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Abstract 
We develop a theory of "quasi"-Hamiltonian G-spaces for which the mo­
ment map takes values in the group G itself rather than in the dual of the 
Lie algebra. The theory includes counterparts of Hamiltonian reductions, 
the Guillemin-Sternberg symplectic cross-section theorem and of convexity 
properties of the moment map. As an application we obtain moduli spaces 
of flat connections on an oriented compact 2-manifold with boundary as 
quasi-Hamiltonian quotients of the space G X • • • X G . 

1. Introduct ion 

The purpose of this paper is to study Hamiltonian group actions for 
which the moment map takes values not in the dual of the Lie algebra 
but in the group itself. 

For the circle group S 1 this situation has been studied in literature 
(see e.g. [18], [24]). The standard example is the real 2-torus T2 = 
S 1 x S 1 , with its standard area form and the circle acting by rotation 
of the first S1; the moment map is given by projection to the second 
S1. It is in fact known that every symplectic S ̂ -action on a symplectic 
manifold for which the 2-form has integral cohomology class admits an 
S ̂ -valued moment map. 

In this paper we consider group valued moment maps for general 
non-abelian compact Lie groups G. One theory encountering group 
valued moment maps is the theory of Poisson-Lie group actions on sym­
plectic manifolds [16], [17], where G is a Poisson Lie group and the 
target of the moment map is the dual Poisson-Lie group G*. In [1] it 
was shown that for compact, connected, simply connected Lie groups G 
this theory is equivalent to the standard theory of Hamiltonian actions. 
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In this paper we introduce the notion of "quasi"-Hamiltonian 
(q-Hamiltonian) G-spaces consisting of a G-manifold M, an invariant 
2-form uj and a group valued moment map fj, : M —» G satisfying certain 
natural compatibility conditions. It turns out that for non-abelian G 
these spaces differ in many respects from Hamiltonian G-spaces. In par­
ticular, the conditions that the 2-form UJ be non-degenerate and closed 
have to be replaced by somewhat more complicated conditions. In spite 
of these differences, Hamiltonian reductions of these spaces are defined 
and result in spaces with symplectic forms. 

Basic examples for q-Hamiltonian G-spaces are conjugacy classes in 
G. Another example is the "double" D(G) = G X G generalizing the 
above T2-example. Note that for G compact and simply-connected, 
D(G) does not admit a symplectic structure because its second coho-
mology is trivial. Yet, it admits a (minimally degenerate) q-Hamiltonian 
structure. 

As an application we obtain the moduli space M ( S ) of flat connec­
tions on a closed 2-manifold S of genus k as a q-Hamiltonian quotient 
of the space G . Our construction is a reinterpretation of the con­
struction due to Jeffrey[12] and Huebschmann[ll] (see also [10]) which 
represents M ( S ) as a symplectic quotient of a certain finite dimensional 
non-compact symplectic space X (which is in fact an open subset of 
G2k). Their construction is based on the group cohomology approach of 
Goldman[9], Karshon[14] and Weinstein[23]. For another closely related 
construction see King-Sengupta[15]. 

We show that the space G2k admits a q-Hamiltonian structure with 
a G-valued moment map corresponding to the G-action by simultaneous 
conjugations. Then M ( S ) is obtained as a q-Hamiltonian quotient of 
G . The closedness and non-degeneracy of the 2-form on the moduli 
space follows from the basic properties of the reduction procedure. More 
generally, if S has a boundary and C = fC j g are conjugacy classes of 
holonomies associated to the boundary components, the corresponding 
moduli space M ( S , C ) is a q-Hamiltonian reduction of the space G2\r+k) 
where r + 1 is the number of boundary components. We will explicitly 
describe the 2-form on G2(r+k) that gives rise to the symplectic form on 
moduli space and check that the answer coincides with Atiyah-Bott 's 
[3] gauge theoretic construction of the symplectic form on M(T,,C). 

The paper is organized as follows. The definition of a q-Hamiltonian 
G-space with G-valued moment map is given in Section 2. Section 3 con­
tains basic examples of q-Hamiltonian G-spaces, and Section 4 discusses 
some of their basic properties. In Section 5 we show that Hamiltonian 
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reduction extends to the present setting. In Section 6 we define the 
"fusion product" of two G-Hamiltonian spaces, with moment map the 
pointwise product of the two moment maps. In Section 7 we prove a q-
Hamiltonian version of the Guillemin-Sternberg symplectic cross-section 
theorem and discuss convexity properties of the moment map. In Sec­
tion 8 we explain the relation of our theory to Hamiltonian loop group 
spaces, and prove that there is a natural one-to-one correspondence 
between compact q-Hamiltonian G-spaces and Hamiltonian LG-spaces 
with proper moment map. Section 9 contains the application of our 
results to moduli spaces of flat connections. In Section 10 we explain 
the relation to the Lu-Weinstein theory of Poisson-Lie group actions on 
symplectic manifolds. 
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2. Quas i -Hamil tonian G-spaces 

In this section we recall the definition of Hamiltonian G-spaces with 
g*-valued moment maps and then present our definition for "quasi"-
Hamiltonian G-spaces with G-valued moment maps. 

2 .1 . Hami l ton ian G-spaces. Throughout this paper G denotes a 
compact Lie group with Lie algebra g. A G-manifold is a manifold M 
together with an action A : G X M —> M. Given g G G, x G M we will 
often write 

A(g,x) = x g, 

and for £ G g we denote by v ̂  the generating vector field on M. Given 
a closed invariant 2-form w o n a G-space (M, A), the contraction Ì(v ̂ )UJ 



448 a . a l e k s e e v , a . m a l k i n & e . m e i n r e n k e n 

is closed because 

di(v ^)uj = Cv,ÜJ — i(v ^)duj = 0. 

In symplectic geometry, one is mainly interested in the case that Ì(v ̂ )UJ 
is exact and UJ is non-degenerate: 

Definit ion 2 .1 . A Hamiltonian G-space (M,A,ÜJ,/2) is a G-
manifold (M, A), together with an invariant 2-form to G Q2(M)G and 
an equivariant moment map \± G CQO{M, g*) such that : 

(Al) The form UJ is closed: duj = 0. 

(A2) The moment map satisfies 

i(v{)uj = d{(j,,Ç) for all £ G g. 

(A3) The form UJ is non-degenerate. 

Simple consequences of the axioms are the following description of 
the kernel and image of the derivative of the moment map: 

(0.1) im(d xfi) = g xi ker(d x/i)UJ = {v((x),^egg. 

Here g x is the isotropy algbra of x and g x its annihilator in g*, and for 
any subspace E C T x M the subspace 

Eu := {v G T x M, u(v, w) = 0 for all w G Eg 

is its cj-orthogonal complement. 

2.2 . q-Hamil tonian G-spaces. Let us try to develop the notion 
of a "quasi"-Hamiltonian G-space (M,A,ÜJ,/2) with a G-valued moment 
map ß : M —> G. We denote by (•, •) some choice of an invariant positive 
definite inner product on g which we use to identify g = g*, and by 
9,9 £ r i 1 (G,g) the left- and right- invariant Maurer-Cartan forms. (In 
a faithful matrix representations for G, 9 = g~ldg and 9 = dgg~l.) If 
G is abelian (so that 9 = 9), the natural replacement for the moment 
map condition is 

(0.2) i(vt)u = ti*(9,Ç). 

If G is non-abelian, condition (0.2) does not work as it is incompatible 
with the anti-symmetry of UJ. One is forced to replace it by 

(0.3) i(vt)u = ±ti*(9 + 9,Ç). 
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If we want UJ to be G-invariant, this condition is no longer compatible 
with duj = 0: Indeed, 

(0.4) 0 = Cviu = (di(vt) + 4(^)d)w = i/z*d (9 + 9,0 + *(^)dw. 

This equation can be rewritten as follows. Let \ £ S73(G) denote the 
canonical closed bi-invariant 3-form on G: 

(0.5) x = ^(o,[e,e]) = ^(ê,[ë,ë]). 

Denote by v r and v l the right and left-invariant vector field on G gen­
erated by £. The fundamental vector field for the adjoint action is 
v_ = v r — v l so that 

(0.6) i{v{)9 = Ad g-i Ç - Ç, 4 ( ^ ) 0 = Ç - Ad g Ç, 

which together with the structure equations dö = — ^[#,#] and 
d0= ±[0,0] gives 

(0.7) L(vjx = ld(9 + 9,Q. 

Using these formulas condition (0.4) becomes 

0 = i(v()(dcj + fi*x), 

so that we are lead to require duj = —ß*X- However, the moment map 
condition (0.3) is in general also incompatible with non-degeneracy of 
UJ since it implies that all generating vectors v ̂ (x) with £ a solution of 
Adßtx\ £ = —£ have to lie in the kernel of ux. 

We are therefore lead to the following "minimal" definition. 

Definit ion 2 .2 . A quasi-Hamiltonian G-space is a G-manifold 
(M,A) together with an invariant 2-form to G Q(M)G and an equiv-
ariant map fj, G C00(M, G)G such that : 

(Bl) The differential of UJ is given by: 

du = -n*x-

(B2) The map fj, satisfies 

i(vt)u = ±fi*(9 + 9iQ. 
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(B3) At each x G M, the kernel of ux is given by 

kercjx = {v((x), £ G k e ^ A d ^ ) + 1 ) } . 

We will refer to /i as a moment map. 

In the following section we will give some examples of q-Hamiltonian 
G-spaces. Let us, however, first make a remark on the definition. 

R e m a r k 2 . 1 . For ordinary Hamiltonian G-spaces, the defining con­
ditions can be expressed elegantly in terms of the de Rham model for 
equivariant cohomology. Let QG(M) = (DkS7G(M) be the complex of 
equivariant differential forms, 

nk G(M)= 0 (nj(M)®S l g*)G 
2l+j = k 

with differential 

(d Ga)(0=d(a(0)-i(vc)a(0. 

Conditions (Al) and (A2) can be summarized by the requirement that 
UG(^) = uj + (/i,£) be an equivariantly closed form in Q'G(M): 

(0.8) d GcjG(0 = dcj + d ( /x ,0 - t(vt)u = 0. 

However, one can also take a slightly different point of view and rewrite 
(0.8) as follows: 

d G ̂ (0 = dcj - I(v)CJ = - d ( / i , £ ) = -fJ.*xG(0-

Here \G £ ^ G(g*) is an equivariant 3-form defined as XG{0 = d(a ,£) , 
where a : g* —> g* is the identity map. This latter formulation extends 
to q-Hamiltonian G-spaces; the relevant d G-closed equivariant 3-form 
XG e nG(G) is 

3. E x a m p l e s of q-Hamil tonian G-spaces 

3 .1 . Conjugacy classes in G. Basic examples of Hamiltonian 
G-spaces are provided by coadjoint orbits O C g*. Their q-Hamiltonian 
counterparts are conjugacy classes C C G. 
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Propos i t ion 3.1 (Conjugacy c lasses ) . For every conjugacy 
class C C G there exists a unique invariant 2-form to G Q2(C)G for 
which C becomes a q-Hamiltonian G-space, with moment map the em­
bedding fj, : C M- G. The value of UJ at f G C is given on fundamental 
vector fields v^, vv by 

(0.9) Uf(vt,vi) = \ ( f o A d f O - ($,Ad fr,)). 

The 2-form (0.9) on conjugacy classes plays an important role in 

[10]. 

Proof. Clearly UJ is G-invariant. The fact that (0.9) satisfies condi­
tion (B2) is tautological because 

Uf(vtiv) = 2 ( A d f - l 7 ? _ A d f ? ? ' 0 = 2 4 v ) ( f + ^ f>£)' 

To check (Bl) consider the fibration if : G —> C defined by Vf (u) = 
Ad u f. The pull-back of UJ is the left-invariant 2-form 

n*fu, = ± (Ad f 9,9). 

We have 

K*f duj = dK*fuj = -±(Ad f[9,9],9) + \(Ad f9, [9,9]). 

Using ir*f9 = Ad uf-i 9 — 9 one verifies that this last expression is equal 
to —7T*fX which shows (Bl ) . Suppose next that £ G g is such that v ^(f) 
is in the kernel of ujf. By definition of UJ this means 

Ad f £ - A d f - i £ = 0, 

or £ G ker(Ad f2 —1). The kernel of (Ad f2 —1) is a direct sum 

ker(Ad f2 - 1 ) = ker(Ad f - 1 ) © ker(Ad f +1) . 

For any £ G ker(Ad f —1) we have v ̂ (f) = 0. This shows that the kernel 
of ujf is given by (B3). Uniqueness of UJ is a consequence of (B2) since 
C is a homogeneous space. q.e.d. 

R e m a r k 3 . 1 . Since the kernel of the 2-form w on C has constant 
rank, it defines a distribution on C. It is integrable, with leaves given by 
the orbits Ad(Z f ) • f C Ad(G) • f as f ranges over C. In particular, if 
f2 is contained in the center Z(G), then the 2-form UJ on C is identically 
zero. 
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3.2 . D o u b l e D(G). Our next example is a q-Hamiltonian G X G-
space which plays the same role as the cotangent bundle T*G in the 
category of Hamiltonian G-spaces. Since this new q-Hamiltonian space 
is a product of two copies of G, we call it the double of G and denote 
it by D(G) (alluding to the definition of the double in the theory of 
Quantum Groups). Let 

D{G) :=GxG, 

and let a and b be projections to the first and second factors in the 
direct product. Introduce a G X G-action A D on D(G) via 

{a,b)gg = {g1ag-1,g2bg-1). 

Define a moment map ßD = (^1,^2) : D(G) —> G2 as 

Hi(a,b) = ab, ^{a^b) = a~ b~ , 

and let the 2-form UJD be defined by 

cjD = ^(a*e, b*0) + ^(a*0, b*0). 

Propos i t ion 3.2 (The double D(G)). The quadruple 

(D(G), A D, I^DI^ D) is a q-Hamiltonian G X G-space. 

Proof. The equivariance of the moment map is immediate from the 
definition. Using 

(0.10) PL\0 = Ad b-i a*0 + b*0, /i*20 = - Ad b a*0 - b*0 

we compute 

MÏX = a*x + b*x - - d{a*0, b*0), /x*x = -a*X ~ b*X ~ - d{a*0, b*0), 

which gives the required property dujD = —ß*X- Next, let 

? = ( 6 , 6 ) GB0fl, 

and v ̂  be the corresponding vector field on D(G). If £2 = 0, using (0.10) 
we find 

i ( v ) u D =-(a*9 + b*0 + Ad b-i a*0 + Ad a b*0, £1) 

= ̂ ï (0 + 0,6). 
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A similar calculation gives the condition for £1 = 0. 
Suppose now that v G Tta^\D(G) is in the kernel of a;. Let (£,?/) 

be such that v is the value at (a, b) of the right-invariant vector field 
v = (v£,v r) . The condition 

0 = i(v)uD j{atb) = (Ad a b*0 + b*0, 0 + (Ad b-i a*0 + a*0, r,) 

gives two equations 

Ç + Ad abÇ = 0, 7? + Ad ab7? = 0. 

Setting 

<x = ^(Ç + v), ß = ~Ad b(C-ri). 

we obtain 

(0.11) Ç = a + Ad aß , r] = a + Ad b-i ß. 

Equation (0.11) says that v is the value at (a, b) of the fundamental 
vector field for (a,ß). Moreover, 

a + Ad ab a = 0 , ß + Ad a-ib-i ß = 0, 

which shows that (B3) is satisfied. q.e.d. 

R e m a r k 3 .2 . We will also make use of different coordinates on 
D(G), corresponding to the left trivialization of T*G: setting u = a 
and v = ba the action reads 

(u,v g g = (g1ug-1, Ad g v), 

the moment map is 

Hi{u,v) = Ad u v, n2{u,v) = v~x 

and the 2-form is given by 

OJD = i ( A d v u*ö, u*ö) + i (u*ö, v*0 + v*ö). 

3.3 . From Hami l ton ian G-spaces to q-Hamil tonian G-
spaces . In this section we show how to construct a q-Hamiltonian G-
space from a usual Hamiltonian G-space (M, A, a, $ ) . The basic Lemma 
is (see also Jeffrey [12]) 
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L e m m a 3 .3 . For s £ R let exp s : g —> G be defined by exp s(r]) 
exp(sT]). The 2-form on the Lie algebra g given by 

i Z1 ^ d i r - d 
W = 2 / (exp s 01 ~ds exp*s ^ ds 

is G-invariant and satisfies dw = — exp*x- If v£ is a fundamental 
vector field for the adjoint G-action on g, we have 

(0.12) i{v)w = -d(-,0 + ±exp*(0 + 0,£). 

We omit the proof at this point since Lemma 3.3 is a consequence 
of Proposition 8.1 below. 

Propos i t ion 3 .4 . Let (M,A,cr,<&) be a Hamiltonian G-space. 
Then M with 2-form UJ = a + <£>*£u and moment map fj, = exp(<£>) 
satisfies all axioms of a q-Hamiltonian G-space except possibly the non-
degeneracy condition, (B3). If the differential d ̂  exp is bijective for 
all £ £ 3>(M), then (B3) is satisfied as well, and (M,A,u,fj,) is a q-
Hamiltonian G-space. 

Proof. Equivariance of fj, is clear, and invariance of UJ follows from 
equivariance of exp and <£> and invariance of w. Condition (Bl) is ob­
tained from 

duj = do- + d§*za = - $ * exp* \ = ~^*X, 

and (B2Ì from the calculation 

To check the non-degeneracy condition (B3) suppose that v G T x M is 
in the kernel of a;. Then 

(0.13) i(v)ax = -i(v)($*w)x. 

Since the 1-form on the right-hand side annihilates the kernel of d x<&, 
equation (13) implies that v is u-orthogonal to ker(d x<&). By (0.1) the 
(T-orthogonal complement to ker(d x<&) is equal to the span of the fun­
damental vector fields v ̂ (x), £ £ g. Letting v = v ̂ (x) and using (B2) 
we arrive at the condition 

(0.14) $*exp*(0 + 0,£)x = O 



l i e g r o u p v a l u e d m o m e n t m a p s 455 

at x. Pairing with a fundamental vector field vv(x), we find 

(ri,(Adß(x)2-l)C) = 0 

for all T], which shows 

£ G ker(AdAlx2 - f ) = ker(Ad / i (x ) - 1 ) 0 ker(AdAlx +1) . 

As we remarked in Section 2.2, solutions of A d ^ ) £ = —£ lead to 
elements in the kernel. Therefore it suffices to consider the case 
Adßtx\£ = £, where the condition (0.14) reads 

($*(exp*0,£))x = O. 

If $ (x ) G g* — g is not a singular value of exp, this equation implies 
that £ annihilates the image of the tangent map d ^ . By (0.1) this 
means £ G g x, tha t is v ̂ (x) = 0, and the proof is complete. q.e.d. 

R e m a r k 3 .3 . Suppose conversely that (M,A,u,fj,) is a q-
Hamiltonian G-space. Assume also that there exists U C g such that 
exp is a diffeomorphism from U onto some subset V C G containing 
fj,(M), and let log : V —> U be the inverse. Reversing the argument in 
the proof of Proposition 3.4 we see that (M, A, LO — ß* log* zu, log(/i)) is 
a Hamiltonian G-space in the usual sense. 

4. Proper t i e s of q-Hamil tonian G-spaces 

The following result summarizes a number of consequences of Defi­
nition 2.2, analogous to (0.1) for Hamiltonian G-spaces. 

Propos i t ion 4 . 1 . Let (M,A,u,fj,) be a q-Hamiltonian G-space and 

x G M. For any subspace E C T x M let Ew = fv G T x M, UJ(v,w) = 

0 for all w G Eg denote its LO-orthogonal complement. Then the follow­
ing hold: 

1. The map 

(14a) ker(Ad/u(x) +1) -> kerux, £ i-» vç(x) 

is an isomorphism. 

1. ker(d x/2) n kerujx = f0g. 
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2. im{n*0)x = gè. 

3. ( k e r d / j ) " = {vi{x),C e gg-

Proof. Observe first tha t there is an orthogonal splitting of g, 

g = k e r ( A d A l x + l ) ® i m ( A d A l x + l ) 

= ker(AdAlx +1) © ker(Ad / i (x ) - 1 ) 0 i m ^ A d ^ - 1 ) 

and that gß(x) = k e ^ A d ^ ) - 1 ) . 
1. By the non-degeneracy condition (B3) the map (14a) is surjective. 

On the other hand if v ̂ (x) = 0, then v ̂ (fj,(x)) = 0 by equivariance of 
the moment map or equivalently £ G ker(Ad/U(x\ —1) C im(Ad / i(x\+1). 
This shows injectivity. 

2. Let v G ker(d x fj,) n kerujx. Using Property 1, we can write v = v 
with T] G ker(Adß(x\ +1 ) . By equivariance of the moment map, 

0 = d xii(v(x)) = v ( i i ( x ) ) , 

which shows TJ G gß(x) = ker(Ad/U(x\ —1). Thus TJ = 0 and consequently 
v = 0. 

3. Using the defining equation for the moment map, 

u(vt,v) = lL(v)^(0 + 0,O = ^((Adß+l)i(v),i*0^) 

and Property 1, we have 

im (n*6)x n im(AdM(x) +1) 

= (Ad ̂ ^) +1) im(fi*6)x = {£, v ( x ) G kerux g 1 

= (fx 0 ker(AdAlx + 1 ) ) 1 = g n m^Ad x +1) . 

On the other hand, equivariance of the moment map together with (0.6) 
shows that 

im(fi*0)x D im(Adß{x)-i - 1 ) = k e ^ A d ^ ) - l ) 1 D k e ^ A d ^ ) +1) . 

Since fx Ç g x = ker(AdAl(x) - 1 ) Ç i m ^ A d ^ ) +1) , we also have 

g x 2 ker(Adß(x)+l); 

these two equations prove 3. 
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4. The inclusion D is a direct consequence from the defining property 
(B2) of the moment map. Equality follows by dimension count: Using 
2. and 3, we obtain 

dim(kerd x/i)'<; = d i m M — dim ker(d xfj,) = dim im(d xfj,) 

= dim g — dim g x. 

q.e.d. 

R e m a r k 4 . 1 . We shall also need the following refinement of Prop­
erty 4.: Suppose that G is a product G = G\ X G2, and let ß = (^î, ^2) 
be the components of the moment map. Then 

( k e r d ^ i T = { v , £ G g i j + kerux. 

To see this note that as a direct consequence of Property 3., 

i m ^ / x i ) = g ̂  n gi = (gi)x n gi 

which implies the above equation by dimension count. 

Propos i t ion 4 .2 . Let (M j , A j,j,[J,j) (j = 1,2) be q-Hamiltonian 
G-spaces, and F : M\ —> Mi an equivariant smooth map such that 
F*uj2 = w\ and F*^2 = ß\- Then F is an immersion. 

Proof. Let x G M. Since F*LÜ2 = ^ i we have kerd x F C ker(uji)x. 
Since F*fj,2 = Mi, Lemma 4.1 shows that d x F restricts to an isomor­
phism ker(uji)x = ker(UJ2)F(x)- Thus ker d x F f]ker(uji)x = {0}. q.e.d. 

Corollary 4 . 3 . If(M, A, to, fj,) is a q-Hamiltonian G-space on which 
G-acts transitively, the moment map fj, is a covering onto a conjugacy 
class C C G. 

Proof. Let x G M and f = fJ,(x). By equivariance fj, is a submersion 
from M onto C = Ad(G) • f. (B2) shows that CJ is the pull-back by fj, of 
the 2-form on C. Therefore fj, is an immersion by Proposition 4.2. 

q.e.d. 

Propos i t ion 4.4 ( Invers ion) . If (M,A,to, ß) is a q-Hamiltonian 
G-space, then the quadruple (M, A, — LU, M_1) is also a q-Hamiltonian 
G-space. 

Proof. This is an immediate consequence of the fact that under the 
inversion map Inv : G —> G, g 1—> g~l, 
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Inv* 0 = -0, Inv* 0 = -0, Inv* X = ~X-

q.e.d. 

We denote the q-Hamiltonian G-space given in Proposition 4.4 by 
M~. Note that if C is the conjugacy class of f G G, then C~ is the 
conjugacy class of f~l. 

All of the above results are natural analogues of the well-known 
facts about Hamiltonian G-spaces. The following Theorem introduces a 
nontrivial automorphism of q-Hamiltonian G-spaces that does not have 
a counterpart for Hamiltonian G-spaces. As we shall see later, this 
automorphism corresponds to Dehn twists of 2-manifolds. 

T h e o r e m 4.5 (Twist a u t o m o r p h i s m ) . Let (M,A,ÜJ,/2) be a 
q-Hamiltonian G-space. The map 

Q: M -> M, x ^ xß{x 

is a diffeomorphism satisfying Q*UJ = u, Q*ß = /i. 

Proof. By equivariance of the moment map, Q*ß = Ad ( /Ì) /Ì = /i. 
The map x H-> x ̂ x' is an inverse to Q so that Q is a diffeomorphism. 
The tangent map to Q is given by 

d x Q(v) = d x Aß(x)v + vç(Q(x)), 

where £ = L(v)(JI*0)x G fl. Letting v j G T x M be two tangent vectors 
and £j = i(v j)(j2*0)x, we find that the expression 

Q*ijjx(v1,v2) = UQ(x){d x Q(v1),d x Q(v2)) 

is the sum of the following four terms: 

{d x A ^x)vi,d x A ^x)v2) = ux{vuv2) 

plus 

^Q(x)(vii(Q(x)),d x Aß{x)v2) = -i(d x Aß{x)v2)^*(0 + 0,^1)Q(x) 

= li(v2)ll*(0 + 0iAd(g-1)^)x 

= ^(Ad(M(x)-1)6-6,Ad(M(x)-1)6) 

= ^ ( 6 , 6 - A d ( ^ ) ) 6 ) 
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minus the same term with vi,v2 exchanged, plus 

- i ^ 2 (Q(x)) M *(ö + ö,6)Qx = 2(6,Ad(M(x)-1)6-Ad(M(x))6). 

Adding up all contributions we find Q*Ux(vI, v2) = Ux(vI, v2). q.e.d. 

R e m a r k 4 .2 . If G is a product G = G\ X G2, one has a twist 
automorphism for every factor: That is, both maps x <—> xß^x> are 
equivariant diffeomorphisms preserving ß and u. 

On q-Hamiltonian G-spaces one can define G-invariant Hamiltonian 
vector fields. 

Propos i t ion 4.6 (Hami l tonian d y n a m i c s ) . Let (M,A,ÜJ,/2) 

be a q-Hamiltonian G-space. Then for every G-invariant function 
F G C00(M1 ¥L)G there is a unique smooth vector field v F satisfying 
the following conditions: 

(0.15) L{v F)U = dF , L{v F)H*9 = 0; 

the vector field v F is G-invariant and preserves UJ and fj,. Thus 
fF i , F2g = LO(V F11 V F2) defines a Poisson structure on C°°(M1 ¥L)G. 

Proof. By Proposition 4.1, Property 1 the map 

A : TM - • T*M ® g, v ^ (i(v)u, i(v)fj,*9). 

is injective. Its image defines a smooth sub-bundle E C T*M © g. 
We need to show that x 1—> (d x F, 0) defines a section of E; the corre­
sponding vector field v F is then just the pre-image under A. Since F 
is G-invariant, d x F annihilates the space fv ^(x),^ G gg C T x M and 
in particular the kernel kerujx. This shows that d x F is contained in 
the image of the map T x M —> T*M, v \—> I(v)Ux. Let v G T x M with 
d x F = L{v)x. and set £ := L(v)(JI*9)x. For all i] £ g, using once again 

tha t F is invariant, we have 

0 = i(v)d x F = - i(v0)i(v)ijjx = --i(vo)ii*(0 + 0,T])x 

= - ^(Ç + Ad^)-1?'7?)' 
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which shows £ G ker(Adßtx\ + 1). Consequently v\ := ^ ( x ) G kerox 

and v = v + \ vi still solves / . ( v )x = d x F. By (B2) we obtain 

i(v)(»*0)x = t(v0 + \ v1)(ii*6)x = £ + ì ( A d „ - i Ç - 0 = Ç - Ç = 0, 

so that v solves A(v) = (d x F, 0). This shows that (d x F,0) is in the 
image of A. 

G-invariance of v F follows from the G-invariance of its defining equa­
tions. The equation 

CvpLO = (di(v) + i(v F)d)ijj = ddF — i(v F)fj,*x = 0 

shows that the 2-form UJ is v - inva r i an t . The invariance of fj, is equiva­
lent to the invariance of the G-valued 1-form fj,*0: 

Cv FH*6 = (di(v F) + i(v F)d)n*6 = — i{v F)n*[0, 0] = 0. 

q.e.d. 

5. q-Hamil tonian reduct ion 

In this Section we show that the usual Hamiltonian (Meyer-Marsden-
Weinstein) reduction procedure can be carried out for q-Hamiltonian G-
spaces. We assume that G is a product G = G\ X G2, and we consider 
reductions with respect to the first factor. Given f G G\ let Z f C G\ 
be its centralizer and z f the Lie algebra. Let M be a q-Hamiltonian 
G\ X G2-space, with moment map (^1,^2)- Suppose that f G G\ is a 
regular value of/ i i , so that /ij~ (f) is a smooth submanifold. Proposition 
4.1 shows that for all x G n~[ ( f ) , the isotropy algebra (g\)x is trivial, 
i.e., (G\)x Ç Z f is a discrete subgroup. It follows that the reduced space 
M f = /ij" (f)/Z f is an G2-equivariant orbifold. Not surprisingly M f is 
a q-Hamiltonian GVspace: 

T h e o r e m 5.1 (q-Hamil tonian reduc t ion) . Let M be a q-
Hamiltonian G\ X G2-space and let f G G\ be a regular value of the 
moment map ßi : M —> G\. Then the pull-back of the 2-form UJ to 
HÏ (f) descends to the reduced space 

M f = ^1(f)/Z f 

and makes it into a q-Hamiltonian G2-space. In particular, if G2 = feg 
is trivial, then M f is a symplectic orbifold. 
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Proof. Let i : fi~[ (f) -̂> M denote the embedding, and 
7T : /ij" (f) —T- M f the projection. The form Ì*CJ is Z f X G2-invariant 
because CJ is G\ X G2-invariant. Moreover if £ £ z f, then 

4(v ̂ )4*0; = 4*4(^)0; = 4*/zî(0 + 0 , f ) = 0 

(because ^ o t : ^J" (f) —> {f}) implies that 4*CJ is Z f-basic. Let 
Cf £ Q2(M f) G be the unique 2-form such that TT*Ìf = 4*CJ. The 
restriction i*[ii is Z f X G2-invariant and descends to an equivariant map 
(M2)f £ C0O(M f1G2)G'2 satisfying (B2). Letting xi, X2 be the canonical 
3-forms for G\, G2, we have 

Tr*diof = di*u = i*du = - 4 * ( ^ x i + M2X2) = -1*^2X2 = -TT*(M2)fX2, 

so that ujf satisfies (Bl). Finally, we need to check the non-degeneracy 
condition (B3) for ujf. The kernel of ujf at a point ir(x) £ M f is just 
the projection d x7rker(/,*cj)x. Thus Remark 4.1 yields 

ker(i*Lû)x = ker(d x ̂ i ) n ker(d xfj,1)
UJ 

= ker(d x/i1) n ({vç(x),Ç £ gi j + kerux) 

= T ^ Z f • x) + {^(x)| 7/ £ ker(AdAl2(x) +1)}. 

q.e.d. 

Remark 5 .1. The proof shows that if M satisfies the conditions 
for a q-Hamiltonian G\ X GVspace except for (B3), the reduced space 
M f is still well-defined and satisfies (Bl) and (B2). 

Let us consider a few examples of q-Hamiltonian reduction. 

Example 5.1. 

1. For a conjugacy class M = C C G, the reduced space M f is a 
point if f £ C, and is empty otherwise. 

2. Let M = D(G) be the double defined in the previous section, 
with moment map fj,D = (^1,^2)- Consider the reduction with 
respect to the second G-factor, fi^ (f)/Z f. Since fi^ (f) = 
{(a, f~1a~1)\ a £ G}, with Z f acting diagonally from the right 
and the first G acting diagonally from the left, we find that the 
reduced space is the conjugacy class through the element f~l. 
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3. It follows from the proof that if M satisfies (Bl) and (B2) but not 
necessarily (B3), the reduced space M f is still well-defined and 
satisfies (B1),(B2). For example let (M,A,cr,<&) be a Hamilto-
nian G-space, and let (M,A,u,fj,) be the q-Hamiltonian G-space 
obtained from it, with fj, = exp(<£>) and UJ = a + Q*w. Recall tha t 
even if a is non-degenerate, UJ can fail to satisfy condition (B3). 
Suppose f is a regular value of both fj, : M —» G and exp : g —> G. 
Then all pre-images fi G e x p _ 1 ( f ) are regular values of <£>, and the 
q-Hamiltonian reduction M f is symplectic and is a disjoint union 

M f= a M^ 
exp/ i=f 

This follows from the fact that the pull-back of the extra term 
<£>*£u to ß~l{f) vanishes. 

R e m a r k 5 .2 . The q-Hamiltonian structure on M f can also be 
obtained as follows. Let r be the 2-form on the conjugacy class 
C = Ad(G) • f and let i : ^ (C) - • M and n : ^ (C) - • ^ l (C)/G be 
the embedding and projection. Then 

IT UJf = i (UJ — fj, T) . 

R e m a r k 5.3 (Hamiltonian Dynamics commutes with reduction). 
The Hamiltonian dynamics defined on M by a G\ X GVinvariant Hamil­
tonian F descends to the reduced space M f. Indeed, the corresponding 
vector field v F descends to fi~[ (f) because it is G-invariant and tangent 
to /ij" ( f ) . Moreover, the restriction of the G\ X G2-invariant function F 
to n~[ (f) is Z f X G2-invariant and descends to an G2-invariant function 
F f on M f satisfying 

7T*dF f = c*dF = i*i(v F)u = IT*L(IT(v F f))tjJf 

and 

Tï*i{v F )(j22)*f0 = Ì{v F)L*IJ^9 = 0. 

It follows that G\ X G2-invariant Hamiltonian dynamics commutes with 
reduction. 
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6. Fusion product 

In this section we introduce a ring structure on the category of q-
Hamiltonian G-spaces. We call it a fusion product because it provides 
a finite-dimensional "classical analogue" to fusion products of represen­
tations of quantum groups at roots of unity, and to fusion products of 
positive energy representations of loop groups (see [19] and Section 8 
below). 

T h e o r e m 6.1 (Fusion p r o d u c t ) . Let M be a q-Hamiltonian 
G X G X H-space, with moment map fj, = (/ii, [j,?, ßs)- Let G X H act by 
the diagonal embedding (g,h) —> (g,g,h). Then M with 2-form 

(0.16) L> = u + ±(tiÎ9,ti9) 

and moment map 

(0.17) fi=(n1-H2,(*3)-- M->GxH 

is a q-Hamiltonian G X H-space. 

Proof. The moment map ß is equivariant because the group multipli­
cation is an equivariant map with respect to the action by conjugations. 
Property (Bl) follows from 

(0.18) (gig2y x = g l x + g l x - \d {g{9, g2*0), 

which shows that 

dcj = -filx - M2X - MsX + 2d(/ iï61 ' V*iß) = ~ß*X-

For £ G g and r] G h let vj, vi and vv denote the fundamental vector 
fields for the action of the respective factors of G X G X H. The funda­
mental vector field for the diagonal G-action is just the sum v ̂  = vl+vi. 
Clearly 

i v ) £ = t ( v ) w = -fi*3(0 + 0,i]), 
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which verifies (B2) for the H-factor. Moreover, 

+i(AdAt-1 i - £ , ^ 0 ) - \{nlO,i- Ad,2 0 

= \{M2Y{o + -ö,z). 

Finally, we need to check that û satisfies the minimal degeneracy con­
dition (B3). Suppose the vector v G T x M is in the kernel of ûx (we will 
omit the basepoint x to simplify notation): 

(0.19) 0 = i(v)Q = i{v)uj + ^{L{v)H\0, H$) - ^ 9 , L{v)H$). 

Let ( G ker(Ad/Ul +1), so that vl G ker x. Contracting (0.19) with v ̂  
we find 

0 = i{v\) (fiktiv)fi*0) = ((Ad ̂ -i -l)Ç,i(v)fi*ë) = -2(Ç,i(v)ti*9). 

This shows 

L{v)H$ G ker(Adw + 1 ) 1 = im(Adw +1). 

A similar argument applies to L{v)H\6. We can therefore choose 
6 , 6 G g with 

(0.20) i(v)tâô = (Ad ̂ -i + 1 ) 6 , v M = - ( A d w +1 )6 , 

which turns (0.19) into 

Changing 6 , 6 if necessary, it follows that v = vl + vj +vv for suitable 
6 , 6 G g and ^ G ker(Ad ̂ 3 +1). Re-inserting this into equations (0.20) 
we find 

( i - A d , 2 ) 6 = (i + AdAi-1)6, (i + Ad,2)6 = ( i -AdA i - 1 )6 . 
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Adding these equations gives £1 = 2̂> and then either equation shows 
the non-degeneracy condition 

q.e.d. 

We call the operation of replacing the G X G X H-action by the 
G X H-action on a manifold M internal fusion, and denote the resulting 
space by Mi2 (in particular if there are more G-factors involved). Given 
two q-Hamiltonian G X H j-spaces M j we define their fusion product 
Mi © M2 to be the q-Hamiltonian G X H\X H2-space obtained from the 
q-Hamiltonian G X H\XG X H2-space Mi X M2 by fusing the G-factors. 

R e m a r k 6 .1 . 

1. Let {pt} denote the trivial G-space, with moment map pt 1—> e. 
Then M © { p t } = M = { p t } © M for every q-Hamiltonian G-space 
M . 

2. Suppose M is a q-Hamiltonian G xG X H-space. Then (M~)i2 = 
( M 2 1 ) - . 

The fusion operation is associative: Given q-Hamiltonian G X H j -
spaces M j we have 

(Mi © M2) © M 3 = Mi © (M2 © M 3 ) . 

More generally if M is a q-Hamiltonian G X G X G X H-space, the two 
q-Hamiltonian G X H-spaces M(12)3 obtained by first fusing the first two 
G-factors and Mi(23) obtained by first fusing the last two G-factors are 
identical. The new 2-form on M in either case is given by 

u + ^0,^0) + \{ßl9^i9) + \(rt0,Adß2 »SO). 

We shall now show that the fusion product is also commutative on 
isomorphism classes of q-Hamiltonian G-spaces. Switching the two G-
factors in Theorem 6.1 before fusing we obtain a Hamiltonian G X H-
space M21 with the same action, but moment map (^2 • Mi 1/̂ 3) and 
2-form 

u + -{n*2o,nïë). 
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If G is non-commutative, the identity map M —» M does not provide 
an isomorphism. However, we have the following result. Let 

A1, A2 : G-)-Diff(M) 

denote the actions of the two G-factors. 

Theorem 6.2 (Commutativity of the Fusion Product). Un­
der the hypotheses of Theorem 6.1 the map 

R, M -+ M, x ^Ali(x)(x) 

is a G X H-equivariant diffeomorphism satisfying 

(0.21) R*(ß2ßi)= P1P2, R*Pz = Pz, 

(0.22) R*(u + ±(rìO,rìO)) = u + \{ß\9,m. 

Thus R gives an isomorphism R : Mi 2 —> M2i of q-Hamiltonian GxH-
spaces. 

Proof. By equivariance of the moment map, Ris G X H-equivariant, 
and we have 

R*Hi = Hi, R*H2 = Ad(/ii)/i2, R*^3 = Ms-

proving (0.21). To prove (0.22) we note that the tangent map to R is 

d x R(v) = d x All{x)(v) + vl(R(x)), 

where vj is the fundamental vector field of £ := i(v)(ii{0)x with respect 
to A2. By a calculation similar to that in the proof of Theorem 4.5 we 
find 

{R*UJ){vUv2) = w(v1,v2) + i ( A d ( M - 1 ) 6 , 6 + Ad(M 2)6) 

- ^ ( A d O ^ t e ^ i + A d ^ ! 

- ^ A d G ^ - A d G u - 1 ) ^ ) 

with £j = L(j)(H\9), and thus 

(0.23) R*UJ = LO + ì(/zÌ0, (4(0 + 0) - Ad(/x2)//îo). 
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Furthermore 

R HiO = l^i^i 

R*H*2e = -n*J) + Ad^i / / - 1 ) /xJO + Ad(/xi) \L% 9, 

so that 

R*((j,*20, m ={Ad{ß-l)ß\9 + M, M) 

= W , A d ( / x 2 ) / x î o - / x ^ ) . 

Adding (0.23) + ^ (0.24) proves the theorem. q.e.d. 

We leave it to the reader to check that the map 

R : M^M,x^Al2{xrl(x) 

has just the same properties (0.21), (0.22) as the map R. We will call 
R, R' braid isomorphisms. 

E x a m p l e 6 .1 . Let us apply internal fusion to the double D(G). 
Fusing the two G-factors we get a q-Hamiltonian G-space D(G) := 
D(G)i2 which is just G2 , with G-action 

(a,b)g = (Ad g a,Ad g b), 

moment map 

n(a, b) = aba~ b~ = [a, b], 

and 2-form 

u = i ( a*0 , b*0) + i ( a*ô , b*0) + \{{ab)*e, ( a " ^ " 1 ) ^ ) -

The braid isomorphisms in this case are given by 

R : D(G) - • D(G), (a, b) H+ ( a b " ^ " 1 , ab2), 

R1 : D(G) - • D(G), (a, b) ^ ( a " ^ " 1 a b2a). 

R e m a r k 6.2 . It is interesting to re-examine q-Hamiltonian re­
duction in connection with fusion. Suppose M is a q-Hamiltonian 
G X G X H-space, with moment map (/ii, ^2 ,^3) , and e is a regular 
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value of fi := / Ì I / Ì2 - Then the diagonal action of G on / i _ 1 (e) is lo­
cally free, hence Mjj diag(G) := / i _ 1 ( e ) /d i ag (G) is an H-equivariant 
orbifold and ^3 descends to M/ /d iag(G) . We claim that the pull-back 
of LU to ii~l(e) is basic and that the induced form w//diag(G) makes 
M//d iag(G) into a q-Hamiltonian H-space. In fact, since the pull-back 
of the additional term in (0.16) to ii~l(e) vanishes, the claim follows 
immediately from 

M//d iag(G) = (M12)e. 

Let us also observe that just as in the category of Hamiltonian G-spaces 
there is a shifting-trick for q-Hamiltonian reduction: If (M, A, u, /ii, ^2) 
is a q-Hamiltonian G X H-space, then f is a regular value for ßi if and 
only if the identity e is a regular value for the moment map on M © C~ 
where C = Ad(G) • f, and in this case there is a canonical isomorphism 

M f = (M®C~)e = ( M x C - ) / / d i a g ( G ) . 

7. Cross-sect ions and convex i ty 

One of the basic tools in the study of Hamiltonian G-spaces is the 
cross-section Theorem of Guillemin-Sternberg, which is a method of 
reducing problems to subgroups of G. 

In this section we prove a cross-section Theorem for q-Hamiltonian 
G-spaces and explain its relation to convexity theorems for the moment 
map. 

Let (M,A,u,fj,) be a q-Hamiltonian G-space and let f G G. Since 
the centralizer Z f C G is transversal to the conjugacy class C = Ad(G) •f 
there exists an open Z f-invariant subset U C Z f containing f and an 
equivariant diffeomorphism 

G XZ f U —» G, [g, u] H-> gu 

onto an open subset of G. By equivariance of//, the pre-image ii~l(Z f) 
is a smooth Z f-equivariant submanifold Y C M, and there is a natural 
diffeomorphism G XZ f Y —> M onto an open subset. In analogy to the 
cross-section theorem of Guillemin-Sternberg we have 

Propos i t ion 7.1 (Cross-sect ion t h e o r e m ) . Let (M,A,u,fj,) be 
a q-Hamiltonian G-space, and f C G, U C Z f as above. Then the 
cross-section Y := ji~l(U) is a smooth Z f-invariant submanifold, and 
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is a q-Hamiltonian Z f -space with the restriction of ß as a moment map. 
In particular, if Z f is abelian the cross-section is symplectic. 

Proof. All conditions for a q-Hamiltonian Z f-space are immediate 
except the non-degeneracy condition (B3). Let i : Y —> M be the 
inclusion. For all y G Y the tangent space Tßty\G splits into a direct 
sum 

Tß{y)G = T y C®{vt(vi(y))\Cez f } . 

Consequently 

(0.25) T y M = T y Y®{vt(y)\Çez f}. 

The second summand is mapped under d yfj, to a subspace of the tangent 
space to conjugacy class Ad(G) • fi(y). If v G T y Y, £ G z f", we have 

because i(d yfj,(v))(0 + 0) G z f, so that the decomposition (0.25) is UJ-
orthogonal. Thus if v G ker/,*w, then also v G keruj. Since M sat­
isfies (B3), this shows v = v ̂  for some £ G z f satisfying Ad(/i(x))£ 
= - £ . q.e.d. 

R e m a r k 7 .1 . Instead of the restriction fJ,\Y, one can also use the 
shifted moment map ß = f~l(pi\Y). It satisfies ß(x) = e for all x G 
H~l(f). Remark 3.3 applies and shows that Y is locally equivalent near 
ß~l{f) C Y to a Hamiltonian Z f-space in the usual sense. 

Suppose now that the group G is in addition connected and sim­
ply connected. Then there are canonical choices for the cross-sections 
constructed as follows. Let T C G be a maximal torus of G, with Lie 
algebra t, and t+ some choice of a positive Weyl chamber. Every Ad(G)-
orbit in g passes through a unique point of t+ so that t+ = g/ Ad(G). 
Let A C t+ be the fundamental Weyl alcove. Every conjugacy class 
C C G contains a unique point of exp(A) C T so that we can identify 

A = G / A d ( G ) 

as the space of conjugacy classes. For every open face a C A the cen-
tralizer Z exptç\ with £ G er is independent of £ and will be denoted Za. 
For a in the interior of A, Za = T. Introducing a partial order by set­
ting a y T if a D T we have a y T =>• Za Ç ZT, in particular every Za 
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contains T. Let us write 

and 

Ua=Ad{Za)exp{A). 

Then U C Za C G is smooth, and is a slice for the Ad(G)-action at 
points in a. In particular, for every g G Ua we have Ad(G)g l~l Ur = 
Ad(Za)g. 

R e m a r k 7 .2 . Let us consider in particular the cross-section Y = Ya 

for a = int A. The T-action over Y extends by equivariance to a G-
equivariant T-action over the open subset G • Y C M. In fact, it is 
Hamiltonian in the sense of Proposition 4.6. To see this let q : G —> 
G J Ad(G) = A be the quotient map. Note that q is smooth over G • Ua 

for a = int A. Using 7.1, it is clear that the components of qoj_i generate 
the T-action just described. In the case of moduli spaces these T-actions 
are known as the Goldman flows [9]. See e.g. [19] for a discussion and 
references. 

The above fact that the cross-sections are equivalent, after shift of 
the moment map, to Hamiltonian spaces in the usual sense implies in 
particular that Kirwan's theorem on convexity and connectedness of 
fibers of moment maps applies to every connected component of the 
cross-section. 

It turns out that the cross-sections Ya = &~1(Ua) for a connected, 
simply connected compact Lie group are necessarily connected, which 
then has the following consequence. 

T h e o r e m 7.2 (Convex i ty T h e o r e m ) . Let (M,A,u,fj,) be a con­
nected q-Hamiltonian G-space, where G is compact, connected and sim­
ply connected. Then all fibers of the moment map fj, are connected, and 
the image of fJ,(M) Ç G under the projection G —> Gj Ad(G) = A is a 
convex polytope. 

We will not give the detailed argument here since, as the following 
section shows, it is indeed just a translation of the proof given in [19] 
into the terminology of q-Hamiltonian G-spaces. Note that the fibers of 
fj, are not necessarily connected if G is for instance a torus. 
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8. Relat ion to Hami l ton ian LG-spaces 

In this Section we prove that there exists a one-to-one correspon­
dence between q-Hamiltonian G-spaces and Hamiltonian LG-spaces 
with proper moment map (see [19], [20]). So, one always has a 
choice either to work with infinite-dimensional objects (LG-spaces) and 
more conventional definitions (Hamiltonian spaces) or to use finite-
dimensional objects and the new definitions (q-Hamiltonian G-spaces). 

8.1 . Loop group LG: notat ion . Let G be a compact Lie group. 
We define the loop group LG as a space of maps 

LG = Map(S 1 ,G ) 

of a fixed Sobolev class A > 1/2. Then LG consists of continuous maps 
and the group multiplication is defined pointwise. Its Lie algebra is the 
space of maps Lg = Î7°(S1, g) of Sobolev class A. We define Lg* as the 
space of 1-forms 

Lg* = Q1{S1,g) 

of Sobolev class A — 1. The natural pairing of Lg* and Lg given by 

(A,0= i (A,0 
S1 

makes Lg* into a subset of the topological dual (Lg)*. 

We view Lg* as the affine space of connections on the trivial bundle 
S1 X G and let the loop group LG act by gauge transformations: 

A g = Ad g A - g*0. 

Let 

Hol : Lg* -> G 

denote the holonomy map. Recall tha t if we identify S1 = R/Z and let 
s £ R denote the local coordinate, Hol = Holi where Hol s : Lg* —> G is 
defined as the unique solution of the differential equation 

Hol s(A)-1^-Hol s(A) = A, Hol0(A) = e. 
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On constant connections A = Çds (for £ £ g) the holonomy map restricts 
to the exponential map: Hol s(£ds) = exp(sÇ). The map Hol s satisfies 
the equivariance condition 

(0.26) Hol s(A g) = g(0) Hol s(A) g(s)-\ 

in particular the holonomy map Hol = Holi is equivariant with respect 
to the evaluation homomorphism LG —> G, g t—> g( l ) and the adjoint 
action of G on itself. 

Let the based loop group QG C LG be defined as the kernel of the 
evaluation mapping LG —> G, g t—> g(l). Then LG is a semi-direct 
product LG = fiGxiG. The action of QG on Lg* is free, and the quotient 
map is just the holonomy map. Thus Hol : Lg* —> G is the universal 
S7G-principal bundle. Consider now the closed three-form \ £ Q3(G). 
Since Lg* is an affine space the pull-back Hol* \ to Lg* is exact. An 
explicit potential for Hol* \ is given as follows. Define the following 
2-form on Lg*\ 

™ = \Z ds(Hol së, ^ H o l së). 

Propos i t ion 8 .1 . The 2-form w is LG-invariant and its differen­
tial is given by 

(0.27) dw = - Hol* x-

Its contraction with a fundamental vector field v ̂  (£ £ Lg) is given by 

(0.28) i(vi)zu = -d I (A,£) + JHol*(0 + 0,£(O)). 
S1 2 

The proof of this proposition is deferred to the appendix. 

8.2. Equivalence t h e o r e m . 

Definit ion 8 .2 . A Hamiltonian LG-space is a Banach manifold N 
together with an LG-action A, an invariant 2-form a £ Q2(M) , and 
an equivariant map <£> £ C°°(N, Lg*)LG such that : 

(CI) The 2-form a is closed. 

(C2) The map $ is a moment map for the LG-action A: 

i{v{)a = d (m,£) . 
S1 
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(C3) The form a is weakly non-degenerate, tha t is, the induced map 
a°x : T x N - • T*N is injective. 

We will show in this section that every Hamiltonian LG-space with 
proper moment map determines a q-Hamiltonian G-space and vice 
versa. Since the action of the based loop group QG C LG on Lg* 
is free, its action on N is free as well and we can form the quotient 

M = Hol(N) := N/QG. 

If the moment map <£> is proper, then Hol(N) is a smooth 
finite-dimensional manifold. We denote by Hol the projection 
Hol : N -> Hol (N) . Since G = LG/QG, the diagram 

LGxN N 

(0.29) 

G X Hol (N) Hol(N) 

defines a G-action Hol(A) on Hol (N) , and the diagram 

N Lg* 

(0.30) 

" 

Hol (N) G 

a G-equivariant map Hol(<I>) : Hol(N) —> G. The following result says 
that holonomy manifolds of Hamiltonian LG-spaces with proper mo­
ment maps carry canonically the structure of q-Hamiltonian G-spaces. 

T h e o r e m 8.3 (Equivalence T h e o r e m ) . Let (N, A, a, $ ) be a 
Hamiltonian LG-space with proper moment map and let M = Hol(N) 
be its holonomy manifold, with G-action A = Hol (A) and map 
H := Hol(3>). The 2-form on N 

(0.31) o + <5>*m 

is basic with respect to the projection Hol : N —> M, and is therefore 
the pull-back Hol* UJ of a unique 2-form UJ on M. Then (M,A,u,fj,) is 
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a q-Hamiltonian G-space. Conversely, given a q-Hamiltonian G-space 
(M,A,u,fj,) there is a unique Hamiltonian LG-space (N,A,cr,<&) such 
that M is its holonomy manifold. 

Proof. Since w is LG-invariant the 2-form (0.31) is LG-invariant. 
Moreover if £ £ Lg, by (0.28) we have 

i(vç)(a + $*zu) = d ( $ , £ ) + $*i(v)o7 

(0.32) = i $*Hol* (0 + ö,£(O)) 

= Ì H o l V ( 0 + o,£(O)). 

This shows that a + <£>*£u is basic, and that the 2-form w o n M defined 
by it satisfies condition (B2). Condition (Bl) is a consequence of da = 0 
and (0.27): 

Hol* duj = d Hol* u = da + $*dro = - $ * Hol* X = ~ Hol* /i*X. 

It remains to check the non-degeneracy condition (B3). The kernel of 
uj is the image under the tangent map dHol of the kernel of the form 
a + <&*w. Suppose v £ T y N is in the kernel. Then 

i{v)ay = — L(v)Q*W. 

Since the 1-form on the right-hand side annihilates the kernel of d y<&, 
this equation says v £ ker(d yQ)a. Using cross-sections for Hamiltonian 
LG-actions [19], [20] one sees that ker(d y ̂ )'J = T y(LG • y), just as for 
finite dimensional Hamiltonian G-spaces. Hence there exists £ £ Lg 
with v = v ̂ (y). By (0.32) we arrive at the condition 

$*Hol*(0 + 0,£(O)) = O. 

Applying an arbitrary vector field v,q to the left-hand side one finds that 

£(0) £ ker(Ad f2 - 1 ) = ker(Ad f - 1 ) ® ker(Ad f +1) , 

where f := Hol(<£>(y)). For every £ with £(0) £ ker(Ad f +1) , the vector 
v ̂  is in the kernel of à, and the projection by dHol of such vectors is 
the space 

v ( H o l ( f ) ) £ T Hol{y)M, v £ ker(Ad f - 1 ) } . 

It remains to show that if £(0) £ ker(Ad f — 1) and v ̂  £ kercr, then 
£(0) = 0, so that v?(y) £ T y(QG • y). Let TJ £ Lg be defined by 

»?(s):= Ad (Hol s($(y)))£(0) . 
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Since T] — £ G fig, the fundamental vector field vv(y) still lies in kercy. 
On the other hand, using Proposition 8.1 and Lemma A. l in the Ap­
pendix the value at <£>(y) of the fundamental vector field vv on Lg* lies 
in kerW$ty\. Therefore vv G ker y, and by non-degeneracy of ay finally 
v ( y ) = 0. This completes the proof that (M, A,OJ, fj,) is a q-Hamiltonian 
G-space. 

Suppose conversely that we are given a q-Hamiltonian G-space 
(M,A,u,fj,). Define N as the pull-back of the universal S7G-principal 
bundle Hol : Lg* —> G by the map fj,. In other words, N is given by the 
fiber product diagram (0.30). Define <£> as the upper horizontal arrow in 
(0.30). There is a unique LG-action A on N such that <£> is equivariant 
and such that the diagram (0.29) commutes. Explicitly, it is induced 
from the LG-action on M X Lg* given by 

g: (x,A)^ (x g ° \ A g). 

The 2-form a is reconstructed from equation (0.31): 

a = Hol*w - $*OT, 

where Hol is the left vertical projection in (0.30). The above argument, 
read backwards shows that N is a Hamiltonian LG-space with proper 
moment map, and in fact M = Hol(N). q.e.d. 

The most basic examples of Hamiltonian LG-spaces are coadjoint 
LG-orbits O for the affine action on Lg*, equipped with the Kirillov-
Kostant-Souriau symplectic structure. All such orbits are preimages 
O = Hol_ 1(C) of conjugacy classes in C C G, and conversely the holon-
omy manifold of the orbit O is just the conjugacy class C. By con­
struction, the corresponding G-action is the restriction of the adjoint 
action of G, and the moment map fj, is the embedding into G. From 
Theorem 8.3 it follows that the conjugacy class C inherits from O a 
quasi-Hamiltonian structure. By Proposition 3.1 such a structure is 
unique and is described by formula (0.9). We have proved the following 
proposition: 

Propos i t ion 8.4. Let O = Hol_ 1(C) be an orbit of gauge action 
in Lg*. Then the corresponding holonomy manifold coincides with the 
conjugacy class C C G, and the induced quasi-Hamiltonian structure is 
given by (0.9). 
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9. Modul i spaces of flat connect ions on 2-manifolds 

In this section we apply our techniques to describe the symplectic 
structure on the moduli spaces of flat connections on Riemann sur­
face. Suppose S is an oriented 2-manifold with non-empty boundary 
dT< = I r - o ^ j - The space A flat(E) C r i 1 (S ,g ) of flat G-connections 
on S X G is invariant under the action of the gauge group G(£) . Let 
p j G V j be given base points on the boundary components, and let the 
restricted gauge group G res(T,) consist of gauge transformations that are 
the identity at the p j ' s . The quotient M ( S ) = A flat(T,)/G res(T,) is a 
smooth, finite dimensional manifold - in fact M ( S ) = G2\r+k) where 
k is the genus. It carries a residual G r+1 action, and the holonomies 
around the V j descend to a smooth equivariant map fi : M ( S ) —> G r+1. 
Given a collection of conjugacy classes C = (Co, . . . ,C r) C G r+1 the 
quotient 

(0.33) M(Z,C) = ii-1{C)/G r+1 

is the moduli space of flat connections with prescribed holonomies, 
which according to Atiyah-Bott [3] carries a natural symplectic struc­
ture. In this section we show that there exists a natural q-Hamiltonian 
structure on the moduli space of flat connections M ( S ) . The moduli 
spaces M(Ti,C) with holonomies in prescribed conjugacy classes C are 
obtained by q-Hamiltonian reduction from M ( S ) . The main result of 
this section is Theorem 9.3 which identifies M ( S ) as a fusion product 
of a number of copies of the double D(G). The upshot is that we arrive 
at an explicit finite-dimensional description of the symplectic form on 
the moduli space. For similar constructions see e.g. [12], [11], [15], and 
[10]. For complex Lie groups there is an alternative finite dimensional 
construction due to Fock-Rosly [8], using ideas from Poisson geometry. 

9 .1 . Gauge- theoret ic descr ipt ion. We start by recalling the 
gauge-theory construction of the symplectic 2-form on M ( S , Co , . . . , C r), 
following Atiyah-Bott [3]. Let S be a compact connected oriented 2-
manifold with boundary components Vo,... ,V r and P —> S a principal 
G-bundle. For simplicity we assume that P is the trivial bundle S X G 
although the following discussion goes through for non-trivial bundles 
as well1. Fix A > 1 and let i7j(S,g) denote g-valued differential forms 
of Sobolev class A — j . Then the gauge G(T,) = Map(S , G) is a Banach 
Lie group modeled on Lie(G(T,)) = î7°(S,g) . Consider the space of 

Recall that if G is simply connected, every G-principal bundle over E is trivial. 
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connections A(E) = r i 1 (S ,g) as an affine Banach space, with smooth 
G(E)-action given by 

A g = Ad(g)A-g*0. 

The space A(E) carries a natural symplectic form 

<r(a,b)= a Ab, a, b G T A A(T,) =* ^ ( E , g) 

for which the G(E)-action is Hamiltonian, with moment map 

(0.34) h t t ( A ) , 0 = Z ( c u r v ( A ) , £ ) + Z (A,Ç), Ç ^ ° ( S , g ) , 

where curv(A) G f22(E, g) denotes the curvature, and we have taken the 
orientation on 9E opposite to the induced orientation. Let us choose a 
base point p j for every boundary component V j , and let Ho j(A) G G 
denote the holonomy of A along the loop based at p j and winding once 
around B j . Given conjugacy classes Co , . . . ,C r C G let 

(0.35) M&•C>-M 
= fAe .C(E)j curv(A) = 0, Ho j(A) G C j g/G{T) 

be the moduli space of flat connections with holonomies in C j . Since 
the holonomy of a G-connection on S 1 is determined up to conjugacy 
by its gauge equivalence class, M ( E , C o , . . . ,C r) is a symplectic quo­
tient. It does not depend on the choice of Sobolev class A and is finite-
dimensional and compact, but sometimes singular. (For technical de­
tails, see e.g. [3], [5].) 

Let us suppose for the rest of this section that r > 0, i.e., tha t E 
has at least one boundary component. This assumption can be made 
without loss of generality because if 9E = 0 and E is the 2-manifold 
obtained from E by removing a disk, there is a natural identification 
M ( E ) ^ M ( E , f e g ) . 

The condition 9E / 0 implies that the subset A flat(E) of flat con­
nections is a smooth Banach submanifold of finite codimension. Let 

i : A flatiT) ^ A(E) 

denote the embedding. Define the restricted gauge group G res(T,) as the 
kernel of the evaluation mapping 

(0.36) G(E) - • G r+1, g ^ (g(p),... ,g(p r)). 
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In other words G res(T,) consists of gauge transformations that are the 
identity at the given base points. Set 

M(E):=A flatP)/G res(E). 

Since the action of G res(T,) is free, it is not very hard to check that M ( S ) 
is a finite dimensional, smooth manifold - in fact we will see below that 
it is isomorphic to G2(k+r) where k is the genus of S . From the original 
G(E)-action we have a residual action A of G(T1)/G res(T1) = G r+1, and 
the collection of holonomy maps Ho j(A) descends to an equivariant 
map fi : M ( S ) - • G r+1. We have 

M ( S , C o , . . . , C r ) = M - 1 ( C o , . . . , C r ) / G r + 1 . 

T h e o r e m 9 .1 . There is a natural G r+1-invariant 2-form LU on 
M ( S ) for which the quadruple ( M ( S ) , A, u, fj,) is a q-Hamiltonian G r+1-
space. 

Proof. Choose orientation and base point preserving parametriza-
tions V j = S 1 of the boundary circles, and let 

R j : AÇE) -+n1(S1,g)Ç*Lg* 

denote the restriction mapping to the j t h boundary component. For 
any g G G res{^) the restriction to the j t h boundary component is in the 
based loop group QG. Equation (0.34) and Proposition 8.1 show that 
pull-back i*a to A flat(T,) of the 2-form 

r 

(0.37) d = a + Y^R*jw 

j=o 

on A(T<) is G res(E)-basic, and is therefore the pull-back of a unique 
invariant 2-form LU G Î72(M(S)) which satisfies (Bl) and (B2). The 
minimal degeneracy condition (B3) is verified along the lines of the 
proof of Theorem 8.3. Let IT : A flat(E) —> M ( S ) denote the projection. 
The kernel of LO at TT(A) is the image under d7r of the kernel of i*a. 

Suppose v G T A A flati^,) is in the kernel of i*a. By definition of 
à this implies that L{v)GA annihilates kerd A ̂  C T A A flati^,). Conse­
quently v G ker(d AlI,)<7. The u-orthogonal complement of ker^d AVP) 
is equal to the tangent space to the orbit through A. Hence v = v ̂  
for some £ G Lie (G(£)) . As in the proof of Theorem 8.3 this im­
plies £(p j) G ker(Ad(Hol(\P(p j))2) — 1) for all p j , and we conclude 
£(p j) G ker(Ad(Hol(\P(p j))) + l ) , proving the non-degeneracy condition. 

q.e.d. 
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T h e o r e m 9.2 . The moduli space M(T,,Co,... ,C r) is a q-

Hamiltonian reduction of M ( S ) corresponding to the conjugacy classes 

(C0,...,C r)cG r+1. 

Proof. Let O j = Hol_ 1(C j) C Lg* denote the coadjoint LG-orbits 
corresponding to the conjugacy classes C j , and Qj their Kirillov-Kostant-
Souriau symplectic forms. Let I : Z C A flat(E) denote the set of flat 
connections such that Ho j(A) G C j , i.e., R*A G O j . Let 

IT : Z ^ M ( S , C 0 , . . . ,C r) 

be the projection. By definition of the symplectic form ared on 

M ( S , C o , . . . , C r), 

r r 

7T*ared = I* U-^2 R j^ij) = I* U-^2 R*j(Qj + CT)) • 
j = 0 j=0 

By Proposition 8.4, Qj + w = H o l c j , where uj is the unique 2-form 

which defines a quasi-Hamiltonian structure to C j . This implies 

7T*0red = Ì*(CT - (Ho l )*Oj ) , 

since HoloR j = Ho j . By the Remark in Section 5.2 this Equation 
shows that ared coincides with the 2-form obtained by q-Hamiltonian 
reduction from the space M ( S ) equipped with the 2-form LO. q.e.d. 

R e m a r k 9 .1 . Suppose that G is simply connected. Then the re­
striction mapping G(£) —> G(dT,) = LG r+1 is surjective. Let ^ G(^) be 
its kernel. Then M(T<) := A flat(E)/Go(E) is a Banach manifold and is a 
Hamiltonian LG r+ 1-space with proper moment map (see e.g. [4], [19]). 
Its holonomy manifold is the finite-dimensional G r+ 1-space M ( S ) . See 
[20] for applications of M ( S ) in this context. 

9.2. H o l o n o m y descr ipt ion. Our next goal is to make the q-
Hamiltonian structure of M ( S ) more explicit. We start by introducing 
coordinates on M ( S ) . Choose a system of smooth oriented paths U j 

from p j to po (j = 1 , . . . , r) on S and loops A i, B i (i = 1 , . . . ,k) based 
at po, such that : 

1. The paths U j , V j , A i, B i meet only at po-

2. The fundamental group of the closed 2-manifold Ë obtained by 

capping off the boundary components of S, is the group generated 

by the A i, B i, modulo the relation Y\i=i [A> B i] = 1. 
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3. The path VQ is obtained by catenation: 

Vçl = UVUï1 • • • U r V rlr-1 [Au Bi] • • • [A k, B k]. 

Up to G res(E)-gauge equivalence, every flat connection on S is com­
pletely determined by the holonomies a i,b i,u j,v j along A i, B i,U j , V j 
(i = 1 , . . . , k, j = 1 , . . . , r ) , and conversely every collection a i, b i, u j , v j 
is realized by some flat connection. Consequently we have 

M ( S ) = G2{r+kî 

with coordinates (a i,b i,u j,v j). The action of (go,... , g r) G G r + 1 is 
given by 

(0.38) a j H-> Ad g a j , b j H-> Ad g b j , u j H-> gou j g~l, j H-> Ad g. v j 

and the components of the moment map /i are 

Uj(a,b,u,v) =v~l, (j = l , . . . r ) , 
(0.39) n ; j V ; 

Ho(a,b,u,v) = A d ul vi •••Ad u r v r [ai,bi] • • • [a k, b k]. 

We now construct a q-Hamiltonian structure on M ( S ) as follows. Take r 
copies of the double D(G) = G2 , with coordinates (Mj, j ) as in Remark 
3.2, and k copies of its "internal fusion" D(G) = G2 , with coordinates 
(a i, b i) as in Example 6.1. Recall tha t D(G) is a q-Hamiltonian G X G-
space with moment maps (v~ , Ad u v j ) , while D(G) is a G-space with 
moment map [a i ,b i . Fusing the D(G),s with respect to the second 
component of the G X G-action in each copy together with all D(G) ' s 
we obtain a q-Hamiltonian G r+ 1-space with action given by (0.38) and 
moment map by (0.39). 

9.3 . Equivalence of the gauge theory construct ion and the 
ho lonomy construct ion . We will now prove that the fusion product 
from the preceeding subsection gives indeed the correct 2-form. 

T h e o r e m 9 . 3 . Let S be a smooth 2-dimensional orientable mani­
fold of genus k with r + 1 boundary components. Then the moduli space 
M ( S ) = A flat(Ti)/G res(T<) is canonically isomorphic to the fusion prod­
uct 

(0.40) D(G) © • • -D(G) © D(G) © • • - D ( G ) . 

r times k times 



l i e g r o u p v a l u e d m o m e n t m a p s 481 

Proof. Let P denote the polyhedron obtained by cutting S along the 
paths U j,A i and B i. The boundary dP consists of 3r + 4k + l segments: 

(0.41) OP = UrVrU-1 .. .U r V r U x A 1 B 1 A ~ 1 B'1 .. .A k B k A k B k V0. 

Since P is contractible, every flat connection A on S determines a unique 
function tp G Map(P, G) such that 

(0.42) A = 4>*0, ^{p) = e. 

Choose an orientation-preserving parametrization dP = [0,1] such that 
p0 = 0, and let ips denote the value of ip\dP at s G dP. As before let 
i : A flat(T<) M- A(T<) denote the inclusion. 

L e m m a 9 .4 . The pull-back of symplectic form a to the submanifold 
of flat connections is given by the formula 

For a proof of this result see e.g. [2]. 
To proceed we introduce some more notation. Suppose 

A = [so, s\\ C [0,1] is a subinterval, and let c := is and d := c~1isl. 
Then 

s := c"V 
satisfies Equation (0.42) with initial condition ip(so) = e instead of 
tp(po) = e. Set tf)s s° = c~ltZ)s and define 

Then 

(0.43) 

2 s s ds 

\s ds s o ^ s ) =\s ds((c s sro,§-s(crs s n 

wA + ^(c*01d*0). 

Lemma 9.4 asserts that i*o = vugP, while the 2-form à on A(T,) tha t 
gives rise to the q-Hamiltonian structure on the moduli space M ( S ) 
satisfies 

(0.44) fa = wdP - Y^ WV-l. 
j 

j=0 
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Using (0.43) we evaluate this equation as follows. Combine the segments 
(0.41) of the boundary dP to the following r + 1 + k loops on S: 

A, 
i = 0, 
l<i<k, 
k+l<i<k + r. 

For i = 0 , . . .k + r + 1 let t i G [0,1] such that Ai = [t i, £i+i], and let 
c := tpt i and d i = c~ c i+\. Then 

k+r _. 

(0.45) wdP = OJV0 + YJ (CTAi + ^(c*0, d*0)) . 
i=l 

Let us first consider the contribution of the loops Ak+j for j = 1 , . . . , r. 
By another application of (0.43) we have 

^Ak+j = wj + wV j + wU-i + \(u*e, (v j u j y S ) + ±(v j , (u j f ê ) } 

= wV j + ±(Ad v. u 0 , u 0 ) + ± ( u 0 , v 0 + v*0)}. 

In the first line, the contributions wU j and roU-i cancel each other due 

to the difference in orientation. The term wV cancels the corresponding 
contribution to (0.44). The remaining expression gives the 2-form on 
the double D{G). 

Next, we analyze the contribution of Ai = A i B i A~ B~ for 
i = 1 , . . . , k: 

roAi = IZA j B j + WA j 1 B - 1 + ^((a j b j)*6i (a j1b1)*^) 

= & A + ^ B+ ^ -1 + W-1 

1 

= \{(a*o,b je) + (a j , b j ) + ((abye, (a j b j y e ) ) . 
The last line reproduces the 2-form on D(G) . Finally, the contribution 
wV cancels the corresponding term in (0.44). We have shown that the 
2-form à is a pull-back of the sum of r copies of the 2-form on D(G), 
along the maps u i, v i, and of k copies of the 2-form on D(G) , along the 
maps a i,b i. The cross terms ^(c*0,d*0) are precisely the extra terms 
coming from fusion, cf. equation (0.16). This completes the proof of 
Theorem 9.3. q.e.d. 

A~' ^ B~ 
j j 

+ -((a*0,b*0) + (a*0,b*0) + ((a j b jye, (a j1b j1y0)) 
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Suppose now that we are given a tuple of conjugacy classes 
C = (Co, . . . ,C r). Recall tha t the reduction of D(G) at C is equal 
to C~. Theorem 9.3 together with Theorem 9.2 shows that the moduli 
space M(E ,C) is a q-Hamiltonian reduction, 

M ( E , C) = (Co © • • • © C r © D(G) © • • • © D(G))e. 

In particular, the moduli space for the sphere with d holes is the reduc­
tion of a d-fold fusion product of conjugacy classes. This fits nicely with 
the well-known similarities of this space with the symplectic reductions 
of a d-fold product of coadjoint G-orbits. 

9.4. Ac t ion of the mapping class group. Let Diff (E) denote 
the group of orientation preserving diffeomorphisms of E, with the C 1 -
topology. Its Lie algebra is the space of vector fields that are tangent 
to the boundary. The action 

Diff(E) x „4(E) - • „4(E), A ^ = (<£-1)*A 

preserves the 2-form a, and is Hamiltonian with moment map 

($(A),X) = - f(curv(A),L(X)A)- I (A,t(X)A) 
T, dT, 

for X G Lie (Diff (E)). It also acts on the gauge group G(E) by g = 
((f)~l)*g, and combines with the gauge group action to an action of the 
semi-direct product G(T,) o Diff(E). 

Consider the smaller group Diffres(E) consisting of all (f> G Diff (E) 
that preserve the base points {po, • • • , p r g up to permutation. Its action 
descends to M ( E ) , and combines with the action of G r+1 to an action 
of the semi-direct product G r+1 o Diffres(E), where Diffres(E) acts on 
G r+1 by permuting factors. Clearly the Diffres(E)-action preserves LÜ 
and permutes the components of fj,. However, the action of the identity 
component Diffres(E) = Diffres(E)nDiff (E) on M ( E ) is trivial because 
every <f> G Diff0 (E) is connected to the identity by a smooth path <f>t, 
and because the fundamental vector field v X of X G Lie(Diffres(E)) is 
equal to v ̂  for Ç = —L(X)A G Lie(G(E)). All tha t remains is therefore 
the action of the mapping class group T(E) = Diffres(E)/Difr°es(E), 
and we obtain an action of the semi-direct product 

G r+1 o r(E) 
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preserving u. The action of the "pure" mapping class group, i.e., the 
kernel of the homomorphism T(S) —> S(po,... ,p r) to the permuta­
tion group, descends to a symplectomorphism of the reduced spaces 
M ( S , C o , . . . , C r) . 

The action of T(S) can be described explicitly in terms of coordinates 
on M ( S ) . 

E x a m p l e 9 .1 . According to Theorem 9.3 the moduli space M ( S ) 
for S = SQ the 2-holed sphere is just the double D(G) considered in 
the previous section. The element a is interpreted as parallel t ransport 
along a path from p\ G V\ to p2 £ V2, while ab is the holonomy around 
the boundary component V2. The map 

S : D(G) - • D(G), (a, b) ^ ( a - 1 , b - 1 ) 

corresponds to a diffeomorphism exchanging V\ and V2: Indeed it sat­
isfies S*uj = uj, but switches the G-factors so that S*(j2i,/22) = (/i2,Ati) 
and S((a1b)(gl,g>) = (S(a, b))^g,gl>. Another interesting action is given 

by 

Q : D(G) - • D(G) , (a, b) ^ (aba, a " 1 ) . 

This action by Q is equivariant and preserves both the 2-form and the 
moment map. It corresponds to a diffeomorphism which rotates one of 
the boundary circles by 2ir while leaving the other one fixed. Since D(G) 
acts as the identity under diagonal reduction (that is, (M © D(G))e = 
M) this explains the existence of the twist automorphism, Theorem 4.5. 

E x a m p l e 9 .2 . The fusion operation M\ © Mi can be viewed as a 
diagonal G2-reduction 

(Mi X M 2 x M ( S g ) ) / / G 2 . 

with respect to two of the three boundary circles of S Q . Choosing an ele­
ment of the mapping class group exchanging these two boundary circles 
we obtain a q-Hamiltonian isomorphism M ( S Q ) —> M ( S Q ) exchanging 
two components of the moment map. It descends to a q-Hamiltonian 
isomorphism M\ © Mi —> Mi © M\. This is the origin for the braid 
isomorphisms discussed in Section 6. 

In [20], a fusion operation was introduced for Hamiltonian LG-
manifolds with proper moment maps. Letting M ( S Q ) be the Hamilto­
nian LG3-manifold associated to SQ, the fusion product of two Hamil­
tonian LG-manifolds M \ and M 2 is the diagonal LG2-reduction 

Mi®M2 = [Mi x M2 x M(Z3
0))//LG2; 
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it is a Hamiltonian LG-space with proper moment map. (By contrast, 
the moment map for the direct product M i X M 2 with diagonal LG-
action is not proper and does not have the correct equivariance prop­
erty.) The holonomy manifold of M 1 © M 2 is 

Hol ( M i © M2) = Hol ( M i ) © Hol ( M 2 ) . 

10. Relat ion to Poisson-Lie G-spaces 

In this Section we establish a connection between the theory of 
Poisson-Lie groups and the theory of q-Hamiltonian G-spaces. Although 
these two theories are not equivalent to each other, the definition of a 
Poisson-Lie G-space can be rewritten in a form very similar to the def­
inition of a q-Hamiltonian G-space. 

10 .1 . Poisson-Lie G-spaces. We begin with a short exposition 
of the theory of Poisson-Lie G-spaces of J.-H. Lu and A. Weinstein [16], 
[17]. As for q-Hamiltonian spaces, the target of the moment map is a 
non-abelian Lie group. 

Throughout this section G denotes a connected and simply con­
nected compact Lie group and T C G a maximal torus. The inner 
product (, ) on g induces a complex-bilinear form, still denoted (, ) on 
its complexification g . We will regard g as a real Lie algebra, and 
let G be the corresponding Lie group. Let n C g be the sum of root 
spaces for the positive roots and a := p — 1t . Write A = exp(a) and 
N = exp(n) . We have the Iwasawa decompositions 

g = g 0 a 0 n , Gc = GAN = ANG. 

The pairing of the subalgebra a© n with g given by the imaginary part 

o f ( , ) 
(C, v) = Im(C, v) , C e a ® n , 7] e g. 

is nondegenerate, and identifies a © n = g*. Let G* = AN C G c be the 
corresponding simply connected subgroup. We denote the projection to 
the first factor by a : G* —> A. According to Drinfeld the isomorphism 
gc = g 0 g* means that G is a Poisson-Lie group, and G* its dual 
Poisson-Lie group. By the Iwasawa decomposition any element G can 
be uniquely written as a product of elements of G* and G: 

GL = G*G. 
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Left-multiplication of G on G induces an action of G on G* = Gc/G 
which is known as the (left) dressing action (this terminology is due to 
Semenov-Tian-Shansky). We denote the fundamental vector fields for 
the dressing action by vi. 

We will use the same notation 9, 9 for the Maurer-Cartan forms 
on G and its subgroups. This does not lead to ambiguities since the 
Maurer-Cartan form on a subgroup of a group is just the pull-back 
of the Maurer Cartan-form on the group. Sometimes we denote the 
Maurer-Cartan forms on G* by G* , 9G* for clarity. Let 

xc = ^(o,[o,o])en3(Gc,q. 

Definit ion 10.1 (Lu) . A Poisson-Lie G-space is a G-manifold 
(M,A) together with a 2-form UJ G S72(M), and an equivariant map 
fj, G C00(M, G*) such that the following conditions are fulfilled: 

(Dl) The form UJ is closed. 

(D2) For all f G fl, 

(D3) The form UJ is non-degenerate. 

The map fj, is called a Poisson-Lie moment map. 

The factor of 2 is introduced into (D2) in order to simplify the 
comparison of the definition of a Poisson-Lie G-space to the definition 
of a q-Hamiltonian G-space with P-valued moment map. 

R e m a r k 1 0 . 1 . 

1. The 2-form UJ is not invariant. Rather, the point of the definition 
is that the action map A becomes a Poisson map [16]. 

2. Just as for q-Hamiltonian G-spaces, there is a ring structure on the 
category of Poisson-Lie spaces. Given two Lie-Poisson G-spaces 
M\, M2 there exists the structure of a Lie-Poisson G-space on 
M\ X Mi with symplectic form the sum u\ +0^2 and moment map 
the pointwise product ßi • ß2- The G-action is not simply the 
diagonal G-action but is "twisted". See e.g. [7]. 
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3. The moment map for Poisson-Lie G-spaces has the properties 

(0.46) Im(fi*ô)x = g x, ker(d xfi)" = {vl(x),$eg}. 

The proof is analogous to that for Hamiltonian G-spaces. 

10.2 . q-Hamil tonian G-space w i th P-valued m o m e n t maps . 
As we explained in Remark 2.1, the possibility of choosing X = g* or 
X = G as target space for a generalized moment map relies on the 
existence of a natural equivariantly closed equivariant 3-form \G on X . 
In this subsection we present another example of a target X with this 
property. 

Let T : G —> G denote the Cartan involution, defined by ex­
ponentiating the complex conjugation mapping g —> g , and let 
I : G —T- G denote the map Ig = r ( g _ 1 ) . We will also use the nota­
tion Ig = g y since for G = SU (N) the complexification is Gc = Sl (N, C) 
and the map I is Hermitian conjugation. Let P denote the symmetric 
space 

P = {geGc,g = g y}. 

The adjoint action of G on G leaves P invariant. Let p : P -̂> G 
denote the embedding. Set 

0P = p*e, 0P = p*een1(P,g), 

and define a 3-form \P £ Q3(P) by 

XP = Lp*Im(0,[0,0]). 

For all £ G g, the complex conjugate of the 1-form (#,£) G 0 1 ( G c , C ) 
is —(I*#,£). Therefore the 1-form (0-\-I*0,£) is purely imaginary. On 
P the map I is trivial, so that {P p P,£) is purely imaginary. Put 
differently, P + 0P takes values in J — lg. The equivariantly closed 
extension of \P is the 3-form XP,G £ ^ G ( P ) defined by 

Definit ion 10 .2 . A q-Hamiltonian G-space with P-valued moment 
map is a manifold M equipped with a G-action A, a 2-form uP G S72 (M) 
and an equivariant map fiP G C°°(M, P) such that : 
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(El) The differential of uP is given by: 

duP = -pPXP-

(E2) For all f G fl, 

i(v()cP = p f i * P ( P + 8P,£). 

(E3) The form uP is non-degenerate. 

The map fj,P is called a P-valued moment map. 

Since G by assumption is connected, equivariance of the moment 
map fj,P together with conditions (El) and (E2) implies invariance of 
the 2-form P: 

CvçLP = i(v^)d P + di(vç)P 

= tiP(-i(vt)xP + p = d ( P + 9P,Ç))=0. 

10 .3 . Equivalence of Poisson-Lie G-spaces and q-
Hami l ton ian G-spaces w i th P-valued m o m e n t m a p . In this 
subsection we prove the equivalence of the definitions of a Poisson-Lie 
G-space and of a q-Hamiltonian G-space with P-valued moment map. 
Consider the map 

j :G C -> P , j{b) = bb y. 

It turns the left G-action on G into the adjoint action on P and restricts 
to an equivariant diffeomorphism G* = P. Let K : G* -̂> G denote 
the embedding. 

Propos i t ion 10 .3 . Let (M,A,u,fj,) be a Poisson-Lie G-space. 
Then the manifold M equipped with the same G-action A, moment map 

UP = j o /j : M —» P 

and 2-form 

cP =CJ + -fi*K* Im (I*0, 9) 

is a q-Hamiltonian G-space with P-valued moment map. 
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Proof. The map fj,P is equivariant because it is the composition of 
two equivariant maps. To check (El) observe first tha t 

(0.47) j*xC = XC + I*XC - d(I*0, 0). 

Taking imaginary parts this shows j * I m x C = — \ Imd(I*#, ff). There­
fore 

duP = duj + -d / i* Im(I*0, ff) = -p*j* Im xC = -ß*PXP 

in accordance with (E l ) . By Lemma 10.4 below the imaginary part of 

the 1-form L(vAK*(0,I*0) on G* is given by 

i(vl)K*Im(0,I*0) = 4 K * I m ( ö , 0 -K*j*Im(0 + 0,Ç). 

Using this fact together with (D2) we compute 

t(vt)(u-±»*Im K*(I*0,0)) = ^*K*j*Im((0 + 0,Q) 

= ±fi*P Im(0 + 0,C), 

which gives (E2). To verify (E3) let v G ker(uP)x, tha t is, 

i(v)bJ = —i(v)— Im fJ,*K* (I*0G* i 0G*)-

Since the right-hand side of this equation annihilates the kernel of d xfj,, 
this shows that v G ker(d xfj,)w. By (0.46) this implies that v = v ̂ (x) for 
some £ G g. Using (E2) we arrive at the condition 

(0.48) O = i(vc)uP = p = P ( P + 0P,O. 

Contracting this Equation with vv for TJ G g yields 

(v, Ad P x ? - Ad x"1 0 = ° 
for all r], or 

£ G ker(AdAlP x2 - 1 ) = ker(Ad / iP (x ) - 1 ) 0 ker(Ad / iP (x ) +1 ) . 

Since the eigenvalues of Ad ̂ / x are nonegative real numbers, the space 
ker(Ad/UP(x) +1) is trivial. Hence Ad ̂ / x Ç = £ . For such £ the above 
equation becomes 

O = fiP(0P + 0P,O = i2fiP(P,O-
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By (D2) this equation implies Ì(v ^)UJ = 0, and finally v ̂  = 0 by non-
degeneracy of a;, proving (E3). q.e.d. 

One can easily reverse the argument and show that the structure 
of a q-Hamiltonian G-space with P-valued moment map defines the 
structure of a Poisson-Lie G-space on the same manifold. In the proof 
we used the following Lemma: 

L e m m a 10 .4 . The contraction of the fundamental vector field vi 

for the dressing action with the 2-form K*(I*9, 9) on G* is given by the 

formula 

(0.49) i(vl)K*(Ie,0) = 2K*(9 + I*9,$)-K*j*(9 + 9,$). 

Proof. We compute: 

L{v§K*{I*9,9) = {L{v^K*I*~0,K*0) -{K*I*9,L{v§K*9) 

= {L{v)K*{9 + I*1), K*9) 

(0.50) -(K*I*0,I(v)K*(I*0 + 0)) 

-(i{v^K*0,K*0) + {K*I*9,L{v\)K*I*1}). 

The last two terms in this expression cancel, for the following reason. 
It is easy to see that one of them is a complex conjugate of the other. 
We will show that the first one is real which ensures the cancellation. 
Indeed, the subalgebra n equals the kernel of the bilinear form (, ) re­
stricted to a © n. Hence 

(L(vI)K*0,K*0) = (i(vl)a*K*0,a*K*0), 

which is real since the restriction of (, ) to a is real-valued. To compute 
the first two terms in (0.50) observe that 

I*9 + 9 = Ad b yj*9, 

which gives 

(0.51) L{v)K*{9 + I*9) = Ad b-i £ - Ad b y £. 

Therefore 

I(v)K*(I*9, 9) = K*(9 + I*9 - Ad(b y)-i 9 - Ad b I*9, $). 
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Combining this with 

(0.52) j * (0 + 0) = A d ( 6 t ) - i 0 + Ad6 I*0 + 0 + I*0 

completes the proof of the Lemma. q.e.d. 

10.4 . Equivalence of q-Hamil tonian G-spaces w i th P-valued 
m o m e n t map and Hami l ton ian G-spaces. Let us note that the 
space P has two important properties: 

1. P is contractible. Hence, the closed 3-form \P is exact. 

2. The restriction of the exponential map exp : g p G to 
p — 1 g C g is invertible and has image P. Let x : P —> \J — \g be 
the inverse map, and identify p — \ g = g* by means of the pairing 
I m ( , ) . 

Using these facts one can convert a q-Hamiltonian G-space with 
P-valued moment map into a usual Hamiltonian G-space. 

Propos i t ion 10 .5 . 

1. There exists a canonical G-invariant 2-form T on P such that: 

dr = XPi I-(v)T = d(x,Ç) - p ( P + 0P,C). 

2. Let (M, A, fj,P, P) be a q-Hamiltonian G-space with P-valued mo­
ment map. Then the manifold M with the same G-action A, mo­
ment map 

fi = x o fiP : M —> g* 

and 2-form 

LO = P + ßPT 

is a Hamiltonian G-space. 

This was proved in [1]. In fact, the proof is essentially as that of 
Proposition 3.4 since the restriction of the exponential map to p — \g is 
invertible. Propositions 10.3 and 10.5 reduce the theory of Poisson-Lie 
G-spaces to the usual theory of Hamiltonian G-spaces. 
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A p p e n d i x A . Proper t i e s of the form w 

In this Appendix we give the proof of Proposition 8.1 concerning the 
properties of the 2-form 

1 Z1 ^ d 
™ = \ j ds(Hol s0, ^Hol s; 

on Lg*. We will need the following properties of the pull-back of 9 under 
Hol s: 

L e m m a A . l (Properties of Hol* 9). Let A g : Lg* —> Lg* the action 
defined by g £ LG. Then 

(0.53) A*Hol*9 = Ad(g(())) Hol 0. 

The contractions with fundamental vector fields v ̂  (for £ G Lg) are 

(0.54) i(vt) Hol sÖ = m - Ad(Hol s(A))£(s). 

For any ( G Lg*, viewed as a constant vector field on Lg*, one has 

(0.55) iß) Hol* 9= / Ad(Hol u(A))((u) du. 
o 

Proof. For h £ G let R h, L h : G —> G be the left-resp. right 
multiplication by h. By the equivariance property (0.26) and right-
invariance of 9, we have 

A* Hol s 0 = Hol s L*g{0)R*g{srl9 = Hol s Ad(g(O))0 = Ad(g(0)) Hol* 9. 

By another application of (0.26), the tangent map d A Hol s satisfies 

(d A Hol s)(vA = £ ( 0 ) H o l s(A) - Hol s(A)£(s), 

which implies (0.54). For the third identity write 

Hol s(A + tC) = <s tC)Hol s(A) 

so that 

i(0Hol*Ö=(d A Hol s)(0 Ho s A)-1 = J^ | <s t 0 -
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Differentiating the defining identity 

Hol s ( A ) - V s ( t C ) _ 1 ^ ( < s tC)Hol s ( A ) ) = A + tC 

with respect to t at t = 0 leads to 

Ad(Hol s 1 ) ^ ( i ( î ? ) H o l o ) = C . 

Applying Ad(Hol s) and integrating from 0 to s give (0.55). q.e.d. 

We now give the proof of Proposition 8.1. 

Proof. LG-invariance of w follows immediately from (0.53). The 
differential is computed as follows: 

dm = \Z^ ds (Hol s[ö, 0], ^ Hol s Ö) - \Z ds (Hol s Ö, ^ Hol s[0, 0]) 

= ±Z ds(Hol s[010]1-?-Hol s0) - IHol*([Ö,Ö],Ö) 

= ì Z ds-^-Hol s([0,0],0)-^Hol*([0,0],0) 

= -^Hol*([0,0],0) = -Hol*X. 

Given £ G Lg by partial integration we have 

-± Z ds (Hol s 0,j-v) Hol 0) 

= Z ds(L(vt)Hol*s, ^ H o l s ë ) -\Hol*(0, i(vc)0) 

= Z d s ( £ ( 0 ) - A d ( H o l s)£(s), — H o sÂ) 

_ i H o l * ( ö - ö , £ ( 0 ) ) 

=i(Hol*(ö+ö),e(o))-^1(e(s),Ad(Hol s- i)^Hol sö). 

From (0.55) it follows that for all C G T A Lg* ^ Lg*, 

'(C) Z ( £ ( s ) , A d ^ o l s 1 ) ^ H o l s ë ) = Z \ s , C ( s ) ) = c(0d I(A, 0, 
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which concludes the proof. q.e.d. 
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