ON THE FUNDAMENTAL GROUPS OF POSITIVELY CURVED MANIFOLDS

KRISHNAN SHANKAR

0. Introduction

In 1965, S. S. Chern posed the following question [7, p.167] (sometimes called Chern's conjecture [12, p.671]; see also [6]): Let M be a compact Riemannian manifold of positive sectional curvature. Is it true that every abelian subgroup of $\pi_1(M)$ is cyclic? Since $\pi_1(M)$ is finite, this is equivalent to saying that the cohomology ring $H^*(\pi_1, \mathbb{Z})$ is periodic (cf.[2]). In this note we will point out that there exist infinitely many counterexamples by observing that the normal homogeneous Aloff-Wallach space $N_{1,1}$ (cf.[10]) and the Eschenburg space $M_{1,1}$ (cf.[3])¹ both admit free, isometric SO(3) actions. Curiously enough $N_{1,1}$ was precisely the one missed in the classification of positively curved normal homogeneous spaces (cf.[1]). So, the motivation for posing the question possibly came from looking at metric space forms (cf.[11]) or more generally (?) $\frac{1}{4}$ -pinched manifolds (cf.[4]) where the fundamental groups all have periodic cohomology, and from manifolds of negative curvature where the statement is true (Preissman's Theorem).

1. Free, isometric SO(3) actions

Following Wilking [10] we represent the normal homogeneous Aloff-Wallach space $N_{1,1}$ as the quotient $(SU(3) \times SO(3)) / U^*(2)$. Here $U^*(2)$ is the image under the embedding $(i, \pi) : U(2) \hookrightarrow SU(3) \times SO(3)$ given

Received November 18, 1997, and, in revised form, December 10, 1997.

¹In [3], the space $M_{1,1}$ is denoted as $M'_{1,1}$.

by the natural inclusion

$$i(A) = \begin{pmatrix} A & 0 \\ 0 & \det(A)^{-1} \end{pmatrix}$$
 for $A \in \mathrm{U}(2)$

and the projection $\pi: \mathrm{U}(2) \to \mathrm{U}(2)/\mathrm{S}^1 \cong \mathrm{SO}(3)$, where $\mathrm{S}^1 \subset \mathrm{U}(2)$ is the center of $\mathrm{U}(2)$. The metric being normal homogeneous, the entire group $\mathrm{SU}(3) \times \mathrm{SO}(3)$ acts isometrically on $N_{1,1}$ on the left. In particular, the subgroup $\{\mathrm{id}\} \times \mathrm{SO}(3)$ acts isometrically on the left.

Proposition 1.1. The group $\{id\} \times SO(3)$ acts freely on $N_{1,1}$.

Proof. The action is free if and only if $(\{id\} \times SO(3)) \cap Ad(g)(U^*(2))$ is trivial for all g in $SU(3) \times SO(3)$. This is equivalent to saying that $Ad(g)(\{id\} \times SO(3)) \cap U^*(2)$ is trivial for all g. But

$$Ad(g)(\{id\} \times SO(3)) = \{id\} \times SO(3)$$

and $(i, \pi)(\mathrm{U}(2)) \cap \{\mathrm{id}\} \times \mathrm{SO}(3)$ is clearly trivial. q.e.d.

The Eschenburg space $M_{1,1}$ is constructed as follows: Start with the group U(3) and perturb the bi-invariant metric to a normal homogeneous metric that is left invariant and $Ad(U(2) \times U(1))$ -invariant. Consider the subgroups

$$Z' = \{\operatorname{diag}(z, z, \bar{z}) | z \in S^1\}$$

and

$$U_{p,q} = \{ \text{diag}(z^p, z^q, 1) | z \in S^1 \},$$

where $\gcd(p,q)=1$, and $\operatorname{diag}(a_1,a_2,\ldots,a_n)$ denotes the matrix with diagonal entries a_1,a_2,\ldots,a_n . It is shown in [3] that if $p\cdot q>0$, then the double coset manifold $M_{p,q}=U_{p,q}\setminus \operatorname{U}(3)/Z'$ (also called a biquotient) has positive curvature for the submersed metric. Since the group $\operatorname{U}(2)\times Z'$ acts freely and isometrically on $\operatorname{U}(3)$, it follows that there is a Riemannian fibration (see [3] for details)

$$(\mathrm{U}(2)\times Z')/(U_{p,q}\times Z')\to M_{p,q}\to \mathbf{C}P^2.$$

When p = q = 1, $U(2) \times Z'$ induces an isometric but non-effective action on $M_{1,1}$ (since $U_{1,1}$ is the center of U(2)) with kernel $U_{1,1} \times Z'$. The resulting isometric action by $SO(3) = (U(2) \times Z')/(U_{1,1} \times Z')$ is clearly free, and we get

$$SO(3) \to M_{1,1} \to \mathbf{C}P^2$$
.

Proposition 1.2. The Eschenburg space $M_{1,1}$ admits a free, isometric SO(3) action.

In fact, it was consideration of this fibration that led to the original observation by the author.

2. Remarks

1. Up to conjugacy the finite subgroups of SO(3) are

$$\mathbb{Z}_n, n \ge 1$$
 $D_m, m \ge 2$ A_4 S_4 A_5

where D_m is the dihedral group of order 2m, S_n denotes the permutation group on n letters, and $A_n \subset S_n$ is the subgroup of even permutations. Since $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \approx D_2 \hookrightarrow D_{2m}$ for all $m \geq 1$, we get two infinite families of counterexamples: one covered by $N_{1,1}$ and one covered by $M_{1,1}$. This answers Chern's question in the negative.

2. A finite group is said to satisfy the m-condition if any subgroup of order m is cyclic. It is shown in [5] that a finite group acts freely on a topological sphere if and only if it satisfies all 2p- and p^2 -conditions where p is any prime that divides the order of the group. Note that satisfying all p^2 -conditions is equivalent to the condition in Chern's problem. The above examples show that neither the 2p- nor the 2^2 -conditions need hold for fundamental groups of positively curved manifolds. However, it is not known whether the p^2 -condition remains true for odd primes p. We may formulate the following:

Question. Let M be a compact Riemannian manifold of positive sectional curvature. Is it true that every abelian subgroup of $\pi_1(M)$ of odd order is cyclic?

- **3.** In the context of the question, some partial answers are known when the dimension of the manifold is fixed; see for instance [8].
- 4. The remaining proper, closed subgroups of SO(3) are $SO(2) \approx S^1$ and O(2). The quotients by SO(2) are $N_{1,1}/S^1 = F$ and $M_{1,1}/S^1 = F'$ where F is the space of flags over $\mathbb{C}P^2$, and F' is the "twisted" Eschenburg flag (cf.[3]). The quotients by O(2) then give positively curved manifolds with fundamental group \mathbb{Z}_2 . They are isometric \mathbb{Z}_2 quotients of F and F' respectively. It follows from Synge's theorem that they are nonorientable. It can be shown without too much difficulty that the quaternionic flag $Sp(3)/(Sp(1) \times Sp(1) \times Sp(1))$ and the Cayley flag

 $F_4/Spin(8)$ also admit isometric \mathbb{Z}_2 quotients. In summary all known simply connected, even dimensional manifolds with positive curvature admit isometric \mathbb{Z}_2 quotients if they do so topologically, since the remaining known examples are the compact, rank one, symmetric spaces (cf. [9]).

Acknowledgements

I would like to thank my advisor K. Grove for all his help, and in particular for suggesting that I investigate isometry groups of positively curved manifolds to look for free actions of finite groups.

References

- [1] M. Berger, Les variétés riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola. Norm. Sup. Pisa 15 (1961) 179-246.
- [2] K. S. Brown, Cohomology of groups, Springer, New York, 1982.
- [3] J.-H. Eschenburg, Inhomogeneous spaces of positive curvature, Differential Geom. Appl. 2 (1992) 123-132.
- [4] W. Klingenberg, Über Mannigfaltigkeiten mit positiver Krümmung, Comm. Math. Helv. **35** (1961) 47-54.
- [5] I. Madsen, C. B. Thomas & C. T. C. Wall, The topological spherical space form problem-II, Topology 15 (1976) 375-382.
- [6] P. Petersen, Comparison geometry problem list, Fields Inst. Monograph 4, Amer. Math. Soc., Providence, RI, 1996.
- [7] Proc. US-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965.
- [8] X. Rong, The almost cyclicity of the fundamental groups of positively curved manifolds, Invent. Math. 126 (1996) 47-64.
- [9] N. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. 96 (1972) 277-295.
- [10] B. Wilking, The normal homogeneous space $(SU(3) \times SO(3))/U^*(2)$ has positive sectional curvature, Proc. Amer. Math. Soc., to appear.
- [11] J. A. Wolf, Spaces of constant curvature, 5th ed., Publish or Perish, Houston, 1984.
- [12] S.-T. Yau, Seminar on differential geometry, Ann. of Math. Stud., Princeton Univ. Press, Princeton, NJ, 1982.

University of Maryland