> = 0 and 

H A # = 0, then [A, $] is a smooth point of M W,E with tangent space 

KerTA = Ker(d A*^ + d A$) = H A<!>, as we see from (2.35). Provided 

the zero set S _ 1 ( 0 ) is regular, then M ^E will be a smooth manifold of 
dimension — I n d D , * -

The perturbation terms in (2.27) define gauge equivariant maps 

C $ E - • L _ i ( A + ® su(E)) © L k_X(W- ® E), 

given by 

A ' ^ ^ d-m(A)$ ' 

For k > 2, the Sobolev multiplication theorem implies that # • m(A)$ is 
in L k ( W ~ ® E ) , while T-m(A)p-1($®$*)oo is in L ( A + ®su(E)) when 
k > 3 and in L ( A + <g>su(E)), 1 < p < 2 when k = 2. By the Rellich 
embedding theorem, the inclusions L k C L ̂ _l and L p C Lf, p > 1, are 
compact. In particular, it follows that the linearization of the perturbed 
PU(2) monopole equations (2.36) differs from the linearization of the 
unperturbed equations (2.15) by a compact operator [2, Theorem VI.2]. 

Propos i t i on 2 .28 . If the map S of (2.30) vanishes transversely for 
the parameters (To,êo,T,ê), then M ^E(ro,'ûo,f,'û) is a smooth mani
fold of dimension 

dimM WE = -2pl{su(E)) - 3(1 - bl{X) + b+(X)) 

+ \pi(su(E)) + \(cl(W+) + c l(E)) 2 - \a(X) - 1 

= d i m M E d + 2 Ind C D A-1, 
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where a(X) is the signature of X. 

Proof. Since H A $ = 0 and H A $ = 0 (by hypothesis) at any point 

[A,$] i n M W' E, we have dimM WE — — I n d D , * - By our regularity 

result, Proposition 3.7, any point [A,$] in M ̂ E has a smooth repre

sentative (A,$). Therefore, from the expressions for d A<$, in (2.38) and 

for d A $ in (2.36) and the Sobolev multiplication and embedding theo

rems, we find that the operator D A,$ = d A*$ + d A $ : L2k —> L2k_l differs 

from 

L 2 _ 1 ( s u ( E ) ) © i R Z 

fd* + d+ n \ L k A ^ s u i E ) ) © 
An : ® -+L k_1(A+®su(E)) 

U D A L k(W+®E) © 

L k_ x (W-®E) 

by a compact operator and so has the same (real) index: 

IndD A,$ = Ind(tA + d+) + Ind R D A-1. 

We recall from [20, Eq. (4.2.22)] that the operator 

d*A + d A : L2k{Al ® su{E)) ->• L k _ i s u E ) ) © L2k_1(A+ ®su(E)) 

has index 

Ind(d ̂  + A) = -2pi(su(E)) - 3(1 - bx(X) + b+(X)). 

The complex index of the Dirac operator D A is given by 

Ind C D A = ((A(X))ch(E)e12c W+\[X}) 

= ((l-±pl(X))(2 + c1(E) 

+\cl{Ef - c2(E))(l + \cl{W+) + | c l (W+) 2 ) , [X]) 

= (-±pl(X) + lc1(W+)2 

+ \cl(E)2 - c2(E) + ±cl(E)cl(W
+), [X]) 

= -\a(X) + \cl(W
+)2 + \cl(E)2 - c2(E) + \cl(E)cl(W

+) 

= (ici(E)2 - c2(E)) + l((cl(W
+) + cl(E))2 - a(X)) 

= lpl(su(E)) + \{(cl(W+) + c l(E))2 - a(X)). 

We obtain our dimension formula by adding these indices and noting 
that Ind R D A = 2 Ind C D A- q.e.d. 
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3. Regular i ty 

Our goal in this section is to establish the basic regularity results for 
solutions to the PU(2) monopole equations (2.27). In §3.1 we show that 
global L\ solutions to the first-order elliptic system comprising (2.27) 
and the Coulomb gauge equation (see §2) are necessarily C°°, while in 
§3.2 we show that global L2k solutions to (2.27) are equivalent via an 
L k + l determinant-one, unitary automorphism of E — provided k > 2 
— to C°° solutions to (2.27) in Coulomb gauge relative to some C°° 
reference pair. In §3.3 and §3.4 we establish local versions of the results 
of §3.1 and §3.2. The regularity results and estimates of this section 
will be needed repeatedly throughout our work, so we state them here 
in sufficient generality to cover all of these applications. In the present 
article, we require the regularity results for our proof of transversality 
for the moduli space of PU(2) monopoles (see §5) and they form the 
cornerstone of our proofs of removable singularities and existence of an 
Uhlenbeck compactification (see §4). Furthermore, in sequels to this 
article [26], [27], the regularity results of this section are used to show 
that L\ gluing solutions to (2.27) are necessarily C°° and to analyse 
the Uhlenbeck-boundary behavior of the gluing and obstruction maps 
parametrizing the moduli space ends. 

In order to simultaneously address all of the intended applications, 
the equations we find it convenient to consider here are a quasi-linear, 
inhomogeneous elliptic system consisting of a generalization of the equa
tions (2.27) and Coulomb gauge equation for a pair (A, $ ) G C W,E(X). 

Specifically, we allow inhomogeneous, right-hand terms: the need for 
this generalization arises in our proofs of removable singularities, of reg
ularity for gluing solutions to (2.27), and in analysing the Uhlenbeck-
boundary behavior of gluing maps. Suppose that (AQ, $ O ) is a fixed C°° 
reference pair in C W,E(X): writing (A, $ ) = (AQ, &o) + (a, (fi), combining 
(2.27) with the Coulomb gauge equation, and allowing inhomogenous 
terms, we obtain an elliptic system of equations for a pair (a, cfi) in 

n^XsuiE)) © n°(X, W+ <g> E), 

(3.1) d a - ( • $ < > ) > = C, 

S(A0+a,$o + <fi) = (vo,Vo), 

Considering A to be a connection on su(E) and using the isomorphism 
ad : su(E) —> so(su(E)) to view F A as a section of A2 ®su(E), we write 
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(3.1) as 

d*A0a - (•$())*</> = C, 

F AO+a - (id + To ® id su(£) + r • m(A)) p _ 1 ( ( $ o + </>)«> (*o + </0*)oo = v0, 

(D Ao+a + p(i?o) + 1? • m(A)) ($ 0 + 0) = Vo, 

where (vo^o) G ft+(X,su(E)) ©ft°(X, W~ ®E). Recalling that d°Ao^o 

and d A $ are the differential operators in the elliptic deformation com
plex (2.37) for the PU(2) monopole equations (2.27), the above system 
may be rewritten in the form 

d A0,<s>0{aA) + {(a,</>), (a, </>)} = -S(A0,$o) + (vo,^o) = : (v,ip), 

where (v,ip) G ü+(X,su(E)) © ÜÜ(X,W~ © E), and the differentials 
d A* $ and d A # are given by (2.38) and (2.36). It will be convenient to 
view the quadratic term {(a, (/>), (a, (/>)} as being defined via the following 
bilinear form, 

{(a, </>),(b,</>)} 

f(aAb)+- (id + r0(g)id su (Ê) + f-m(A))p- 1(( / ) (g)^*)oo\ 

' P(a)<p ' 

where (b, y) G tt1 (X, su (E))®Q°(X,W + ®E); we will further abbreviate 
{(a, (/)), (a, (/))} by q(a,(p) when convenient. Our elliptic system (3.1) 
then takes the simple shape 

(3.2) D A0,$0 (a, 0) + {(a, 4>), (a, 4>)} = (C, v, V0> 

recalling from (2.39) that D A0,$O = d A'* # + d A # . This is the form 
of the (inhomogeneous) Coulomb gauge and PU(2) monopole equations 
we will use for the majority of the basic regularity arguments. 

Some of the regularity results and estimates of this section general
ize corresponding results for the first-order anti-self-dual equation [20], 
[30] and, to a certain extent, those of Uhlenbeck [94] and Parker [70] for 
the second-order (coupled) Yang-Mills equations. As usual for a quasi-
linear, first-order elliptic system with a quadratic non-linearity, over an 
n-dimensional manifold, the main difficulty is to prove regularity for 
L™' solutions (that is, at the critical Sobolev exponent). Once the so
lutions are known to be in L°°, then standard linear elliptic regularity 
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theory can be applied [37], [64]. It is worth noting at the outset, though, 
that despite an extensive literature on quasi-linear elliptic systems due 
to Ladyzhenskaya-Ural'tseva, Morrey and others [54], [64], these clas
sical results do not meet the usual demands of gauge theory and this 
explains why we develop the precise results we require here. The con
stants appearing in our estimates generally depend on the underlying 
Riemannian metric on X, the fixed spin c connection on W, the fixed 
unitary connection on d e t E , and the perturbations (TO,$0,7,$): this 
dependence is not explicitly noted, as these ingredients in the PU(2) 
monopole equations (2.27) are fixed once and for all. 

3 .1 . Regular i ty for Lf so lut ions to the i n h o m o g e n e o u s 
C o u l o m b gauge and P U ( 2 ) m o n o p o l e equat ions . We show 
in this subsection that an L\ solution (a, (f>) to the PU(2) monopole and 
Coulomb-gauge equations (3.2), with an L k inhomogeneous term (with 

k > 1) 
is in L ̂ ^ . Thus, if the inhomogeneous term is in C°°, then 

(a, (f>) is in C°°. In passing from an L\ to an L | solution we need only 

consider the case where (T, ê) = 0, while no restriction is placed on the 

perturbation (T, ê) G P given an L\ solution (a, 0). 
Our regularity result contains, as special cases, Proposition 4.4.13 in 

[20] and Theorem 8.8 in [30], for anti-self-dual connections, and Theorem 
8.11 in [77] for Seiberg-Witten monopoles. The proof we give below 
for PU(2) monopoles is rather different. We provide a fairly detailed 
argument here since regularity of L\ solutions to an elliptic equation 
with a quadratic non-linear term does not quite follow directly from 
the standard theory for non-linear elliptic systems (for example, [64, 
Theorem 6.8.1]). 

The two principal steps are, first, to get L p regularity of an L\ so
lution (a, 4>) when 2 < p < 4 and (a, (f>) is sufficiently L4-small and, 
second, to apply elliptic boostrapping and the Sobolev multiplication 
and embedding theorems to get C°° regularity of an L p solution (a, (f>) 
when 2 < p < oo. We will use these sharp regularity results and esti
mates repeatedly throughout our work, so we give the argument in some 
detail here. The main ingredient in the first step is supplied by Propo
sition 3.2 and uses a Fredholm alternative argument to pass from L\ to 
the slightly stronger L p regularity [33, Theorem 5.3]. Although we will 
often be able to simply assume that the inhomogenous term is in C°°, 
rather than just in L p, we will later need these intermediate regularity 
results in our development of the gluing theory for PU(2) monopoles 
[26], [27] to show that L\ solutions (a, 4>) to the system (3.2) with a 
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certain inhomogeneous term (Ç,v,ip), where the latter is initially only 
known to be in L2 or L?,, are actually in C°° (together, of course, with 

Lemma 3.1. Let B i , B2 be Banach spaces and let 

TeHom(Bi,B 2) 

have a right (left) inverse P. If T' G Hom(Bi, B2) satisfies 

kT' -Tk < kPk~1, 

then T" also has a right (left) inverse. 

Proof. If P G Hom(B2,Bi) is a right inverse for T, so TP = idi, 
then 

k(T ' -T )Pk < kT'-TkkPk < 1, 

and idi + (T! — T)P is an invertible element of the Banach algebra 
End(Bi). Define P' = P ( l + (T' - T)P)-\ so T'P' = idi and P' is a 
right inverse for T". Similarly for left inverses. q.e.d. 

The preceding elementary consequence of the usual characterization 
of invertible elements of a Banach algebra will be frequently invoked in 
this section and in particular, in the proof of the proposition below. 

Proposition 3.2. Let X be a closed, oriented, Riemannian four-
manifold with metric g and spin c structure (p, W), and let E be a Her-
mitian two-plane bundle over X. Let (AQ, $0) be a C°° pair on the C°° 
bundles (su(E), W+ ®E) over X and let 2 < p < 4. Then there are pos
itive constants e = E{AQ, &o,p) and C = C(AQ, $o,p) with the following 
significance. Suppose that (a, 4>) G L\(X, A1 ®su{E)) © LJ(X, W+ <g> E) 
is an L\ solution on (su(E),W+ <g) E) to the elliptic system (3.2) over 
X with (T, ê) = 0, where (Ç,v,ip) is in L p. If k(a, (f))k L4(X) < e; then 
(a, 4>) is in L p and 

k{aMk L p^(X) < C (k(<:,vMkIp(X) + k(a,<P)k Li(X)) • 

Proof. The operator D A0,$O is Fredholm (since it is elliptic with 
C°° coefficients and X is closed), and so has a finite-dimensional ker
nel and cokernel. In particular, Ker A0;$0j L2 C C°°. Let ITi be the 
L2-orthogonal projection onto Ker'DJ40;$0j L2 and let LI2 be the L2-
orthogonal projection onto KerD A # j L2 = (Im'A0 ;$0j L2)±, the L2-
orthogonal complement of the image of ImD A0,$0j L2. The L2-adjoint 
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D*A # is again a first-order linear elliptic operator with C°° coefficients 
and so Ker£A # j L2 C C°°. We may then rewrite our quasi-linear 
elliptic equation (3.2) in the form 

UiD Ao^0Ut(a, 0) + Ui{(a, 0), UÌ(a, </>)} 

= - n 2 (D A0,$0(a,</>) + {(a,</>),n]
L(a,(/>)} 

- { ( a , 0 ) , n i ( a , 0 ) } + (C,v ,V)=:T, 

where 11i = id —ITi for i = 1,2. Thus, we need to consider the existence 
and uniqueness problem for solutions (b, ip) to 

(3.3) UiD Ao^0(b,lp)+Ui{(a,4>),(b,lp)} = T, 

where (b,ip) E L f l (KerD A0,$0)~
L- Plainly, the operator 

n ^ D Ao,#0 : L p n (KerD A^)1- -+ L p n ( K e r D ^ ^ 

is (left and right) invertible and hence this will also be true for any oper
ator from Ljn(Ker 2A ^g)-1-to L pn(Ker 2A # )-*-, suchas H2~D A0,$0 + 

IL1-{(a, (/)), • }, which is sufficiently close in the Hom(L ̂ A , L p) operator 
norm by Lemma 3.1. Since D A0,$0 and D*A # are first-order linear ellip
tic operators with C°° coefficients and D A0,$0HI = 0 and D*A # LI2 = 0, 
standard elliptic theory implies that 

||n2(e,w,e)||L riAo <C||(e,w,e) | |2, K , w , ? ) e L , 
( 3 ' 4 ) l | n i ( M I L r > A o <C| l (Ml l2 , (b,<p)<=L k 

for some constant C = C{AQ, <1>O, k, r), whenever k > 1 and rk > 4/3 or 
k = 0 and r > 2. 

Since (a, 0) is in L\, the terms A i$0(a, 0) and {(a, 0), (a, 0)} and 
{(a, 0), IL1-(a, (/>)} are in L2, while the term {(a, (/>),LIi(a, (/>)} is in L2. 
The terms L ^ D ^ ^ a , (/>) and ^ { ( a , 0), Ll^a, 0)} are each in C°°, 
while (Ç,v,ip) is in L p, and so the right-hand side T of (3.3) is in 
L n ( K e r D A o ) ^ . 

Let q = 4p/(4 — p). Then 4 < q < 00; there is a continuous mul
tiplication map L4 x L q —> L p and an embedding L p C L q. So, as 
n̂ - = id-n2 , 

||n2
L{(a,0))(b)¥3)}||L p<| |{(a,0) )(b ) ¥ 3)}| |L p+C||{(a,0),(b )¥3)}| |L2 

< C | | ( a , ^ ) | | L 4 | | ( b , ^ ) | | L p , 
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for some positive constant C = C(AQ, $o,p). By Lemma 3.1 there is a 
positive constant e = e(Ao,$o,p) such that if \\(a, <P)\\L* < £, the linear 
operator I1^D A0,<S>0 + ILj-{(a, (/>), • g is (left and right) invertible as a 

map L p n (KerD Ao^o)1" "^ L ' n (KerD Ao,$o)±- Since n f a ' ^ ) is a 
solution to (3.3) when p = 2, it is the unique solution for p = 2. 

Let (a p,0p) É l p n ( K e r ' A 0 ) $ 0 ) ± be the L ̂  solution to (3.3). Then 
(a p, 4>p) is also an Lf solution and by the uniqueness assertion we must 
have that (a p, 4>p) = LT^a, 4>). Thus, L l ^ a , 0) is in L p and so (a, 0) is in 
L p since fIi(a,(/>) is in C°°. Finally, the standard estimate for D A0,$0, 

the estimate (3.4), and equation (3.2) yield 

||(a,c/>)|L < C ( | | D Ao,#0(a,</))||L p + | |ni(a,0) | |L2) 

< C ( | | { ( a , ^ ) , ( a , 0 ) g | L + | |(C,v,V)lL + | |n! (a , 0) | |L 2 ) , 

and so the desired bound for (a, (f>) follows by the Sobolev multiplication 
L4 x L q —> L p, the embedding L p C L q, and rearrangement. q.e.d. 

Proposition 3.2 will have two main applications: the first is in our 
proof of removable singularities for PU(2) monopoles, and the second is 
in our proof of C°° regularity for L\ solutions to the PU(2) monopole 
equation obtained by gluing [26], [27]. 

As is well-known from standard gauge theory, it is not possible to 
construct a well-defined quotient space using L\ pairs modulo L\ gauge 
transformations. We construct a quotient using L2k pairs modulo L2k+1 

gauge transformations, with k > 2. We first establish a regularity result 
for the inhomogeneous PU(2) monopole and Coulomb gauge equations, 
while in §3.2 we show that any PU(2) monopole in L k is L ^+ 1-gauge 
equivalent to a PU(2) monopole in C°°. 

Propos i t i on 3 .3 . Continue the notation of Proposition 3.2. Let 
k > 1 be an integer and let 2 < p < oo. Let (Acb^o) be a C°° pair on 
the C°° bundles (su(E), W+ <g) E) over X. Suppose that either 

• (a, 4>) G L p(X, A1 <g> su{E)) © L p(X, W+ <g> E), with (f, d) = 0, or 

• (a, 4>) G L2(X, A1 <g> su(E)) © L2{X, W+ <g> E) 

is a solution on (su(E),W+ <S> E) to the elliptic system (3.2) over X, 
where (Ç,v,ip) is in L2k. Then (a,(j>) is in L2k+l and there is a universal 
polynomial Q k(x,y), with positive real coefficients depending at most on 
(AQ, <1>O), k, such that Q k(0, 0) = 0 and 

\\(a,4>)\\L k + l A o (X ) < Q k [\\(C,v,ip)\\L2Ao(X),\\{a,4>)\\L p Ao{X)j . 
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In particular, if(Ç,v,ip) isinC°°, then(a,cf)) isinC00, and if (Ç, v, ip) = 
0 ; then 

\\amL k+ hAo {X )<C\\(a,4>)\ \L p Ao{Xy 

Proof. We consider the cases k = 1, k = 2, and k > 3 separately. 
We may further assume without loss of generality that 2 < p < 4. 

Case (k = 1) . Let po = p and qo = q = ^p/(4: — p). Then 1/p = 
1/4 + 1/q and 4 < q < oo. We have a continuous Sobolev multiplication 
map L 4 x L q —T- L p and an embedding L p <Z L q. Since 

(3.5) D Aoy<s>0(a,4>) = -{(a,4>),(a,4>)} + ((,v,ip), 

elliptic regularity for A0,$O implies that (a, (fi) £ L p\ •> where p\ = 
2p/(4 — p) and qi = D p i / ( 4 — p i ) , so 2 < pi < 4 and 4 < qi < oo. 
Here, we have used the Sobolev multiplication L4 x L qi —> L pl to get 
{(a, 0), (a, 0)} in L pl and the embedding L\ C L pl to get (Q^v^ifi) in 
I/p l. Let p = 2 + e and 8 = e/(2 — e), and note that 

p = ; p p = p = fl+flp>"+-

If p j < 4, we inductively define p j+i = 2p j/(A — p j) and q j + \ = 
4p j / ( 4 — p j) for j > 0. Therefore, we have p j > 2 + e. Thus 

Ip- Ip-
p+1 = jdj > T^I

 = (1 + 6)p j > p > 2 + e ' 

and so p j+i > (1 + Sj+1p for j > 0. 
By repeating the above regularity argument when 2 < p j+i < 4, 

using (3.5) at each stage, we see that (a, (fi) G L ^ for j > 0. We 
continue the induction until for large enough j > 0, we find that p' : = 
p j+i > 8/3 and q' := q j + \ > 8, so (a, (fi) G L-/ C L8. Therefore, with 
(Ç,v,ifi) G L\ C L 4 and using the Sobolev multiplication L 8 x L 8 —>• 
L 4 to get {(a, 0), (a, 0)} in L4 , equation (3.5) gives (a, 0) G Lf. The 
Sobolev multiplication L\ x L 4 —>• Lf implies that the quadratic term 
{(a, 0), (a, 0)} is in L\ and so (3.5) yields (a,(fi) G L | , as required. 

Case (k = 2) . From the case k = 1 we continue the induction 

until p' > 8/3 and q' > 4. Hence, with (Ç,v,ifi) now in L\ C L p , 

equation (3.5) gives (a, 0) G L p C C°. The Sobolev multiplication 

L p x L | —>• L2 implies that the quadratic term {(a, 0), (a, 0)} is then in 

L\ and so (3.5) gives (a, (fi) G L\ as required. 
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Case (k > 3) . There is continuous Sobolev multiplication map 
L k x L k —>• L k and so the quadratic term {(a, 0), (a, 4>)} is in L k, since 
(a, 0) is in L ̂ . Therefore, (3.5) gives (a,(j>) G L2k+l. 

This completes the proof of the proposition. q.e.d. 

By combining Propositions 3.2 and 3.3 we obtain the desired regu
larity result for L\ solutions to the inhomogeneous Coulomb gauge and 
PU(2) monopole equations: 

Corollary 3.4. Continue the notation of Proposition 3.2. Let 
(Ab$o) be a C°° pair on the C°° bundles (su(E),W+ <g> E) over X. 
Then there is a positive constant e = eAcb^o) such that the following 
hold. Suppose that either 

• (a,</>) G L\(X, A1 <g> su(E)) © LJ(X,W+ <g> E), with (f,#) = 0 , or 

• (a, 4>) G L?2(X, A1 <g> su(E)) © L | X , W+ <g> E) 

is a solution on (su(E),W+ <S> E) to the elliptic system (3.2) over X, 
where (Ç,v,ip) is in L k and \\(a, (f))\\L4(X) < e and k > 0 is an integer. 
Then (a, cj)) is in L k+l and there is a universal polynomial Q k(x,y), 
with positive real coefficients depending at most on (Ao,Qo),k, such 
that Q k(0,0) = 0 and 

\\(a,4>)\\Ll+lAo(X) < Q k [\\(C,v,ip)\\L2Ao{X),\\{a,4>)\\L2{X)j . 

In particular, if (Ç,v,ip) is in C°° then (a, 4>) is in C°°, and if (Ç,v,ip) 
= 0, then 

| | ( a ^ ) | | L 2 + i A o X < C | | ( a ^ ) | | L 2 X . 

Remark 3.5. A similar sharp regularity result for solutions to the 
Coulomb and anti-self-dual equations (that is, (d^ + d^)a + (aAa)+ = v) 
on the product bundle over S4 is given by Proposition 4.4.13 in [20]. The 
reader is forwarned that Corollary 3.4 does not apply directly to show 
that L\ gluing solutions to the PU(2) monopole equation in [26] are C°° 
due to the unfavorable dependence of the constant e(A',Q',p) on the 
approximate PU(2) monopole (A',&) when p > 2. However, a local 
version of this result, namely Corollary 3.11 below, is applicable in this 
situation. The point is explained further in [26]. 

3.2. Regularity of L k solutions to the PU(2) monopole 
equations. We explain in this subsection why an L k monopole (A, $) 
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on the C°° bundles (su(E),W+ <g) E) over X is gauge equivalent, via 
an L k+i determinant-one, unitary automorphism u of the bundle E, 
to a C°° solution u(A,$) on ( s u ( E 0 , W + (g) E) over X when k > 2. 
This regularity result contains, as special cases, Theorem 8.8 in [30], for 
anti-self-dual connections, and Theorem 8.11 in [77] for Seiberg-Witten 
monopoles. 

We will need the following observation concerning the symmetry 
of the Coulomb gauge equation for pairs; the corresponding fact for 
connections is explained in [20, p. 56]. 

L e m m a 3.6. Let (A,<&), (AQ,$Q) be L2k pairs on the bundles 

(su(E),W+ (g> E) over X. If [AQ,QQ) is in Coulomb gauge relative to 

(A, $ ) , so d°A%((Ao, $o) - (A, $)) = 0, then (A, $ ) is in Coulomb gauge 

relative to (A0, $ 0 ) , so d°Ao<s>o((A, $ ) - (A0, $ 0 ) ) = 0. 

Proof. The equation d°A^((A0,^0) - (A,$)) = 0 is the Euler-
Lagrange equation for the functional 

E 2 / + 1 3 u ^ k u ( A o , ^ ) - ( A ^ ) k L^ 

while the equation d A # ((A, $ ) — (AQ, $ Q ) ) = 0 is the Euler-Lagrange 

equation for the functional E 9 v 4 kv(A, $ ) — (AQ, $o) k L2 • 

But for any u G E we have 

ku(A) ,$o) - ( A , $ ) k L* = k u _ 1 ( A $ ) - ( A 0 , $ 0 ) k L2, 

and so if the functional u *-> ku(Ab $ O ) ~~ ( A ^ ) k L2 has a critical point 
at u = id E, then the functional u~l t-> k u ~ l ( A , $ ) — (Ao, $0) k ̂  L2 will 
also have a critical point at u = id E. q.e.d. 

Propos i t i on 3 .7 . Let X be a closed, oriented, Riemannian four-
manifold with spin c bundle W and let E be a Hermitian two-plane bun
dle over X. Let k > 2 be an integer and suppose that (A, $ ) is an L2k 
solution to (2.27) on the C°° bundles (su(E),W+ <g> E) over X. Then 
there is a L2k+1 determinant-one, unitary automorphism u of the bundle 
E over X such that u(A, $ ) is C°° over X. 

Proof. It suffices, of course, to show that there is an L k + l gauge 
transformation u of E over such that u(A, <£>) is in L k+ 1 . The C°° pairs 
(AQ, $0) on (su(E), W+ (g> E) form a dense subspace of the space of L k 
pairs and so, given e = e(A,$) > 0, there is a C°° pair (AQ,$Q) such 
that 

k A , $ ) - ( A 0 , * o ) k Li <e. 
k,A 
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For small enough e, Proposition 2.8 gives an L2k+l determinant-one, 
unitary automorphism u of the bundle E such that u~1(AQ,^Q) is in 
Coulomb gauge relative to (A, $): 

d0A%(u-1(A0^o)-(A^)) = 0. 

Now u(d°A*ç(u-l(A0,$0) - (A,*))) = dfA )4 )((A0 ,$o) -u(A,$)) and 
so 

d ^A^((A0,$0)-u(A,<ï>))=0. 

Therefore, (AQ, $O) is in Coulomb gauge relative to u(A, <£>) and Lemma 
3.6 implies that u(A, <&) is in Coulomb gauge relative to (AQ, 3>O), 

d°Ao*)4o(u(A,$)-(Ao,$o)) = 0. 

Let (a, 4>) = u(A, $) - (Ao, $o), so that 

(a, 0) G L ( X , A1 <g> su(E)) © L ( X , W+ ®E); 

the Coulomb gauge condition then takes the simpler form d A* # ( a , (/>) = 
0. Since u(A,$) = (AQ,$Q) + (a,4>) is an L ̂  monopole, S((A0,$Q) + 
(a, 0)) = 0 and so (a, 0) is an L2k solution to the quasi-linear elliptic 
equation 

D„,$„(a, 4>) + {(a, </>), (a, </>)} = - S ( A ) , $o), 

with C°° data —S(Ao,$o)- The conclusion now follows from Proposi
tion 3.3 with C = 0 and (v,ip) = — S(AQ,$Q). q.e.d. 

One of the convenient practical consequences of Proposition 3.7 is 
that we can always work, modulo global L2k+l gauge transformations, 
with C°° rather than L2k monopoles. For the remainder of this article, 
therefore, the term 'PU(2) monopole' is generally reserved for C°° so
lutions to the perturbed PU(2) monopole equations (2.27). In a similar 
vein, we generally reserve the terms 'gauge transformation' or 'bundle 
map' for gauge transformations or bundle maps which are in C°°. 

Given Proposition 3.7, we then have the following analogue of Propo
sition 4.2.16 in [20], the corresponding result for the moduli space of 
anti-self-dual connections. The proof is standard and so is left to the 
reader. 

Corollary 3.8. Continue the hypotheses of Proposition 3.7. Then 
for any k > 2 the natural inclusion of topological spaces M ̂ E •—>• M ^E 
is a homeomorphism. 
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Thus, the topology of the moduli space M ^E of L k monopoles is 
independent of the Sobolev spaces used in its construction for k > 2 
and so we simply denote the moduli space by M W,E-

3.3 . Local regularity and interior e s t i m a t e s for Lf so lut ions 
to t h e i n h o m o g e n e o u s C o u l o m b gauge and P U ( 2 ) m o n o p o l e 
equat ions . In this section we specialize the results of §3.1 to the case 
where the reference pair is a trivial PU(2) monopole, so (AQ, $ O ) = (f\ 0) 
on the bundles (su(E), W+ (g> E), over an open subset l ! c X , where T 
is a flat connection. 

We continue to assume that X is a closed, oriented four-manifold 
with metric g, spin c bundle W, and Hermitian two-plane bundle E ex
tending those on SI C X . We use the inhomogenous estimates and regu
larity results in our proof of removable singularities for PU (2) monopoles 
in §4.3 and in our development of the gluing theory for PU(2) monopoles 
in sequels [26], [27] to the present article — especially to show that a 
global L\ gluing solution (a, 4>) is actually C°°. We use the homogeneous 
estimates and regularity results in §4 for our proof of the existence of an 
Uhlenbeck compactification for the moduli space of PU(2) monopoles. 

We have the following local versions of Propositions 3.2 and 3.3 and 
Corollary 3.4: 

Propos i t i on 3 .9 . Continue the notation of the preceding para
graph. Let il' (s Çl be a precompact open subset and let 2 < p < 4. 
Then there are positive constants e = e(ü,p) and C = C(fl',Q,p) with 
the following significance. Suppose that (a,(ß) is an L\{ÇÏ) solution to 
the elliptic system (3.2) over fl for (r , ê) = 0, with (Acb^o) = (f \0) 
and where (Ç,v,ip) is in L p(Q). If \\(a, </))||L4(Q) < e ; then (a, 4>) is in 
L p{Çl') and 

ll(a,0)llL p>r(n') < C(ll(C,v,^)llL p(fi) + | | (a,0) | |L2 ( n )) . 

Proof. Choose an open subset Q" such that Q' d Çl" <e Çl. Let x be 
C°° cutoff function such that s u p p x C fl" and x = 1 on Q'. Let ß be a 
cutoff function such that ß = 1 on s u p p x and supp/3 C $1". Since (a, (f>) 
is a solution to (3.2) with right-hand side (Ç,v,ip) over O, then %(a, 4>) 
solves 

Dr,ox(a> 4>) + {{a, 4>),x(a, 4>)} 

= XDr,o(a, 4>) + dx ® {a, 4>) + x{(a, 4>), {a, 4>)} 

= X(C, v, iP)+dX® (a, <t>) =: (C', v', i>'). 
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Thus, x(a, 4>) is an L\ solution over X to the linear elliptic system over 
X, 

D,o(b, <p) + {ß(a, (fi), (b, ip)} = ((', v', ifi'), 

with L\ coefficient ß(a,(fi) and L\ right-hand side (Ç',v',ip'). Since 
\\ß(a, </))||L4(X) < II (a? 0)llL4(n)) the proof of Proposition 3.2 implies that 
x(a, (fi) is in L p over X if e = e(g, fì,p) is sufficiently small. Thus, (a, (/>) 
is in L p over O' with 

Wx(aA)\\L pAX) < C ( I K C v ^ O l L X ) + \\x(aA)\\LHX)) , 

and therefore, for 2 < p < 4, we have 

ll(a,</>)||Lr(n') < C(ll(C,v,^)llL p(n») + II(a,0)||L p(n»)) • 

The preceding bound and the Sobolev embedding L\ C L give the 
estimate 

ll(a,0)llL p(n") <c||(a,0)||Lï>r(n») < C (IKCv, V)IIL2(H) + IKa,0)llL2(n)) • 

Combining these inequalities then yields the required L p estimate for 
(a, (fi) over Q'. q.e.d. 

Proposition 3.10. Continue the notation of Proposition 3.9. Let 
k > 1 be an integer, and let 2 < p < oo. Suppose that either 

• (a, (ft) is an L ̂ (Q), when (r, ê) = 0, or 

• (a, (fi) is an L^(ß) 

solution to the elliptic system (3.2) overt! with (AQ,$Q) = (I\ 0), where 
(Ç,v,ip) is in L k(il). Then (a, (fi) is in L k+1(Q') and there is a universal 
polynomial Q k(x,y), with positive real coefficients depending at most on 
k, Q', Q, such that Q k(0,0) = o and 

\\(a,4>)\\Ll+hr(n') < Q k (\\{(,v,ip)\\L2r{n), ||(a,^)||L p r(n)) • 

If (Ç,v,ifi) is in C°°(n), then (a,(fi) is in C°°(ß') and if (Ç,v,ifi) = 0, 
then 

IKa'^)llLÏ+1>r(n') < C | I ( a ,0 ) | |L p (n)-
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Proof. Again, choose an open subset il" such that il' (ë il" d 57, let 
X be C°° cutoff function such that suppx C 57, and x = 1 on 57" and 
let ß be a cutoff function such that ß = 1 on suppx and supp/3 C 57. 
Since (a, (ft) is a solution to (3.2) with right-hand side (Ç,v,ifi) over 57, 
x(a, 0) solves 

D,ox(a, 0) + {x(a> 4>),x{a, </>)} 

= X^r,o(a, </>) + d\ ® (a, (fi) + x{(a, <fi), (a, (fi)} 

D X(x-l){(a,0),(a,0)} 
= x(C, ̂  VO + dX ® (a, 0) + X(X - l){(a, 0), (a, 0)} 

= : ( C v , V 0 -

Note that x(C, v, V') is in L k X ) while dx (g> (a, (/>) is in L ̂ (X), and the 
Sobolev multiplication L q xL q —> L p1 implies that x(x—1){ia-> <t>)-> ia-> </*)} 
is in L pl(X), where p\ = q/2 = 2p/(4 — p) > p. Thus, ((',v',)/)') is in 
L ^{X). 

The proof of the case k = 1 in Proposition 3.3 then implies that 
x(a, 0) is an L p1 (X), so (a, (fi) is in L p1 (57")- We now repeat this process 
for each of the remaining steps in the proof of Proposition 3.3, at each 
stage on successively smaller open subsets 57'" such that 57' d 57'" <<= 57", 
until we obtain (a, (fi) in L k+l(il') and the desired L k+l(il') estimate. 
q.e.d. 

Corollary 3.11. Continue the notation of Proposition 3.10. Then 
there is a positive constant e = e (il) with the following significance. 
Suppose that either 

• (a, (fi) is an L\(Q), when (r, ê) = 0, or 

• (a, (fi) is an L^(57) 

solution to the elliptic system (3.2) over ii with (AQ,^Q) = (I \0) ; where 
(Ç,v,ip) is in L k(Çt) and ||(a, </>)IIL4(Q) < £• Then (a, (fi) is in L k+l(il') 
and there is a universal polynomial Q k(x,y), with positive real coeffi
cients, depending at most on k, 57'; 57; such that Q k(0,0) = 0 and 

IKa'^)llLÏ+1>r(n') < Q k [\\(C,v,ifi)\\L2r(n),\\{a,(fi)\\L2{ù} 

If (C,v,tfi) is in C°°(57) then (a, (fi) is in C°°(fi'), and if ((,v,tfi) = 0, 
then 

IKa'^)HL+ir(n') < C||(a,0)||L2(n). 
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Corollary 3.11 thus yields a sharp local elliptic regularity result for 
PU(2) monopoles (A, <&) in L\ which are given to us in Coulomb gauge 
relative to (T, 0): this regularity result is the key ingredient in our proof 
(given in §4.3) of removable point singularities for PU(2) monopoles. 

Proposition 3.12. Continue the notation of Corollary 3.11. Then 
there is a positive constant e = e (il) and, if k > 1 is an integer, there 
is a positive constant C = C{Q!, f2, k) with the following significance. 
Suppose that either 

• (A,&) is an L\, when (r, i?) = 0; or 

• (A, $) is an L\ 

solution to the PU(2) monopole equations (2.27) over Q, which is in 
Coulomb gauge over O relative to (I\ 0), so d^(A — T) = 0; and obeys 
| |(A-r,$)| |L4(n) <e. Then (A-F,$) isinC°°(n') and for any k > 1, 

\\(A-r^)\\LlAnl)<C\\(A-r,$)\\L2{n). 

Proof. Corollary 3.11 applies to the Lf(fi) pair (a,4>) = (A - r , $) 
and yields the required regularity and estimates for (A — V, $) with 
(C,v ,V)=0in(3 .2) . q.e.d. 

3.4. Estimates for PU(2) monopoles in a good local gauge. 
It remains to combine the local regularity results and estimates of §3.3, 
for PU(2) monopoles (A, $) where the connection A is assumed to be in 
Coulomb gauge relative to the product SO(3) connection V, with Uhlen-
beck's local, Coulomb gauge-fixing theorem. We then obtain regularity 
results and estimates for PU(2) monopoles (A, $) with small curvature 
F A , parallel to those of Theorem 2.3.8 and Proposition 4.4.10 in [20] for 
anti-self-dual connections. 

In order to apply Corollary 3.11 we need Uhlenbeck's Coulomb 
gauge-fixing result [95, Theorem 2.1 & Corollary 2.2]). Let B (respec
tively, B) be the open (respectively, closed) unit ball centered at the 
origin in R4 and let G be a compact Lie group. In order to provide 
universal constants we assume R4 has its standard metric, though the 
results of this subsection naturally hold for any C°° Riemannian metric, 
with comparable constants for metrics which are suitably close. 

Theorem 3.13. There are positive constants c and e with the fol
lowing significance. If 2 < p < 4 is a constant and 

A G L p(B, A1 <g> g) n L p{pB, A1 <g> g) 
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is a connection matrix whose curvature satisfies k F AL p(B) < e ; then 
there is an gauge transformation u G L^B^G) n L p,(k B,G) such that 
u(A) := uAu~l — (du)u~l satisfies 

(1) d*u(A) = 0 o n B , 

(2) &uA) = 0 on dB, 

(3) k u A ) k L p{B)<ckF A k L p{B). 

If A is in L p k(B), for k > 2, then u is in L p k+l(B), and the gauge 
transformation u is unique up to multiplication by a constant element 
ofG. 

R e m a r k 3 .14 . If G is abelian, then the requirement that 

kF A k L p(B) < e 

can be omitted. 

It is often useful to rephrase Theorem 3.13 in two other slightly 
different ways. Suppose A is an L k connection on a C°° principal G 
bundle P over B with k > 2 and kF A k L 2 B ) < e- Then the assertions of 
Theorem 3.13 are equivalent to each of the following: 

• There is an L2k+l trivialization r : P —>• B x G such that 

(i) dp(r(A) — r ) = 0 , where Y is the product connection on 
B xG, 

(ii) £4T(A) - r ) = 0, and 

(iii) k ( T ( A ) - r ) k LiiB)<ckF A k LHB). 

• There is an L k + 1 flat connection r on P such that 

(i) d*r(A-T)=0, 

(ii) ^4A-T) = 0, and 

(iii) k(A - r )L2(B) < C Ì ^ A k L 2 B ) ) and an L2k+1 trivialization 
P\B — B k G taking k to the product connection. 

We can now combine Theorem 3.13 with Proposition 3.12 to give 
the following analogue of Theorem 2.3.8 in [20] — the interior estimate 
for anti-self-dual connections with L2-small curvature. 
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Corollary 3 .15 . Let B C R4 be the open unit ball with center at 
the origin with spin c structure (p, W), let U ^ B be an open subset, and 
let r be the product connection on B x SO(3). Then there is a positive 
constant e and if £ > 1 is an integer, there is a positive constant C(£, U) 
with the following significance. Suppose that either 

• (A,$) is an L\, when (r, i?) = 0 ; or 

• (A,$) is an L k, k > max{2,£} ; 

solution to the PU(2) monopole equations (2.27) over B and that the 
curvature of the SO(3) connection matrix A obeys \\F A\\L ^(B) < £- Then 
there is an L2k+1 gauge transformation u : B —>• SU(2) such that (u(A) — 
I \ u $ ) is in C°°(B) with d*(u(A) - T) = 0 over B and 

\\(u(A) - T , u ^ LiAU) < C\\F A\\L/2
2

{By 

Proof. Let e\ be the constant in Theorem 3.13 and note that for 
£ < £i) Theorem 3.13 (taking G = SO(3)) and the Sobolev embedding 
L\(B) C L4(B) imply that there is an L2k+1 gauge transformation u : 
B —> SU(2) (by lifting the SO(3) gauge transformation) such that 

dUu(A)-T) = 0, 

\\u(A) - rllL4(B) < c I \ \F A\\L2(B) < cIS. 

On the other hand, the quadratic equation for $ in (2.27) and Lemma 

2.26 give the L4 and L2 estimates, 

W^WLHB) = II$HL4(B) < 2 | | F AHL2
(B), 

| | u $ | | L 2 ( B ) < 2 | | F A||L2
(B). 

Let £2 be the constant in Proposition 3.12. Hence, if c\E < £2 and 

4 p ë < £2, then Proposition 3.12 implies that (u(A) — T , u $ ) obeys 

Mu(A)-r,u$)\\LlAU) < C\\(u(A) -r,ud>)||L2(B), 

since d^(u(A) - T) = 0 and ||(u(A) - T,u^)\\L4B < e2. The desired 
estimate follows by combining these inequalities for small enough e < 1. 

q.e.d. 

Again, it is often useful to rephrase Corollary 3.15 in the two other 
slightly different ways. Suppose that £ > 1 and that (A, $ ) is a PU(2) 
monopole in L2k on (su(E),W+ <g) E) over the unit ball B C R4 with 
k > max{2,£}, ||F A | |L2(B\ < e and U d B . Then the assertions of 
Corollary 3.15 are equivalent to each of the following: 
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• There is a C°° trivialization r : E\B -> B x C2 and an L ̂ + 1 

determinant-one, unitary bundle automorphism u of E\B such 
that, with respect to the product connection r on B x su(2), we 
have 

(i) d*v{Tu{A) - r ) = 0, and 

(ii) \\(Tu(A) -T,Tu*)\\Llr{U) < C l l F l l L B). 

• There is an L k+1 flat connection T on su(E)\B such that 

(i) d*r(A-T) = 0, and 

(ii) \\(A - r , &)\\L2r{U) < c\\F A\\L^B), and an L k+1 trivialization 

su(E)\B - B X su(2) taking T to the product connection. 

Corollary 3.15 immediately yields the following local compactness 
result for PU(2) monopoles analogous to the local compactness result 
for anti-self-dual connections in [20, Corollary 2.3.9]. 

Corollary 3.16. Let B C R4 be the open unit ball and spin c 
structure (p, W). Then there is a positive constant eo (g, A det W+, A det E) 
with the following significance. Let U d B be an open subset and let 
k > 2 be an integer. If (Aa,Qa) is a sequence of PU(2) monopoles in 
L k on (su(E),W+ 0 E) over B such that 

\\F Aa\\L
2(B) < £0, 

then there is a subsequence fa1g C fag, a sequence of determinant-
one, unitary L k+l automorphisms fuai of E\B and a sequence of gauge 
equivalent pairs (Aai,$ai) := uai(Aai, gQ/) which converge in L ̂  loc on 
U to a PU(2) monopole (A, $) over U. 

We will also need interior estimates for PU(2) monopoles in a good 
local gauge over more general simply-connected regions than the open 
balls considered in Corollary 3.15. Specifically, recall that a domain 
Q C X is strongly simply-connected if it has an open covering by balls 
Di,...,D m (not necessarily geodesic) such that for 1 < r < m the 
intersection D r n {D\ U • • • U D r_i) is connected. We recall (see [20, 
Proposition 2.2.3] or [43, Proposition I.2.6]): 

Proposition 3.17. If Y is a C°° flat connection on a principal 
G bundle P over a simply-connected manifold Q, then there is a C°° 
isomorphism P ~ ! l x G taking T to the product connection on Q x G. 
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More generally, if A is a C°° connection on a G bundle P over a 
simply-connected manifold-with-boundary Ù = SÎU d£l with L p-small 
curvature (with p > 2), then Uhlenbeck's theorem implies that A is 
L p-gauge equivalent to a connection which is L ̂ -close to an L p flat con
nection on P (see [96, Corollary 4.3] or [20, p. 163]). The following a 
priori interior estimate is a straightforward generalization of [20, Propo
sition 4.4.10]: the method of proof is identical to that described in [20, 
pp. 161-162] and uses a patching argument for gauge transformations 
employed by Uhlenbeck in the proof of Theorem 3.6 in [95]. The re
quired bound for the connection in terms of its curvature is obtained by 
covering the given open region with balls and applying the estimate of 
Corollary 3.15 in place of Theorem 2.3.8 in [20]. 

We recall from Proposition 2.16 that any automorphism of the SO(3) 
bundle su (E) \Q over a simply-connected open subset Q C X lifts to a 
determinant-one, unitary bundle automorphism of E\Q. The method of 
[20, pp. 161-162] then yields: 

Propos i t i on 3 .18. Let X be a closed, oriented, Riemannian four-
manifold with spin c structure (p, W) and let Q C X be a strongly simply-
connected open subset. Then there is a positive constant e(Q) with the 
following significance. For Q' d O a precompact open subset and an 
integer £ > 1, there is a constant C(£,Q',Q) such that the following 
holds. Suppose (A, $ ) is a PU(2) monopole in L k on (su(E),W+ <g) E) 
over Q with k > max{2,£} such that 

IIF AIIL^Q) < £. 

Then there is an L k flat connection T on su(E)\Q> such that 

and an L ̂  k+1 trivialization su(E)\QI ~ Q' xsu(2) taking T to the product 

connection. 

4. Uh lenbeck compact i f icat ion for t h e modul i space of P U ( 2 ) 
m o n o p o l e s 

Our goal in this section is to prove the existence of an Uhlenbeck-
type compactification of the moduli space of PU(2) monopoles analo
gous to the Uhlenbeck compactification of the moduli space of anti-self-
dual connections [20]. In §4.1 we establish the Bochner-Weitzenbock 
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formulas for the coupled Dirac operators D A and D*A and the a priori 
bounds satisfied by the section $ and the curvature F A , if (A, <£>) is a 
PU(2) monopole on (su(E), W+ ®E); these generalize the well-known a 
priori bounds for Seiberg-Witten monopoles [47], [62], [77]. In our proof 
of removable singularities we need to take into account the variation of 
spin c structures with the Riemannian metric and the rescaling behavior 
of the PU(2) equations; this variation is discussed in §4.2. 

In §4.3 we prove the removability of point singularities for PU(2) 
monopoles. T. Parker established the removability of point singularities 
for solutions to the second-order coupled Yang-Mills equations, namely, 
d*A F A = q(&) and D A& = 0, for a unitary connection A on E and a 
section $ of W ® E, where q is a certain quadratic form [70]. This 
generalizes the corresponding results of Uhlenbeck in the case $ = 0, 
where the above system then reduces to the second-order Yang-Mills 
equation [30], [94]; proofs of removable singularities for anti-self-dual 
connections are given in [20] (see also [96]). D. Salamon has given a proof 
of removable singularities for Seiberg-Witten monopoles [77, Chapter 
9]. The arguments of Uhlenbeck and Parker rely on pointwise curvature 
and energy decay estimates; Salamon's method relies on energy decay 
estimates and elliptic regularity results for Seiberg-Witten monopoles. 
The proof we give for PU(2) monopoles is rather different and instead 
relies heavily on our C°° regularity result for Coulomb-gauge PU(2) 
monopoles in L\ (Proposition 3.12); this is similar to the strategy used 
by Donaldson and Kronheimer in [20]. 

The technical ingredients we need for patching sequences of local 
gauge transformations are described in §4.4, and the Uhlenbeck closure 
M W,E is defined in §4.5, by analogy with the corresponding definition 
for the moduli space of anti-self-dual connections in [20, §4.4]. In §4.5.2 
we describe how the holonomy perturbations extend continously with 
respect to Uhlenbeck limits and induce holonomy perturbations on all 
lower-level moduli spaces of PU(2) monopoles. We then define the Uh
lenbeck closure for the moduli space of perturbed PU(2) monopoles. 

In §4.6 we prove Theorem 1.1, which asserts that the Uhlenbeck 
closure M W,E is compact. The main analytical ingredients in the proof 
comprise the regularity results and estimates of §3; the a priori bounds 
of §4.1 provide a 'universal energy bound' for a PU(2) monopole (A, $ ) 
and this bound plays the same role here in establishing the existence of 
an Uhlenbeck compactification as the usual topological bound for the 
energy of an anti-self-dual connection in [20]. The scale invariance of 
the PU(2) monopole equation described in §4.2 is used here in much the 
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same way that the conformal invariance of the anti-self-dual equation is 
exploited in [20]. 

The parameters To,êo,T,ê are chosen so that the perturbation esti
mates (2.29) are satisfied. These bounds follow from Proposition A. 13, 
with k > 2 for the first inequality in (2.29) and k > 3 for the second, if 

(4-1) 0kl(r(x)) < £# and kTk^(cr(x)) < £r, 

with suitable positive constants eT and e#. These constraints are needed 
in the proofs of the a priori estimates in Lemmas 4.2, 4.3, and 4.4 of 
x4.1 and hence in the proof of Theorem 4.20 in x4.6. For the remainder 
of the article we therefore require that k > 3. 

4.1. Bochner formulas and a priori estimates for PU(2) 
monopoles. In this section we apply the Bochner-Weitzenbock 
formula for D'A D A together with Kato's inequality and the maximum 
principle to derive a priori estimates for solutions (A, $) to the PU(2) 
monopole equations (2.27). These estimates then lead to a vanishing 
result generalizing that of [98, pp. 781-782]. 

We first have a generalization of the usual Bochner-Weitzenbock 
identity for Seiberg-Witten monopoles [47], [62], [77], [89], [98]. 

Lemma 4.1. Let X be an oriented, Riemannian, four-manifold 
with spin0 structure (p, W), and let E be a Hermitian bundle over X. 
If A denotes a U(2) connection on E, 

r A • n°(W± ®E)^ n1(W± <g> E) 

are the covariant derivatives defined by A, and 

D A : n°(W+ ®E)^ n°(W- ® E) 
the Dirac operator, then 

(la) D A D A = r A r A + \R + p+(F A) + è / M F J , 

(2a) D A D A = r ^ r A + \R + p.(F A) + \P-(F+L), 

where R is the scalar curvature of the Riemannian metric and A^ = 
A det W+ is the induced connection on L = det W+ ~ det W~. If A 
denotes an SO(3) connection on su(E), then 

(lb) D A D A = r ^ r A + \R + p+(F+) + \P+(F+L + F Ae), 

(2b) D A D A = r ^ r A + \R + p-(F A) + \P-{F-AL + F+e, 

where A e = A det E is the fixed connection on det E, and the identifica
tion ad : su(E) ~ so(su(E)) is implicit. 
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Proof. We just consider the first pair of identities, as the second 
follow immediately from the fact that 

F(A E) = F(A5U{E}) + lF(A detE) 0 id E. 

Over any sufficiently small local coordinate neighborhood U in X we 
have a local spin structure and a Hermitian spin bundle S such that 
W\U = S 0 L1'2, where L1'2 is a Hermitian line bundle over U such 
that (L1'2)®2 = L\U and having an induced unitary connection \A L. 
Applying the Bochner-Weitzenbock identity of [57, Theorem II.8.17] to 
the Hermitian bundle S 0 L1'2 0E over U with unitary connection r A, 
given by the tensor product of r S, r L_iA , and r A, yields 

D A = r*A r A + \R + p{F Lwç)E), 

where F Li/2^E is the curvature of the tensor product connection 

r 2 - I A L ® id E + id Li/2 <g> r E on Lll2 0 E. Since 

F Li/2^E = F2-IA L 0 id E + id Li/2 0 F A = \F A L 0 id E + id Li /2 ® F A, 

we have 

P(F LI/I®E) = \p{F A L) ® id E + id Li/2 ® p ( F A), 

and hence on Q°(U, W 0 E), 

D A = r A r A + IR+IP(F A L)+P(F A), 

which is plainly independent of the local splitting W = S 0 L1'2 and so 
gives an identity on Q°(X, W 0E). From the decomposition p = p+®p-
we see that 

p±(F A)^>± = p±(F ^)<!>± and P
±(F A L)$± = p±(F ^)<!>±, 

for any ^ G Q°(X, W ^ 0 E), and so the result follows. q.e.d. 

As in the case of the abelian monopole equations, the equations 
(2.27) and Lemma 4.1 combine to give a priori estimates for solutions 
(A, $ ) which play essential role in the proof of existence of the Uhlenbeck 
compactification. 
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Lemma 4.2. Let X be a closed, oriented, Riemannian four-manifold 
with spin c structure (p,W), and Hermitian line bundle det E with fixed 
unitary connection. Then there is a positive constant K\, depending 
only on the L2 norms of the scalar curvature R and the curvatures 
F(A detE) and F(A detW+), such that the following holds. If (A,$) is 
an L2 solution on (su(E),W+ ® E) to the PU(2) monopole equations 
(2.27) overX, then 

k®k L*(X) < Ki and k r A$k L2(X) < Ki-

Proof. We may assume that (A, $) is a C°° pair. Then Lemma 4.1 
gives 

(D*A D A$, $) = ( r ^ r A$, $) + {(R$, $) + (p(F+)$, $) 

+ Ï(P(F AL+F%)*,*) , 

while the first equation in (2.27) implies that 

p{F+) =PTAp-1{§®§*)m. 

So, using the second equation in (2.27) and integration by parts, we 
obtain 

ktfA k L2 = kD k L* 

= k r A $ k L2 + \{R&, $) + (pTAp-1^ <g> $*)oo$, $) 

Consequently, Lemmas 2.18 and 2.26, Holder's inequality, and the esti
mate for TA in (2.29) leads to the bound 

eksilL*+ k r A<&k L2 

< kkkRk* + èkF k^ + èl lA k^ + k A k L4) kbk L*-

Thus, if $ ^ 0, the above inequality and the estimate for ÏÏA in (2.29) 
give the required L4 estimate for $. Then the above inequality and 
the L4 estimate for $ yield the L2 bound for r A $ - The bounds hold 
trivially if $ = 0. q.e.d. 

The preceding a priori L4 estimate on the section $ yields a priori 
L2 bounds on the components of the curvature, F A and F A, if (A, $) 
is a PU(2) monopole: 
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Lemma 4.3. Continue the notation and hypotheses of Lemma 4-2. 
Then there is a positive constant K ̂  , depending only on the L2 norms 
of the scalar curvature R, the curvatures F ( A detE) and F(A detW+), and 
a positive constant K^, depending only on K^ andpi(su(E)), such that 
if (A, $) is an L\ solution on (su(E), W+ ® E) to the PU(2) monopole 
equations (2.27), then 

\\F+\\L2<K+ and \\F A\\L2 < K^. 

Proof. Lemma 2.26 and the first PU(2) monopole equation in (2.27) 
imply that 

F ^ I I L * < I I I « L , 
and so the L4 bound for $ in Lemma 4.2 gives the first estimate. The 
Chern-Weil integral identity (2.33) yields 

/ jF A j2dV< Z jF+j2dV + 87r2(c2(E)-\c1(E)2), 
X X 

and so the second estimate follows from the first. q.e.d. 

Lemmas 4.2 and 4.3 imply an a priori bound K on the 'energy' 
of a PU(2) monopole (A, <&) in terms of the scalar curvature R, the 
connections on det W+ and det E and pi(su(E)): 

(4.2) / (jF A j2 + j$j + jVA$j 2 ) dV < K. 
X 

We use Lemmas 4.2 and 4.3 to provide the 'energy bound' assumed in 
our proof of removable singularities (Theorem 4.10) and we use Lemma 
4.3 to give a lower bound on the second Chern class of an ideal monopole 
appearing in the Uhlenbeck compactification of the moduli space of 
PU(2) monopoles (see §4.5 and the conclusion of the proof of Theorem 
4.20 in §4.6). 

As in the case of the U(l) monopole equations [47], [98], the Bochner-
Weitzenbock identity and the maximum principle yield a priori C° es
timates for $ and F ̂  when (A, $) is a PU(2) monopole. 

Lemma 4.4. Continue the notation and hypotheses of Lemma 4-2. 
Then there is a non-negative constant K%, depending only on the C° 
norms of the scalar curvature R and the curvatures F ( A detE and 
F(A detW+), such that the following holds. If (A,$) is a Cl solution 
on (su(E),W+ (8> E) to the PU(2) monopole equations (2.27), then 

ll$llC°(X) ^ K3 and \\F+\\C0{X) < K3. 
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Proof. We may assume that the pair (A, <&) is C°°. The analogue of 
equation (6.18) of [30] for Hermitian bundles (see [77, x8.3]) reads 

±Aj$j 2 + j r A $ j 2 = R e h r A r A$, $ i , 

where A = d*d on ft°(X,JR). Since <& is continuous, j3>j achieves its 
maximum at some point xo G X , so Aj$j2(xo) = — r e r e j3>j2(xo) > 0 
and thus at xo: 

R e h r A r A $ , $ i > j r A ^ j 2 . 

Let feßg be a local oriented, orthonormal frame for the tangent bundle 

TX such that (r e el')xo = 0, where feß is the dual coframe for the 

cotangent bundle T*X. Since D AQ = — g A& by the second equation in 

(2.27), at xo we have 

hD*A D A$,$i =-hD*A(ëA$),$i 

= - h p ( e " ) ( r e / 1 ^ ) * , * i - hp (e" )A r A , $ i , 

and so (using the inequality ab < \a2 + b2) we get the following bound 
at xQ: 

jhD A D A$,$ij < 4 j r AI?A jj^j2 + 4j#A jjr A ^jj^j 

< 4 j r AI?A jj^j2+4 {jëA j2m2 + i j r A$j2) 

= 4 ( j r A ̂ j + j ^ j 2 ) j ^ j 2 + j r A$j2 . 

Recall that the first PU(2) monopole equation in (2.27) gives 

p{F+) =PTAp-1{§®$*)m. 

The endomorphismpfA/9_1($(8)<&*)oo of W+®E lies insu(W+)®su(E) 
and in particular is Hermitian, so 

RehpTAp-1^ <g> $*)oo$, $ i = hpTAp- 1 ^ ® $*)oo$, $ i , 

and similarly for the endomorphism p(F A). We now combine Lemmas 
2.26 and 4.1 and the first equation in (2.27) to get an estimate for $ at 
the point xo: 

èj$j < hPTAP-1^ ® $*)oO$,$i 

= R e h D D ^ , $i - Rehr A r A$, $i - \hR$, $i 
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We now combine the last inequality with our estimates for hD*A D A&, 3>) 
and hr*A r A&, $ ) to obtain the following bound for $ at xo: 

±j$j4 < 4 ( j r A#A j + j ^ A j 2) j$j2 + j r A $ j 2 

- j r A$j2 - ±Rj$j2 + \ (jF+L j + jF A j) j$j2 

< 4 ( j r A#A j + j ^ A j2) m2 - jRm2 + \ (jF+L j + jFx j) j$j2. 

Either 3>(xo) = 0, and so $ is identically zero, or at the point xo the 
preceding inequality implies that 

j$j 2 < 8 (jr A#A j + j ^ A j 2 ) - \ infR + jF+L j + j F + j , 

which gives the first desired estimate. Then the second desired estimate 
follows from Lemma 2.26, the first equation in (2.27), and the estimate 
for ëA in (2.29). q.e.d. 

We use Lemma 4.4 in §4.6 to show that the curvature of a PU(2) 
monopole connection A concentrates at points with integer multiplicities 
given by the second Chern classes of limiting (ideal) anti-self-dual con
nections over S4 (see Lemma 4.21). These C° estimates yield the follow
ing analogue of Witten 's vanishing theorem [98, §3] for U(l ) monopoles 
over four-manifolds with non-negative scalar curvature. 

Corollary 4 .5 . Continue the notation and hypotheses of Lemma 
4-4 and suppose K3 < 0. If (A, $ ) is a C1 solution on (su(E), W+ ® E) 
to the PU(2) monopole equations (2.27), then $ = 0 and F A = 0. 

R e m a r k 4 .6 . The proof of Lemma 4.4 shows that 

K3 = max JO, - \ inf R + 8||#A||LOOA (X ) + ||F+L ||Co(X) + \\F+e ||Co(X) J . 

In particular, we see that if X = S4 has its round metric of scalar 
curvature R = 1, standard spin c structure with c\(W+) = 0 and F A L = 
0, the Hermitian bundle E has c\{E) = 0 and F A e = 0, and we have 
ê = 0, then $ = 0 and A is an anti-self-dual SO(3) connection. 

4.2. Scale invariance of t h e P U ( 2 ) m o n o p o l e equat ions . 
In this section we describe the behavior of the PU(2) monopole under 
rescaling of the Riemannian metric. As is well-known, the anti-self-dual 
equation is conformally invariant. Although the PU(2) monopole equa
tions are not conformally invariant they are, like the Seiberg-Witten 
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equations, invariant under constant rescalings of the metric in a sense 
we describe below. The proof of the existence of an Uhlenbeck com-
pactification (Theorem 1.1) in §4 relies on local regularity and remov
able singularity results for solutions to (2.27) over the unit ball B in 
R4 . The requirements that the L2 norm of the curvature F A and the L2 

norm of section $ be sufficiently small are met via a rescaling argument. 
Suppose that A > 0 is a constant and that the Riemannian metric g 

on T*X is replaced by X2g. Since the Clifford map p is compatible with 
g, the Clifford map 

pX2g = \pg : T*X - • End(W) 

is compatible with X2g, as for any a G 0 1 ( X , R) it satisfies 

PA2g(Ö)y g(Ö) = ^Pg{a)yPg{a) = X2g{a,a)id W. 

It extends in the usual way to a linear map 

pX2g : A*(T*X) <g> C - • End(W) . 

The Levi-Civita connection on T*X for the metric g coincides with the 
Levi-Civita connection on T*X for the rescaled metric A2g, so the SO(4) 
connection on T*X induced by the unitary connection on W and the 
Clifford map p\2g : T*X —> End(W) is still torsion free. 

L e m m a 4.7. If (A,$) is a solution to the PU(2) monopole equa
tions (2.27) for the metric g on T*X, then (A, A$) is a solution to the 
PU(2) monopole equations for the rescaled metric \2g on T*X, where 
A is a positive constant. 

Proof The projection P+(X2g) = 5(1 + *x2g) from k2(T*X) to 
k+(T*X) is given by P+(X2g) = P+(g), while the induced map 
pX2g : A2(T*X) ->• End(W) is given by pX2g = \2pg. Therefore, 

pX2g(ê) = \pg(#), êenl(X,C), 

pX2g{P+(X2g)F A) = \2pg(P+(g)F A). 

Consequently, we see from (2.27) that if (A, <&) is a solution for the 
metric g, then (A, A$) is a solution for the metric X2g. q.e.d. 
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R e m a r k 4 .8 . By adapting the proof of Theorem II.5.24 in [57] we 
see that if g is replaced by the conformally equivalent metric h~2g, then 
D A g = h5'2D g A h~3'2. Thus, while the proof of Lemma 4.7 adapts with
out change to show that the first equation in (2.27) is invariant under the 
transformation (A, $ ) t-> (A, hQ) when g i->- h~2g, the second equation 
(when i? = 0) is invariant under the transformation (A, <i>) i—> (A, h3'2<&). 
It is this incompatibility which prevents the PU(2) monopole equations 
from being conformally invariant, although they are scale invariant in 
the sense described above. 

4.3. R e m o v a b l e s ingularit ies . Given the sharp local elliptic 
regularity result of Proposition 3.12 for PU(2) monopoles in Coulomb 
gauge in L2, we can now establish a removable singularities theorem 
for PU(2) monopoles analogous to Theorem 4.1 in [94] in the case of 
the Yang-Mills equations, and Theorem 8.1 in [70] in the case of the 
coupled Yang-Mills equations. Our method is modelled on the proof 
of Theorem 4.4.12 in [20] — the removable singularities result for the 
anti-self-dual equation — which uses a local elliptic regularity result for 
L2 solutions to the Coulomb gauge and inhomogeneous anti-self-dual 
equation (namely, Proposition 4.4.13 in [20]) and which in turn has its 
antecedent in the proof of Theorem 4.5 in [96]. This, of course, is not the 
only possible approach: Uhlenbeck's original argument [94] employed a 
differential inequality to obtain a pointwise decay estimate for solutions 
near the singular point, and this was the method generalized by Parker 
to the case of certain coupled Yang-Mills equations; see [77, §9.2] for 
a proof of removable singularities for Seiberg-Witten monopoles which 
also uses differential inequalities. 

It will be convenient to define the following annuli in X, given a 
point xo G X and a positive constant r: 

Q(xo;r) := {x G X : | r < dist g(x,xo) < r } , 

£l'(xo;r) := {x G X : | r < dist g(x,xo) < \r} d Ç}(xo,r). 

If X = R4 and x0 = 0 and r = 1, we denote fi = 0(1) and fi' = fi'(l). 
We will need the following special case of Proposition 3.18. 

L e m m a 4.9 . Let R4 have a C°° Riemannian metric g, let fi C R4 

be an open subset with spin c structure (p, W), let E be a Hermitian two-
plane product bundle over fi; and let fi' d fi be an open subset. Then 
there are positive constants C, e such that if (A, $ ) is a PU(2) monopole 
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in C°° on (su(E), W+ <g> E) over il with 

\\F A\\L*{SI) < e> 

then there is a C°° flat connection F on su(E)jQI such that 

\\A - r | |L4 (n ,) + | |Vr(A - r) | |L2 (n ,) < c| |F A||L2 (n), 

and a C°° trivialization su(E)jQI ~ Q' x su(2) taking F to the product 
connection. 

The proof of Theorem 4.10 relies on a cutting off procedure to 
'smooth out ' the PU(2) monopole near the singular point, using a fam
ily of cutoff functions which we now define. Let x : R —>• [0,1] be a 
bump function such that x(t) = 1 if t > ^ and x(t) = 0 if t < \. For 
any r G (0, g), where g is the injectivity radius of (X,g), define a C°° 
cutoff function on X by setting Xr(') = x(dist g(- ,xo) / r ) . Thus, we have 
Xr = 0 on the ball B(xo, | r ) , while %r = 1 on X - B(xQ, \r) and so dxr 
is supported in Q'(xo,r). 

T h e o r e m 4 .10 . Let B e R 4 be a geodesic ball with C°° metric g 
and center at the origin, spin c structure (p, W) over B, and Hermitian 
two-plane bundle E over Bn{0}. Suppose (A, $ ) is a C°° solution to the 
PU(2) monopole equations (2.27) on (su(E),W+ <g> E) with (f,•&) = 0 
over the punctured ball B n {0} and finite energy, 

Z {jF A j2 + j$jA + jVA$j2) dV<oo. 
B\{O} 

Then there are a Hermitian two-plane bundle E over B with det E = 

detE, a C ° ° P U ( 2 ) monopole (A, $ ) on(su(E),W+®E) over the ball B, 

and a C°°, determinant-one unitary bundle isomorphism u : E j B\{O} —> 

-e j BUo} such that 

u(A,$) = (A,Ò) over B n {0}. 

R e m a r k 4 .11 . We restrict our attention to the case of (T, I?) = 0 in 
the PU(2) monopole equations (2.27) since the holonomy perturbations 
are undefined for the L\ connections which arise in the proof of Theorem 
4.10. However, there is no loss of generality in making this restriction 
as the holonomy perturbations vanish near points where curvature has 
bubbled off. 
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Proof. We may suppose without loss of generality that the ball B has 
radius less than or equal to one. Since H-FAHL̂ B < oo, then HF A I I L 2 r ) 
tends to zero as ro tends to zero. Hence, for small enough ro G (0,1], we 
may suppose that HF AIIL2B \ < e, where e is the constant of Lemma 
4.9. Thus, for any r G (0,ro), Lemma 4.9 provides a C°° flat connection 
r r on su(E)|Q/(r) such that 

(4-3) \\A -T'r\\L*(n'(r)) < c\\F A\\L2(n(r))i 

where the constant c is independent of r G (0,ro). To see that the 
constant c is indeed scale invariant, note that by Lemma 4.7 the pair 
(A, r_1<3>) is a PU(2) monopole over B with respect to the rescaled 
metric g r := r~2g, so O' (r) = ^ g ( l ) and ^ ( r ) = ^ g r(l)- We then 
apply Lemma 4.9 to the annuli g r(l) <s ^ g,.(1) and observe that the 
L4 norm on one-forms and the L2 norm on two-forms are scale invariant. 

Lemma 4.9 also provides a C°° trivialization su(E)\QIr ~ Q'(r) x 
su(2) taking T'r to the product connection on Q'(r) x su(2). We can 
then define a smooth SO(3) bundle V r over B by setting 

._ fB(èr) x su(2) over Bdr), 
r '~ su(E) over B - B{\r), 

recalling that ft'(r) = B(±r) - B ( | r ) . Let F'r denote the C°° flat con
nection on V r over the ball B(^r), extending T'r on su(E)\QIr via the 
product connection on B(^r) x su(2), and let E r be the smooth U(2) 
bundle over B with det E r = det E and su(E r) = V r over B. 

Now let (A r, $r) be the C°° pair on B defined by 

(A r,$r 
\Vr + xA-V'r)jXr ^) overB(±r), 
(A,$) over B\B(\r), 

where we note that %r = 0 on B(^r) and Xr = 1 on B — B(^r). To 
estimate the L2 norm of F A r , note that over B — B(^r) we have A r = A 
and F A r = F A, while over B(^r), 

F A r = r F A + dXr A (A - r r ) + (r2 _ Xr)(A - T'r) A (A- T'r). 

Hence, by (4.3), we have 

IIF A r||L2(Q'(r)) < l l F A||L2(Q'(r)) + \\dXr llL4(Q'(r)) \\A ~ r llL4(Q'(r)) 

4_ II A — F ' II2 . 
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Therefore, since kdXr k L4(Q'(r)) < co? for a constant co independent of 
r G (0,oo), there is a positive constant c, independent of r G (0,ro), 
such that 

(4-4) k F A r k LS(B ro) < c | | i A | | L 2 ( B ro) + | | iA| |^2 (B ro) < c k F A k L2(B ro). 

Thus, F A r L2(B r ) tends to zero as ro —>• 0, uniformly with respect 
to r G k 0 , r k . Fix ro small enough so that kF A J L Z B \ < e\ for all 
r G (0,ro), where e\ is the constant of Theorem k.13. Hence, there is 
a family of C°° flat connections r r , r G (0,ro), on the SO(3) bundles 
su(E r) over B ro such that 

(4.5) d*Tr(A r-Tr) = 0 and k A r - r r k L2 r (Bro) < ckF A r k L2(Bro), 

for a positive constant c independent of r G (0, ro), and a family of C°° 
bundle isomorphisms r : su(£r) j B r ~ B ro xsu(2) inducing C°° bundle 
isomorphisms r : E r ~ B ro x C2 , via a choice of fixed C°° trivialization 
d e t E j r = d e t E j B ~ B rn x C 

Since ^ , 2 CBI < 00, then k<&k2 (B -, and <i>k L4fB -, tend to 
k k L1A(i) 1 L1A(ro) ( , r 0 J 

zero as ro as tends to zero. As 3>r = xr<I> over B(k r) and using (4.3), 
we have 

k®r k Llr(Bro) < k*r k L2(Bro) + k r r$r L*(Bro) 

< k*r k L2(B ro) + k(A r - rr) • $r k LZ(B ro) 

+ l | r A r ^ r k L2(B ro) 

< c kl + k ( A r - r r ) k L4(B r i
> )k$r k L4 

+ k r A r ^ r k L2(B ro) 

(B ro) k*r k L4(B ro) 

< c 1 + k F A r k L2(B ro) k$k L4(B ro) + k r A r$ r k L*(B ro) 

< ck*k^ ( B ro) + k r A(Xr*)k L a ( n ( l r > l r ) ) 

+ k r A$k 1 

< ckMLlA(B ro) + kdXr • *k L2(n'(r)) 

+ kXr r A r ̂ k L2(Q'(r)) 
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< c | | $ | | L 2 ) A ( B r o ) + | | d X r | | L 4 ( B r o ) | | $ | | L 4 ( B r o ) 

+ \\^A®\\L2(n'(r)) 

+ l l (xr- i ) (A-rr) -$ | |L2 ( n , ( r ) ) 

< c\\®\\LlA(B ro) + IIA — r r l lL 4 (n ' ( r ) ) l l^ > l lL 4 ( r2 ' ( r ) )> 

using A r = F'r + Xr(A - T'r) = A + (xr - 1)(A - T'r) over O'(r), and so 

( 4 - 6 ) l l$ r | |L2 fB Ì < c| |$| |L2 (B N, 

for some constant c independent of r G (0,ro). Therefore, ||<I>r||L2 <B r \ 

tends to zero as ro —>• 0, uniformly with respect to r G (0,ro). 

Hence, the estimates (4.4), (4.5), and (4.6) combine to give a uniform 
bound, 

(4.7) \\(A r - r r , $ r ) | | L ? ) i r ( B r o ) < c(\\F A\\L2{Bro) + ||*||L?)A(Bro) 

for some constant c independent of r G (0, ro). Note that 

LlT (B ro, A1 © s u ( E r)) © L?r r (B ro, W + ® E r) 
ro ^ s u r ^ i ;rr ro 

r o , A 1 « ) s u ( 2 ) ) © L ? r ( J r 0 , L2
 r ( B ro, A1 © su(2)) © L? r ( B ro, W+ © C2) 

via the C°° isomorphisms r : E r j B r —> B ro x C , with 

||(A r -rr,$r)||L2 ,B rJ = ||(r(A r) - r , r ( $ 
i , r (B r o ) - l l l ' r l A r j - >-,irV^ r))\\L2

ir(B ro), 

dr(Tr(A r)-T) = 0. 

By the weak compactness of the unit ball in the Hilbert space L 2 ( B ro) , 
there is a sequence ra —> 0 such that the pairs (A r — Yra, $rct ) converge 
weakly in L\{B ro) to a limit (A,&) in L\(B ro). For brevity, we denote 
A , r ) : = ( T r ( A r ) ,Tr($r) ) . 

Claim 4 .12 . Continue the above notation. Then the following hold: 

(1) After passing to a subsequence, the pairs (A r ,$r ) converge in 
C°° over compact subsets of B ro \ {0} to (A, <IT) and so (AT, <IT) 
is in C°° over B ro \ {0}; 

(2) The pair (AT, $ T ) is an L\ solution over B ro to the elliptic system 

S(A\ $ T ) = 0 and d*r{AT - r ) = 0. 
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Proof. For any open subset U d B ro {0}, the ball B(^r) con
taining the support of the cutoff function n r does not meet U when r 
is sufficiently small and so (A r , r ) is a PU(2) monopole in C°° over 
U in Coulomb gauge with respect to (r, 0) with uniformly L2-small 
curvature. Hence, choosing U' d B ro n {0} so that U' D U, Proposi
tion 3.12 implies that for any integer k > 1 and r small enough that 

we have uniform bounds 

\\(A r - r,3>rr)\\LlriU) < C {\\(A r - r ,r) | |L2 (U0 + | | F A ) I I L ^ ) ) 

< C {\\$\\L4(B) + \\F A\\L2{B)) < o o , 

for some constant C(g,k,U) independent of r G (0, ro). Therefore, by 
passing to a subsequence, the pairs (A r , <!>r ) converge in C°° over 
compact subsets of B ro n {0} to a C°° pair (AT, $T) over B ro n {0} as 
ra —> 0. But for any U d B ro {0} and small enough r G (0,ro), we 
have S (A r , $r) = S(A r, $r) = n over U, and so 

S ( A r , $ r ) = lim S(A r , $ I ) = 0 over U. 
a->oo Q r 

Hence, S(A, <IT) = 0 over B ron{0} and so ( A , <IT) is a PU(2) monopole 
in C°° over B ro n {0}. This proves Assertion (1) of the claim. 

Since (A, <IT) is a C°° monopole over B ro n {0}, then S(AT , $T) = 
0 a.e. over B ro and so (AT,$T) is an L\ monopole over B ro. Let 
WQ' (B ro) C L\(B ro) be the closure in L\(B ro) of the pairs 

C0°°CB ro, A
1 <g>su(E)) © C^(B ro,W+ <g> E) 

with compact support in the open ball B r„. Then, for any (b,ip) G 
9 1 

WQ' ( B r o) w e h a v e 

(b ,d(A T - r))L2(Bro) = (drbAT - r)L2(Bro) 

= l i m j ( d r b , ( A Q - r ) ) L 2 ( B ro) 

= l i m ( b , d ( A Q - r ) ) L 2 ( B ) = 0 , 

and so d ( A — V) = 0, as required. This completes the proof of the 
claim. q.e.d. 

By Claim 4.12, the pair (Ai<&T) is an L\ monopole over B ro in 
Coulomb gauge relative to (I\ 0). From the estimate (4.7) and the 
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Sobolev embedding L\(B ro) C L 4 ( B ro) , we can ensure that for suffi
ciently small ro, 

| | A - r , r ) | | L 4 ( B r o ) < £ 2 , 

for all r G (0, ro) and so \\(AT, ^T)\\LA{B r ) < £2, where e 2 is the constant 
of Proposition 3.12 and therefore, (AT, <ï>T) is a C°° monopole over B ro. 
(As usual this means, more precisely, that there is a C°° monopole 
over B ro which coincides with (AT,<3>T) over B ro except over a subset 
of measure zero; since (A,<tT) is already C°° on the punctured ball 
B ro n {0g, this C°° monopole is equal to (AT, $T) except possibly at the 
origin.) 

Finally, the C°° bundle isomorphisms r : su(E r)\B r — B ro x su(2) 
may be viewed as SU(2) automorphisms acting on the SO(3) bundle 
B ro x su(2) by initially choosing a fixed C°° trivialization 

E 0 } ~ B n { 0 g x C 2 , with s u ( E ) | B U 0 } ~ B n { 0 g x s u ( 2 ) . 

Then Lemma 2.7 implies, after passing to a subsequence, that the se
quence of SU(2) automorphisms ra converges in C°° over compact sub
sets of B ron{0g to a C°° limit a over B ron{0g. Then (AT, <IT) = (Aa, $CT) 
over the punctured ball B ro n {0g, while (AT,QT) is smooth over B ro. 
Thus, the finite-energy C°° monopole (A, $ ) over the punctured ball 
B ro n {0g is equivalent via a C°°, determinant-one, unitary bundle iso
morphism to (A, $T) over B ro n {0g, where (AT, $T) is a C°° monopole 
over B ro. This completes the proof of the theorem. q.e.d. 

R e m a r k 4 .13 . The proof of Theorem 4.10 does not imply, of 
course, that the section «i»1" is zero at the center of the ball B. Even 
though the C°° sections $ r Q are zero at the center, the subsequence only 
converges in L\(B ro) over B ro to a limit $ T . Similarly, while Lemma 4.4 
provides a uniform C° bound for the sections &r over B rQJ we would 
need a uniform, C0,u Holder bound, for some v G (0,1), in order to 
extract a convergent subsequence. 

4.4. Pa tch ing arguments . The standard proof of the com
pactness theorem for the moduli space of anti-self-dual connections em
ploys a patching argument for gauge transformations to obtain C°° 
convergence (modulo gauge transformations) on compact subsets of 
X n {x\,... ,x m g for a sequence of anti-self-dual connections Aa on a 
Hermitian bundle E over X. The gauge transformations that require 
patching are obtained by repeated application of Corollary 2.3.9 in [20] 
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to geodesic balls where the L2 norm of the curvature F A ̂  is less than 
e: since the L2 norm of the curvature is scale invariant, these possi
bly small balls may be rescaled to standard size with metrics which are 
approximately Euclidean as in [20, Corollary 2.3.9]. 

Throughout this subsection, (Aa, <i>a) will denote a sequence of C°° 
pairs (not necessarily PU(2) monopoles) on (su(E),W+ ® E) over Q 
and ua will denote a sequence of C°° determinant-one, unitary auto
morphisms of a Hermitian bundle E (that is, gauge transformations in 
G E and not °G E), where Q is an oriented, Riemannian four-manifold 
with spin c structure (p, W). Convergence will mean convergence in C°° 
on compact subsets which, as usual, can be replaced by L2k+l loc conver
gence of L2k pairs (Aa, 3>Q) provided k > 2. 

The following four patching results follow almost immediately from 
the proofs of Lemmas 4.4.5-4.4.7 and Corollary 4.4.8 in [20] (where the 
sequence of connections Aa is not assumed to be anti-self-dual). Their 
proofs are omitted and instead we refer the reader to [20] or [95] for a 
detailed account; patching arguments of this type are used by Uhlenbeck 
in her proof of Theorem 3.6 [95], where the connections (not necessarily 
anti-self-dual or Yang-Mills) are just assumed to be in L p and the gauge 
transformations are in L p with p > 2. 

Lemma 4.14. Suppose that (Aa,$a) is a sequence of pairs on 
(su(E),W+ <g) E) over a base manifold il (possibly non-compact), and 
let e (I Q be an interior domain. Suppose that there are gauge trans
formations ua G G E and u a G G EIQ such that ua(Aa,$a) converges 

over e and u a (A a , $ a ) converges over e . Then for any compact set 
K <E O there are a subsequence fa1g C fag and gauge transformations 
wa' £ G E such that wai = uai on a neighborhood of K and the pairs 
wai(Aai,$ai) converge over Q. 

We have the following two extensions of this result. 

Lemma 4.15. Let O be exhausted by an increasing sequence of 
precompact open subsets U\ d U2 <e • • • (S O with Dn U n = Q. Suppose 
(Aa,$a) is a sequence of pairs on (su(E), W+ ®E) over Q and that for 
each n there are a subsequence a1g C fag and gauge transformations 
ua' G G E\U n such that uai(Aai,fai) converges over U n. Then there are 
a subsequence a"g C fag and gauge transformations uan G G E such 
that ua'i(Aai>, fQ») converges over O. 

Lemma 4.16. Suppose that O = Q\ U Q2 and that (Aa,$a) is a 
sequence of pairs on (su(E),W+ ® E) over Q. If there are sequences of 
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gauge transformations va G G E\QX and wa G G E\Q2 such that va(Aa, $Q) 
converges over Hi and wa(Aa,$a) converges over ÇI2, then there are a 
subsequence fa1g C fag and gauge transformations ua> G G E such that 
the pairs uai(Aai,$ai) converge over O. 

Lemmas 4.14, 4.15, and 4.16 combine to yield the following analogue 
of Corollary 4.4.8 in [20]. 

Corollary 4.17. Suppose that (Aa,$a) is a sequence of pairs on 
(su(E), W+ (g> E) over Q. such that the following holds. For each point 
x G Q there are a neighborhood D of x, a subsequence fa1g C ag, 
and gauge transformations vai G G E\D such that the pairs vai{Aai,fai) 
converge over D. Then there are a single subsequence fa"g C fag, 
and gauge transformations ua/> G G E such that the pairs ua»(Aaii,^aii) 
converge over O. 

We now assume that (Aa,$a) is a sequence of PU(2) monopoles 
on (su(E), W+ 0 E) over Q and obtain the required convergence from 
our local elliptic estimates for PU(2) monopoles and Uhlenbeck's gauge-
fixing theorem. The following result is the analogue of Proposition 4.4.9 
in [20], which applies to a sequence of anti-self-dual connections. 

Proposition 4.18. Let Y be an oriented four-manifold with Rie-
mannian metric g and spin c structure (p,W). Suppose that (Aa,$a) is 
a sequence ofPU(2) monopoles, on the bundles (su(E),W+ <g) E) over 
Y, with the following property. For each point y G Y there is a geodesic 
ball B g(y,r y) with center y, radius r y, and index ay such that 

k F Aa k L2(B g(y,r y)) < e 0 , " > Oiy, 

where £0(g, A det W+, A detE) is the constant of Corollary 3.16. Then 
there are a subsequence fa"g C fag and a sequence of C°° gauge trans
formations uaii G G E such that uaii{Aaii, 3>a») converges in C°° on com
pact subsets over Y. 

Proof. Fix a point y G Y. If B g(y, r y) is a geodesic ball with center 
y and g-radius r y, then B g r(y, 1) is a geodesic ball with center y and 
g r-radius one, where g r = r~2g. Thus, (Aa, r~lQa) is sequence of PU(2) 
monopoles over B g r(y, 1) such that 

kF Aak L?(B g r(y,i)) <£o, a>ay. 

Corollary 3.16 implies that there are a subsequence fa'g C fag and a 
sequence of gauge transformations fua'g over B g r(y,l) such that the 
sequence uai(Aai^r y1^^) converges over B g r(y,^). 
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Therefore, for each point y G Y, we have a sequence of gauge trans
formations f u ' g over B g(y,r y) such that the sequence uai(Aai,$ai) 
converges over B g(y,^r y). The conclusion now follows from Corollary 
4.17. q.e.d. 

4.5. Def ini t ion of t h e Uhlenbeck closure. The definition of 
the Uhlenbeck closure of the moduli space of solutions to the perturbed 
PU(2) monopole equations (2.27) is slightly more involved than that of 
the unperturbed PU(2) monopole equations (2.15). For this reason it 
is convenient to define the Uhlenbeck closure in the unperturbed case 
before considering the general case. 

4 .5 .1 . Def ini t ion of t h e Uhlenbeck closure for the modul i 
space of u n p e r t u r b e d P U ( 2 ) m o n o p o l e s . Let M W,E (temporarily) 
denote the moduli space of gauge-equivalence classes of solutions (A, $ ) 
on (su(E),W+ <g) E) to the unperturbed PU(2) monopole equations 
(2.15). We define the Uhlenbeck closure M W,E of the moduli space 
M W,E by analogy with the definition of the Uhlenbeck closure of the 
moduli space of anti-self-dual connections [20, x4.4]. The moduli set 
IM W,E of unperturbed ideal PU(2) monopoles on (su(E),W+ <g) E) is 
given by 

N 

IM WjE := ( J M WiE_t x Sym ^(X), 
e=o 

where N > N p, N p is the constant defined in equation (4.15), E_i de
notes a Hermitian two-plane bundle with det E_£ = det E, and ci(E-ì) = 
c2(E)-£, f o r £ > 0 . 

Defini t ion 4 .19 . Suppose that [ A a ^ o ^ y « ] is a sequence of points 
in IM W,E and that [AQ, <1>O, x] is a point in IM W,E, where (Aa, <i>a) and 
(A0, $o) are monopoles on (su(Ea), W+ <g> Ea) and (su(E0), W+ <g> E0) 
over X, respectively, with det Ea = det EQ = det E and c2(Ea), c2(EQ) < 
c2(E). Then the sequence of points [Aa, $ a , y a ] converges to [AQ, <Ê»O?x] 
(or, the sequence of triples (Aa, <i>a, yQ) converges weakly to (AQ, QQ, x ) ) 
if the following hold: 

• There is a sequence of L k + l loc determinant-one, unitary bundle 
isomorphisms ua : Ea\X\x ~~̂  Eo|X\x such that the sequence of 
PU(2) monopoles ua(Aa,<&a ) converges to ( A b $ o ) 

in L kloc over 
Xnx. 

• The sequence jF ACj2 + 87r2 P e 8(y) converges in the weak-* 

topology on measures to j-FAoj + 8TT2 P xex 6(x). 
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• We have c2(E) = c2(E0) + jxj. 

Give IM W,E the Uhlenbeck topology specified by Definition 4.19 and 
let M W,E C IM W,E be the closure of M W,E in IM W,E- The topological 
space IM W,E is second-countable and Hausdorff. 

4.5 .2 . Def ini t ion of t h e Uhlenbeck closure for the modul i 
space of p e r t u r b e d P U ( 2 ) m o n o p o l e s . The basic idea underly
ing the choice of holonomy perturbations described in §2.5.2 is a gen
eralization of an earlier construction due to S. K. Donaldson for the 
moduli spaces of solutions to the 'extended anti-self-dual equations', to 
which the Freed-Uhlenbeck generic metrics theorem does not apply [18, 
§IV(v), pp. 282-286]. As in the case of the moduli space of anti-self-
dual connections, we shall see in §4.6 that there is an upper bound M 
(which is determined by g, A detW+, A detE? and pi(su(E))) on the to
tal energy ||F A| | |2(-X) for any solution (A,<&) to the perturbed PU(2) 
monopole equations (2.27) and so an upper bound 2 M / E Q on the num
ber of disjoint balls B(Xj,ARQ) with energy greater than or equal to ^£Q. 
Hence, if Nf, > 2 M / E Q + 1, at least one ball B(Xj,4RQ) in the collection 
{B(Xj,4RQ)}j N 1 has energy less than ^£Q. 

Suppose (Aa, <i>a) is a sequence of PU(2) monopoles which converges 
to an ideal PU(2) monopole (AQ, &Q, x ) in C W,E_t x Sym (X). If a point 
x G x lies in a ball B(Xj,2RQ), the corresponding sections m jtitß(Aa) 
supported on B(Xj,RQ) converge to zero (by construction) for all l,ß. 
Thus, the solution (AQ, QQ) will satisfy a version of the PU(2) monopole 
equations (2.27) with the perturbations supported on B(Xj,RQ) omit
ted. (In the situation considered by Donaldson, ideal extended anti-
self-dual connections also satisfy a family of equations [18, Eq. (4.37)] 
which depend on the bubble points in X.) Therefore, the ideal limit 
[AQ, $ 0 Î x ] is a point in the fiber M WE_Jx over a point x in the base 
Sym (X). Here, M W,E_ej x is simply the moduli space of solutions to 
the perturbed monopole equations (2.27) with the connection energy 
cutoff functions ßj[A] of (2.18) (used in the definition of the perturbing 
sections m jtitß(A) of (2.20)) replaced by cutoff functions 

(4.8) 

/3j[A),x] 
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where EQ is the constant of Corollary 3.16. Then M W,E_t is the mod
uli space of triples (AQ,^Q,x) solving the 'lower-level' PU(2) monopole 
equations 

F+ - (id + TO <g> id su{E) + T • m(A, x)) p " 1 ^ <g> $*)00 = 0, 

D A$ + /)(i?o)$ + ^ m ( A ) x ) $ = 0. 

In the more familiar case of the Uhlenbeck compactification of the mod
uli space of solutions to the unperturbed PU(2) monopole equations 
(2.15), the spaces M W,E_t above would be replaced by the products 
M W,E_e x Sym(X). 

The definition of the Uhlenbeck topology for the moduli space of 
solutions to the perturbed PU(2) monopole equations (2.27) is almost 
identical to that of the unperturbed case. The only difference is in 
the definition of the set of ideal solutions to (2.27). In the presence 
of holonomy perturbations, the Uhlenbeck closure M W,E is therefore 
defined to be the closure of M W,E in 

N N 

IM WtE := ( J M WiE_t C ( J C WiE_t x Sym ̂ (X), 
e=o e=o 

where M W,E-0 '•= M W,E, while N > N p and N p is the constant defined 
in equation (4.15). 

4.6. Sequential compactness. In this section we apply our ellip
tic regularity and removable singularity results to prove our main com
pactness result, namely Theorem 1.1, which asserts the existence of an 
Uhlenbeck compactification for the moduli space of PU(2) monopoles, 
analogous to that given by Theorem 4.4.3 [20] in the case of the moduli 
space of anti-self-dual connections. 

As in [20], the proof of Theorem 1.1 follows by an entirely routine 
argument (which we leave to the reader) from the special case below 
which is an analogue of similar compactness results for anti-self-dual 
connections; see, for example, [20, Theorem 4.4.4], [31, Theorem 3.2], 
[30, Chapter 8], [78, Theorem 3.1], [83, Proposition 4.4], and [84, Propo
sition 5.1]. 

Theorem 4.20. Let X be a closed, oriented, smooth four-manifold 
with C°° Riemannian metric, spin c structure (p, W) with spin c connec
tion, and a Hermitian two-plane bundle E with unitary connection on 
det E. Then there is a positive integer N p, depending at most on the 
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curvatures of the fixed connections on W and det E together with c2(E), 
such that for all N > N p, any infinite sequence in M W,E has a weakly 
convergent subsequence, with limit point in UN_0M WE_ r 

Proof. The basic argument follows that of [20, pp. 163-165] and 
[83, Proposition 4.4] for the moduli space of anti-self-dual connections. 
Let [A a ,$ a] be a sequence of points in M W,E and let (Aa,$a) be a 
corresponding sequence of PU(2) monopoles in C°° on (E, W+ ®E). By 
passing to a subsequence we can assume that the sequence of positive 
measures ßa := jF Aaj

2 on X converges to a measure /J.^ on X in the 
weak-* topology on measures, so 

lim X jF Aa j2dV= Z Hoo =: M œ < K, 

where K < 00 is the constant in our universal energy bound (4.2) for a 
PU(2) monopole over X. Hence there are at most M ̂ /e^ distinct points 
in X, labelled fxi,..., x m g, which do not lie in a geodesic ball B(x, r) 
of/ioo-measure less than EQ, where eo is the constant of Proposition 4.18 
and which appears in (2.18) and (4.8). Thus, for any r > 0, we have 

lim Z jF Aaj
2dV = Z ß 

a^coB{x i,r) B(x i,r) 
00 > £ 0 ' i — 1,..., m, 

and so we may define real numbers Ki > £Q/8TT by setting 

1 Z jF Aaj
2dV=lim-± 

B(x i,r) r ^ ° °^ B(x i,r) 

Ki : = l im l im — - jF A„j2 dV = l i m — - UQQ. 

We may suppose, without loss of generality, that m > 1. If a point x i 
lies in a ball B(Xj,2RQ) then the holonomy perturbation sections are 
zero over B(Xj,RQ) since 8TT2Ki > ^SQ. Hence, the points x\,... ,x m g 
are contained in a large open subset of X where (r, ê) = f. 

By passing to a subsequence, Proposition 4.18 supplies determinant-
one, unitary gauge transformations ua over X n f xi,..., x m g such that 
the sequence ua(Aa,Qa) converges over X n f xi,... ,x m} to a pair 
(Ao, $0) on (su(E), W+0E)j Xnfxu_}x m g, such that the triple (A0, $ 0 , x) 
solves the lower-level PU(2) monopole equations (4.9). Plainly, 

Z (jF AOj2 + j$Oj + j r A0$Oj2) dV<K <oo . 

Xnfxi,...,x m g 
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By the removability of point singularities for finite-energy PU (2) monopo
les (Theorem 4.10), there are a Hermitian two-plane bundle EQ with 
de tEo = d e t E over X, a PU(2) monopole (^0,^0) on 
(su(EQ), W+®EQ), and a determinant-one, unitary bundle isomorphism 

u0 from E\X\{xu_ix m} to E0\X\{xi,...,x m} such that uo(A), $0) = (A), $0) 
over X\{xi,...,x m}. 

The limiting measure fx^ has the form 

m 

/̂ oo = IF Aol2 + 8TT2 X Kix i, 
i = l 

where the ^ have unit mass concentrated at the points Xi It remains 
to show that the Ki are positive integers. For this purpose we use an ar
gument similar to that used to prove Lemma 3.8 in [31] (due to Taubes) 
which fits better with our later development of the gluing theory for 
PU(2) monopoles, though one could also use the Chern-Simons func
tional for this purpose as in [20, p. 164]. The proof of Theorem 3.2 in 
[31] is a modification of an earlier compactness result, Proposition 4.4 
in [83], for connections with L2 bounded curvature but which are only 
approximately anti-self-dual in a suitable sense. Theorem 4.20 follows 
easily from the next lemma: 

L e m m a 4 .21 . The bundle EQ has Chern classes c \ (EQ) = c\(E) 
and c2(EQ) = c2(E) — £, where £ = Ym iLiKi and the constants Ki are 
positive integers for i = 1 , . . . , m. 

Proof. The equality of the first Chern classes follows from the re
marks in the preceding paragraph. The proof that each Ki is an integer 
requires a brief digression in order to discuss the limiting behavior of 
the connections Aa near the points x i É X . 

Fix an index i G { 1 , . . . , m } , let g be the injectivity radius of (X, g), 
and fix a constant S G (0, \Q). Choose an orthogonal frame for su(EQ)\x i, 
use parallel translation via the connection AQ along radial geodesics 
from x i G X to trivialize su(EQ) over the ball B(x i,g), and let wQi : 
su(Eo)1B(x,0) ~~* B(x i, Q) x su(2) be the resulting smooth bundle map. 
We have ||F A0 | |LO O(X) < C, for some positive constant C, and so 

\\F A0\\L
2(B(x i,6)) < CO • 

Thus, we may suppose that ö is fixed small enough so that Theorem 3.13 
provides an SU(2) gauge transformation vQi of B(x i, 6) xsu(2) such that 

\\a0,i\\L*(B(x i,o)) + l | r a o , i | | L 2 ( B ( x i,(5)) < c \ \ F A0\\L2(B(x i,20))I 



PU(2) MONOPOLES. I 355 

where a0,i := u0,i{A0) -Fe u1(B(x iìo)ìsu(2)) and u0,i := v0,i ° w0,i, 
and r is the product connection on B(x i,ö) x su(2). The sequence of 
connections ua(Aa) converges in C°° on compact subsets of the punc
tured balls B(x i, ö)nfx i g to the C°° connection AQ onsu(EQ)j B(x.^^ xÌg; 
therefore, the sequence of connections uoti ua(Aa) converges in C nf on 
compact subsets of the punctured balls B(x i,ö) n fx g to the C°° con
nection uO,i(AO) on B(x i,ô) fx i g x su(2). 

Write uo,i ua(Aa) = F n a i a over B{x ii8) n fx i g, where a ijQ G 
Q1(B(x i, (5) a;i g,su(2)). Let ^(a;i; ^r, 2r) denote the open annulus 
fx G X : ^r n f dist g(x,x i) < 2rg in X. Then, for any r G (0, ^ô), there 
is an index ao(r) such that 

Z {ja i,a -ao, i j 4 + j r ( a i,Q ~ ao,i)j2) dV < r4, a > a0. 

n(x i,^r,2r) 

Since kF A0k LOO(X) < C, wehave 

(4.10) Z (ja i j 4 + j r a c i j2) dV < c Z jF Aoj
2 dV < Cr\ 

B(x i,2r) B(x i,2r) 

and therefore 

(4.11) Z {ja i a j + jra iaj2) dV<Cr\ a>a0. 

n(x i,^r,2r) 

Let x : R —)• [0,1] be a bump function such that x(t) = 0 for t < \ and 
x(t) = 1 for t > 2. Define a cutoff function Xi,r '• X —> [0,1] by setting 
Xi,rOx0 = 1 - x(dist g(x, x^/r) so that Xi,r = 1 on B(a;i, \r) and Xi,r = 0 
on X — B(x i,2r). Fix a Riemannian metric g i on S14 which coincides 
with g on B(x i,ö) = B(n,ö) (after identifying the point x i G X with 
the north pole n G S4) and extends g outside B(x i, 2<5) = B(n, 28) to a 
smooth metric on S4. Define a sequence of SO(3) bundles V irQ, over S4 

by setting 

Jsu(E) over B(n, 2r), 

i'r'° : _ S4 nfng x su(2) overS 4 nfng, 

where the identification of the SO(3) bundles su(E) and ^ nfng xsu(2) 
over the annulus B(n,2r) n fng = B(x i,2r) n fx i g is induced from the 
the SO(3) bundle isomorphism 

u0,i o ua : su(E)j B(n)2r)nfng -» B(n, 2r) nfng x su(2). 



356 p a u l m . n . f e e h a n & t h o m a s g . l e n e s s 

We cut off the sequence of connections Aa on su(E) over the annulus 
fl(x i, | r , 2r) and thus obtain a sequence of C°° connections A ijrja on the 
sequence of SO (3) bundles V irQ, over S4 by setting 

A i -JAa onsuE B(n,ry 
\T + Xi,r a i,a on S4 \ {n} x su(2). 

Recall from Lemma 4.4 that there is a constant C independent of a 

such that \\F ̂  \\L°°(X) < C and so 

(4.12) \\F+a ||L2(B(x i)2r)) < Cr2 for all a . 

Since 

F A i,r,a = Xi,r F Aa + (dXi,r A a i ; a ) + + Xi,r(Xi,r ~ l ) a a A Oi,«)"1", 

the estimates (4.10), (4.11), and (4.12) imply that 

+ ^ l | d X i ) r | | L 4 X | | a i ) a | |L4 ( n (x i ; ir j 2r ) ) 

<C(r + r2), a>a0. 

Therefore, 

(4.13) lim lim II.A \\L2(S4) = 0. 

Similarly, as 

F A i,r,a = Xi,r F Aa + dXi,r A a i a + Xi,r(Xi,r ~ l )a i,a A a i;Q, 

the estimates (4.10) and (4.11) yield 

II A itr,a - A j l L 2 ( n ( x i . I r )2r)) 

- l l r a i ' a l l L 2 ( n ( x i ; ì r , 2 r ) ) + c l l a i ' a l l L 4 ( n ( x i ; i r , 2 r ) ) 

-I- lia i II2 

" ' U L*(n(x i;^r,2r)) 

<C(r + r2), a>a0. 
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Therefore, 

(4.14) limlim\\F A ira-F Aa\\ i = 0. 

We can now complete the argument that the Ki are integers: 

Claim 4 .22 . There is an SU(2) bundle E i over S 4 such c2(E i) = i 
for each i = 1 , . . . , m. 

Proof. Fix an index i G { l , . . . , m } . Over S 4 , the SO(3) bundles 
V ^ lift to SU(2) bundles E i r a with V ̂ r^a = su(E i^a) and pi(V i,r,a) = 
—4c2(-i,r,a). The second Chern classes of the SU(2) bundles E itr>a are 
given by 

1 

^ S* 
c2(E i,r,a) = 7^2 jF A j ' - A- j dV, 

recalling that the isomorphisms ad : su(E ̂ r)0,) —> so(su(E ̂ r)0,)) are im
plicit and that we view F A i ra as sections of A2 (gisu(E )r )Q). Therefore, 
by (4.14) and (4.13) and the fact that F A ira = F Aa on B(x i \ r ) , we 
have 

lim lim c2(E ira) = lim lim —~ / jF7 j dV 
r->0«->oo ' ' r-tO a-too 8ir2S4 A i,r,a 

= lim lim - L Z fjF7 j2 + jFt j2Ì dV 
r ^ m a-m-oo 87T2 Z S4 y i . r .« A i,r,a 

= lim lim —T j F A j 2 d V 
r - ^ a - > 0 ° 8 7 r 2 Z B(x i)2r) i'r'a 

= lim lim —£ B j F AQ j 2 dV = «i, 

where the final equality follows by definition of Ki. Thus, for small 
enough r and large enough a, we have c2(E i,r,a) = ^(E i) for some fixed 
SU(2) bundle Üi over S 4 and so i = c2(E i), completing the proof of 
the claim. q.e.d. 

By Claim 4.22 the Ki are positive integers for i = l , . . . , m . We 
can now compute the second Chern class of the limit bundle EQ. The 
Chern-Weil identity (2.33) implies that , for all a, 

-lpl(su(E)) = c2(E) - \cl{Ef = ± X (jF A j - jF+A2) dV. 
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Therefore, by (4.12) we have 

c2(E) - jci(E)2 = lim lim A r Z (jF A j 2 - jF A j2) dV 

lim lim A T (jF7 j 2 - jFÌ j2) dV 
r-> 0 a-> o o87r2X\um iB (x. ) 2r ) AQ A« 

+ X l i m „ l i m ^ Z B ( x ( , r ) ( A 2 - j F j 2 ) d V 

m 

c2(Eo)-ïci(Eo)2 + X K i . 

i = l 

i = l 

Now ci(E) = c\(E0) and thus c2(E0) = c2(E) — P mI Ki- This completes 
the proof of Lemma 4.21. q.e.d. 

Therefore, after passing to a subsequence, the sequence of points 
[A a ,$ a] in M W,E converges to an ideal monopole [Ao,$0)x] in 
M L,E0

 X Sym (X), for some integer £ > 0, and Lemma 4.21 implies 
the Chern classes of the limit bundle EQ are given by c\(EQ) = c\(E) 
and c2CE0) = c2(E) - L 

It remains to give an upper bound for the integer I = c2(E) — c2(EQ). 
The Chern-Weil identity (2.33) implies that 

I = c2(E) - c2(E0) = - L Z (jF-j2 _ jF+j2) dV 
87r X 

1 Z / F 7 . j 2 - j F + j 2 > ) dV, 
8ir2X j Ao ° 

and thus, by Lemma 4.3, we have 

M S ) i K ^ Z jF A j d V + ^ X dVKN p, 

for some positive integer N p = N p(c(E),c2(E),g, F(A detW), F(A det E)). 
This completes the proof of Theorem 4.20. q.e.d. 

Remark 4.23. The compactness result in this section for the mod
uli space of PU(2) monopoles has an antecedent in [31, Theorem 3.2] 
(due to Taubes) in the following sense. Taubes' theorem provides a weak 
compactness result for connections A satisfying the 'infinite-dimensional 
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part ' of the anti-self-dual equation, namely HA-^F A = 0, where /J, ^ 
Specd A d*AJ and nA is the L2-orthogonal projection onto the eigenvec
tors of d A d*A with eigenvalue less than //, together with the curvature 
bounds kF A k L ^ X ) + kd A F ̂  A k L 2 (X) < C for some constant C indepen
dent of A. The analogous point here is that although X jF A j2 dV is not 
a topological invariant unless F A = 0 or F A = 0, just as in the case 
of the PU(2) monopoles, it is enough for the purposes of obtaining a 
weak compactness result to have uniform bounds on the L2 norm of F A 
together with an L p bound on F A for some p > 2. 

There is one further compactness result we will need, analogous to 
Uhlenbeck's original compactness theorem for connections (not neces
sarily satisfying any elliptic equation) with L p bounds on curvature with 
p > 2 [95, Theorem 1.5]. 

Propos i t i on 4 .24 . Let p > 2 and K > 0 be constants. If [Aa, <&Q] 

is an infinite sequence in M W,E satisfying 

kF A k L p(X) < K, 

then there is a subsequence c/ C ag such that the sequence [Aai, 3>Q/] 
converges to a point [A ̂ , f ^] g M f , E -

Proof. Let (Aa, 3>Q) be a corresponding sequence of C°° pairs. Since 
p > 2, Holder's inequality implies that for any geodesic ball B(x, r ) C X 
we have 

kF Aak LHB(x,r) < cr2-p kF A k L p{B{x,r)) < cKr2-p. 

Hence, for small enough r, Proposition 4.18 applies and there are a 
subsequence fa1g C fag and a sequence of C°° gauge transformations 
uai such that the sequence uai(Aai,$ai) converges in C°° to a limit 
(AQO, $OO) over all of X, with no exceptional points. q.e.d. 

As we shall see in x5.1.2, Proposition 4.24 allows us to work with 
perturbation parameters (TO,T, ê) and a metric g which are C°° rather 
than just C r, as required by the application of the Sard-Smale theorem 
in our proof of transversality in x5. 

5. Transversal i ty 

In this section we show that for generic perturbation parameters 
(i?0) To? "T) $) the moduli space of solutions to the perturbed PU(2) monopole 



360 p a u l m . n . f e e h a n & t h o m a s g . l e n e s s 

equations (2.27) is a smooth manifold away from the zero-section and 
reducible pairs. 

The outline of the proof is of the now standard form introduced 
in [14] and [30]. In x5.1 we define a parametrized moduli space and 
explain why transversality for the moduli space (Corollary 5.3) follows 
from transversality for the parametrized moduli space (Theorem 5.2) 
via the Sard-Smale theorem. In x5.2 we show that the parametrized 
moduli space is a smooth Banach manifold (Theorem 5.2). The proof 
of Theorem 5.2 relies on the fact that a PU(2) monopole, which is 
reducible on an admissible open subset of the manifold X, is reducible 
on the entire manifold (Theorem 5.11) and this is proved in x5.3. 

The proof of Theorem 1.3 does not apply to PU(2) monopoles which 
are zero-sections or which are reducible. We describe the cokernels of 
DS evaluated at these pairs in the sequel [25] to the present article. 

5.1 . T h e parametr ized modul i space . It is convenient to 
first consider the question of transversality for the top s t ra tum M ^E of 
the Uhlenbeck compactification M W,E and then consider the very slight 
modification required to obtain simultaneous transversality for all the 
lower-level moduli spaces M WE js C C ̂ E x S, for smooth strata 

S C Sym X . 

5.1 .1 . Transversal i ty for t h e top- level modul i space . The 
condition in Proposition 2.28 that the section S , vanish transversely is, 
of course, not necessarily true for all the parameters (ro,f?0) ?,$), on 
which S depends. As in the cases of the moduli spaces of anti-self-dual 
connections [14], [20], [30] and Seiberg-Witten monopoles [47], [98], we 
first show that the family of moduli spaces parametrized by the pertur
bations (ro,'âo,f,'â) is smooth and then apply the Sard-Smale theorem 
[80] to conclude that for generic perturbations (TO,'#O?7?)'#) (that is, a 
subset of perturbations which is the complement of some first-category 
subset), the moduli space S - ! ( 0 ) = M W'E(To,#o,f,#) is smooth. 

Set P r := C r(X,gl(A+)) © C r(X, A1 <g> C), let P r : = P r0 ®P rT®P r 
denote our Banach space of C r perturbation parameters, and define a 
0G E equivariant map 

S•= ( S i , S 2 ) -P r x C W,E ->• L 1 ( A + ® su(E)) © L k i ( W ~ ® E)) 
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by setting 

S(T0, # 0 , T , l A , $ ) 

= (F A - (id + T0«)id su (E )+f-m(A)) /9-1($(g)$*)oo 

where (A,$) is a pair on (su(E),W+ <g) E) and the isomorphism ad : 
su(E) ~ so(su(E)) is implicit, °G E acts trivially on the space of per
turbations P r, and so S ~ (0)/°G E is a subset of P r x C W,E- We 
let yJWE denote the parametrized moduli space S_1(0)/°G E and let 

tWE = M WtEn(P rxC*WE). 

Remark 5.1. While we assumed for convenience in x3 and x4 that 
the parameters g, To,êo,f,ê were C°°, the only difference, if the param
eters are only assumed to be C r for some finite r, is the slight increase 
in bookkeeping required to keep track of the regularity of solutions to 
(2.27) and other associated elliptic systems. 

Just as in x2.6, the °G E-equivariant map S defines a section of a 
Banach vector bundle V over P r x WuE with total space 

V := P r x C$E x0G E {L k_1(k+ ® su(E)) © L k_ t(W- ® E)) , 

so S := S(TO?'#O?7??'#? ') is a section over C ̂ E of the Banach vector 
bundle V := Vj ^ _A in (2.34). In particular, the parametrized 

moduli space 9JWE is the zero set of the section S of the vector bundle 

V over P r x C WE. 

Theorem 5.2. The zero set in P r x C ̂ E of the section S is reg

ular and, in particular, the moduli space M ^E is a smooth Banach 

submanifold of P r x C ^E. 

To preserve continuity, we defer the proof of Theorem 5.2 to x5.2. 
The differential DS := (DS), „ - j A Al of the section S at a point 

[r0, Î?O, T, #, A, $] in P r x C ̂ E is given by 

(5.2) DS(ôr0, Wo, *r, W, a, 0 = ( D S ^ ^ ^ 8 i a' M , 
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where (a, (fi) G K A,$ C L ( A 1 <g> su(E)) © L k ( W + <g> E) represents a 
vector in the tangent space {TC ̂ E)yA^-\ and (ÔTO,Ô,ÛO,OT,0'Û) G P ' • 
The differential of the first component in (5.2) is given explicitly by 

DS1 ÔTO, ôêo,ôr, ôê, a,(fi 

d A a - < J T o p _ 1 ( * ® * * ) o o 

- (id + TO <g> id su(E) + f • m(A)) p ~ l ((fi <g> $* + $ J oo 

(5.3) -^(ÖTjM®ad{m jM{A))p 1($®& 
j,l,a 

jl.«»ad m a ^ * ® * * 

)00 

100, 

and the second component by 

DS2 ^ T 0 Î ^#0? ^ ^#? a ) 

= D A 0 + $ • m(A)c/> + p ( a ) $ 

(5.4) + p(<J#o)$ + 5>(<ftW)® (A)<& 
j,l,a 

+ E j . l . « ) ® m A a * -

We note tha t from their definitions in §2.5.2 the per turbat ions (and 
their variations) are zeroth order, unlike the first order per turbat ions 
considered in [92]. 

Recall from the arguments of §2.2 tha t DS(-,d A$Ç) = 0 for all 

C £ L ̂  k+1(su(E)) © iR Z since S is °G E-equivariant. By Proposi t ion 3.7 

we may assume, without loss of generality, tha t the pair (A, <&) in C ^E 

is a C r representative for the point [A, <&] in the zero set S _ 1 ( 0 ) C C 
0,* 

*,o 
W,E-

Since the tangent space {TC WE)yA^-\ may be identified with K A := 

Kerd A ^ (see §2.2), we have 

D S ( 0 , 0,0, 0, a, </>) =d1A^(a,4>) = (d0A + d A<s>)(a,(fi), 

for (a, (fi) G K A $ , so the differential DS\SnXvTY,*,o is Fredholm, where 

{0} x TC W*E = T ({ r 0 , tf0, T, •&} x C WE). Thus , S is a Fredholm section 
when restricted to the fixed parameter fibers 

{TO,0Q,T,0}xC W O E c P rxC W°E. 
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The Sard-Smale theorem (in the form of Proposition 4.3.11 in [20]) then 

implies that there is a first-category subset of the space P ' such that 

the zero sets in C ̂ E of the sections S = S(TO,I?0) ?,$, •) are regular 

for all C r perturbations (ro,'âo,T,'â) in the complement of this subset. 
Now 

M ̂ E(To,êo,rJ) = S-1(o)nC*^E, 

and so for generic parameters (To,'âo,f,'â), the moduli space 
M ^E(To,êo,f,ê) is a smooth manifold of the expected dimension. In 
summary, we have: 

Corollary 5 .3 . There is a first-category subset of the space P ' , 
such that for all C r perturbations ( T O , ? ^ T, $) in the complement of this 
subset, the zero locus of the section S is regular and so the moduli space 
M WE(T0 ,d0 , f ,d) = S " 1 ( 0 ) n W E is a smooth submanifold of C Ŵ E 
with the expected dimension. 

We recall that a subset S of a topological space P is a set of the first 
category if its complement P — S is a countable intersection of dense 
open sets or, equivalently, if S is a countable union of closed subsets 
of P with empty interior; if P is a complete metric space, then Baire's 
theorem implies that P — S is dense in P [76]. In our applications, P 
will either be a Banach or Frechet space (with a complete metric), so 
P — S will always be dense if S is a first-category subset. 

5.1.2. R e d u c t i o n to the case of C°° parameters . The restric
tion to C r parameters (To,'âo,f,'â), necessary to apply the Sard-Smale 
theorem in x5.1.1, proves inconvenient in practice. We shall see that 
these restrictions can now be removed, so we need only use C°° param
eters (TO, #0) T, #) . Although we did not need the metric g to be generic 
in order for our transversality proof to work, we will nonetheless require 
the metric g to be generic in the sequels to the present article and so, 
a priori, g would also be restricted to a certain Banach manifold of 
metrics on X. An argument almost identical to the one which we de
scribe here can be used to show that one need only consider generic C°° 
metrics in those applications. 

There is an argument due to Taubes — for the moduli space of 
Seiberg-Witten monopoles — which reduces the case of transversality 
for C°° parameters to the case of Holder or Sobolev parameters [77, 
x9.4]. (A related result for generic metrics due to Freed and Uhlenbeck 
appears as Proposition 3.20 in [30], although it is only stated for the 
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moduli space of anti-self-dual SU(2) connections with second Chern class 
one over a simply-connected, negative definite four-manifold.) 

We adapt Taubes argument here to the case of the moduli spaces of 
PU(2) monopoles. We define 

P : = P0 © PT © Po, 

oo 

P = £}(A, Q° (X, gl(A+))) := p | £}(A, C r (X, gl(A+))), 
r=0 

oo 

P* = £1
s(A,n1(X,C)) := f i A C X A ^ C ) , 

and let P r be the Banach space 

P r : = P r0®P rT® P r 

= C r{X,gl{A+)) © C^X.A1 ©C) 

© 4 ( A , C r(X,gl(A+)))©4(A,C r (X,A 1 ®C)) . 

Define metrics do, dT and d$ on Met(X), Po-, P and P$ by setting 

do(Toi,#oi;To2,#02J : = / ^ ~ m lì r~ÏÏT" 

^ 1 + || TOI - T02||C r + I PC 

oo 2 

d(Tl,T2) : = X l r 

°° 2 r ( | | r 0 i - TO2 | |C + ||i?oi - ^ 0 2 | | C 

r = 0 , , u , uz,,,C ,P01 - 1 ? 0 2 | | C r 

- 2 - r | f i - f 2 | | , i ( C r ) 

r=0 + l l f l ~ f 2 l ^ ( C r) 

- 2 - r | | l ? i - t ? 2 | | , i ( C r) 
dö(l?l,1?2) : = > • 

and observe that Po) P and *$ are complete metric spaces, with the 
above metrics inducing the C ° P topologies. Thus, P is a complete metric 
space with respect to the product metric d = do x dT x d#, which induces 
the C°° topology on . The C r topology of 7-r is induced by the product 
metric d r := d r0 x d rT P d r. 

Let P reg C P be the subspace of parameters for which the zero set 
of S p is regular, and note that 

P reg — [ | P n,reg) 
n>l 
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where P n,reg C reg is the subspace of C°° parameters p such that 
the differential D P p is surjective for all pairs (A, $ ) in S~1(0) n C ^E, 
satisfying 

(5.5) kF A k LP<n and u0(A,^>;p) > 1/n, 

for some p > 2, where fo(A, <&; p) is the least eigenvalue of the Laplacian 
^ A$-p : = d A*$d A $ computed with respect to the metric g. Define, in 
the analogous way, the subspaces Vr eg and P reg of P r • 

The uniform upper L p bound on F A precludes bubbling, while the 

uniform lower bound on VQ{A, $ ) keeps (A, $ ) bounded away from the 

reducible or zero-section pairs. Let ^ ( A , 3>;p) be the least eigenvalue 

of the Laplacian AA # := d A $d A% computed with respect to the pa

rameters p = (To,êo,f,ê). Then (DS p)A,$ is surjective if and only if 

v2(A,$;p) > 0 . 

Claim 5.4. The subspace P n,reg C P is open in the C°° topology 

and P n,reg ^ 7-r is open in the C r topology. 

Proof. Let f p « g ^ ! C P n P n,reg be a sequence of parameters and 
suppose that pa converges to p G P in the C°° topology. Then there 
is a sequence of solutions (Aa,$a) to (2.27) in C ̂ E, with parameters 
pa, which satisfy the bounds in (5.5) and for which U2(Aa, Qa; pQ) = 0. 
Proposition 4.24 and the L p bounds in (5.5) imply that , after passing to 
a subsequence, there is a sequence of gauge transformations fuag C G E 
such that ua{Aa, $ a ) converges (strongly) in L k to a solution (A, $ ) in 
C\vE to (2.27) which satisfies the curvature bound in (5.5). Standard 
perturbation theory implies that the eigenvalues Vi(ua(Aa, <i>a); p a ) con
verge to fi(A, <&; p) for i = 0,2 [41], so that the triple (A, $ ; p) satisfies 
the eigenvalue bound in (5.5). The eigenvalue v^A, <&;p) must be zero 
— otherwise the eigenvalues V2(ua(Aa,Qa);pa) would be positive for 
large enough a. Hence, p ^ P n,reg and so P n,reg is open. The proof that 
P n,reg is an open subset of P r is identical. q.e.d. 

Claim 5.5. The subspace P n,reg C P is dense in the C°° topology. 

Proof. By Corollary 5.3, the space P reg is the complement in P r 
of a first-category subset and so is dense by Baire's theorem; clearly, 
P r n reg is also dense in P ' , since Vr eg C 7-nreg. Let p E P be a C°° 
parameter, and let p a g C 7-n reg be a sequence of C r parameters such 
that d ( p , pQ ) < 2_f_ 1 , so pa converges in C r to p . Since P n reg C P r is 
open by Claim 5.4 and the C°° parameters P are dense in 7-n reg, we may 
choose, for each a, a C°° parameter p'a G T5r reg such that d ( p a , p J J < 
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2~a~l. Since p'a is C°°, then {p„g C P n,reg and by construction we have 
er (p , p'a) < 2~a and so the sequence {p'ag converges in C r to p G P . 

Therefore, for each r, we obtain a sequence {p'a(r)g C P n,reg which 
converges in C r to p G P reg- But then the diagonal sequence {p' a(a) C 
P n,reg converges to p in C r for each r (it satisfies cr (p, p^ (a ) ) < 2 _ g for 
all a > r) and so the sequence converges in C°° to p G P, as required. 
q.e.d. 

From Claims 5.4 and 5.5 we conclude that P reg is a countable in
tersection of dense, open subsets of P and hence is the complement of 
a first-category subset (in particular, the subset P reg C P is dense by 
Baire's theorem). Hence, the space P eg of C°° parameters (ro,'âo,T,'â) 

such that the moduli spaces M ^E(To,êo, r , #) are regular is the com
plement of a first-category subset of P• From this and Corollary 5.3 we 
conclude: 

Corollary 5.6. Let X be a closed, oriented, smooth four-manifold 
with C°° metric g. There is a first-category subset of the space P, such 
that for all C°° perturbations (To,êo,f,ê) in the complement of this 
subset, the zero locus of the section S is regular and so the moduli space 
M WE(To,êo,T,ê) = S _ 1 ( 0 ) is a smooth submanifold of C ̂ E with the 
expected dimension. 

R e m a r k 5.7. The same argument shows that the standard Freed-
Uhlenbeck generic metrics theorems (specifically, Corollaries 4.3.15, 
4.3.18, and 4.3.19 in [20] and the refinement Lemma 2.4 in [48] for 
the non-simply connected case) for the moduli spaces of anti-self-dual 
connections on an SU(2) or SO(3) bundle over X continue to hold for 
the complement of a first-category subset of C°° metrics, rather than 
just C r metrics. 

5.1.3. S imul taneous transversal i ty for the t o p and lower-
level modul i spaces . Let E be a smooth s t ra tum of Sym (X). 
Recall from §4.5.2 that a universal choice of a sufficiently large constant 
N b guarantees that if [A, $ , x] is any point in M W,E and A is irreducible, 
then A has at least one ball B(Xj,RO) which supports holonomy per
turbations. 

The PU(2) monopole equations cutting out the locus 

M*'0 i^ r C *'° v y 

from the Uhlenbeck compactification M W,E are equations for triples 
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(A, <Ê>, x ) G CyvE x ^- We can again define a °G E-equivariant C°° map 

S : Vr x C ^ x S 4 L _ i ( A + ® su(E)) © L _ i ( W " ® E ) 

by setting 

S ( T 0 , t ? o , T , t A , $ , x ) 

_= A F + - (id + r0(g)id su(E) + f - m ( A , x ) ) p - 1 ( $ ( g ) $ * ) o o 

The proof of Corollary 5.6 now shows that M WE js C C ̂ E x E is a 
smooth submanifold of the expected dimension for generic parameters 
( T 0 , # O , T , # ) , 

(5.6) d i m M WE js = d i m M WE + d i m E . 

Furthermore, by considering regular values of the projection maps onto 
the second factors E, Sard's Theorem also shows that the fibers M ^E j x 
are smooth manifolds of the expected dimension for generic points 
x G Sym (X). Indeed, the only tangent vectors in each s t ra tum E, 
which might not appear in the image of the projection, are those arising 
from the radial vector on the annuli B(Xj,4:RQ)\B(Xj,2RQ). This ob
servation shows that the projection from M WE to E is transverse to 
certain submanifolds of E which would allow dimension-counting argu
ments similar to those in [25]. Issues related to dimension-counting in 
the presence of holonomy perturbations are also discussed by Donald
son in [18, pp. 282-287]. We can now conclude the proof of our main 
transversality result: 

Proof of Theorem 1.3, given Corollary 5.6. For the case I = 0, 
the transversality assertion is given by Corollary 5.6 and the dimension 
formula is provided by Proposition 2.28. The case £ > 0 then follows 
from the discussion in the preceding paragraphs. q.e.d. 

5.2. S m o o t h n e s s of t h e parametr ized modul i space . We 
prove Theorem 5.2 by showing that the °G E-equivariant map 

S : Vr x C*^E ->• L _ i ( A + ® su(E)) © L k_ t {W + © E) 

vanishes transversely, and so the parametrized moduli space M ^E = 

S ~ 1 { 0 ) / ° G E is a smooth Banach manifold. The broad strategy is rem
iniscent of that of [30, Chapter 3] and [20, §4.3.5], where the analo
gous result is established for the moduli space of anti-self-dual con
nections parametrized by the Banach space of C r (conformal classes 
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of) metrics: our proof of surjectivity of the differential D S at a point 
(TO,#0) ?,$, A, $ ) in the zero set S _ 1 ( 0 ) ultimately relies on the fact 
that , for $ ^ 0, a monopole (A, $ ) which is reducible on an admissi
ble open subset of X is necessarily reducible over all of X (Theorem 
5.11). If there are sections m j l ^A) which are non-zero on B(Xj,RO), 
we say that the connection A has holonomy perturbations supported on 
B(x j,Ro); the set fm jlja(A)}l=1 then spans su(E)\B(x jjR0) for at least 
one index a. Then an admissible open set for the pair (A, $ ) is one con
taining the B(x j,Ro) for all j such that ßj[A] > 0. (The supports of all 
the sections m j^^a{A) are contained in U j N z l B (x j , Ro), and so any open 

subset of X containing \Jj N 1 B ( X j , R O ) is admissible.) Recall from §4.5.2 
that because of our choice of constant N b, if [A, $] is any point in M ^E, 
then at least one ball B(Xj,RO) supports holonomy perturbations for A. 

Theorem 5.2 is an almost immediate consequence of 

Propos i t i on 5.8. Suppose (To,êo,T,ê,A,^) is a point in S _ 1 ( 0 ) 
with A irreducible and <£> ^ 0. If (v,ip) is in the cokernel of the differen
tial D S at the point (ro,i?0) ?,$, A, $ ) , then (v,IP)\B(x j,R0) = 0 for each 
ball B(x j,Ro) supporting holonomy perturbations for A. 

We first observe that the elements of the cokernel of 

DS := DS^-jA 

have a restricted form of the unique continuation property (sufficient 
for our purposes) by Aronszajn's theorem [5]: 

L e m m a 5.9. If (v,ip) G Ker DS(DS)* and (v,ip)\U = 0 on some 
non-empty open subset U C X containing all balls B(Xj,RO) supporting 
holonomy perturbations for A, then (v,ip) = 0 on X. 

Proof. By hypothesis, the pair (v,ip) solves the second-order elliptic 
equation 

(DS) (DS)* (v ,V) = 0 o n X , 

where the Laplacian DS = (DS ^ ^DS^i given by equations (4.3) and 
(4.4), has C r _ 1 coefficients and (v,ip) is at least C r+1. Also, (v,ip) = 0 
on the set of closed balls supporting holonomy perturbations, 

B j (A ) := ( J B(x j,R0), 
jeI(A) 

where I(A) := fj : 1 < j < N b, ßj[A] > 0, and A\B(x jy2R0) is irreducible}. 
Now, on the subset X — B IA where all of the holonomy perturbations 
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and especially their derivatives with respect to A vanish (see their defi
nition in §2.5.2), the Laplacian (DS)(DS)* is a purely differential op
erator. In particular, it extends to a differential operator with C r _ 1 

coefficients over X, say (DS°)(DS°)*, given by the linearized PU(2) 
monopole equations (5.3) and (5.4) with all terms involving holonomy 
perturbations and their derivatives set equal to zero. On the other hand, 
the pair (v,ip) also solves the resulting second-order elliptic differential 
equation 

(DS0)(DS°)*(v/4>) = 0 on X, 

since (v, iß) = 0 on B I(A) and DS° ^ DS only on B I (A), while DS° = 
DSonX -B I{A). 

Without loss of generality, we may scale the Dirac equation in (2.21) 
by l / p 2 . We then have 

DS°(DS0)* = AnA 1 " + First-order differential terms, 
° 2D A D A 

and so by the Bochner formulas of Lemma 4.1 and [30, Eq. (6.26)], the 
Laplacian DS0{DS0)* is a second order elliptic differential operator 
with scalar principal symbol (given by the metric ^ g on T*X). The 
desired conclusion then follows from Aronszajn's unique continuation 
theorem [5]. q.e.d. 

R e m a r k 5.10. 

1. Aronszajn's theorem does not apply without the given restriction 
on the open set U in the statement of Lemma 5.9, as the Laplacian 
(DS)(DS)* is not a purely differential operator over all of X. One 
can see from equations (5.3) and (5.4) that the problem terms 
are those appearing in the last line of each displayed equation: 
the operator 8m j^a/8A acting on a G Çll(su(E)) is an integral 
operator, as is clear from the formula (A.7) for the differential of 
the holonomy with respect to the connection. 

2. Lemma 5.9 can also be proved without using Aronszajn's theorem 
explicitly and instead applying the Agmon-Nirenberg unique con
tinuation theorem (Theorem 5.25) to the equation (DS)*(v,tß) = 
0, and mimicking the existing application in the proof of Theorem 
5.11. Indeed, this second proof of Lemma 5.9 is virtually identical 
to the proof of Theorem 5.11. We leave the details to the inter
ested reader, as the preceding use of Aronszajn's theorem appears 



370 p a u l m . n . f e e h a n & t h o m a s g . l e n e s s 

easier to us. We note that Aronszajn's theorem can be derived 
from that of Agmon-Nirenberg (see [3]). 

If (v, ip) is an L ̂ _1 element of the cokernel of D©^, then elliptic 
regularity for the Laplacian D<S_(D&)*, with C r~l coefficients, implies 
that (v,ip) is in C r+1. Our proof of Theorem 5.2 also relies on the 
following 'unique continuation' result for reducible monopoles: 

T h e o r e m 5 .11 . If (A, $ ) is a C r solution to the perturbed PU(2) 
monopole equations (2.27) with $ ^ 0 over a connected, oriented, smooth 
four-manifold X with C r Riemannian metric, and (A, $ ) is reducible on 
a non-empty open subset U C X with B(Xj,RQ) C U for all j such that 
ßj[A] > 0 ; then (A,$) is reducible on X. 

The proof of Theorem 5.11 is lengthy, so we defer it to §5.3. 

Proof of Theorem 5.2, given Proposition 5.8 and Theorem 5.11. Let 
(TO,#0) ?,$, A, $ ) be a C r representative for a point in 9JW^E, so that 
A is irreducible and $ ^ 0, and suppose (v, ip) is in the cokernel of DÊ5. 
By definition of N b in §2.5.2, the set 

J (A) :={j:l<j<N b and ßj[A] > 0g 

is non-empty. Since A is irreducible on X, Theorem 5.11 implies that 
A\B(x,,2R0) must be irreducible for some j ' G { 1 , . . . , Tb g such that 
/9j/[A] > 0; otherwise, A|B(x,,2R0) would be reducible for all j such that 
ßj[A] > 0, and Theorem 5.11 would imply that A would be reducible 
over all of X, contradicting our assumption that A is irreducible. By 
Proposition 5.8 we see that (v,IP)\B(x j,R0) = 0 for all j such that ßj[A] > 

0 and A\Bix jßRo\ is irreducible, so (v,ip) = 0 on X by Lemma 5.9. 
q.e.d. 

The proof of Proposition 5.8 occupies the remainder of this subsec
tion. We first note that since $ is in the kernel D A + # • m(A), it has 
the unique continuation property by Aronszajn's Theorem [5]: 

L e m m a 5.12. If (D A + p{ê0) + ê • m(A))$ = 0 and $\U = 0 for 
some non-empty open subset U C X, then $ = 0. 

Proof. The perturbed Dirac operator D A + p(#o) + $ " m{A) differs 
from D A by a zeroth order term and so 

(D A + p(#o) + $-m(A))*(D A + p(û0) + ê-m(A)) 

= D A D A + First order terms. 
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The Bochner formula of Lemma 4.1 then implies that the above Lapla-
cian is a second order elliptic differential operator with scalar principal 
symbol (given by the metric g on T*X). The conclusion now follows 
from Aronszajn's unique continuation theorem [5]. q.e.d. 

We shall use the following linear algebra result to show that 
v G C r+1(X, A+ ®su(E)) vanishes on a ball: 

Lemma 5.13. Let M,N be elements of (A+ ® su(E))j x. Suppose 
mi,m2 ,m3 span su{E)j x. If 

3 

(5.7) hT0M, Ni + X h(l ® ad(m l))M, Ni = 0 

l=i 

for all TO,TI,T2,T3 G gl(A+)|x; then either M = 0 or N = 0. 

Proof. If hT0M, Ni = 0 for all T0 G gl(A+)|x, then by the proof of [30, 
Lemma 3.7], the images in su(E)j x of M,N G Hom(A+j x,su(E)j;) are 
orthogonal. (Although their lemma refers to an element of 
Hom(A+j x,su(E)j x) and an element of Hom(A_j x,su(E)j x), we can 
choose any isomorphism between A+j x and A_j x to translate the re
sult.) We can therefore assume that M has rank one and N has rank 
less than or equal to two. (If M is rank two and N is rank one, we can 
reverse their roles by using adjoints.) If both M / f l and N ^ 0 let 

M = u (g> m and N = v\ <g) n\ + v2 <8> n2, 

where u,vi,v2 G A+j x and m,ni ,n2 G su(E)j x. Since the images of 
M and N in su(E)j x are orthogonal, we have hm,nii = 0 = hm,n2i; 
without loss of generality, we can assume that hni,n2i = 0. (If N is 
rank one, n2 can be any element of su(E)j x completing m,ni to an 
orthogonal basis of su(E)j x.) Under the isomorphismsu(E)j x ~ R3, the 
adjoint representation is given by the cross-product. We can find fj GR 
such that n<2 = P f l m l so 

3 

(5.8) X had(f;m l)m, n i = h[n2, m], nii ^ 0, 
l=1 

3 

(5.9) X had(f|tl)m, n2i = h[n2, m], n2i = 0. 
l=1 

By assumption, M 7̂  0 and N / 0, so u / 0 and either v\ 7̂  0 or 
v2 7̂  0; we may suppose without loss of generality that v\ 7̂  0. Thus, 
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we can find r G gl(A+)j x such that Tu = v\, and so choosing l = f lr 
for l = 1, 2, 3 and <5TO = 0, we have 

3 3 
^ h ( 7 l ® ad(m l)) M, N i = £ h T ® ad(f,m l)M, N i 
l=i l=i 

= h ( r ® a d ( n 2 ) ) M , N i 

= h(r (8> ad(n 2 ) ) (u (g m),vi (g n i + v2 <g n2i 

= hTu (g) [n2, m], vi (g) n i + v2 <g n 2 i 

= hTu,vi ih[n 2 ,m],ni i + hru, v2ih[n2, m], n2i 

= jvij2h[n2 ,m],nii / 0 by (5.8) and (5.9), 

contradicting our hypothesis in (5.7). Hence, either M = 0 or N = 0, 
as desired. q.e.d. 

R e m a r k 5.14. Lemma 5.13 does not hold if the rank of E is greater 
than two. If a, b G su(E), the above arguments would only allow one to 
conclude that 

0 = h[m,a],bi = hm,[a,b]i 

for all m G su(E) , so [a, b] = 0 and a, b are simultaneously diagonalizable. 
The subspace of diagonal elements of su(n) has dimension n — 1, so this 
would not contradict the orthogonality of a, b if n > 2. 

L e m m a 5.15. Continue the hypotheses of Proposition 5.8 and sup
pose B(x j , Ro) is a ball supporting holonomy perturbations for A. Then 
v = 0 on B(x j , Ro). 

Proof. By hypothesis, there are holonomy sections m l = m jlj0,(A), 
l = 1,2,3, which span su(E)j y, for any point y G B(x j,Ro). Let 8l := 
3Tj,l,a £ ^ ° ( g K ^ + ) ) Î l = 1)2,3, denote the corresponding coefficients, 
and let ôf be a sequence with all other coefficients equal to zero. 

By the hypothesis of Proposition 5.8, we have 

(DS(6To,ôû0,ÔT,ôë, a, <£),(v, V ) ) L * = 0 

for all (STO, ôêo, öf, ôê, a, (/>), and so 

0 = (DS(ÔT0ASfA0,0),(v,^))L2 

= (DS1(<jTo,o,<jf,o,o,o),v)L2 

= ((ÔT0 (g) id su(E) + ôf • m A p - 1 ( $ g) $*)oo), v)L2 

3 

= (<JTOP _ 1 (* ® ^*)OO,v)L2 + J ^ 7 " l ® ad(m l ) p _ 1 ( * g) $*)OO,v)L2. 
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Taking a sequence of <5l's which approximate Ôltyô(-,y), where ô(-,y) 
is the Dirac delta distribution supported at y and öl^y G gl(A+) |y, we 
obtain the pointwise identity 

3 

hÔToyp-1^ 0 $*)ooj y, vj y i + X hSl,y ® ad(m l ) p _ 1 ( $ ® ®*)ooj y vj y i = 0, 

for all âl^y G g^A"1")y, l = 0 ,1 ,2 ,3 . Lemma 5.13 then implies that 
either p _ 1 ( $ 0 <E»*)ooj y = 0, and thus $j y = 0 by Lemma 2.19, or else 
vj y = 0. If vj y T^ 0, we see that $ would be zero on the nonempty open 
subset fv / 0g fi B(x j,Ro). But then Lemma 5.12 would imply that 
$ E 0 on X , contradicting our assumption that $ ^ 0. Thus, v = 0 on 
B(x j,Ro), as desired. q.e.d. 

The following similar argument shows that ip = 0 on the ball 
B(x j,Ro). Note that having only v EE 0 or ip = 0 on an open set 
does not suffice to contradict Lemma 5.9, as the non-vanishing result 
of Lemma 5.9 applies to the pair (v,ip). We again begin with a linear 
algebra lemma: 

L e m m a 5.16. Let S+ G (W+ 0 E)j x and S~ G (W~ 0 E)j x. If 
m o , . . . , m 3 span u(E)j x and 

X 

l = 0 

for all i?o, • • • ,#3 £Hom C(W+,W-)j x, then S+ = 0 or S~ = 0. 
Proof. Because fm l g l = 0 spansu(E)j x andgl(E) j x = u(E)j x®iu(E)j x, 

we have gl(E)j x = u(E)j x 0R C, and the set {vl g l_0 is a complex basis 
for gl(E)j x. Thus, any element of 

Hom C{W+ 0C E, W- 0C E)j x ~ Hom C(W + , W~)j x 0C gl(E)j x 
can be written as P ^=o ^ l ® m l for some êl G Hom C ( W + , W _ ) j x, 
l = 0 , . . . , 3. Thus, if S+ ^ 0, the hypothesis implies that S~ = 0 
and conversely, if S~ ^ 0, then S+ = 0. q.e.d. 

L e m m a 5.17. Continue the hypotheses of Proposition 5.8 and sup
pose B(x j,Ro) is a ball supporting holonomy perturbations for A. Then 
ip = 0 on B(x j , Ro). 

Proof. By hypothesis, there are holonomy sections m l := m jl ^A), 
l = 1,2,3, which span su(E)j y, for any point y G B(Xj,RQ), and so 
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fmg l=o spans u(E)j y> where mo := i-id E. Let Sel := Sêjylya G 01(X,C), 
l = 1,2, 3, denote the corresponding coefficients, and let ôê be a pertur
bation sequence with all other coefficients equal to zero. 

By the hypothesis of Proposition 5.8, we have 

(DS(ÔT0,ôê0,ÔT,ôê, a, <£),(v, V))L* = 0 

for all (STO, ôêo, ÖT, ôê, a, (f>), and so 

0 = (DS(0, ôê0, 0, ôê, 0,0), (v, xj)))L2 

= (DS2(0,oeo,0,oe,0,0),iß)L2 

= (p(ôd0)$ + ôë-m(A)$,rl>)L2 

3 

l = 0 

Taking a sequence of ôê^s which approximate ôêl>yô(-,y), where ö(-,y) 
is the Dirac delta distribution supported at y and ôê^y G T*Xj y ® C, 
we obtain the pointwise identity 

3 

^2hp(S0l,y) ®m l$j y,il>j y i = 0 , 
l = 0 

for all ôêlty G T*Xj y ® C, l = 0,1,2,3. Lemma 5.16 then implies that 
either $j y = 0 or ipj y = 0. If ipj y ^ 0, then $ would be zero on the 
nonempty open subset ip ^ 0gnB(x j,Ro). Consequently, Lemma 5.12 
would imply that $ = f on X, again contradicting our assumption that 
$ ^ 0. Thus, ip = 0 on B{Xj,RQ), as desired. q.e.d. 

We can now conclude the proof of Proposition 5.8: 

Proof of Proposition 5.8. If (v,tß) is in the cokernel of DS and 
B(x j , Ro) is a ball supporting holonomy perturbations for A, then (v, ip) 
= 0 on B(x j,Ro) by Lemmas 5.15 and 5.17. q.e.d. 

5.3. Local reducibility implies global reducibility. The 
goal of this section is to prove Theorem 5.11. The argument has two 
main ingredients: a local extension result for stabilizers of pairs which 
are reducible on a ball and a description of how these local stabilizers 
fit together to give a stabilizer and thus a reducible pair on the whole 
manifold. 
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R e m a r k 5.18. The fact that an anti-self-dual connection which is 
reducible on an open subset is necessarily reducible on all of X is an 
essential part of Donaldson and Kronheimer's proof of transversality for 
the moduli space of anti-self-dual connections in [20, §4.3]. The original 
argument of Freed and Uhlenbeck [30, pp. 57-58] constructs a parallel 
section Ç of su(E) on the set fF A ^ 0}. Because the connection A is 
anti-self-dual and therefore Yang-Mills, so d A F A = 0 = GA-^A, the set 
fF A T^ 0} is open, dense and connected. The section Ç cannot develop 
any holonomy on fF A = 0}, so it extends across all of X, showing that 
A is globally reducible. This argument does not work in the case of 
PU(2) monopoles because the connection A is not necessarily Yang-
Mills and our argument does not show that the existence of a nonzero 
element (v,tß) in C o k e r D S implies that the connection A is reducible 
on a dense open subset of X. 

We first state the local extension result for pair stabilizers and defer 
its lengthy proof until after that of Theorem 5.11. Generalizations due 
to Taubes of the analogous result for anti-self-dual connections, namely 
Lemma 4.3.21 in [20], appear as Theorems 4 and 5 in [88]. As Taubes 
points out in [88, p. 35], unique continuation theorems for solutions to 
the anti-self-dual equation do not seem to follow from standard results 
for elliptic partial differential equations (such as those of Aronszajn [5]) 
since the anti-self-dual equation does not linearize as an elliptic equa
tion for the connection. Because the PU(2) monopole equations do not 
linearize as an elliptic system for pairs, the same remarks apply here as 
well. Rather than rely on the Agmon-Nirenberg theorem for the unique 
continuation property for a general class of ordinary differential equa
tions (Theorem 5.25), Taubes proves the required unique continuation 
property directly for the ordinary differential equation induced by the 
anti-self-dual equation on a cylinder. (As Mrowka pointed out to us, 
it should also be possible to deduce the unique continuation results of 
[88] by studying the anti-self-dual equation on a ball and applying the 
Fredholm theory of [6].) Recall that B(xo,ro) C X denotes an open 
geodesic ball with center at the point xo and radius ro- Also, recall that 
if [A, $] is a point in M W,E, then Proposition 3.7 implies that it has a 
'smooth' (that is, C r) representative (A,$) solving (2.27). 

Propos i t i on 5 .19. Let X be an oriented, smooth four-manifold 
with C r Riemannian metric g and injectivity radius g = g(xo) at a 
point xQ. Suppose that 0 < ro < r\ < \Q. Let (A,&) be a C r pair 
solving the PU(2) monopole equations (2.27) on X. If u is a C r+1 gauge 
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transformation of E\B^xOiro^ satisfying u(A,$) = (A,$) on B(xo,ro), 
and if either B(Xj, Ro) r\B(xo,r\) = 0 or B{Xj,RQ) C B(xo,ro), for all 
balls B(x j,Ro) for which ßj[A] > 0, then there is an extension of u to 
a C r+l gauge transformation u of E|B(xo , r) with u {A,$) = (A,Q) on 
B(x0,r). 

R e m a r k 5.20. This extension result only holds on domains 
B(xo,ri)\B(xo,ro) where the perturbations vanish because the pertur
bation terms m jy)0,(A) depend not just on the connection A and its 
derivatives at a point, but rather on the connection A over open neigh
borhoods in X. Although the unique continuation theorem of [4] does 
allow certain integral terms, it still does not cover the perturbations we 
consider here because of their non-local dependence on A. 

We digress briefly to introduce some useful facts about stabilizer 
subgroups of °G E-

L e m m a 5 .21 . If u G Stab* for $ G C°(X, W+ <g> E) and u ^ id E, 
then $ is rank one. If u G S Z and u ^ id E, then $ = 0 on X. 

Proof. Because u and $ are continuous, the equality u<& = $ holds 
at each point x G X and so u\x G gl(E)\x must be the identity on the 
image of $ in E\x. If <J>|x is rank two, then u\x must be the identity on 
E\x, while if u\x ^ id E , then $\x can be at most rank one. If u G S Z , 
then u $ = e ie& = $ and so $ = 0. q.e.d. 

Next we consider the stabilizers of reducible pairs. Recall from [44, 
Chapter II], [61, §III.3.3] that the stabilizer Stab A C °G E may be iden
tified with a subgroup of Aut(E |x) , for any point x G X, by parallel 
translation with respect to the connection A and hence identified with 
a subgroup of U(2) by choosing an orthonormal frame for E\x; these 
subgroups are again denoted by Stab A- If E = Li © L2, let S L denote 
the group of gauge transformations given by e ̂  id L © id L2. 

L e m m a 5.22. Let (A,$) be a PU(2) monopole in C r on 
(E, W+ <g) E). Let U C X be a connected open set, with U n B(Xj, Ro) 
empty or B(Xj,2RQ) C U for all balls B(Xj,RO) such that ßj[A] > 0. 

If $ ^ 0 and A\U is reducible, then A\U is reducible with respect to a 
splitting E\U = L f f i L where $ is rank one on U, with image contained 
either in L\ or in L^- In the first case, Stab A * ) ^ = S L , while in the 
second case, Stab A ^ i ^ = S L . 

Proof. Because A\U is reducible, all the holonomy sections m j l ^A) 
vanish on U if B(Xj, 2RQ) C U. If B(Xj, RQ) fl U is empty, the holonomy 
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sections also vanish on U, as they are supported on B(Xj,RO). Since 
$ ^ 0, we have (iA")o ^ 0 on U by Lemma 2.19 and the equation 
(F A)O = (id + r o ) p _ 1 ( $ ® $*)oo of (2.27), so U is not projectively 
flat. Therefore, Stab A ~ T 2 and Aj U is reducible with respect to a 
splitting Ej U = Li © L<2 by Lemma 2.6. 

Because the connection Aj U is reducible with respect to the splitting 
Ej U = L\ © L2, we can write Aj U = A\ © A2, where A\^A ^ are unitary 
connections on Li,L2, so F A j U = F Ai © F A2 and 

F ) . = ( * ( A A> _ è ( A A , ) = » * « , , 

where w = - i ( iA - F+2) G iì+(U,R) and CTI G su(2) is one of the 
Pauli matrices (2.14). Hence, (F ^)Q is rank one on U, and the equation 
(F A)O = (id + 7 o ) p - 1 ( $ © $*)oo implies that ( $ © $*)oo is rank one 
on U. Lemma 2.21 then implies that $ is also rank one on U and so 
^j U = 4> © £ for some 0 G C rft°(U, W+) and £ G C rO°(U, E ) , and 

($ © $*)oo = -i(</• ® </>*)o ® i(£ © D o -

Writing £ = & + £2 for j G C rft°(U, L ) , we see that 

è(j6j2-je2j2) ei®ß ^ 
6 ® É Î -è( je i j 2 - j6 j 2v ' 

Since (id + r o j p - 1 ^ © $*)oo = - ( i d + T0)p-l(i((ß © </>*)0) © i(£ © D o , 
we have 

(id + To)p _ 1 ($©$*)oo 

i(j6j2-je2j2) i(ei®e2*) A 
i(e2©a) - i ( j e i j 2 - j 6 j 2 v ' 

and by comparison with our matrix expression for (F ^)Q, we see that 
£1 © £2 = 0 on U and thus at each point of U, either £1 = 0 or £2 = 0. 
Since r A£ = r A I £ I © r A 2£2 and because the perturbations vanish on U, 
the equation (D A + 'd-m(A))^ = 0 reduces to (D Al+p(ê0))((f)®^i) = 0 
and (D A2 + p($o))(0 ® £2) = 0. The unique continuation result for the 
perturbed Dirac operator, Lemma 5.12, implies that if (f> © £1 vanishes 
on an open subset of U, then cf) © £1 = 0 on U, and similarly for 0 © £2-
If £1 is non-zero at a point and thus non-zero on an open neighborhood, 
£2 vanishes on this open set and by unique continuation, £2 = 0 on all 

(£®r)o 

(id + r0)p
 1(i(0©0*)o) 
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of the connected set U. Symmetrically, if £2 is non-zero at a point, then 
£1 = 0 on U. Thus, $ = 0 <g) £x or $ = c/> <g> £2. 

The stabilizer of A\U is S L x S L . If £1 = 0, then Stab U = 
Map(U, S L ) while if £2 = 0, then Stab U = Map(U, S L ) . q.e.d. 

We see that elements of the stabilizer of a pair cannot exhibit holon-
omy, in the sense of the following lemma. 

L e m m a 5.23. Suppose (A,$) is a PU(2) monopole with $ ^ 0 
and that U\, U% are connected open subsets of X. If there are gauge 
transformations u i G °G E\U i> i = 1>2> such that u i G Stab AiU , u i G 
Stab A^)!U nU , u i 7̂  id, and there is a point x G U\ n Ui such that 
u \ = u2 on E\x, then u\ = u<2 on E\UinU2. 

Proof. Let V C U\ fi Ui be the dense open subset of points {<& 7̂  
0} n U\ n U2- Because there is a gauge transformation u i G °G E|U i with 
Mi<I> = <£> over £i , then ^\U1nU2 must be rank one by Lemma 5.21 and 
there is an orthogonal decomposition E\V = Im<I> © ( I m $ ) . Since 
u i $ = $ on V, both u i respect this decomposition and must be the 
identity on I m $ | V . Thus, on V we can write 

with respect to this decomposition. Now det u i = e iGi and because 
u i G °G E\U iÌ the function detwi is constant on U i and e iGi G S1. Hence, 
if u \ = u2 on E\x, then u\ = u2 on all points in V which can be 
connected to x by a path in U\ and a path in U2 (note that these need 
not be the same paths). Because U\ and Ui are connected, u\ = ui 
over all of V. But V is dense in U\ fl U2 and the Mi are continuous, so 
u \ = ui over all of U\ fl U ̂ - q.e.d. 

Theorem 5.11 now follows from Proposition 5.19: 

Proof of Theorem 5.11, given Proposition 5.19. Let (A,$) be a 
C r solution to the PU(2) monopole equations (2.27) with $ ^ 0 and 
A reducible on a non-empty open set U C X. Let J (A) = {j : 1 < 
j < N G and ßj[A] > 0} and let B J(A) = UjeJ(A)B(x j,R0). Let U° be 
a connected component of U — B j (A) . Lemma 5.22 then implies that 
Stab A^)! ~ Sl ^ S Z , and so there is a C r + 1 gauge transformation 
u of E|Uo such that u(A,$) = (A,$) on U°. Proposition 5.19 allows 
the extension of u to open subsets of X\Bj(A) containing U°. To be 
explicit, let x G U° and ro = dist g(x,dU°) and choose r i > ro such 
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that r\ < -^Q and r\ < min jeJA dist g(x, B(Xj,RQ)). By Proposition 
5.19 there is an extension of u G StabeA *ii„, , to an element u G 
StabeA $-11 . By Lemma 5.23 we have u = u on U° fl B(xo,ri) and 
not just B(xo, ro). This gives an extension of the stabilizer u for (A, $) 
over U° to a stabilizer u over the slightly larger open set U° U B(x, r i) . 
Since we do not assume that X is simply connected, we must check that 
the extension obtained by repeating this process yields a single-valued 
gauge transformation over X — Bj(A). 

The consistency of two extensions follows from Lemma 5.23. Let u i, 
i = 1, 2, be two extensions of u to connected open sets U° containing U°, 
so we have u i G Stab A^i with u i = u on Ej U<>. Because u\ = u = u2 

i 

on Ej UO, Lemma 5.23 implies that u\ = ui on Ej UonUo. Therefore, 
the extensions of u G Stab A ^ ) ^ fit together to form a global gauge 
transformation u G Stab A,* on X — Bj(A) such that u = u on Ej U<>. 

Thus, given that A is reducible on an open set U containing B J(A), 
the above argument produces an element u G Stab A^i - , „N with 

V ' / l - A — J (A.) 

u ^ S Z. Consequently, A is reducible on X — Bj(A) by Lemma 2.6. For 
j = 1 , . . . , -Zb, let V j be an open, connected subset of U fl B(Xj, 2RQ) 
containing B(Xj, Ro), such that V j fl (X — B J(A)) is connected, and set 

X1 = X-Bj(A), 

X j = (X-B,j(A))U \J V k, 2<j<N b + l. 
l<k<j-l 

Each subset X j and V j fl X j is connected, and Xi C X2 C ••• C 
X NÒ+I = X. We extend u G Stab A^) __ inductively over each 
X j . Plainly, wehave u G Stab Ai.. and Stab Ai., C Stab Ai.. n j , so we 
first check that Stab A| j = Stab A| j n j . By hypothesis, Aj U is reducible 
and so for each subset V j C U, we have that Aj V j is reducible. Because 
Qj V jCLX j ^ 0 and thus F A ^ 0 on V j n X j by (2.27) — so Aj V jnX j 
is not flat — then Lemma 2.6 implies that Stab Ai ~ T2 . The 

same argument yields Stab Ai ~ T2. (We use the assumptions on the 
connectedness of V j and V j fl X j here: if the sets were not connected, 
the stabilizers would be ©T2, a direct sum over connected components.) 
Thus, Stab Ai = Stab Ai ~ T2. 

Hence, there is an element u" G Stab Ai such that u" = u' on 
j 

V j fl X j , where u G Stab(A$)|j with u' ^ id. Together, u and u" give 

an element u G Stab A1̂ , which is not in S Z. The connection A is then 
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reducible on X j+i, which implies that all the holonomy perturbations 
vanish on X j+i- Lemma 5.22 therefore shows that the pair (A, $ ) is 
reducible on X j + \ and we obtain a stabilizer u G S t a b ^ ^ ) ^ , with 
u ^ id. The construction of u G Stab^,*, u ^ id, is thus completed by 
induction on j . q.e.d. 

R e m a r k 5.24. The analogue of Theorem 5.11 (namely, that local 
reducibility implies global reducibility) does not hold for anti-self-dual 
connections without further restrictions on the topology of X. For ex
ample, in [30] it is assumed that the four-manifold X is simply con
nected (see Lemma 4.3.21). As described by Kronheimer and Mrowka 
in [47] one can have locally reducible anti-self-dual connections (called 
'twisted reducibles' in [47]); see their Lemma 2.4 for a sharp version of 
the Freed-Uhlenbeck generic metrics theorem (Corollaries 4.3.15, 4.3.18, 
and 4.3.19 in [20]) which holds when the requirement that X be simply 
connected is dropped. In our case, we see from the proof of Theorem 
5.11 that globally irreducible, locally reducible solutions (A, $ ) to (2.27) 
do not exist (at least when $ ^ 0) because the stabilizer u G Stab^,* 
must stabilize the section $ and not just the connection A. 

The proof of Proposition 5.19 takes up the remainder of this section. 

5.3 .1 . T h e A g m o n - N i r e n b e r g unique cont inuat ion t h e o r e m . 
As in the case of the anti-self-dual equation [20, Lemma 4.3.21], our 
proof of the unique continuation property for PU(2) monopoles in radial 
gauge relies on the following special case of a more general result due to 
Agmon and Nirenberg for an ordinary differential equation on a Hilbert 
space [4]: 

T h e o r e m 5.25 [4, Theorem 2 (ii)]. Let H be a Hilbert space and 
let P : Dom(P(r ) ) C H —> H be a family of symmetric linear operators 
for r G [ro,R). Suppose that r] G C 1 ( [ ro ,R) ,H) , with i](r) G Dom(P(r ) ) 
and Pr] G C°([ro,R) ,H) such that 

drj 
(5.10) P{r)rj(r) 

dr 
< c\ kr)(r) 

for some positive constant c\ and all r G [ro,R). If the function r t-ï 
(î7(r),P(r)77(r)) is differentiable for r G [ro,R) and satisfies 

d (drj \ 2 
(5.11) — (r],Pri) - 2Re dr ,Pr] > -c2 kPr]kk vk - c3kr] 

for positive constants c2,c3 and every r G [ro,R), then the following 
holds: If r](ro) = 0, then i](r) = 0 for all r G [ro,R). 
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Applications of [4, Theorem 2] to the proof of unique continuation 
results for first-order elliptic and parabolic partial differential equations 
were considered by Agmon in [3, Chapter II]. In our application, P{r) 
will be a family of first-order partial differential operators which are self-
adjoint over the closed manifold X. Theorem 5.25 has also been applied 
by D. Salamon to prove the unique continuation property for harmonic 
spinors [77, Appendix E]. One of the difficulties in applying the Agmon-
Nirenberg theorem to the PU(2) monopole equations (in Gaussian polar 
coordinates, (r,6)) is the requirement that the one-parameter family of 
operators be self-adjoint with respect to a fixed inner product on a fixed 
vector space. The additional complication, not present in [20, §4.3.4], 
is that the induced spin c structures on geodesic spheres in X vary with 
the induced family of r-dependent metrics. 

R e m a r k 5.26 [4, Remark, p. 209]. If D o m ( ( r ) ) = D is indepen
dent of r, and P(r), r G [ro, R), is a differentia P e family of self-adjoint 
operators, then the left-hand side of (5.11) simplifies, of course, to give 
the condition 

(5.12) L, d P ) > -c 2 \\Pr,\\ IMI - c3||??||2, 

since, noting that P is self-adjoint, 

-d• (»7, Pr,) - 2Re ( d , Pv) = ( d , Pri] + L, dPTJ) + L, P d 

dr dr dr dr dr 

dr P dr 

dP 
dr 

If P ( r ) , r G [ro,R), is a differentiable family of self-adjoint operators, 
then it is easy to see that (5.12) follows from the simpler condition 

(5.13) 
dr 

< c2\\Pri\\ +c3\\ri\ 

provided Prj G C ° ( [ r 0 , R ) , £ ) . 

5.3.2. T h e P U ( 2 ) m o n o p o l e equat ions in Gauss ian polar 
coordinates . Our first task is to write the pair of PU(2) monopole 

equations (2.27) as an ordinary differential equation with respect to 
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Gaussian polar coordinates (r, 6) centered at a point xo G X. For the 
analogous ordinary differential equation in the case of the anti-self-dual 
equation, see [20], [63], [88], and for the Seiberg-Witten equations; see 
[47], [77]. 

Recall that g is the injectivity radius of (X,g) at the point xo, so 
exp xo : B(0,g) C (TX)xo —> B(xo,g) C X is a diffeomorphism. For 
each £ in the unit sphere S3 C (TX)xo, let fe i(£)g i= 1 be an oriented, 
orthonormal basis for (l^)-1 = {TS3)ç C (TX)xo; that is, let fe i g be 
an orthonormal frame for TS3. Let 7ç(r) be the geodesic exp xo(r£), 
r G [0, g), so that 7ç(0) = xo and j7ç(r)j = j£j, and let rç(r) : (TX)xo —>• 
(TX)7(r) denote parallel translation with respect to the metric's Levi-
Civita connection along 7ç(r). Let e i(r, £) := r^(r)e i(£) forr > 0, so that 
f7f(r), e i(r, £)g is an orthonormal frame for (TX)7 (r) which is parallel 
along the radial geodesics 7ç(r) and satisfies 7^(0) = £ and e i(0, £) = 
e i(£). Denote the radial vector 7ç(r) G (TX)7 (r) by ^ := ^ j ^(r) when 
no confusion can arise. Thus, fJ^, e i g is an oriented, orthonormal frame 
for TX over B(xo, g) n f0g, which is parallel along radial geodesics; let 
fdr, e i g be the corresponding dual frame for T*X over B(xo, g) n f0g. 

With respect to the parametrization S3 x (0, g) ~ B(xo, g) — {xog, 
given by (r, £) >->• exp xo(r£), the metric g on B(xo, g) — fxog pulls back 
to 

g = (dr)2 +g r, 

where g r is the metric on S3 pulled back from the restriction gj S3(xo,r) 
to the geodesic sphere S3(xo,r) := fx G X : dist g(x,xo) = rg. Let 
*g r denote the Hodge star operator for the metric g r on S3 and, for 
emphasis, we write *g for the Hodge star operator for the metric g on 
X. 

Suppose that a pair (A, $) on (su(E), W+ (g> E) is a C r solution to 
the PU(2) monopole equations (2.27) over X, 

p(F+) = pTp-1(®®3>*)o0, 

where r := idy\+ + To is an automorphism of A+ and 

D Af0$:=D A$ + p(#0)$. 

We have not included the holonomy perturbations T-m(A) and ê-m(A) 
because they vanish near xQ by hypothesis. 
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We obtain an isomorphism E j B(x0)É,) — EQ X B(xo,g) of complex 
two-plane bundles by choosing a unitary frame for EQ := Ej xo and using 
parallel translation via the U(2) connection on E defined by A and A det E 
along radial geodesics emanating from x$. Let A = B + Cdr denote 
the induced SO(3) connection on the bundle SU(EQ) X S3

 X (0, g) over 
S 3 x (0, g) and note that A is in radial gauge with respect to the point 
xQ, so C := A(-ßr) = 0. We let B = B(r), r G (0, g), denote the resulting 
one-parameter family of SO(3) connections on the bundle SU(EQ) X S3 

over S3. In exactly the same way, we obtain an induced one-parameter 
family of U(2) connections on the bundle W0

+ x S3 over S3, r G (0, g), 
induced by the isomorphism W+j BtxOiQ\_fxog ~ W0

+ x S3 x (0, g). 

A section $ of the bundle W+ (g> E over B(xo, g) pulls back, via the 
isomorphism (W+ <g> E)j B(xo>e)_fxog ~ {W0

+ <g> E 0 ) x S 3 x (0,^), to a 
one-parameter family of sections \I/(r) of the bundle WQ~ ®EQ x S3 over 
S 3 . The automorphism r of A+,g pulls back to a one-parameter family 
of automorphisms a(r) ofT*S3, for r G (0, g), using the isomorphism 

(0,0) x T * S 3 - • A+'g(T*X), ( r , a ) ^*g ra + drAa. 

The g-compatible Clifford map p : T*X ->• Hom(W+, W~) and the 
isomorphism W + j B(x0,e)-fxog — W0

+ x S3 x (0,g) define a family of 
g-compat ible Clifford maps 7(r) : T*S3 —> End(Wg+) by setting 

7(r) := p(dr)p( • ). 

Indeed, to see this, observe that g(dr, dr) = 1 and so for a family of 
one-forms a(r) on S"3, defined by the isomorphism 

B(x0,g)-fx0g ~ S 3 x (0,g) 

and a one-form a on B (xo, g), we have 

7r(a)y7r(a) = p ^ y d r ) y / d r ) , ^ « ) = p{°ry p{a) 

= g r ( a , a ) i d W+, 

as required. The map 7 extends to a one-parameter family of Clifford 
maps 7(r) : A'(T*S3) <g> C ->• End(W0+) in the usual way. For example, 
7 r ( a A ß) := jr(a)jr(ß), for a , ß G 01(S '3) , in which case we see that 
7 r (aA/3) = p(a)p(ß). 

With the above understood, we can proceed to rewrite the PU(2) 
monopole equations (2.27) over the ball B(xo,g) as an ordinary dif
ferential equation for a one-parameter family of pairs ( B ( r ) , ^ ( r ) ) on 
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(su(Eo), WQ~ (g> EQ) over S3. The curvature F A of the connection A over 
B (xo, Q) is given by 

dB 
F A = F B - ~r A dr. 

dr 

For any LO G 02(X,R), we have P+(LO) = p+(*go;), since P+jA- = 0. 
If the radial component of LO vanishes and we consider LOj B/xOÌ&\ as 
a one-parameter family of two-forms co(r) on S3 , then we see that 
*gio = —(*g rio) A dr. Combining these observations yields 

p(F+) = p+(F A) = p+F B- — Adr 
dB_ 
dr 

, ^ dB 
p+ -{*g r F B) A dr - — A dr 

P-(dr)p+i*g r F B + —j, 

and therefore, 

/ > F ) = 7 g B + dB 

The section prp 1(&<3>$*)oo of su(W+)®su(E) over B(x0,g) pulls back 
to the one-parameter family of sections 70-7" 1(^ r <g> ^*)oo of 

su(W0+)(g)su(^) xS3 

over via the isomorphism 

W+j B(xo,ey{xogczW+xS3x(0,e), 

and similarly for E. 

Let 0(r) be the induced one-parameter family of complex one-forms 
on S3 defined by $0 on B(xo, g) and the isomorphism 

B(x0,g) -fx0g ~ S3 x (0,0), 

so tf0 = -fdr + 9 on S3 x (0,#), where f(r) G fi°(S3,C). Given the 
preceding identifications, the Dirac operator term in (2.27) can then be 



PU(2) MONOPOLES. I 385 

written over S3 x {r} as 

3 

D A,#0* = p(dr)VA* + Y, P(e i ) V ^ + p ( t f 0 ) * 
i=l 

3 

p(dr)^- + YJp(e i)VB ^ + p(6)^ - fp(dr)V 
dr 

p{dr) d - - J2 p(dr)p{e i)W^ - p(dr)p(6)V - f* 

and therefore, 

dr 
i = i 

d^ 
D A,v0® = p(dr) — - D B,e,f* 

Hence, the PU(2) monopole equations (2.27) can be written as 

1 ~dr + *g r F B) = ^ C T ^ ~ 1 ^ ( g ) * * ) 0 0 ' 

p{dr)— = p{dr)D BAfV. 

We use D B : 0 ° ( S 3 , W + <g> E 0 ) ->• ft°(S3,Wo
+ <g> E 0 ) to denote the 

one-parameter family of Dirac operators defined by the family of g{r)-
compatible Clifford maps -y(r) : T*S3 ->• EndW o

+ , the family of U(2) 
connections on W ̂  x S3, the family of SO(3) connections B(r) on 
s u ( ^ ) x S 3 over S3? and the family of determinant connections on 
d e t E 0 x S3 over S3. Since the Clifford map gives an isomorphism 
7 : T*S3 ~ su(W0

+) x S 3 , the PU(2) monopole equations then take 
the shape 

dB _ 1 / T 

"dr- + *g r F B = °1 ( * ® ^ ) 0 0 , 
< 5 1 4 ) « , 

dr = D B,,,f*, 

for a one-parameter family (B(r), ^f (r)), r G (0, p), on (EQ,WQ~ <g) Eo) 
over S 3 . 
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5.3.3. The ordinary differential equation for the difference 
pair. Let (A, $) be a C r solution to the PU(2) monopole equations 
(2.27) over X. Suppose, as in the hypothesis of Proposition 5.19, that 
there is a C r+1 gauge transformation u of E|B(xo,r0) such that u(A, <£>) = 
(A,$) on B(xo,ro). Let (A,$) again denote the induced pair defined 
by the isomorphism E|B(x0)É,) — EQ X S3 x (0,g) (given by a choice of 
unitary frame for EQ = E xo and parallel, radial translation via A) and 
let u be the induced gauge transformation on EQ x S3 x (0, ro). Then 
u(A) = uAu~l - (d A uju'1 and A = B + Cdr, where C = A(-§r) = 0, 
and so du/dr = 0. We now extend u by parallel translation via A 
along radial geodesics emanating from xo to a gauge transformation u 
on E0x S3 x (0,g). 

Let (A, $) = u(A, $) be the gauge-equivalent pair on S3 x (0, g), so 
(A, Ô) is a C r solution to (2.27) over S3 x (0, g), with A = u(A) in radial 
gauge. In particular, (A, <&) = (A, $) over S3 x (0,ro): we need to show 
that (A, <1>) = (A, $) over S3 x (0, ri) in order to prove Proposition 5.19. 

The one-parameter family of pairs (B (r), $ (r)) on 
(su(Eo)) Wo~ ® Eo) over S3 also satisfies the ordinary differential equa
tion in (5.14) so, subtracting these two pairs of ordinary differential 
equations, we obtain for r > ro, 

d{B~r B) + *g r(F B - F B) = aj-1^ ® W* - * ® **)oo, 

d(4> - * ) 

Since 

and 

d r — = D - f * - D M f ^ 

F B = d{B -T) + (B-T)A(B-T) 

D B,o,f = D + 1(B-F)+ 7(0) + fid W > E o , 

we obtain an ordinary differential equation for the difference pair 

(b,if)) := (B-B,4>-V) en1(S3,su{Eo))®n°(S3,W+0Eo) 

so that, 

— =-*g r db + *g r(B Ab + bAB) 

(5.15) +a7"1(^(g)V*+V'« )^*)oo, 

^t =DiP + 7 ( B - T)tß + 7(b)* + 7(ö)^ + f</,, 
dr 
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where r € (ro, p), and V is the product connection on SU(EQ) X S3 over 
S3 defined by our trivialization. The above system has the schematic 
form 

{5.16) db dr = ( - g d » ) ( M ) + Z ( M ) , 

where Z r is a one-parameter family of zeroth-order operators with co
efficients depending on g r, B, a, and \I/. 

5.3.4. R e d u c t i o n to t h e A g m o n - N i r e n b e r g t h e o r e m . We 
first observe that the operator — *g r d on il1 (S3, SU(EQ)) is self-adjoint 
with respect to the L2 inner product induced by the metric g r on S3. 
Indeed, as *2r = I on fì1(S'3) and dtr(b A b') = tr(db A b') - tr(b A db'), 
we have 

(b, — *g r db')r dvol r = — Z tr(b A*g r(— *g r db')) 
S3 S3 

tr(b A db) = Z tr(db A b') 
S3 S3 

tr(b A db) = Z tr(b A *r db) 
S3 S3 

(b', *g r db)r dvol r, 
S3 

and therefore, 

{b, —*g r db')r dvol r = (— *g r db, b')r dvol r . 
S3 S 3 

The Dirac operators D : fi^S3, W0
+ <g> E 0 ) ->• fi^S3,W- <g> E 0 ) are 

defined by the one-parameter family of g r-compatible Clifford maps 
7r : T*S3 —>• End(Wg+), the one-parameter family of U(2) connections 
on WQ~ x S"3, the one-parameter family of determinant connections on 
detEo x S3, and the product SO(3) connection on SU(EQ) X S3. Then, 
by [57, Proposition II.5.3] we have 

(DiP,ip') = (iP,Dip')+div g ri, 

where £(r) is the one-parameter family of vector fields on S3 defined 
by CK(£) = —('ìPjl(a)'4,')ì for all a G ^ 1 ( S 3 ) . Hence, the divergence 
theorem for the metric g r implies that D is self-adjoint with respect the 
the family of L2 inner products on Z1(S'3, WQ ® EQ) defined by g r: 

(Dip, ip') dvol r = S (ip, Dip') dvol r. 
S3 3 
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The Agmon-Nirenberg theorem is not immediately applicable to the 
ordinary differential equation (5.16) since the differential operator P r := 
— *g r d © D is only self-adjoint on the Hilbert space 

H r := L2(S3, A1 <g> m(E0)) © L2(S3, W+ © E0), 

with L2 inner products (• , -)r defined by the family of metrics g r on 
S3, rather than a fixed inner product. 

If dvol r is the volume form on S3 defined by the metric g r, then we 
may write 

dvol r = h2dvol, r G (0, g), 

for some positive function h r on S"3, where dvol is the volume form on 
S3 defined by the standard metric. However, 

(5.17) Q r : = h r P r h l , r G (0, ß) , 

is a differentiable path of self-adjoint, first-order, elliptic differential 
operators on the fixed, real Hilbert space underlying 

H := L2(S3, A1 © m(E0)) © L2(S3, W+ © E0), 

with L2 inner product (• , •) defined by the standard metric on S3. 
Indeed, if we define a Hilbert-space isomorphism H r —> H by (b, ip) '->• 
(/?,(/?) := h r(b,ip), then 

Q ^ / ^ C Ö V ^ d v o l ^ Z hh r P r h r h r i b ^ h rib'^ß'^dvol 
S3 S3 

h P r(b,i>),(b',iß')i dvol r 
S3 

h(b,lP),P r(b',lP')i dvol r 
S3 

and therefore, 

hh r(b,ip),h r P r h r h r(b /ip )i dvol, 
S3 

hQ r(ß,iP),(ß',ip')idvol= h(ß,<p), Q rO?,<p')i dvol, r e ( 0 , ß ) . 
S3 S3 

The operators Q r have dense domain L2. Since (b,^) = h~1(ß,f), we 
see that 

d ( M ) h-2dh r,a \ , h - i ^ y ) 
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and so, subsituting into (5.16) gives 

d{ß,ip) tdh r 
( 5 1 8 ) dr Q r(ß^)+h r Z r h r1(ß^) + h r1dh(ß,ip), 

r £ (0,g), 

with (/?, ip) a pa th in $). 

5.3.5. Verification of the A g m o n - N i r e n b e r g condi t ions . We 
can now conclude the proof of our unique continuation result for re
ducible PU(2) monopoles: 

Completion of proof of Proposition 5.19. The estimates (5.10) and 
(5.12) are, in principle, straightforward to check since we only need them 
for r varying in the compact interval [^ro,ri]; the second condition, 
(5.12), requires a little more explanation since we need an estimate for 
dQ/dr. We first check condition (5.10). Comparing (5.15), (5.16), and 
(5.18), we find that 

d(ß,<p) 
dr 

Q r{ß,<p) <c lk(/3,^)k, \r0<r<\g 2 

for some positive constant c\ = ci(g, ro, A, $ ) , and so the ordinary differ
ential equation (5.18) obeys the estimate (5.10) on the interval [^ro,ri]. 
To check condition (5.12), observe that the definition of Q r in (5.16) 
and (5.17) yields the pointwise bound 

dQ r 

dr (ß,V>) <C(j(rß,r<p)j + j(ß,<p)j) 

where ^ro < r < ^g, for some positive constant C = C(g, r, A W ,ro), 
and r denotes covariant derivatives on A1 ®BU(E0) and W^ <g> E0 x S3 

which are independent of r. Thus, using the standard elliptic estimate 
for Q r we obtain the L2 bound 

dQ r 

dr 
(&¥>) 

and so, for ^ ro < r < \g 2 

(ß,<p),dQ<ßiV>) 
dr 

<C(kQ r(ß,<p)k + k(ß,<p)k), 

<CkQ r(ßMk(ßMk + WMk) 

Therefore, (5.12) is obeyed with c2 = c3 = C on the interval [5r0,r1]. 
By Theorem 5.25 and Remark 5.26, the solution (ß(r),ip(r)) vanishes 
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for r G (0, r i ) since it vanishes for r G (0, ro). Hence, (a(r), 4>(r)) = 0 for 
r G (0, r i ) and u (A ,$ ) = (A,$) on the ball B(xo,r\). This completes 
the proof of Proposition 5.19. q.e.d. 

A p p e n d i x A. H o l o n o m y per turbat ions and regularity 

When defining our holonomy perturbations in x2.5.2 we deferred a 
detailed discussion of several important regularity issues which arise in 
their construction. The first concerns the regularity of sections of E 
and su(E) which are constructed by parallel transport via Sobolev con
nections and is described in xA.l . The second concerns the regularity 
of the G E equivariant maps fyj,l,a : A E(X) —> L ̂ +1(X, su(E)) and we 
show in xA.2 that these maps are C°°. (All of the G E equivariant maps 
discussed here are °G E equivariant since S Z acts trivially on connec
tions in A E] if the connection on d e t E is not fixed, then all of the G E 
equivariant maps are Aut E equivariant.) 

The definition of the maps m j ^ a also makes use of the existence 
of a locally finite, C°° 'positive partit ion' on a paracompact manifold 
modelled on a separable Hilbert space, in the sense of Proposition A. 12. 
The differentials of the cutoff functions in these partitions need not be 
bounded a priori for the usual reason that in an infinite-dimensional 
Hilbert manifold, closed and bounded sets are not compact. Nonethe
less, as we shall see in xA.3, it is possible to modify the standard 
proof [55] of the existence of a C°° partition of unity on a paracom
pact C°° manifold to produce C°° cutoff functions all of whose differ
entials are bounded. The sums defining the perturbations r • m and 
i? • m of x2.5.2 are finite when restricted to any of the open neighbor
hoods (TT O r Y . ) - 1 (U jta) C A*E(X), where r Y j : A E(X) ->• A E(Y j) is the 
restriction map and n : A E(X) —> B E(Y j) is the canonical projection. 
However, the number of terms in these sums may be infinite in the 
neighborhood of a reducible connection: it is for this reason that they 
are required to converge with respect to a suitable choice of weights, as 
described in x2.5.2. We specify the choice of weights in xA.4 and explain 
why the G E equivariant maps f • m and ê • m are C°° on A E(X). 

A . l . Parallel transport for Sobo lev connect ions . The 
fact that parallel t ransport is well-defined for L\ connections has been 
pointed out in [61]. However, to construct L k + 1 sections using par
allel t ransport via L2k connections with k > 2, we need to regularize 
the sections, taking care to do this gauge equivariantly. (Given an L k 
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connection A, it does not follow that local sections constructed by A-
parallel transport are in L k+l.) If we ignored the issue of equivariance, 
then it would suffice to use the standard smoothing kernel described 
in [33, §7.2 & §7.3], yielding a C°° section irrespective of whether the 
connection is L2k or C°°. Instead, we use the kernel 

K t(A)(x,y) G Hom(su(E)\y,su(E)\x), 

t G (0, oo), of the heat operator 

K t(A) = exp-td*A d A) : L2(X,su(E)) -+ L2k+1(X,su(E)), 

defined by the C°° metric g on TX and L2k connection Aon E [34, §1.6]; 
related constructions are described in [84, p. 339], [85, p. 177]. The key 
well-known properties [12], [34, §1.6] of the heat kernel which we need 
are summarized below: 

Lemma A. l . Continue the above notation and suppose that 
Ç e L2(X,su(E)). 

(1) As t —>• 0; the heat operator exp(—td*A d A) converges to the L 
orthogonal projection onto Ker(d*A d A)±• 

(2) If A on su(E) is irreducible, then K t(A)(x,-) converges to the 
Dirac delta distribution ô(x,-). 

(3) If A is L k, then K t(A)C, is L2k+1; if A is C°°, then K t(A)Ç is C°°. 

(4) If C G C°(U,su(E)), for an open set U C X, and A is irreducible 
on su(E), then K t(A)Q —> ( in C°(U,su(E)) as t —> 0, for any 
open subset U d U. 

Lemma A.l continues to hold for unitary connections A on Hermi-
tian bundles E over compact C°° manifolds with boundary Y = YUdY; 
we use the Neumann boundary conditions of [20, p. 192], [87, Proposi
tion 2.1] to obtain an L2 self-adjoint Laplacian d*A d A- Our main appli
cation will be to sections defined by parallel translation: 

Lemma A.2. Let k > 2 be an integer and let A be an L k unitary 
connection on a Hermitian two-plane bundle E over X. Let xo be a 
point in X, let Co £ su(E)\xo, and let B(xo,r) be a geodesic ball with 
center xo and radius r > 0. 

(1) Parallel transport with respect to A is well-defined along C°° paths 
in X. 
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(2) If Ç is the section of su(E)\B(xor obtained by A-parallel transport 
of £o along radial geodesics originating at xQ, and A is C°°, then 
Ç is C°° on B(xo,r). If A is L2k, then Ç is C° on B(xo,r) and its 
mollification K t(A\B^xor)Ç is L2k+1 on B(xo,r), for any t > 0. 

Proof. Let 7 : [0,1] —> X be a C°° path such that 7(0) = xo and 
let U C X be an open neighborhood of 7([0,1]). We may suppose 
without loss of generality that A G L ̂ (U, A1 (g> u(2)) is a connection 
matrix and consider the parallel transport of 770 G C2. Note that we 
have a continuous Sobolev embedding L^U) —> L2([0,1]) [2, Theorem 
V.4]. We wish to solve the ordinary differential equation 

(A.i) d + ar? = 0 , t e [0,1], 

where a = 7*A G L2([0, l],u(2)), with initial condition 77(0) = 770, for a 
solution 77 G (L?nC°)([0,l] ,C2) . 

If A is C°° then there is a unique solution 77 G C°°([0,1],C2) to (A.I) 
(see, for example, [36]) and it obeys the inequality [36, Lemma IV.4.1] 

(A.2) \n(t)\ < M e x p f I \a(s)\ds\ 

< ho|exp(||a||Li([0)i])) < |77o|exp(c||A||L2(U)), 

for t G [0,1]. If A is only L2,, we may choose any sequence fAag of C°° 
connections which converge to A in L2, and let 77«g be the corresponding 
sequence of C°° solutions to (A.I). From (A.f) it follows that f77«g is 
C°-Cauchy, and then (A.I) implies that f77«g is L2-Cauchy with limit 
77 G (L2 n C°)([0,1],C2) solving (A.I). This proves Assertion (1). 

From the proof of Assertion (1) we see that Ç G C°(U,su(2)). If 
the connection A is C°° on B(xo,r), then by differentiating (A.I) with 
respect to local coordinates (regarded as parameters [36, Chapter 5]) on 
B(xo,r) and solving the resulting first order ordinary differential equa
tions for the derivatives, it follows that the section Ç is C°° on B(xo,r). 
The rest of Assertion (2) is an easy consequence of the properties of the 
smoothing kernel K t(A)(x,y) given in Lemma A.I. q.e.d. 

A.2. Regularity of holonomy maps. We consider the regu
larity of the holonomy maps from A G A E to h~/txo(A) G u(E)\xo, to 
h{A) G C°(B(xo,r0),su(E)), and to h ( A ) G L k+1(B{x0ìr0),su(E)). 
See also [8, §3.3], [29, Lemma lb.l], [86, §8a], and [90, §5A] for related 
calculations. 
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Let 7 : [0,1] —> X denote a parametrization for an oriented path 7 C 
X with 7(0) = xo. The general Sobolev embedding [2, Theorem V.4] 
implies that we have a continuous restriction map L ̂ ( X , A1 ®su(E)) —> 
L k_2('J,k1 ®su(E)), for k > 2. We fix an isomorphism E\^ ~ 7 x C2 

of U(2) bundles and denote the connection matrix corresponding to 
a unitary connection A on E again by A G L ̂ _2(7, A1 (g> u(2)). Let 
A + sa, s £ R, be a one-parameter family of nearby connections on 
E, with connection matrices A(t) + sa(t) G L ̂ _2(7, A1 ® u(2)). Let 
0̂ G C2 correspond to a point in the fiber E\xo and, with respect to the 

connection A + sa, let Ç(t; s) be the parallel transport of 0̂ along 7(t), 
so £(t; s) solves 

(A.3) (dt+A(t) + sa(t)\at;s) = 0, e(0;s) = e0-

Thus, if P7(t; A) G Isom(E|7(0-j, E t)) — U(2) denotes parallel transport 
along 7 from 7(0) to j(t) with respect to the connection A, we have 

Ç{t;s)=P1{t;A + sa)Ç0, t e [0,1]. 

Therefore, our task is to compute 

, t e [o,i]. ( D P 7 ( t ; - ) ) A ( a ) 6 = ds P-rft A + sa)Co 
s=o ds s=0 

Differentiating (A.3) with respect to s, we see that d£(t; s)/ds solves 

(A.4) (dt + A(t) + sa(t)) d = -a(t)e(t; s), d ( 0 ; s) = 0. 

Let Y(t; s) be the fundamental matrix solution for the linear differential 
operator on the left-hand side. Then the solution d£(t; s)/ds can be 
written as [36, Corollary IV.2.1] 

d - ( t ; s ) = -Y(t;s) Z Y~\T; s)a{r)Z{T; s) dr. 
ds 0 

Since Ç(t;s) = Y(t;s)Ço = P ̂ ftA + sa)^o for any £0 G E|7(o)) setting 
s = 0 above gives 

(A.5) (DP7(t;-))A(a) = - P 7 ( t A ) Z P " 1 ^ ; A ) a ( T ) P 7 ( T ; A) dr, 
o 
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and so, by the Sobolev embedding theorem, a derivative bound 

(A.6) \(DP ̂ (t; -))A(a)\ < ||a||Li(7) < c||a| |L^ (X ), t G [0,1]. 

The estimate (A.6) implies that the right-hand side of (A.5) is well-
defined whenever k > 2. In particular, when t = 1 we have P7(1;A) = 
h"y,x0(A), and so (A.5) gives 

(A.7) (Dh7,x0)A(a) = -h7,x0(A) Z P- l(A)aP1{A). 

Thus, we have a well-defined differential 

(Dh,x0)A : L k(X,k l ®u(E)) -+T hitXo{A)U(E)\xo ~u(E)\xo 

of the holonomy map h~/>xo : A E(X) —> U(E)\xo at the point A G 
A E(X). 

A similar argument shows that all higher derivatives exist by repeat
edly applying the derivative formulas (A.5) and (A.7) (see, for example, 
[86, §8a]) and so we may conclude: 

Lemma A.3. For k > 2, the holonomy map 

h , x O : A E(X)^U(E)\xO 

is C°°. 
In the same vein, the holonomy map h~/>xo : A E(X) —> SO(su(E))\xo 

is C°° and we have: 

Lemma A.4. For k > 2, the following holonomy maps are C°°: 

A E(X) 9 A 4 h ( A ) G C0(B(x0,r0),su(E)), 

A E(X) 9 A 4 h ( A ) G L k+l(B(x0,r0),su(E)). 

Proof. The fact that h is a C°° map follows from the proof of 
Lemma A.3. The map h is defined by h/(A) = K t(A)h(A) and so the 
fact that the map 

A E(X) 3A^ K t(A) G Hom(L2CBOx0,r0),su(E)), 

L k+1(B(x0,r0),su(E))) 

is C°° yields the second conclusion. q.e.d. 
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A.3. Positive partitions and cutoff functions with bounded 
differentials on Hilbert manifolds. We modify Lang's proof of the 
existence of a C°° partition of unity on a paracompact C°° manifold 
modelled on a separable Hilbert space [55, Corollary II.3.8] to produce a 
C°° positive partition whose cutoff functions have bounded differentials 
of all orders; see Proposition A. 12. Recall: 

Proposition A.5 [55, Corollary II.3.8]. Let X be a paracompact 
C°° manifold modelled on a separable Hilbert space $). Then X admits 
locally finite, C°° partitions of unity: For any open cover of X there is 
a countable, locally finite open subcover fUag

(^=l and a family of C°° 
functions ipa : X —ï [0,1] such that 

• supp^a C Ua, 

• P ^ = i ^a{x) = 1 for all x G X. 

We shall need the following generalizations to a Banach space set
ting of the analogous familiar facts from analysis on finite-dimensional 
spaces. 

Lemma A.6 [1, Proposition 1.3.10]. Let M be a topological space 
and let (N, d) be a complete metric space. Then the set C(M, N) of all 
bounded continuous maps is a complete metric space with respect to the 
metric D(f,g) := supfd(f(x),g(x)) : x G Mg. 

Let E, F be Banach spaces and let U C E be an open subset. By 
analogy with the usual definitions in finite dimensions, we let C s(U, F) 
be the set of C s maps f : U —> F with norm 

kfk CHU) : = max sup k(D p f)x k < oo, 
0<p<s xeU 

where k(D p f)x is the norm of (D p f)x G Hom((g>p E, F). Lemma A.6 
implies that C k U, F) is a Banach space. In general we have: 

Lemma A.7. For any integer s > 0, the set C s(U,F) is a Banach 
space. 

Proof. For the case s = 1 this follows from Lemma A.6 and [37, 
Theorem 1.1.5]. The general case [1, pp. 113-114] is proved in the same 
way using Taylor's Theorem. q.e.d. 

By analogy with the finite-dimensional case we set C°°(U,F) = 
ns>0C s(U,F). 
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The C°° cutoff functions produced by Proposition A.5 may not nec
essarily have bounded differentials on Hilbert manifolds, as their sup
ports are not compact, so we now describe a modified procedure which 
does produce bounded cutoff functions. 

Lemma A.8 [55, Lemma II.3.5]. Let M be a metric space and let 
fBag'^3

=1 be a covering of a subset W C M by open balls. Then there 
exists a locally finite open covering fVag^=1 of W such that Va C Ba 

for all a and 

Va = Ba nc B(xayl,ra}1) n ••• nc B ( xa ì a - i ì r a ì a - i ) , 

where c B = M - B . 

Lemma A.9. Let BQ, B\..., B m be open balls in a Hilbert space H 
and let V be a scalloped open subset: 

V = B0 n c Bt n • • • n c B m. 

Then there exists a C°° function LO : H —> [0,1] such that u)(x) > 0 if 
x G V and u)(x) = 0 otherwise, while the differentials D pu> are bounded 
for all p EN, with bounds depending only on p, r o , . . . , r m. 

Proof. Let ip : R —> [0,1] be a C°° function such that f(t) = 1 for 
t < 1, 0 < (p(t) < 1 for 1 < t < 2, and ip{t) = 0 for t > 2. Suppose 
Ba = B(xa,ra) for a = 0 , . . . , m. Set 

(Pa(x) := ip{r~2kx - xak
2), xeH, a=l,...,m, 

so 0 < ipa < 1 on c B a and (pa = 1 on Ba. Set ip${x) = </3(2r̂ ~ kx — xok2), 
so 0 < fo < 1 on BQ and fo = 0 on c BQ. Then 

m 

W : = ^0 Y{1 -Va) 
a=l 

is positive on V and zero on c V = H — V, while 

k D pLOk < C, 

for some positive constant C = C(f,p, ro,..., r m) and all p £ N . 
q.e.d. 

Lemma A.10. Let Ai,A% be non-empty, closed disjoint subsets of 
a separable Hilbert space H. Then there exists a C°° function x '• H —> 
[0,1] such that x(x) = 0 if x G Ai and x(x) > 0 if x G A<2, with bounded 
differentials of all orders. 
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Proof. By Lindelof 's Theorem there is a countable collection of balls 
fBag(^'=1 covering A2 such that Ba C c A\ = H — A \ . Let W = UaBa and 
find a locally finite refinement fVag of scalloped open subsets Va d Ba, 
using Lemma A.8, which covers W. Using Lemma A.9 we find a C°° 
function ioa : H —> R such that ioa is positive on Va, zero on c Va, and 
has bounded differentials of all orders. The sum 

a = l 1 + k w a k C»(«) 

is finite on any neighborhood Va. The function x '• H —> R is positive on 
UaVa = W D A<2 and zero on A\. Moreover, x has bounded differentials 
of all orders, as desired. q.e.d. 

R e m a r k A . 1 1 . It is at this point that the usual proof of existence 
of a partition of unity encounters difficulties if we wish to ensure that 
the cutoff function \ has bounded differentials of all orders. In the proof 
of Theorem II.3.7 of [55], Lang first constructs a function LO obeying the 
conclusions of Lemma A. 10 and then a C°° function u : H —> R such 
that a > 0 on the closed set c U disjoint from A2, where U is the open 
set where LO > 0, and a = 0 on A2. He then defines x = w/(a; + cr), so 
X = 1 on A2. In finite dimensions, the compactness of closed bounded 
sets ensures that x will have bounded differentials of all orders if A2 is 
bounded, but this obviously fails in infinite dimensions. 

Propos i t i on A. 12. Let X be a paracompact C°° manifold modelled 
on a separable Hilbert space H . Then X admits a locally finite, C°° 
positive partition: For any open cover of X there is a countable, locally 
finite open subcover by parametrizations fUa, 7rag^L1; where 

ira:HDUa~UaCX, 

and a family of C°° functions Xa '• X —> [0,1] such that 

• suppxa C Ua, 

• P ^ = i Xa{x) > 0 for all x G X, 

• Xa ° Ka : H —> [0,1] has bounded differentials of all orders. 

Proof. Let fB x g be an open covering of X by balls and, using para-
compactness and Lemma A.8, let fUag be a countable, locally finite 
refinement such that each open subset Ua is contained in some B x^, 
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where na
l : X D BX(Q) —> H is a coordinate chart and 7ra

1(Ua) = U a . 
We now find open refinements fVag and then fWag such that 

Wa dVacVa cUa, 

the bar denoting closure in X. For each a, Lemma A. 10 and the identifi
cation TTa : H D U a ~ Ua C X provide a C°° cutoff function Xa '• X —> R 
such that Xa > 0 on W a and Xa = 0 on X — Va. The C°° map 
X« o Tia : U a ->• [0,1] extends by zero to a C°° map Xa ° vrQ : H ->• [0,1] 
having bounded differentials of all orders. Hence, fUa, Xag is the desired 
positive partition. q.e.d. 

Let Y = Y U dY C X be a smooth submanifold-with-boundary. For 
any open subset U C A E(Y) and C s function f : U —> C, we define 

(A.8) kfk s(i/) := sup sup j(D f )A(a i , . . . , a s)j. 

| i | | L 2 A ( Y ) < l 

Let fB([Aa], ra)g be a countable covering of B E(Y) by L2k balls with sub
ordinate locally finite subcover fUag and C°° positive partition f%„g, 
with suppx« C Ua. We may suppose that B([Aa],ra) = n(B(Aa,ra)), 
where B(Aa,ra) C A*E(Y) is an open L k ball in the Coulomb slice 
Aa + KercA with center Aa and radius ra, and 7r : A*E(Y) —> B E(Y) 
is the canonical projection. Let U a = n~l(Ua) n B ( A a , r a ) . Then 
U a C A« + Ker d*A and 

suppx« o TT C K-\Ua) = G E{Y) • Ua ~ E(Y) x U a . 

Now Xa°^(u(A)) = Xa°^(A) for all u G ( E ( Y ) , and by the construction 
of Proposition A. 12 the C°° map 

(A.9) Xa°n:Aa + Ker d A C L ̂ + 1 (Y,su(E)) - • [0,1] 

has bounded differentials of all orders with respect to the fixed L k+1 A 
norm on L ̂ +1(Y,su(E)), that is, it has bounded differentials of all orders 
in the sense of Proposition A. 12. Now for any A G U a , the L k+1 A 
and L k+l A norms on L k+l(Y,su(E)) compare uniformly with constants 
depending only on ra > kA — Aak L2 (since k > 2), and so the maps 

k;Aa 

(A.9) have bounded differentials of all orders in the sense of equation 
(A.8). Moreover, the same holds for the maps 

Xa°n:A*E(Y)^ [0,1]. 
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Finally, we have a restriction map r Y '• A*E(X) —> A*E(Y) given by 
A H- Aj Y and the composition 

XaO7,or Y:A E(X)^[0A} 

again has bounded differentials of all orders in the sense of equation 
(A.8). 

A . 4 . Uni form convergence of ho lonomy per turbat ions on 
ne ighborhoods of reducibles . In x2.5.2 we constrained the se
quences perturbations f and i? to vary in certain weighted £$ spaces. 
We now show that a sequence of positive weights ö G £°°(M+) may 
be chosen in such a way that the sums r • m and i? • m and all their 
differentials converge uniformly on A E(X). 

For any open subset U C A E(X) and C s map 

f:U^L k+ 1(X,su(E)) , 

we define 

(A.10) kfk C s(Uo := sup sup k(D s f ) A ( a i , . . . , a s)k L2 (X ) . 
AeU i<i<s k+1'A ' 

We then have: 

Propos i t i on A . 1 3 . Continue the notation of x2.5.2 and let k > 2 
be an integer. Then there exists a sequence ö = (Sa)^=i G ^°°((0,1]) of 
positive weights such that the G E equivariant maps 

T • m : A E{X) ->• L2k+1(X,gl(A+) ®R so(su(E))), 

t? • m : A E(X) -+ L k + 1 ( X , H o m ( W + , W - ) ®C s l E ) , 

are C°°, with uniformly bounded differentials of all orders in the sense 
of (A. 10). In particular, they satisfy the following C° estimates for 
r>k + l, 

sup k ê - m { A ) k L2 {X) < CkëkuC r{X)), 
AeA E k+1'A s 

sup k f - m A ) k L (X ) < C k f k i ( C r (X ) ), 
AÌLA E 

for some positive constant C = C(g, k), and more generally they satisfy 
the C s estimates of (A.11) and (A.12), for every integer s > 0. 
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Remark A. 14. As should be clear from their definition, the maps 
T • m and i? • m are not analytic, although this will cause no difficulty in 
practice. 

Proof. It suffices to consider ê • m, since the argument for f • m 
is obviously identical. We first observe that the sum ê • m(A) is fi
nite for each connection A G A E(X), and so defines an element of 
L2k+1(X,Hom(W+,W~) <g> gl(E)), while it is identically zero if A is 
reducible on X. However, on any open neighborhood of a reducible 
connection A G A E(X), the number of terms in the sum ê • m may be 
infinite, and so our task is to choose a sequence of weights ö such that 
this sum and all its differentials converge uniformly on A E(X). The sum 
i? • m will then define a C°° map. We begin with a couple of preparatory 
lemmas. 

Lemma A.15. Let Y = YUdY C X be a smooth submanifold with 
boundary, let B(Ao,ro) C A*E(Y) be an open L2k ball with k > 2, and let 
T] G L2(Y,su(E)). Then the maps 

B(A0,r0) 3A^ f(A) := e - A d G L2k+1(Y,su(E)) 

have bounded differentials of all orders, in the sense of (A. 10), with 
constants c = c(k,ro,s,t): 

kfk C*(B(A0,ro)) < ckMk L2(Y)-

Proof. The Sobolev multiplication theorems and the fact that k > 2 
imply that the norms 

kCk L*+1,A(Y) and kCk L + i A ( Y ) : = k ( l + AA)(k+1)/2Ck L2(Y) 

on L k+1(Y,su(E)) are equivalent for A G B(A0,ro) C A E(Y), with 
constants depending at most on k,ro. 

Since AA = d*A d A, its derivative with respect to A in the direction 
ÖA = a is given by ^AA = [a, -]*d + d*A[a, •]; we use the abbreviation 
6AA = (D(.))A(a). The connection AQ is irreducible by hypothesis 
and so for a small enough open L2k ball B(Ao,ro), there is a positive 
constant Ao > 0 such that X[A] > XQ > 0 for all A G B(Ao,ro), where 
A [A] is the least eigenvalue of AA. Thus, 

Spec(AA) C [A0, oo), A e B(A0ì r0), 
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and, for any holomorphic function f on an open neighborhood l ! c C 
with Spec(AA) C O and T any contour that surrounds Spec(AA) in Q, 
we have [76] 

f(A 
1 

2-Ki r 
f(AXA-A^dA, 

(Df)AA(6AA) = ^-f f(A)(A - AA)-\ôAA)(X - AA)"1 dX, 

and similarly for all higher-order derivatives. Note that 

(l + AA)(k+1)/2f(AA) 

= Òj{l + A ) ( k + 1 ) / 2 f (A) (A - A A ) - 1 dX, 

(l + AA)(k+iy2(Df)AA(ÔAA) 

= Òf{1 + A)(k+1)/2f(A)(A - AA)-1((5AA)(A - AA)"1 dX. 

We can fix Q and T C O such that dist(r, Spec(AA)) > do > 0, for some 
positive constant do and all A £ B(Abro) (see [34, §1.6]). Now choose 

e~tz and f k+i(z) = (1 + z)^k+1^2f(z), and estimate as in [34, p. 
53]: 

tAA 
'0\\Ll+hA(Y) < c\\(l + AA k + W e - ^ n W L Y 

<c (1 + x)(k+i)/2e-tx dX sup || (A _ AA)-i,nL 
Aer 

< c \ \V \ \L 2 (Y) , 

which gives the desired C° bound 

sup 11 e 
AeB(A0,ro) 

tAA 
II\\LI+1A Y)<cV\\L*{Y), 

where c = c(do, k,ro,t). 
To obtain the C1 bound, observe that 

\\{Df)AA{8AA)n\\Ll+iA{Y) 

< c||(l + AA)(k+iy\Df)AA(ÔAA)v\\LHY) 

<c (l + X)k+1^2f(X)dX sup | | (A-AA)- 1(^AA)(A-AA)-S| |L 2 (Y ) 
r Aer 

< supc||(A - AA)"1((5AA)(A - A A - ^ H L Y ) . 
Aer 
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Our expression for 6AA gives 

| | ( A - A A ) - 1 ( ^ A A ) ( A - A A ) - 1
? ? | | L 2 ( Y ) 

< ||(A - AA)-1a, -}*d A + d A[a, -])(A - AA)-1LY 

< c (\\[a, -]*d A(\ - AA^vWLY) + \\d*A[a, -](A - A A ) - S | | ^ ( Y ) ) 

KcWaWL Y M X - A A r ' r i L l A Y) 

< c I a I L 2 J A ( Y ) I M I L 2 ( Y ) , 

where c = c(ro,do). Combining these estimates yields 

\\ô(e-tAA)v\\L k+1A(Y) < ca \ \L kA(Y)\\v\\Li(Y), 

and so we have the desired C 1 bound 

sup sup ||(De~tA(-))A(a)ï;||L2 (Y) <c||ï;||L2(Y), 

AeB(A0,r0) \\a\\L2 (X)<1 k+1'A 
k,Ay ' 

for some c = c(do,k,ro,t). The analysis can be repeated, essentially 
unchanged, for all higher differentials and is left to the reader. q.e.d. 

L e m m a A. 16. The G E equivariant holonomy maps 

m j,l,a 

of (2.20) are C°° with bounded differentials of all orders in the sense of 
(A.10). 

Proof. Recall from (2.17) and (2.20) that 

m j,l,a(A) = ^ j[A]Xj,a[A|B(x j ,2Ro)]¥ ' jb jv ,a (A) . 

fj,l,a(A"> = ¥'j K t(A|B(xo )2Ro))6jv,a(A)-

The cutoff functions Xj,a°^ °r B(x,2R0) '• A E(X) —> [0,1] have bounded 
differentials of all orders, in the sense of (A.8), by the remarks following 
Proposition A. 12; moreover, they are supported in A*E(X). The func
tions ßj : A E(X) —> [0,1] have bounded differentials of all orders, as is 
clear from their definition in (2.18). Finally, from the proofs of Lemmas 
A.3 and A.4, together with Lemma A. 15, one can see that the maps 

^K t(-\B(x0,2R0)%jl,a • A E X) - • L2k+1(X,m(E)) 
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have bounded differentials of all orders in the sense of (A. 10) on open 
subsets G E ' BKAbro) C A E(X), where B(Ao,ro) is an open L2k ball in 
K AocA*E{X). q.e.d. 

Given Lemma A. 16, we have 

M := max k m as := max km j a l k C srA ) < oo, 
j l 

where we recall that 1 < l < 3 and 1 < j < N b. Now choose a sequence 
of positive weights <5 = (ôa)a

<
=1 G £°°(R+) by setting 

Sa:= 1+ max Ma,s , a G N, 
0<s<a 

and suppose â G iUA, C r (X)). Then 

j,l,a 

and therefore, 

k^ '^llC«(A) < Yl k0jMm jMk C s{A E) 
j,l,a 

<cJ2kWj,l,ak L k+1(X)km j,l,a\\C°(A E) by (A.10) 
j,l,a 

since r > k + 1. Here, c = c(g, k) is a universal positive constant coming 
from the continuous Sobolev multiplication L2k+l x L2k+l A —> L2k+1 A. 
Hence, using the facts that Ma>s < 1 + maxo<t<a Mat = 8~l for a > s 
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and 1 < Sa for 1 < a < s — 1 , we get 

k # - m k C s(A E) - c Y l ^2M«k#j,l,Ctk C r(X)+'528-1kVjtltak C r(X) 

j,l \a=l a>s 

-c(1 + imax_iMa>s Yl E k#j,l,ak C r(X) 
- - jl a=i 

(A.11) 

a> 

<c(l+ max Mays)j2C¥j 
l<a<s — 1 f—' 

= Ck^k4(C-(X)) < oo, 

a>s 

^ j,l,ak C r(X) 

j,l,a 

where C = C(g, s, k) is defined by the last equality above. In particular, 
we see that ê • m is a C s map on A E(X), for every integer s > 0. The 
same argument gives 

(A-12) kT • mk C s(A E) < CkTkI(C r(X)) < °°> 

and T • m is a C s map on A E ( X ) , for every integer s > 0. q.e.d. 
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