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Abstract 
Given a compact orientable surface with finitely many punctures E, let 5(E) 
be the set of isotopy classes of essential unoriented simple closed curves in 
E. We determine a complete set of relations for a function from 5(E) to 
R to be the geodesic length function of a hyperbolic metric with geodesic 
boundary and cusp ends on E. As a consequence, the Teichmuller space 
of hyperbolic metrics with geodesic boundary and cusp ends on E is recon­
structed explicitly from an intrinsic (QP1 ,PSL(2, Z)) structure on 5(E) . 

0. Introduction 

Let E = Es r be a compact oriented surface of genus g with r bound­
ary components and s punctures, i.e., a surface of signature (g,r,s) 
where (g, r, s) > 0. The Teichmuller space of isotopy classes of hyper­
bolic metrics with geodesic boundary and cusp ends on E is denoted 
by T gr = T(E), and the isotopy classes of essential simple closed un­
oriented curves in E is denoted by S = S(E). A simple loop in E is 
called parabolic if it is homotopic into an end of E. The set of isotopy 
classes of essential parabolic simple loops in E is denoted by P(E). For 
each m G T(T.) and a G S(E), let l m(a) be the length of the geodesic 
representing a if a £ P(S) and let l m(a) = 0 if a G P(E). The goal of 
the paper is to characterize the geodesic length function l m in terms of 
an intrinsic (QPl,PSL(2, Z)) structure on S(E). 

Theorem 1. For surface Es r of negative Euler number, a function 
f : S(Es r) —> R is a geodesic length function if and only if f|s(s') is 
a geodesic length function for each incompressible subsurface E' = E^ 1; 

Eg r (r + s = 4) in Es r. Furthermore, geodesic length functions on 
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Figure 1 

Figure 1 

S ( S s r) (r + s = 1) and S (Egr ) (r + s = 4) are characterized by two 
polynomial equations (in cosh(f/2)) in the (QP1,PSL(2, Z)) structure 
on S. 

Recall that a subsurface S ' C S is incompressible if each essential 
loop in E' is still essential in E. Given two isotopy classes a and ß 
in S (E) , the geometric intersection number between a,ß, denoted by 
I(a,ß) is min{ja n bjj a G a and b G ß} where ja fl bj is the number of 
points in a fl b. 

Theorem 1 also holds for surfaces of infinite types. 

Given a surface E, let S'(E) be the set of isotopy classes of essential, 
non-boundary parallel nonparabolic simple loops in E. For surfaces E = 
Es r (r + s = 1) and Es r (r + s = 4), it is well known that there exists 
a bijection n : ' (E) —> QP1(= Q) so that p'q — pq' = ± 1 if and only 
if I(Tr-1{p/q),S1{pf/q')) = 1 (for Es r) and 2 (for Ss>r). See Figure 
1. We say that three classes 01,02, a3 in ^ ( E ) form an ideal triangle 
if they correspond to the vertices of an ideal triangle in the modular 
relation under the map n. 

For the rest of the paper, we introduce the trace function t m(a) = 
2coshl O (a ) /2 from S(E) to R>2- We will deal with the trace function 
t m instead of l m. 

T h e o r e m 2. (a) For surface Es r, r + s = 1 with b as the isotopy 
class of the boundary loop or the parabolic loop, a function t : S —> R>2 
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is a trace function if and only if the following hold: 

3 3 

(1) Y t{i=X t2{ai)+t{b)-2 and 
i=l i=l 

2 

t{az)t{a'z)=X t2{ai)+t{b)-2i 

i=l 

where (01,02,03) and (01,02,03) are distinct ideal triangles in S'. 
(b) For surface Es r ; r + s = 4, let bi,b2)b3)b4 be four isotopy 

classes of simple loops represented by the boundary components and the 
parabolic loops, a function t : S —> R>2 is a trace function if and only 
if for each ideal triangle (01,02,03) so that (ai,b j,b k) bounds a S Q 3 in 
Eg r the following hold: 

(2) 

and 

i Y i X j X j Y 

2 

f (« 3 ) f (« 3 )=X t 2 ( i ) + X t 2 ( b ) + Y t b ) 
i = l j=l j=l 

2 4 

i = i j = i 

where (a\, a<2, a'3) and («1,02,03) are two distinct ideal triangles in 
S'. 

Part (a) of Theorem 2 was a result of Fricke-Klein [9] and Keen [21]. 
Thurston's compactification of the Teichmuller space T(E) (see [3], 

[10], [35]) uses the embedding r : T(E) —> R 5 ^ ) sending m to l m. Theo­
rems 1 and 2 give a complete description of the image of the embedding. 

The modular relation on S is derived from an intrinsic combinatorial 
structure on S as. If two simple closed curves a and b intersect at one 
point transversely (resp. a, ß G S(E) with I(a, ß) = 1), we denote it by 
a _l_ b (resp. a _l_ ß); if two simple closed curves a and b intersect at two 
points of different signs transversely and I([a], [b]) = 2, we denote it by 
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Right-hand orientation on the front face 

Figure 2 

F i g u r e 2. Right-hand orientation on the front face 

a _l_o b. In this case, we denote the relation between their isotopy classes 
by [a] _l_o [b]. Suppose x and y are two arcs in E so that x intersects y 
transversely at one point. Then the resolution of x H y from x to y is 
defined as follows. Take any orientation on x and use the orientation 
on E to determine an orientation on y. Now resolve the intersection 
point x fi y according to the orientations (see Figure 2(a)). If a _L b or 
a _l_o b, we define ab to be the curve obtain by resolving intersection 
points in a n b from a to b. We define aß = [ab] where a G a, b G ß with 
|anb| = I(a, ß). It follows from the definition that aß _l_ (resp. _l_o) a, ß 
if a _L /3 (resp. a _l_o /3). Furthermore, a(ßa) = (aß)a = ß. For surface 
E = Es r (r + s = 1) and Es r (r + s = 4), three elements «1,02,03 
in '(S) form an ideal triangle if and only if a\ _L «2 or a\ _l_o «2 and 
«3 S «102 or a<ia\. In particular the two distinct ideal triangles in 
Theorem 2 are (011,012, «ic^) and («î, «2, «201). 

The relations (1) and (2) come from trace identities for SL(2,R) 
matrices. Note that the second part of relations (1), (2) shows that 
t(a^) and t(a'3) are the two roots of the quadratic equation (in t(a^)) 
in the first part of the relations. Thus we obtain two more relations as 
follows. 

t(aiOL2) + t(oL20Li) = t(ai)t(a2), where a\ _l_ «2 and 

f e n g l u o 
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yx 
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t(aia2) + t(a2ai) = t(a>i)t(a2) - t(b i)t(b j) - t(b k)t(b l), 

f i , j , k , lg = f1 ,2 ,3 ,4g , 

where a\ _l_o a2 and (aia2,b i,b j) bounds a S Q 3 . 
The main part of the proof of theorems is to show that these relations 

are sufficient. To prove this, we use induction on jEs r j = 3g + r + s. 
There are two key ingredients involved in the proof: a gluing lemma 
and an iteration process. 

For simplicity, we describe the gluing lemma for a compact surface 
E. Decompose E = X U Y where X and Y are compact incompressible 
subsurfaces so that X H Y = E{] 3 (see Figure 3 (b), (c)). Let the 
three boundary components of X fi Y be a i , a2 and a3. Then the 
gluing lemma states that for each hyperbolic metric m X and m Y on 
X and Y respectively so that a i are geodesics in both metrics with 

l mx \a i) = l my 
(a i) ( i=l ,2,3), there is a hyperbolic metric m in E unique 

up to isotopy so that the restriction of m to X is isotopic to niX and 
the restriction of m to Y is isotopic to m Y. 

The iteration process is derived as follows. Given a function t on 
S(E) satisfying the relations (1) and (2), using the gluing lemma and the 
induction hypothesis, one constructs a hyperbolic metric on the surface 
so that t and the trace of the metric coincide on S(X) U S(Y). To show 
that these two functions are the same on all simple closed curves, we 
observe that the second part of the relations (1) and (2) indicates that 
the value of t at ßa is determined by the values of t on a, ß, aß and 
b'i s. By iterated use of the relations together with the multiplicative 
structure on S, we show that these two functions are the same. 

By the work of Thurston, the degenerations of hyperbolic metrics 
become measured laminations, and the corresponding projective lim­
its of geodesic length functions become geometric intersection numbers. 
Thus, relations (1) and (2) degenerate to universal relations for the 
geometric intersection numbers. It is shown in [24] that these degener­
ated equations determine Thurston's measured lamination spaces and 
Thurston's compactification of the Teichmuller spaces. 

As another consequence of Theorem 1, we consider finite dimensional 
embeddings of the Teichmuller spaces. Given a subset F of S(Es r), let 
•KF : T ( E s ) —> R F be the map F im) = t m j F- It is well known from 
the work of Fricke-Klein [9] that there exists a finite set F so that F 
is an embedding. The work of Okumura [30], Schmutz [32], Seppala-
Sorvali [33], Sorvali [34] show that there exists a set F consisting of N 
(N= 6g + 3r + 2s — 6 if r > 0 and N=6g + 2s — 5 if r = 0) elements so that 
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Figure 3 

7F is an embedding. This number N is necessarily the minimal number 
by a result of Wolpert [36] in case r = 0. We shall indicate a proof of 
the existence of such set F for compact surface with boundary below. 
By Theorem 2 and the gluing lemma, it is easy to show that hyperbolic 
metrics on EQ 4 and E^ 2 are determined by the geodesic lengths of six 
curves as shown in Figure 3(a). Now each compact oriented surface with 
boundary and Euler number smaller than —2 is obtained from EQ 4 and 
SÇ 2 by repeated use of gluing along 3-holed spheres (see Figure 3(b), 
(c)). Furthermore, one of the subsurface used in the gluing (surface Y) 
is either EQ 4 or E^ 2. Thus, each time the Euler number of the resulting 
surface changes by —1 and the number of curves needed to determine 
the hyperbolic metric increases by 3 (the curves 3,4,6 in Figure 3(a) 
are the needed ones and the curves 1, 2, 5 are in the subsurface X). 

The corollary below strength their result to conclude that the image 
of the embedding is an explicit semi-analytic set. Okumura [31] has also 
obtained the result for s = r = 0 using a different method. The semi-
analytic property in the corollary also follows from the work of Brumfiel 
[4], Morgan-Shalen [28], and Helling [16]. 

Corollary, (a) For surface Ss r of negative Euler number and r > 0, 
there exists a finite subset F in S(T.s gr) consisting of Qg + 3r + 2s — 6 
elements so that the map F '• T(Es r) —> R F is a real analytic embed­
ding onto an open subset which is defined by a finite set of explicit real 
analytic inequalities in the coordinates ofiF-

(b) For surface Es 0 of negative Euler number, there exists a finite 
subset F of S(T.s 0) consisting of Qg + 2s — 5 elements so that F '• 
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This pattern repeats for higher genus surface 

Figure 4 

T(T.s Q) —> R F is an embedding whose image in R F is defined by one 
real analytic equation and finitely many explicit real analytic inequalities 
in the coordinates of-F-

The inequalities and the equation in the corollary are given by func­
tions which are obtained from the coordinates of TTF by a finite number 
of algebraic operations (summation, multiplication, and division over 
the rationals) and the square root operation. 

Some examples of the collection F and the images of the Teichmuller 
spaces are as follows. For X ^ Q , take 

F = {[ai], [a2], [a3], [a4], [a5], [a6], [a7]} 

as in Figure 4. Then the map TF is an embedding with image ^ ( T ^ g ) = 

{(t1,t2,t3?t4,t5?t6?t7) G R>2 j t8 > 2, t9 > 2, tg = t6t7t9 —t6 — tj — tg + 2 , 

where tg = t1t2t3 — t i — t | — t | + 2, and 

(2 + t| + t8)t + 2t2(t + ts)t9 + 2t1 + t + t5 + tg + t|t8 - t t5t8 -4 = 0}. 

The explicit equations and inequalities in the corollary for the sur­
face Ss r (r + s = 1) are as follows. For SÇ x (resp. £ 1 0 ) , Keen [21] 
proved that one takes F = {[ai], [a2], [a3]} to be an ideal triangle and 
the image iF ( T ^ Ç i ) ) is { ( t i , t2 , t 3 ) G R> 2 j formula (3) holds}: 

(3) t i t 2 t 3 > t l + t 2 + t3-

(7rF(T(E})0)) = {( t i , t2 , t 3 ) G R> 2 j tit2t3 = t ? + t | + t | } ) . For Ss>r with 
r + s = 4, we take the collection F to be the isotopy classes of six 
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curves b\, b2, b3, a12, a23, and a31 where [a ij] forms an ideal triangle 
and (a ij,b i,b j) bounds a £0,3- Then F is an embedding whose image 
7 T F ( T ( E [ ] ) 4 ) ) is given by {(t i , t2 , t3, t12, t23, t3i) G R>2j so that formula 
(4) holds}: 

, . t12t23t31 >t12 + t23 + t31 + t1 + t2 + t3 + t12t1t2 + t23t2t3 

+ t31t3t1 + 2t1t23 + 2t2t31 + 2t3t12 + 2t1t2t3-

The organization of the paper is as follows. In §1, we prove a gluing 
lemma and recall basic facts on discrete subgroups of SL(2 ,R) and 
the spin structures on surfaces. We prove Theorem 2 in §2. In §3, we 
establish a proposition on the multiplicative structure on S. Theorem 
1 is proved in §4. In §5, we discuss applications. In the main body 
of the paper (§2, §3, and §4) we shall treat hyperbolic metrics without 
cusp ends in order to reduce the length of the paper. No new ideas are 
needed for metrics with cusps. The proofs of the Theorems 1 and 2 for 
metrics with cups ends will be discussed briefly in §5.3. 

A c k n o w l e d g m e n t 

I would like to thank F. Bonahon for calling my attention to several 
literature. This work is supported in part by the NSF. 

1. Pre l iminar ies on discrete subgroups of SL(2 ,R) 

We prove a gluing lemma in §1.1. Basic facts about discrete repre­
sentations of surface groups into SL(2,R) and spin structures on surfaces 
will be recalled in §1.2 - 1.4. 

We shall use the following notation throughout the paper. Let Eg>r 
= E ° r , Y,g = Eg 0, and T g)r = T ̂ r . We use cl(X) and int(X) to denote 
the closure and the interior of a submanifold X. The isotopy class of 
a simple loop a is denoted by [a], and the isotopy class of a hyperbolic 
metric d is denoted by [d]. If f : S —> R is a function and a is a simple 
loop, we define f(a) to be f([a]). In particular, I(a,b) = I([a],[b]) = 
I(a, [b]). A regular neighborhood of a submanifold X is denoted by 
N(X). Regular neighborhoods are always assumed to be small. All 
intersections of curves are assumed to be transverse. 

An RC-function (compass and ruler constructible function) in vari­
ables function obtained from 1, x\,..., x n by a finite number 
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of algebraic operations and the square root operation. The set of RC-
functions is closed under algebraic operations and compositions. Note 
that \x\ = p xl is an RC-function. An RC-function is continuous in its 
natural domain and is analytic away from its singular set. 

1.1. A gluing l e m m a . 
First some definitions and conventions. A surface E is oriented and 

connected which is either Ss or obtained from Ë = Es by removing 
some boundary components. Each boundary component of E is called 
a boundary component of E. A hyperbolic metric with geodesic bound­
ary and cusp ends on E is a hyperbolic metric whose completion is a 
hyperbolic metric on E with geodesic boundary and cusp ends. Two hy­
perbolic metrics are isotopic if between them there is an isometry which 
is isotopic to the identity. The Teichmuller space of hyperbolic metrics 
with geodesic boundary and cusp ends on E is denoted by T(E) . It is 
canonically isomorphic to T (E) . 

A subsurface X of E is incompressible if the inclusion map induces 
a monomorphism in fundamental groups. If the subsurface is compact, 
then it is incompressible if and only if each boundary component of X 
is essential in E. A good incompressible subsurface is an incompress­
ible subsurface whose interior is a component of the complement of a 
finite union of disjoint, pairwise non-parallel, non-boundary parallel, 
non-parabolic simple closed curves in E. For instance, if s is a non-
separating simple closed curve in E, then E — s is a good incompressible 
subsurface but E — N(s) is not. If X is an incompressible subsurface of 
negative Euler number, then int(X) is isotopic to a good incompressible 
subsurface. For a good incompressible subsurface X of E, we define the 
restriction map Rx = Rx : T(E) ->• T{X) as follows. Given [d] G T(E) , 
there is a homeomorphism h of E isotopic to the identity so that the 
frontier of X, cl(X) — int(X), is a union of geodesics in the pull back 
metric h*(d). We define Rx([d]) to be [h*(d)|x]- It follows from ele­
mentary hyperbolic geometry and topology of surfaces that Rx is well 
defined (see [6], or [5]). Furthermore, it follows from the definition that 
if X is good incompressible in Y and Y is good incompressible in Z, then 
Rx = RxRy- The restriction map is in general not onto. For instance, 
if we take X to be the complement of a non-separating simple closed 
curve in a surface E with negative Euler number, then Rx is not onto. 

L e m m a 1 (Gluing along a 3-holed sphere). Suppose X and Y are 
two good incompressible subsurfaces of E whose union is E so that either 
(1) X n Y = E0 ,3, or (2) Y ^ Ei ; i and X nY ^ Ehl - s where s is a 
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non-separating simple closed curve in int(Y) (see Figure 3(b), (c), (d)), 
or (3) X n Y = Eg 2 with the punctured end in EQ 2 being a punctured 
end o fE . Then for any two elements m X £ T(X) and m Y G T(Y) with 
R Xc\Y{m X) = R XrYim Y), there exists a unique element m G T(E) so 
that R X(m) = m X and R Y(m) = m Y. 

Proof. To show the existence, let d X G nX (resp. d Y G m Y) be 
a representative so that d X j XcY (resp. d Y j XcY) has geodesic bound­
ary and cusp ends, i.e., R XnY([d X]) = [d XlXnY] (resp. iXnY([dr ] ) = 
[dy|XnY])- Let h : X C\Y —^ X fl Y be an isometry from d X j XcY to 
d Y j XnY, which is isotopic to the identity map. By the assumption on 
X and Y, we can extend h to a homeomorphism g of X, which is iso­
topic to the identity. Define a hyperbolic metric d on E with geodesic 
boundary and cusp ends as follows: dj X = g*(X) and dj Y = Y. It fol­
lows from the definition that R X([d]) = [d X] and iY([d]) = [d Y]- The 
uniqueness follows from the fact that an analytic automorphism of a 
complex structure on int(Eo,3) which preserves each end is the identity 
map. q.e.d. 

1.2. M o n o d r o m y representat ions and spin s tructures . 
Given a hyperbolic metric d with geodesic boundary and cusp ends 

on E, its monodromy is a discrete faithful representation 

p:7Ti(S) ^ P S L ( 2 , R ) 

unique up to PGL(2,R) = G L ( 2 , R ) / f ± I g conjugation so that there is 
an isometric embedding h from the universal cover E with the pull back 
metric into the hyperbolic plane H satisfying h(/y(x)) = p(/y)(h(x)) for 
all x G E and 7 G 7TI (E) . Isotopic metrics have the same PGL(2,R) 
conjugacy class of monodromies. If the isometric embedding h is ori­
entation preserving (resp. reversing), we say the monodromy p is ori­
entation preserving (resp. reversing). Thus each m G T(E) gives rise 
to two PSL(2,R) conjugacy classes of monodromy representations: one 
preserving the orientation and the other reversing the orientation. Let 
R(E) be the set of all such monodromy representations with the topol­
ogy induced by algebraic convergence of representations. Then R(E) 
has two connected components corresponding to the two orientations. 
Each component is a trivial principal PSL(2,R) bundle over T(E) (see 
[12], [14], [29] for details). Each representation p G R(E) can be lifted 
to a representation p : 7Ti(E) —> SL(2,R) (see [1]), and there are ex­
actly 2N such liftings where N = Ig if E has signature (g,0,0) and 
N = 2g + r + s — l i f E has signature (g, r,s) (r + s > 0). Given a 



g e o d e s i c l e n g t h f u n c t i o n s a n d t e i c h m u l l e r s p a c e s 285 

lifting p of p, all other liftings are obtained as follows. Let f71,. . . , N g 
be a set of generators for 7ri(E) and I a subset of f 1 , . . . , N. Then all 
other liftings are I where Ii'Ji) = pi'Ji) if i G I and I{"Yi) g —pi'fi) if 
i (f: I. Let R(T) be the set of all liftings of the monodromies with the 
algebraic convergent topology. The representation space R{T) has 2N+1 

many connected components. These components are classified into two 
types according to the orientation of the representations in R(T). Each 
component corresponds to a spin structure on the surface. We shall re­
call briefly spin structures. Let UT be the unit tangent bundle over the 
surface E with S1 as a fiber. A spin structure on E is a two-fold covering 
space of UT so that the S ̂ -fiber does not lift. Since two-fold covering 
spaces correspond to index-two subgroups of the fundamental groups, a 
spin structure is the same as an epimorphism 77 : ni(UT) —> Z2 = f±1g 
(as a multiplicative group) so that rj(Sl) = —1. Since Z2 is abelian, 
the epimorphism 77 is induced by an epimorphism (still denoted by) 77 : 
H\(UTiZ2) —> Z2 with rj(Sl) = —1. Given a smooth immersed curve 
c in E, let c be the unit tangent vectors of c in UT,. We define 77(c) to 
be 77([c]). For instance, if c bounds a disc, then 77(c) = —1 and if c is 
null homotopic with exactly one self intersection (a figure eight), then 

»7(c) = 1-
Johnson in [19] provides an algorithm to calculate r](c) which we 

summarize as follows. 

L e m m a 2 (Johnson), (a) Suppose fai,...,a n and fbi,...,b m are 
two collections of disjoint simple closed curves in g so that Tn=1[g,i] = 
Tm ^b j] in H1{T,Z2). Then En=1[äi] + n ^ 1 ] = Tm=1[b j] + m ^ 1 ] in 
Hl(UT,Z2). 

(b) Given a G H i ( E , Z2), represent a as En=1[a i] in H i ( E , Z 2 ) 
where fai , . . . ,a n g is a collection of disjoint simple closed curves in T. 
Then r/*(a) = (—l)nHn=1r](a i) is a Z2-quadratic map from H i ( E , Z 2 ) 
to Z 2 ; i.e., n*(a + ß) = (-l)<a ' / 3>r7*(a)r/*(/3) where < a,ß > is the 
Zi-intersection number. 

As a simple consequence, if f a i , a2,a3g bounds a 3-holed sphere in E, 
then 77(a1)77(a2)77(a3) = —1; if b is the boundary of a subsurface of signa­
ture (g,l,0), then 77(b) = —1; a n d i f a i _L a2, then 77(a1)77(a2)77(a1a2) = 1. 

The relationship between a lifting p G R(T) of p G R(E) and a spin 
structure is as follows. We first identify PSL(2,R) with U H by sending 
an isometry g to g(vo) where vo is a specified element in UH. Under 
this identification, given a hyperbolic metric with geodesic boundary 
and cusp ends on E whose monodromy is p, UT is canonically identified 
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with a deformation retractor (U(Nielsen core)) of PSL(2,R)/p(7ri(S)). 
Let P : SL(2,R) —> PSL(2,R) be the canonical projection. It is a two­
fold covering map so that the S1 fiber (corresponding to PSO(2) in 
PSL(2,R)) does not lift. Then P induces a two-fold covering map from 
SL(2 ,R) /P (TTI (E) ) to P S L ( 2 , R ) / P ( T T I ( S ) ) so that the S1 fiber does not 
lift. Thus we have a spin structure i | o n S associated to the lifting p of 
p. A simple calculation shows that 

(5) 7?(7*) = sign{tr{p{j)), 7 G TTI(S), 

where 7* is the geodesic representative or a multiple of a parabolic 
simple closed curve in the conjugacy class of 7. 

1.3. Trace identities and representations of surface groups 
into SL(2,R). Given three matrices A\, A2, A3 in SL(2,C), we have 
the following identities on the traces of their products (see [9], [13], [17], 
or [26]). The basic trace identity is trA\A2 + trA~^ A2 = trA\trA2. By 
iterated use of it, one obtains the following relations: 

(6) trAxA2trA~[xA2 = tr2 Ax + tr2A2 - tr[At, A2] - 2. 

tr[AuA2] + 2 =tr2A1 + tr2A2 + tr2AlA2 

- trA1trA2trA1A2. 

trAiA2A3 + trAiA3A2 =trAitrA2A3 + trA2trA3Ai 
(8) 

+ trA3trAtA2 - trAttrA2trA3. 

trAiA2A3trAiA3A2 =tr2Ax + tr2A2 + tr2A3 

+ tr2AlA2 + tr2A2A3 

(9) + tr2A3Ai + trA1A2trA2A3trA3A1 

- trAitrA2trAXA2 - trA2trA3trA2A3 

- trA3trAitrA3At - 4. 

Combining formulas (8) and (9), we see that trAiA2A3 and t r A i ^ ^ 
are the two roots of the quadratic equation (10) below where P and Q 
stand for the right-hand sides of formulas (8) and (9) respectively. 

(10) x2 - Px + Q = 0. 
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Using the basic trace relation, one obtains the following (see [17],[7]). 

Lemma 3 (Fricke-Klein). Suppose F n is the free group on n gen­
erators 7i, ...,7n- Then for each element w in F n, there is a polynomial 
P w with integer coefficient in 2n — 1 variables x i1,,,i k with 

1 < ii < ... < i k < n 

so that for any representation p : F n —>• SL(2,R) 

trp(w) = P w{xi,x2,...,x il...i k,...,xi2...n), 

where x i1,,,i k = trp(^i1...^i k). Furthermore, if pi and p% are two repre­
sentations with the same character, and pi(F n) is not a solvable group, 
then pi is conjugated to p% by a GL(2,R) matrix. 

In particular, if n = 2, then the three variables are tr77(71), tr77(72) 
and tr77(7172); if n = 3, the seven variables are tr77(i), and t r77( i j ) 
and tr77(717273) where i,j = 1, 2, 3 and i < j . 

The discrete faithful representations of 7ri(EQr) (r + s = 3) and 
7Ti(Ss r) (r + s = 1) which uniformize hyperbolic structures on EQ r 
(r + s = 3) and Ss r (r + s = 1) are as follows. See [11], [21] for details. 

For surface SQ r, r + s = 3, we choose a set of geometric generators 
71 and 72 in 7ri(Es r) so that 71, 72 and 73 = 7172 are represented by 
simple closed curves homotopic into the three ends of int(Eg r). EQ 2 has 
the puncture at the end corresponding to 73 and EQ 1 has the punctures 
at the ends corresponding to 72 and 73. 

Lemma 4 (Fricke-Klein). (a) If p G R(EQ r) with r + s = 3 ; then 
trp("Yi)trp{"Y2)tr^(73) < 0 and jtrp(i)j > 2 for i = 1,2,3 so that the 
equality holds if and only if the corresponding end is a cusp. 

(b) Given three real numbers ti, t2 and t3 with t t t 3 < 0 and jt i j > 2 
(i = 1,2,3,), there exist two elements pi and pi in R(Eo,3) unique up 
to SL(2,R) conjugation so that tr i^j) = t j (i = 1,2; j = 1,2,3j. 
These two representations are GL(2,R) conjugated and are related by 

Piili) = P2(li)~1- Furthermore, if p(ji) = ( Q A _ i j , A > 1; and 

p{l2) = ( d ); c = 1, then a,b, d and A are real analytic RC-

functions ofti, t2 and t3 in the domain defined by t t t 3 < 0 and jt i j > 2 
(i = 1,2,3;. 

(c) Given three numbers t\, t2 and t3 with t t t 3 < 0 and 
jtij > 2, jt2j > 2 and jt3j = 2 (resp. jtxj > 2, jt2j = jt3j = 2), there 
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exist two elements pi and p2 in R(Sg 2) (resp. R(Sg i)) unique up 
to SL(2,R) conjugation so that tr i ^ j ) = t j (i = 1,2; j = 1,2, 3 j . 
These two representations are GL(2,R) conjugated and are related by 

Piili) = P2(li)~1- Furthermore, if p(ji) = ( Q A _ 1 j ; A > 1, and 

p{l2) = I d 1 ; c = 1, then a, b, d and A are real analytic RC-functions 

ofti, t<2 and t3 in the domain defined bytt t < 0, jtij > 2 and jt%j > 2. 

(d) T ( S Q Q) consists of one point. 

Note that part (a) is a consequence of Lemma 2 and formula (5). 
To find the explicit expression of a,b,d and A in terms of t'i s, see 
[14, p.305]. 

For surface Ss r (r + s = 1), we take a set of geometric generators 
f71)72g in 7Ti(^ir) so that they are represented by two simple closed 
curves a\ and ai with ai 1 a . The multiplication 73 =7172 is repre­
sented (in the free homotopy class) by either a\a<2 or a ̂  ai depending on 
the orientation of the surface. The commutator 7i727f 72~ is repre­
sented by the simple closed curve dN(a\ U a ̂ ) homotopic into the end 
of int(Y,s r). 

L e m m a 5. (Fricke-Klein, Keen) (a) If p G R(Es r) with r+s = 1, 
then trp(7i727]~ j% ) < — 2 so that equality holds if and only if s = 1. 
In particular, t r 2 p(7i ) + tr2p{yz) + tr2p{^) — trp(ji)trp{yz)tr79(73) < 0 
so that equality holds if and only if s = 1. 

(b) Give three numbers t i, i = 1, 2, 3 with jt i j > 2 and t{ + t \ + t3 — 
t1t2t3 < 0 (resp. t i + t l + t i — tit2t3 = 0), there exist two representations 
p\ and p2 in R(SC x) (resp. R(S} 0)) unique up to SL(2,R) conjugation 
so that trpi^j) = t j (i = 1, 2; j = 1, 2, 3). These two representations are 
GL(2,R) conjugated and are related by pi(7i) = P2(7i)_1- Furthermore, 

if Pili) = iQ A - i j ; A > 1, and ,9(72) = f a d j , c = 1, then a ,b,c , 

d and A are real analytic RC-functions of t\, ti, t . 

The first part of the lemma also follows from Lemma 2 and formula 
(5). Below is a proof of part (b) (known to J. Gilman). By Lemma 
3, it suffices to show the existence of p G R ( S s r) with tr(p(^j)) = 
t j , j = 1,2,3. We first construct three points A\, A ^ and A3 in H 
so that their pairwise hyperbolic distance d(A i,A j) is determined by 
2coshd( J i , A j)/4 = jt k j where i ^ j ^ k ^ i. That the pairwise dis­
tances satisfy the triangular inequalities follows from the given condition 
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on t i s. Let h AÌ be the hyperbolic isometry which rotates by degree n 
at the point A i (a half-turn). Then h A h AJ (i ¥" j) is a hyperbolic 
isometry so that the absolute value of its trace is jt k j by the construc­
tion (k ^ i , j ) . Furthermore, tr(h A1h A2h A3)

2 = tr[h A1h A2,h A3h A1] 
= t\ + t2, + t\ — t1t2t3 — 2 which is at most —2. Thus the isometry 
h A I h A 2 h A3 has a fixed point p at the circle at the infinity of H . By the 
construction, the three vertices of the triangle A\, A ^ and A3 are on 
the three sides of the ideal hyperbolic triangle A with vertices p, h A3 (p) 
and h A2h A3(p)- The four components of the complement of the ideal 
quadrilateral A U h A3 (A) give rise to a Schottky condition for the group 

< h Aih A3, h A3h A2 >• Thus by Poincare polyhedron theorem, the group 
< h Axh A3j h A3h A2 > uniformizes either SÇ 1 or Y,\ 0 so that the geodesics 
of h A1h A3 and h A 3h A2 are simple closed curves intersecting at one point. 
Let Y be the lifting of h A1h A3 to SL(2,R) with t ̂  trY > 0, and X be 
the lifting of h A3h A.2 to SL(2,R) with titrX > 0. Then trX = t and 
trY = t<2 and tr(XY) = t3 due to the spin structure. This finishes the 
proof. 

2. P r o o f of T h e o r e m 2 

Given a hyperbolic metric m on E and a monodromy p G R ( S ) of 
the metric m, we have t m(x) = jtr(p(x))j where x is the homotopy class 
of a loop. 

2.1 . P r o o f of T h e o r e m 2 for S i i . 
To show that condition (1) in part (a) is necessary, take three classes 

«1 , Cü2, «3 forming an ideal triangle in S. Choose 71,72 G TTI(X!) so that 
the homotopy classes 71,72,7172 and 7 ^ 72 represent «1 ,02 ,03 and a 3 

respectively. If t m is a trace function corresponding to a monodromy 
p G R(So,4), then condition (1) follows from the trace identities (6), (7) 
and Lemma 5 where A i = p{^i). 

To show that condition (1) is also sufficient, we note that the modu­
lar relation implies that the value of t is determined by t on f011,012,013g 
where i's form an ideal triangle. Now since t(b) > 2, by condition 
(1), t i = t(a,i satisfies the inequalities in Lemma 5. By Lemma 5, we 
construct a hyperbolic metric m so that t m(ai) = t i. Thus, t = t m on 
S by the modular relation. 

The proof of Theorem 2 for So,4 is in the same spirit, but technically 
is more complicated. 
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Left-hand orientation on the front face 

Figure 5 

F i g u r e 5. Left-hand orientation on the front face 

2.2. N e c e s s i t y of condi t ion (2) in T h e o r e m 2. 
Given three classes 011,012,013 forming an ideal triangle in S, we take 

a ij G ak, (i,j,k) = (1,2,3), (2,3,1) , (3,1,2) so that ja ij n a jk j = 2. 
Without loss of generality, we may assume that (a ij,b i,b j) bounds £0,3 
in £0,4 • Choose in £0,4 a set of generators fA\, A2,A%g for 7ri(£o,4) as in 
Figure 5 (multiplication of loops in m starts from left to right) so that 
(1) the boundary components b1, b2, b3, and b4 of £0,4 are homotopic to 
representatives in A\, A<i, A3 and A1A2A3 respectively; (2) the curves 
a12,a23, and a31 are homotopic to representatives in A\A ^, A2A 3 , and 
A3A\ respectively; and (3) the generators are symmetric with respect 
to a Z3 action on £0,4 preserving b4 (Figure 5(e)). 

Given p G R(£o,4) representing the monodromy of a hyperbolic met­
ric m, we shall identify p(A) with A for A G 7TI(£O,4) for simplicity in 
this section. Thus A ^ s are SL(2,R) matrices. By choosing a different 
lifting if necessary, we may assume that trA i < 0 (i = 1,2,3). By 
Lemma 4, trA i A j < 0 (i ^ j), and trAiA2A3 < 0. Then the first equa­
tion in condition (2) is given by trace identity (10). To see the second 
equation (which is the statement that f(as), f(a3) are the two roots in 
the first equation), we shall derive the equivalent equation 

t m(aia2) + t m(a2ai) = t m(o>i)t m(a2) - t(bi)t m(b2) - m M m M -

To see this, we note that «102 = «3 and o^a i are represented by A1A2 
and A3 A2A3A\ respectively. Furthermore, by Lemma 4, 

tr(A3
1A2A3A1) < 0. 

Thus the above formula is a consequence of the trace identity: 

tr(A3
1A2A3A1) + tr(A1A2) =tr(A1)tr(A2) + tr(A3)tr(A1A2A3) 

- t r ( A 2 A 3 ) t r ( A 3 A i ) . 
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We shall write the first equation in condition (2) (i.e., equation (10)) 
explicitly as follows. Let i = t m{b i) and t ij = t m(a.k)- Then formulas 
(8) and (9) become: 

(11) -t + tr{AXAZA2) =ti t23 + t2t31 + t3t12 + t1t2t3-

-ttr{AiAzA2) =t( + t + tj + t\2 + t|3 + t§x 

(12) + t l t 2 t12+ t2 t3 t23+ t3 t l t 31 

— t12t23t31 — 4. 

Thus equation (10) becomes 

3 

t4 + t ( t t 2 3 + t2t31 + t3t12 + tit2t3) + X i 
(13) i = 1 

+ X t + t i t j t i j — 4 — t12t23t31 = 0) 
(i,j)eI 

where I = f(1,2), (2,3), (3,1)g. As a quadratic equation in —t = 
tr{A\A2A ^)i it becomes x2 — Px + Q = 0 where P > 0 and (thus) 
Q < 0. This implies that the equation has two real roots of different 
signs and —t4 is the negative root, i.e., 

(14) t = ( - P + p P 2 - 4 Q ) / 2 . 

In particular, the number t4 is determined by the rest of the six numbers. 
Since t > 2, we obtain the (equivalent) condition that — Q > 2P + 4 
which is exactly condition (4). Conversely, if — Q > IP + 4 and P > 0, 
then t4 > 2. 

Remark 2.1. We have shown that each hyperbolic metric m on Eo,4 
is determined by its lengths on six curves fa ij, bi, b2, b3g- This was first 
observed by Schmutz ([32, Lemma 2]). 

2.3. Sufficiency of condi t ion (2) in T h e o r e m 2. 
We use the same notation as in §2.2. Given a function t : <S(Eo,4) —> 

R>2 satisfying condition (2), we note that the modular relation implies 
that the values of t is determined by t on f a i , a2, «3, bi, b2, b , b4g where 
CKi's form an ideal triangle. Thus, it suffices to find p G R(So,4) so that 
trp(A i) = -t(b i), trp(A i A j) = -t(ak) and trp(A1A2A3) = - t ( b ) . 

Let t i = t ( i ) (i = 1,2,3,4) and t ij = t ( k ) - Then i , t ij G R>2 and 
equation (13) holds. By the remark in the last paragraph, this is the 
same as assuming condition (4) holds for t i , t2 , t3 and t . We shall first 
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construct three matrices A i (i = 1,2,3) in SL(2,R) so that trA i = —t i, 
tr(A i A j) = —t ij and furthermore trAiA2A3 < —2. Then we show that 
tr{AiA2A%) = —ti and the corresponding representation p is in R(EQ^). 

Since conditions (13) and (4) are symmetric in tu, t23 and t31 and 
the set of generators A\, A2, and A3 are also symmetric, we may assume 
without loss of generality that t23 = max(ti2, t23,t31)-

To solve trA i = -t i and tr(A i A j) = - t , let Ax = (x y 

A'i = ( , A% = I A . -, I be SL(2,R) matrices. Wehave, 
c d Ac —A a 

-A 0 
AA = 0 _ A _ , 

_ a x + cy * 
* bz + dw 

-Xdx + A lbz 
A3A1 Xcy — A aw 

Xx * 
A1A2A-ä- x 

* —A w 
By the condition trA i = —t i and tr(A i A j) = — t , we obtain a 

system of quadratic and linear equations in a, b, c, d, x, y, z, w and A as 
follows. 

(El) a + d = -t2. 

(E2) X~1a + Xd = t3. 

(E3) A + A" 1 =t 2 3-

(E4) ad-bc = l. 

(E5) x + w = -ti. 

(E6) ax + cy + bz + dw = —tu-

(E7) -Adx + Xcy + A_1bz - A_1aw = - t 3 i . 

(E8) xw — yz = 1. 

By (E3), A is a positive real number not equal to 1 and is determined 
up to reciprocal. Let us fix A > 1. By (El) and (E2), we have a = 
-(At2 + t3) / (A-A _ 1 ) a n d d = (A_1t2 +t3)/(\- A - 1) . Thus ad < 0 and 
bc = ad— 1 < 0. F i x c = l . We obtain a set of solutions in a, b, c, d and A 
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which are real analytic RC-functions in t i s and t'ij s. We now claim that 
there are solutions for x, y, z, and w satisfying (E5)-(E8) in the complex 
number field C. Indeed, by (E6) and (E7), we express y and z in terms 
of x and w as follows, y = (t ̂  x — X~1t2w + A_1ti2 — t3i)/(c(A — A-1)) 
and 

(E9) z = (t2\x - t w - Xt12 + t3i)/(b(A - A"1)). 

Using (E5), we have w = —x — t\. Thus, y = (X~lt2 + t)x/(c(X — 
A-1)) + const and z = (At2 + t ̂ )x/(b(X — A-1)) + const. Substitute 
these new equations and w = —x — t\ into (E8). We obtain a quadratic 
equation in x whose leading coefficient (after a simple calculation) is 
f/(bc) 7̂  0. Thus there is a solution for x in C. This implies the 
existence of solutions for y, z and w in C. 

We next claim that x, y, z, and w are real numbers, i.e., A\ is 
in SL(2,R). Indeed, the quadratic equation (in — ta) (13) x2 — Px + 
Q = 0 has two real roots of different signs. By (13), both trAïAïA ^ 
and trA\A%A2 are solutions of the equation. Thus trAiA ^ A^, is a real 
number. But trAiAzA ^ = —Xx — \~lw. This together with equation 
(E5) shows that both x and w are real numbers. Hence y and z are real 
numbers as well. 

Now by choosing a different set of solution if necessary, we may 
assume that trAiA2A ^ is the negative root —t4 of the equation t2 — 
Pt + Q = 0, i.e., 

(EO) Xx + A-1w = t . 

Indeed, if trAiAzA ^ is the positive root, we use the new set of solution 
(Aï , Ay , A3 ) to the equations trX i = —t i and trX i X j = —t ij instead 
of (AuA2iA3) and use the fact that trA^A^A^1 = trA1A3A2. 

By the proof of above, we see that the solution a, b, c, d, x, y, z, w and 
A are real analytic RC-functions in t i and t ij (i,j=l,2,3). 

By condition (4), the negative root trA\A2A3 is less than —2, i.e., 
t > 2. Thus both representations of 7ri(Eo,3) (in term of the pair of 
matrices) given by < A^ , A\A2A ^ > and < A2, A3 > are in R(£o,3) by 
Lemma 4. Furthermore, these two groups share a common generator 
A~[ (AiA2A%) = A2A%. To apply the Maskit combination theorem [27] 
to amalgamate these two groups, we need to verify that the Nielsen 
convex cores for the two groups < A~[ ,A\A2A ^ > and < A2,A3 > in 
H lie on the different sides of the axis of A2A%. The following lemma 
characterizes the side of the axis which contains the Nielsen core. 
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L e m m a 6. Suppose X = n , _ i and Y = 

are SL(2,R) matrices so that trX < -2, trY < -2, trXY < - 2 . 
Then the side of the axis of X which contains the Nielsen convex core 
for the discrete group < X, Y > is {(x,y)\x > 0, y > 0} if and only if 
c(A-A" 1 ) > 0 . 

Proof Let trX = -ti, trY = -t2, trXY = -t3 with tx > 2 and 
t2, t3 > 2. Then we have A + A - 1 = ti, a + d = — t2, Aa + \~ld = t3, and 
ad — bc = 1. We solve for a and d and obtain: a = (A_1t2 + t3)/(A —A -1) 
and d = — (At2 + t3)/(A — A - 1 ) . The fixed points r i and r2 of Y at the 
circle at the infinite of H are the roots of the equation 

ct2 + (d - a)t - b = 0. 

In particular, 

r + r2 = —(d — a)/c, 

which is 

( t i t2 + 2 t 3 ) / ( c ( A - A - 1 ) ) . 

Since the fixed points r\ and r ̂  are in the Nielsen core, the result follows. 

q.e.d. 

Now to finish the proof, we verify the side condition by taking 
X = A2A3, and Y = A\ for the group < A~[ ,AiA<iA% > , and tak­
ing X = A2A3, Y = A ^ for < A2,A% > . Thus it suffices to show 
—zc < 0, or the same zb < 0. 

By (E5) and (E10), we have x = (A _ 1 t i + t ) / ( A - A"1) and 
w = —(Ati + ti)/{\ — A - 1 ) . Substitute them into (E9) and simplify 
it, we have, 

bziX-X'1)2 = t 2 A ( A - 1 t i + t 4 ) + t 3 ( A t i + t 4 ) - ( A - A - 1 ) A t i 2 + (A-A- 1 ) t 3 i -

By (E3), we replace A2 by At23 — 1 and A - 1 by t23 — A in the above 
equation and obtain, 

bz{\ - A" 1) 2 = A(tit3 + 2t3l + t2t4 - t23t12) + (t1t2 + 2ti2 + t3t4 " t23t3l)-

We claim that under the condition t23 =max(t i2 , t23 t31) and equation 
(13) both tits + 2t3i + t2t - t23t12 and t i t 2 + 2ti2 + t3t - t23t31 are 
negative. Indeed, since t23 = max(ti2, t235t31)) and t i, t ij are at least 2, 
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by equation (13), we have, 

t12t23t31 >tlt3t31 + t31 + t23 + t2t31t4 

>tlt3t31 + 2t3i + t2t31t 

=t3l( t l t3 + 2 t 3 l + t 2 t ) . 

This shows tit3 + 2t31 + t2t4 — t23ti2 < 0. The other inequality follows 
by the same argument since the inequality is obtained from the previous 
one by interchanging the indices 2 and 3. q.e.d. 

The proof shows that all the entries of the matrices A\,A2,A ^ are 
RC functions in t i, t ij where i = 1,2, 3, (i,j) = (1, 2), (2, 3), (3,1). 

Corollary 2.1. For surface £0,4 with <9£o,4 = bi U b2 U b3Ub, let 

F = {[au], [a23], [a3i], bi,b2, b g 

so that [a ij] forms an ideal triangle and (a ij,b i,b j) bounds a £0,3. Then 
the map F: T(£o,4) —> R6 is an embedding so that its image is given by 
{(ti,t2,t3,ti2,t23,t3i) £ R>2j formula (4) holdsg. Furthermore, there 
exits a continuous function f : T(£o,4) —> R(£o,4) sending m G T(£o,4) 
a representation f(m) which is a lifting of a monodromy of m so that 
the entries of the matrices f{m){^) are real analytic RC-functions of 
the coordinates of F im), for each 7 G £(£0,4)-

Remark 2.2. The above proof works for hyperbolic metrics with 
cusp ends as well since Lemmas 3, 6 and Maskit combination theorem 
still hold. In particular, we obtain the following parametrization of the 
Teichmuller space of T^0 by the geodesic lengths ti2,t23 and t31 (other 
variables t i , t<2, t3 and t± are 2). Take F ={[a12], [a23], [a31]g- Then the 
image of the embedding F of T^0 is 

{(t12,t23?t3l) G R>2jt12t23t31 = t12 +t23 +t31 +8t12 +8t23 +8t31 + 28g. 

3. A combinatorical structure on the set of isotopy classes of 
simple closed curves 

We introduce the following notation for convenience. If a J_o ß 
(resp. a _l_ ß), then dN(a U ß) denotes the union of the isotopy classes 
of four boundary components of N(a U b) where a G a, b G ß with 
ja n bj = I{a, b) (resp. dN(a U ß) = [dN(a U b)]). 
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The goal of this section is to prove the following proposition. 

Propos i t i on 1. (a) Given a set of disjoint simple closed curves 
and proper arcs c i , . . . , c n in a compact oriented surface E ; let Go = 
fa G S(E)j I(f, [c i]) < g so that for each index i, if equality holds 
then the two points of intersection have different signsg. Then S(E) = 

i^_0G i where G i+\ = G i U fa j a = ßj where either (1) ß _l_ 7, and ß, 
7, 7/3 are in G i, or (2) ß _l_o 7, and ß, 7, 7/?, and each component of 
dN(ßU-y) are in G i g. 

(b) Under the same assumption as in (a), if f is a function defined 
on S(E) so that (1) f(aß) is determined by f(a), f(ß), and f(ßa) 
whenever a _L ß, and (2) f(aß) is determined by f(a), f(/?), f(ßa), 
and f(7i) (i = 1,2,3,4,) whenever a _l_o ß with dN(a U ß) = U i = 1 i ; 

then f is determined by fj G0-

Part (b) of the proposition follows from part (a). The proof of part 
(a) of the proposition is a simple application of the lemma below by 
induction on the number m a x I ( a , [c i])ji = 1, ...,ng for a G S ( E ) . This 
lemma is inspired by Lemma f in [22]. 

L e m m a 7. Suppose a is a simple closed curve, and b is either a 
simple closed curve or an arc so that either I(a,b) = ja n bj > 3 or a 
intersects b at two points of the same intersection signs. Let fc \ , . . ,c n 
be a collection of disjoint simple closed curves or arcs so that int(b)r\c i g 
0 for all i = 1, . . . ,n. Then there exist two simple closed curves p\ and 
p<2 in N(a U b) so that 

(1) a = p1p2 where either p\ _L pi or p\ _l_o p2, 

(2) jp i n bj < ja n bj, jp2p1 n bj < ja n bj, jp i n c j j < ja n c j j and 
jp2p1 H c j j < ja n c j j for i = 1, 2 and j = 1, 2, ...,n, and, 

(3) if pi _l_o p2, there are four simple closed curves d\, d ̂ , d ̂ , and d ̂  
isotopic to four boundary components of N(p\\Jp2) so that jd iC\bj < jaC\bj 
and jd i r\c j j < jaC\ c j j for i = 1,2, 3,4, and j = 1, ...,n. 

Proof. We need to consider two cases. 

Case 1. There exist two adjacent intersection points x and y in b 
which have the same intersection signs (see Figure 6). Let c be an arc 
in b joining x and y so that int(c) n a = 0. Then the curves p\ and p2 
as shown in Figure 6 (with the right-hand orientation on the surface) 
satisfy pi _l_ p<2 and all conditions in the lemma. 

Case 2. Suppose any pair of adjacent intersection points in b has 
different intersection signs. Then ja n bj > 3. Take three intersection 

file://iC/bj
file://jaC/bj
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Figure 7 
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points x,y,z in b so that x, y and y, z are adjacent. Their intersection 
signs alternate. Fix an orientation on a so that the arc from x to y 
in a does not contain z as shown in Figure 7(a). If the surface E is 
right-hand oriented as in Figure 7(a), take p\ and pi as in Figure 7(b). 
Then p\ _l_o p2 in N(pi Up2)- We claim that p\ _l_o p2 in E. To see 
this, it suffices to show that N ( p i Up?) is incompressible in E. Indeed, 
each boundary components of N(p\ Up?) is isotopic to a simple loop d i 
made by the arcs with ends x,y,z along a and d. Since jafldj = I(a,d), 
these loops d i are essential. Thus the claim follows. By the construction 
conditions (I) , (2) and (3) follow from Figure 7(c), (d) and (e). If E is 
left-hand oriented, we simply interchange p\ and p2-

As an application of the proposition, we show that the mapping class 
group is finitely generated by Dehn twists. Take f in the proposition 
to be the map sending a G S (E) to the isotopy class of positive Dehn 
twist along a. First of all, there are two basic relations on the Dehn 
twists: (1) (braid relation) Daß = DaDßD~l for a _L ß and (2) (lantern 
relations) DaDßDaß = DdN^aUß^ for a _l_o ß. Thus by the proposition, 
the mapping class group is generated by elements in Go. For all surfaces, 
it is easy to construct a finite set Go so that G ̂  = S. For instance, 
if surface Sg;r has r > 0, let fci, ...,c n g (n = 6g + 3r — 6) be an ideal 
triangulation of it, i.e., a maximal collection of disjoint pairwise non-
isotopic, essential arcs in Sg jr. Then the corresponding collection Go in 
the corollary is a finite set, indeed jGoj < 3n since each a G CS(T.) is 
determined by the n-tuple (I(a, [ci]), ...,I(a, [c n])). 

Remark. The lantern relation was discovered and used by M. Dehn 
([8, p.333]) and rediscovered independently by Johnson in 1979; (see for 
instance [2, p.19]. Also the braid relation (1) implies the Artin's relation 
DaDßDa = DaDßDa. 

4. P r o o f of T h e o r e m 1 

We prove Theorem 1 for compact surface Eg>r with or without bound­
ary in x4.1-4.3. In x4.4, we indicate the modification needed for non-
compact surfaces. By the proof of Theorem 2, it suffices to show that 
conditions (1) and (2) are sufficient. 

4 .1 . R e d u c t i o n t o t h e surfaces Eo,5 and S12 . 

We shall prove Theorem 1 by induction on the norm jEg r j = 3g + r 
of a compact surface. The goal of this section is to show that Theorem 
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1 for all surfaces follows from Theorem 1 for £0,5 and £1,2-
Given £ = £g>r with j£j > 5, and a function f : S(£) —> R which 

is a trace function on each incompressible subsurface £ ' of norm 4, we 
decompose £ = X U Y so that X, Y are incompressible of smaller 
norms with int(X n Y) = int(T.Qß) as Figure 3(d). To be more precise, 
we take X = £o,r_i, Y = £0,4 if g = 0, and take X = £g_i)r+2, 
Y = £^1 if g > 1. Consider the restrictions f\S(X) and fj S(Y)- By 
the induction hypothesis we find hyperbolic metrics niX and m Y on 
X and Y respectively realizing the restrictions as the trace functions. 
By the gluing lemma, we construct a hyperbolic metric m on £ whose 
restriction to X and Y are isotopic to m X and m Y- Thus the trace 
function t m and f have the same values on S(X) U S(Y). 

The goal is to show that the above condition 

f\S(X)US(Y) = t m j S(X)\JS(Y) 

implies f = t m. To achieve this, let us rewrite the conditions (1), (2) 
satisfied by f and t m as follows: 

(!') f 2(«) + fHß) + f2(«/3) - f(a)f(ß)f(aß) - 2 + f(dN(a U ß)) 
= 0, ifa-L/3, 

(2') f(a) + f(ß) + f(aß)- f(a)f(ß) f(aß)+ f(a)(f(ll)f(l2) + 
f(73)f(74))+ f(ß) (f(72) f(73) + f(7i)f(74))+ f(«/3)(f(72)f(74) 
+f(7i)f(73)) +f2(7i) +f2(72)+ f2(7s) +f2(74) +f(7i) fM f(7s) 
f(7 4) - 4 = 0, if a ±o/3, 

(3') f(a/3) + f(/?«) = f(«)f(/?), if a i . ß, and 

(4') f(aß)+f(ßa) = f(a)f(/3)-f(7i)f(73)-f(72)f(74), if« ^o /?, 
where i ̂  are the four components of dN(a U /?)) so that a separates 
f7i? 72g from f73, 74g and ß separates f72,73g and f71,74g. 

Note that relations (3') and (4') give rise to an iteration process. 
Namely, the value f(aß) is determined by the values of f at a, ß, and 
ßa if a _l_ ß, and is determined by the values of f at a, ß, ßa and the 
four components of dN(a U ß) if a _l_o ß. 

Let ai, a2 be the simple loops in d(X fl Y) which is nonboundary 
parallel in £ as in Figure 3(d). Applying Proposition 1 to f and to 
t m with respect to the set fa ̂  g, we conclude that f = t m follows from 
f(a) = t m(a) where a _l_o [a2]. Assume that Theorem 1 holds for 
^0,5, ^1,2- We show f(a) = t m(a) with a _l_o [a2] as follows. Take s G a 
so that jsf ia j = 2 . Then Z = YUN(s) is an incompressible subsurface 
homeomorphic either to £i ) 2 or £0,5. Let X' = X n Z, Y' = Y n Z. 
Then Z = X'UY' so that X'nY' = XnY. Consider fj S(Z) and t m|S(Z). 
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By Theorem 1 for Z and the fact that f and t m coincide on the subset 
S(X') U S(Y'), we conclude that f = t m on S{Z) by the gluing lemma. 
In particular, f(a) = t m(a). 

It remains to show Theorem 1 for Eo,5 and Eo,5- By the same de­
composition E = X U Y as above, it suffices to show the following two 
lemmas. 

For simplicity, we let I m ( E ) be the set of all functions from S(E) to 
R>2 satisfying conditions (1'), (2'), (3'), and (4'). Two classes a and ß 
are disjoint if they are distinct and have disjoint representatives. 

L e m m a 8. Suppose a\ andai are two disjoint elements inS'(T,Q^). 
If two elements f and g in Im(Eo,5) satisfy f(a) = g (a) for all 
a G S(EO,Ö) with I (a, ai)I(a, a^) = 0, then f = g. 

L e m m a 9. Suppose a\ and a>2 are two disjoint elements in S ' (E i^ ) 
so that a\ is non-separating and «2 is separating. If f and g are two 
elements in ImÇEip) so that f(a) = g (a) for all a G S(Ei ;2) with 
I (a, ai)I(a, a^) = 0, then f = g. 

4.2 . P r o o f of L e m m a 8. 
To prove Lemma 8, by Proposition 1, it suffices to show that f(a) = 

g (a) for a _l_o GLI for i = 1,2. Let a, G on be a representative so that 
ja\ n aij = 0, and let x G a so that x J_o aj for i = 1,2. Note that if 
x' J-o a for i = 1,2, there is an orientation preserving homeomorphism 
h of Eo,5 sending x to x' and preserving each a-i (since both N(aiL)a2lJx) 
and N(a\ U a<2 U x') are strong deformation retractors for Eo,s). Thus 
we may draw x as in Figure 8(a). Let a,b,c,d,e and bi, b2, ci, c2, di , 
and d2 be curves as in Figures 8(a), (b) and (c) so that each of them is 
either disjoint from a\ or from a2-

Claim. There is a rational function R so that for each h G Im(Eo,5), 

h(x) = R(h(a),h(b), ..., h(e), h(ai),h(a2), h(bi), hfb), h(ci), h(c2), 
h(d i ) ,h (d 2 ) ) . 

It follows from the claim that f(a) = g (a). This finishes the proof 
of Lemma 8. 

Before begin the proof of the claim, let us simplify the notation by 
making the following conventions: 

(CI) The value of h at a curve s will be denoted by s. 
(C2) The multiplication of two curves si and s2 will be denoted by 

s\ o s2-

(C3) Surfaces drawn in the figures have the right-hand orientation 
in the front face. 
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Let y = b\ o b2 and z = b2 ° bi as in Figure 9(a). 
Since bi _l_o b2 and dN(bi U b2) = a U b U e U x , applying relation (2') 

in N(b1 U b2) with respect to b1, b2 and y, we obtain: x 2 + a2 + b2 + e2 + 
y2 + b1 + b2 — bib2y + abex + bi(ae + bx) + b2{ex + ab) +y(ax + be) — 4 = 0. 
This can be written as: 

(15) x2+ y2+ axy+pix - p2y+ p3 = 0, 

where p j are some polynomials in a, b, c, d, e, a j , b,, cj, and d i (the same 
notation apply below) and p j > 0 for j = 1,2,3. Note that pi = 
b\b<i — be > 0 due to equation (2). 

Similarly, 

(16) x + z + axz + p\x — p2z + p3 = 0. 

Furthermore, by (4') we have y + z = b1b2 — ax — be, i.e., 

(17) ax + y + z = p±. 

Now c2 i-o x and xoc2 = ci (see Figure 9(b)). Applying the relation (2') 
to N(c2^x) with respect to c2,x, c\ and using dN(c2^x) = aUcUdUy, 
we obtain y2 + a2 + c2 + d2 + x2 + c2 + c?, — c\c2x + acdy + x(ay + cd) + 
c2(ac + dy) + ci(ad + cy) —4 = 0, i.e., 

(18) x2+ y2+ axy-p5x+pëy+ p7 = 0, 

where p$, p$ and p-j are positive. 

Similarly, use of do J-o x and d\o x = d2 yields a relation: 

(19) x + z + axz — p$x + p$z + pio = 0, 

where p$, pg and pio are positive. 
Consider the difference of (15) and (18). We obtain, 

(20) pnx-puy =pi3, 

where pn and pu are positive. 
Similarly from (16) and (19) it follows that 

(21) p u x - p15z = pie, 

where pu and pi§ are positive. 
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Figure 10 

Figure 10 

Now the system of linear equations (17), (20) and (21) in variables 
x, y and z has a unique solution since its determinant is positive. This 
ends the proof of the claim and thus finishes the proof of Lemma 8. 

4.3. Proof of Lemma 9. 
To prove Lemma 9, by Proposition 1, it suffices to show that f(a) = 

g (a) for a G SÇEip) with a _l_o «2 and « l a i since there is no element 
ß G S(Ei;2) such that ß _l_o cti for i = 1,2. Fix such an a for the rest of 
the proof. Take x G a, a i G «i, i = 1, 2 so that a\ n a<2 = 0, x _L a\ and 

x J-o a2-
Let Y = Si;2 — ai, and let X be the subsurface bounded by a ̂  

containing a\. Then we have f = g on the subset S(X) U S(Y). 

Claim. There exist a finit set of elements {ßi, ...,ßn g inS(X)uS(Y) 
and a function F such that for any element h in Im(£i ;2), 
h(a) = F(h(ß1),...,h(ßn)). 

It follows from the claim that f(a) = g (a). This finishes the proof 
of Lemma 9. 

We shall adopt the same convention as in §4.2 by identifying h(s) 
with the simple closed curve s for the rest of the proof. 

Proof of the claim. Since any other simple closed curve x' with 
x' -L a\ and x' J_o a2 is an image of x under an orientation preserving 
self-homeomorphism preserving a\ and a2, we may draw x as in Figure 
10. Introduce a few more curves y, z, x\, yi, x2, y2, bi5 b2, b3, k as in 
Figure 10. Note that the curves b1, b2, b , and k are either in X or in 
Y. 

There are many relations among these curves as shown in Figure 11. 
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Figure 11 

F i g u r e 11 

We obtain a system of equations in x,y,xi,yi,x2,y2 
plying formulas (1'), (2'), (3') and (4'). 

By Figure 11(a), we have, 

(el) x\ + x2 = kb\. 

By Figure 11(b), we have, 

(e2) yi + y2 = kb2. 

By Figure 11(c), we have, 

(e3) x + y = kbs. 

By Figure 11(d) and that dN(x U a{) C Y, we have, 

(e4) x\ +y2 = aix, 

and, 

(e5) y | + x2 - a i x y 2 = pi-

By Figure 11(e) and that dN(y U a\) C Y, we have, 

(e6) y2 + y2 - axyy\ = p2-
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By Figure 11(c) that x = k o b3 and dN(bs U k) = z, we have, 

(e7) x — kb ̂  x =—z + p3. 

By Figure 11(f) and dN(x2 U y2) = a U b U b3 U b3 where b3 is a parallel 
copy of b3 and ö£i ;2 = a U b, we have, 

(e8) z = x y 2 + p 4 -

Here and below, p'js denote some polynomials in some elements in 
S(X)uS(Y). 

Also from a\ _L b3 with b3 o a\ = b2 and a\ o b3 = b\, we have, 

(e9) b1 + b2 = a1b3. 

The goal is to show that the system of equations (el)-(e8) has a 
unique solution in x. Assuming this, we conclude that the claim holds. 

To this end, we shall first eliminate x\, y\, y and z from the above 
system and show that x2 and yi are linear functions in x. 

Subtracting (el) from (e4) gives: 

(elO) x2 = y2 — a \x + kbi, 

and subtracting (e7) from (e8) yields: 

(ell) x2y2 + x2 - kb3x = p5. 

By (e3), y = kb% — x and by (e2), y\ = kb2 — y2- Substituting them into 
(e6) and subtracting the result from (e5), we obtain: 

(el2) (aib3 - 2b2)ky2 + (aib2 - 2b3)kx = p6. 

Note that the coefficients of y2 and x in (el2) cannot both be zero since 
a\ > 2. If a1b3 — 2b2 = 0, then x is determined uniquely. Suppose 
otherwise, then we solve y2 in terms of x and obtain, 

(el3) y2=p7x+p8, 

where p-j = (2b3 — a\bi) j[a\b% — 2b2)- From (elO) it follows that 

(el4) x2 = (p7 - ai)x +ps + kb\. 

Now substituting (el3) into (e5), we get a quadratic equation in x as 
follows: 

(el5) (pY - aip7 + l)x2 + (2p7ps - a\ps)x + pg = 0. 
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Substituting (el3) and (el4) into (ell) gives a quadratic equation 
in x as follows. 

(el6) (pj-aip7 + l)x2 + (-b3k+p8(p7-ai)+p7p8 + kbip7)x+pio = 0. 

Subtracting (el6) from (el5) we obtain a linear equation in x whose 
leading term is — kbz + kb\p7. Replacing p7 by (2b3 — a\b<i) I {a\b-& — 2b2) 
and using (e9) that b1 = a\b3 — b2, we simplify the leading coefficient 
to aik(b2 + b3 — aib2b3)/(aib3 — 2b2). The number b2 + b3 — aib2b3 is 
negative by relation (1') that af + b | + b3 < aib2b3- Thus we obtain a 
unique solution of x. This finishs the proof of Lemma 9. q.e.d. 

4.4. Proof of Theorem 1 for metrics with cups ends. 
We first recall Theorem 2 for metrics with cups ends. Let E = Es r 

with r + s = 4, s < 4, be given with three simple closed curves a12, a23, 
and a31 on it satisfying a31 = a12a23 and a12 J-o a23- Let b i be four 
essential simple closed curves in int(Eg r) which are homotopic into the 
four ends so that a ij, b i and b j bound a 3-holed sphere in the surface 
(i ^ jiij < 3). Assume the cusp ends correspond to i (i = 1,2, ..,s). 
Take the collection F C 5(E) to be the isotopy classes of a ij and b i s 
where i ^ j and i,j < 3. Then the same argument used in the proof of 
Theorem 2 shows, 

Lemma 10. The map F '• T"(EQ r) —> R>2 is an embedding whose 

image is given by {(ti,t2 , t3t12t23, t31)6 R>2 j t i = ••• = t s = 2, t s+i > 
2, ...,t3 > 2, so that formula (4) holds}. Furthermore, there exists a real 
analytic map f : T ( E s r) —> R(Es r) so that for each m in T ( E s r), f(m) 
is a lifting of a monodromy of m and the entries of the matrix f(m)(a) 
are real analytic RC-function of 7F(m) for a G <S(Es r). 

Now to construct metrics on Ss with s > 0, we use the decom­
position Es = X U Y as in Figure 12. The first case (1) is given by 
r > 0. We need to consider subcases (1.1), (1.2) and (1.3) where (1.1) 
corresponds to g > 0, (1.2) corresponds to g = 0 and r + s > 5, and (1.3) 
corresponds to g = 0 and r + s < 5. In cases (1.1), or (1.2), we choose 
X = Es-1 , Y = S j j 3 , a n d X n Y ^ E0,3. Case (1.3) with r + s < 4 
then follows from Theorem 2. In case (1.3) and r + s = 5, we choose 
X = S s - ^ , Y = Svju, where u + v = 4, 2 > v > 1, and XfiY =* Eo,4-v-
In the second case (2) r = 0, we need to consider subcases (2.1) s > 2 
and (2.2) s = 1. In case (2.1) that s > 2, if (2.1.1) g > 0, or (2.1.2) g = 0 
and s > 5, then X =* E ^ 2 , Y =* S§ and X n Y = E0,3. If (2.1.3) 
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r > 0, g > 0, or g = 0 and r+s > 5 r > 0, g = 0 and r + s = 5 r >0, g = 0 and r + s < 5 

(1.1) or (1.2) (1.3) (1.3) 

r = 0, g > 0, or g = 0, s > 5 r=0, g>1, s=1 
r = 0, g = 0, s = 5 

(2.2) 
(2.1.1) or (2.1.2) (2.1.3) 

Figure 12 

Figure 12 

5 > s > 2 and g = 0, the theorem holds except for s = 5 where we 
decompose SQ 0 as a union of two Sjj x with intersection Eg 2. Finally, 
in case (2.2) that s = 1, it suffices to consider g > 2. We take X = E ^ i , 
Y = T,1 x and X n Y = X - s where s is a non-separating simple closed 
curve in X. 

These give the 3-holed sphere decomposition of the surface into two 
subsurfaces of smaller jXj and jYj where jSs j = 3g + r + s. Note that 
Lemmas 8 and 9 still hold for metrics with cups ends. Now by the gluing 
Lemma, Lemmas 8, 9, 10, Theorem 2, the same argument used in the 
previous sections applies. This gives a proof of Theorem 1 for metrics 
with cusp ends. 

Remark. Teichmuller space is well known to be homeomorphic to 
a Euclidean space. This fact can also be derived from Theorem 2 and 
Lemma 1. Indeed, the gluing Lemma shows that the restriction map 
from T{X U Y) to T(X) is a fiber-bundle map. The fiber can be shown 
to be homeomorphic to a Euclidean space by solving a simple inequality 
(e.g. relations (3) or (4)). 
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5. Appl ica t ion t o finite d imens ional e m b e d d i n g s of 
Teichmuller spaces 

We shall prove the following stronger version of the corollary for 
compact surfaces by induction on jSg)r j = 3g + r in this section. The 
proof for surfaces with cusp ends will be omitted. 

Corollary, (a) For surface Eg>r of negative Euler number and r > 0, 
there exists a finite subset F in (Sgjr) consisting of 6g + 3r — 6 el­
ements so that the map TF '• T S gjr) —> R > 2 is an embedding onto 
an open subset which is defined by a finite set of real analytic RC-
inequalities in the coordinates of F . Furthermore, there exists a map 
f : T(Sg ;r) —> R(Sg )r) so that for each m in T(Sg jr) , f(m) is a lifting 
of a monodromy of m and the entries of the matrix f(m)(a) are real 
analytic RC-functions of •F(m) for any a G S(Sg jr) . 

(b) For surface Sg)o of negative Euler number, there exists a finite 
subset F of S (Egß) consisting ofQg — 5 elements so thatiF : T(Sg ;o) —> 
R > 2 is an embedding whose image is defined by one real analytic RC-
equation and finitely many real analytic RC-inequalities in the coordi­
nates of F . Furthermore, there exists a map f : T(Egjo) —> R(Sgß) 
so that for each m in T(Eg jo), f(m) is a lifting of a monodromy of m 
and the entries of the matrix f(m)(a) are real analytic RC-functions of 
-KF(m) for any a G S(Egfi) 

Note that the corollary without the statement about the lifting of 
monodromies follows immediately from the gluing Lemma, Theorems 1 
and 2, and Lemmas 8 and 9. To prove the full statement, we need to 
strengthen the gluing lemma. 

In x5.1, we prove an extended version of the gluing Lemma. In x5.2, 
we prove the corollary for S i 2- The corollary for surfaces with non­
empty boundary is proved in x5.3. In x5.4, we prove the corollary for 
closed surfaces. 

5.1 . Algebraic d e p e n d e n c e in the g luing l e m m a . 

We begin with a parametrized version of the Jordan canonical form 
theorem for SL(2,R) matrices. 

L e m m a 11. (a) If A =[aJJ] in SL(2,R) satisfies jtrAj > 2 and 
a12a21 7̂  0, then 

C - i A C _ l_ (an + a-22 + p ( a i i + a22)2 - 4 0 'N 
~ 2 V 0 a n + a22 - p { a i i + a 2 2 ) 2 - 4 / ' 
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ic RC-functions c ij in eight variables so that C lAC — 1 

where 

C _ ( 2ai2 a n — a22 — /(aii + a22)2 — 4 
\a22 — a n + p ( a n +a22)2 — 4 p a2i 

fbJ For A = [a ij] and B = [b•] in SL(2,R) with trA > 2 (resp. 
t r A < — 2), ai2a2i 7̂  0 and trABA~lB~l ^ 2, there exist four real an-

'A 0 
0 A-

A > 1 (resp. A < -I) and C~XBC = , \ö\ = 1 where 

C= [c ij(A,B)] G GL(2,R). 

Proof. Part (a) follows by a direct calculation. Note that the 
matrix C is invertible since a12a21 7̂  0. Part (b) follows from part 
(a). Indeed, by part (a), we may conjugate A to the required diagonal 
form A'. We also conjugate B by the same matrix to obtain B'. The 
trace of the commutator remains unchanged. Thus the new matrix 
B' = [b'ij] has non-zero (2,l)-entry. Now a further conjugation by the 

matrix 1 I will not change matrix A' but change B' 

V ° p b\ J 
into the required form. q.e.d. 

We say a pair of matrices (A, B) is normalized if A = I \ - i ) with 

|A| > 1 and the (2,l)-entry of B is 1. It follows from the normalized con­
dition that if C is in GL(2,R) so that both (A, B) and (C^AC, C~lBC) 
are normalized, then (A, B) =(C~lAC,C~1BC), i.e., normalization is 
unique up to GL(2, R) conjugation. Fix a pair of elements (71,72) in 
7Ti(E). A representation p in R ( S ) is called normalized with respect to 
the pair if (p(7i),p(72)) is normalized. 

A section of the natural projection from R(S) to T(E) is a continuous 
map f : T(E) —> R ( S ) so that f(m) is a lifting of a monodromy of m. 
Given a section f, we may produce a new section whose image lies in 
any given component of R ( S ) as follows. Conjugating representations 

in f ( T ( S ) ) by the matrix gives rise to a new section in a 

component of the opposite orientation type; and choosing a different 
lifting I associated to p G f ( T ( S ) ) for a fixed index set I (see §1.2 
for the definition) gives a section in a different component of the same 
orientation type. We call these new sections to be the ones obtained 
from f by different liftings and conjugations. An RC-section is a section 
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so that (1) there exists an associated finite set F C S(E) such that 
the entries of the matrix f(m)(a) are real analytic RC-functions of the 
coordinates of 71F (m) for all a G TTI(E) and (2) each representation in 
the image of the section is normalized with respect to a fixed pair of 
elements in TTI(E). By Lemmas 4, 5 and Theorem 2, the Teichmuller 
spaces To;3, T^i , and TQ^ have RC-sections. 

For simplicity, we shall identify curves, isotopy classes of curves, 
and homotopy classes of curves in incompressible subsurfaces with their 
images in the ambient spaces without mentioning the including maps. 

L e m m a 12. (Algebraic dependence) Let X and Y be good in­
compressible subsurfaces of E such that E = X U Y and either (1) 
X n Y = E0,3, or (2) Y ^ Ei ; i and X n Y = Y - s where s is a 
non-separating simple closed curve in int(Y), or (3) X HY = EQ 2 so 
that the punctured end in EQ 2 is a punctured end of E. IfT(X) and 
T(Y) both have RC-sections fx and f Y with associated sets Fx and F Y 
respectively, then T(E) has an RC-section with associated set Fx^F Y. 

Proof. Let («1,02) (resp. (/?i,/32)) be the pair in TTI(X) (resp. 
7Ti(Y)) such that each representation in the image of fx (resp. f Y) 
is normalized with respect to it. Choose two geometric generators 71 
and 72 for 717 (X n Y) so that 7172 is represented by the third boundary 
component. Then one of the three elements 71, 72, 7172, say 71, satisfies 
the condition that both subgroups < «1,71 > and < /?i,7i > are not 
solvable. Let 72 be one of the remaining element. Then 717(X n Y) 
is generated by 71 and 72. We extend f71, 72g to a minimal set of 
generators f71, ..., 7„g for TTI(E) so that each 7, is either in ni(X) or in 

TTi(Y). 

By choosing a different lifting if necessary, we may assume that 
fx{m){o>i) and f Y(m)(ßi) are diagonal matrices with positive traces for 
m G T(X n Y) {fx and f Y are still sections but may not be normalized 
any more). Now by the choice of element 71, both matrices fx{m){li) 
and f Y(m) (71) have non-zero off diagonal entries for all m, and the trace 
of the commutator of fx{m){li) and fx{m){l2) (resp. f Y (m)(71 ), and 
fy(m)(72)) is not 2. Thus by Lemma 11, we may conjugate the pair 
(f m ( 7 i ) , f x ( m ) ( 7 2 ) ) (resp. (fy(m)(71 ) , fy(m)(72))) to the form in 
Lemma 11(b) by a GL(2, R) matrix whose entries are real analytic 
RC-functions in the coordinates of TTF X (m) (resp. in the coordinates of 
7TF Y(m)). This produces two sections gx and g Y for T(X) and T(Y) 
respectively so that (1) for each m G T(X) (resp. m G T(Y)), the 
entries of the matrices gx{m){l) (resp. g ( m ) ( 7 ) ) are real analytic 
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RC-functions in the coordinates of 7TF X(m) (resp. 7TF Y(m)), and (2) 
the matrix g X{m){li) (resp. g Y(m)(71 )) is diagonal with ( l , l ) -entry 
bigger than one and the (2,l)-entry of g X{m){l2) (resp. g Yim)^)) has 
absolute value one. 

We may normalize the sections g X and g Y by choosing different 
lifting which changes the generator ^(72) to —^(72) if necessary. Thus 
we may assume that both g X and g Y are normalized with respect to the 
pair (71,72). 

We now define an RC-section for T ( £ ) as follows. By the gluing 
lemma, each m G T ( £ ) corresponds to a pair (m X,m Y) G T(X) x T(Y) 
so that R X(m) = m X-, R Y(m) = m Y and the restrictions of m X and 
m Y to X n Y are the same. The restrictions of the two representations 
g X{m X) and g Y(m Y) to the subgroup ni(X n Y) uniformize the same 
element R Xr\Y{m)- Since the pair (71,72) generates iti(X n Y), by 
the normalization condition for g X and g Y, we have gx("^X)|7r1(XnY) 
= g Y{m Y)\1T1^Xr\Y)- By Maskit combination theorem (there is no need 
to verify the side condition since the gluing is along a 3-holed sphere), 
there exists a unique representation p G R ( £ ) so that p^^X) = g X{m) 
and plvr^Y) = g Y(m). The map from T ( £ ) to R ( £ ) sending m to p is a 
section normalized with respect to (71,72). To see the RC-dependence 
(which also shows the continuity of the map mtop), it suffices to check 
the condition for each generator i. By the construction, p(i is either 
g X{m){li) or g Y(m){i. Thus, each entry of the matrix p(i is a real 
analytic RC-function in the coordinates of TTF XUF Y (m)- q.e.d. 

5.2. P r o o f of the Corol lary for £1,2-

Let s7 be an essential separating simple closed curve, and si be a 
non-separating simple closed curve disjoint from s7 in £^2 as in Figure 
13(a). We decompose £^2 as a union X U Y where X is the compact 
subsurface bounded by s7 containing si, and Y is the complement of 
si. Then X nY is X — s\. Let s2, s3 be simple closed curves in X so 
that s\ _L s2 and s3 = s1s2; let s4, s5, s6) si" and s^ be simple closed 
curves in Y so that s+ and sx are boundary components which are 
identified to be si in £1,2, sQ C dY and s4 J_o s7, s5 = s4s7. See Figures 
13(b) and (c). By the gluing lemma and Lemma 4, the Teichmuller 
space T(£i ;2) can be identified with the subset {(m X ^m Y) G T(X) x 
T ( Y ) I m ( s i ) = m ( s i ~ ) = m ( s ï ~ ) and t m X(s7) = t m Y(s7)}. By 
Lemma 5, m X is determined by 7TF X(m X ) = (t m X(si)t m X(s,i)t m X(s3)) 
where F X = {[si], [s2], [s3]}- By Theorem 2, m Y is determined by 
irF Y(m Y) = (t m Y(sf),t m Y(s1),t m Y(s4:),t m Y(s5),t m Y(s6),t m Y(s7)). Fi-
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(b) (c) (d) (e) 
(a) 

Figure 13 

F i g u r e 13 

nally, formula (1) shows that t mx(s7) = t mx(si)t mx(s2)t mx(s3) + 2 -
t m i ( s i ) " m ( s 2 ) " m ( s 3 ) ' Combining these and Lemma 12, we obtain 
the following lemma. 

L e m m a 13. For surface £i,2; let F be the collection of isotopy 
classes of six curves si, s<2, s3, s4, s§, sQ as in Figure 13(d). Then 
TTF : T(Ei ;2) —> R 6 is an embedding whose image is given by 

{ ( t l ) t2 ) t3 ) t4 ) t5 ) t6 ) £ R>2 j t l t2 t3 > tt + t2 + t3, 

t4t5t7 > t4 + t5 + tg + t-j + 2t + 2t1tß + t1t7 

+ tititç, + titata + 2tit4 + 2tit5 + ^t()tj, 

where t-j = t1t2t3 — t i — t2 ~~ t3}-

Furthermore, there exists an RC-section for T(Si j2) with associated set 
F. 

5.3. P r o o f of t h e Corol lary for Egr w i t h r > 0. 

We prove the corollary by induction on j£g,r j = 3g + r with r > 0. 

For surfaces £0,3, £o,4) £1,1 and £1,2, we have shown in the previ­
ous sections that the corollary holds. Given Eg>r with either 3g + r = 
n > 5 or (g,r) = (0,5), if r > 2, we decompose £g>r = X U Y where 
X = Sg,r_i, Y = E0,4 with XnY = E0,3 as in Figure 3(b); if r = 1, we 
decompose £g,r = X U Y where X = £g - i , 2 , Y = £1,2 a n d X n Y ^ £ 0 , 3 

as in Figure 3(c). Then jXj and jYj are less than j£g,r j - By the 
induction hypothesis, there exists a subset F X C S(X) consisting of 
Qg + 3r — 9 elements so that corollary holds. Let F Y C S(Y) be the 
set {[si], [s2], [s3], [s4], [ss], [s6]} given by Theorem 2 as in Figure 13(e) 
if Y = £0,4, and by Lemma 13 as in Figure 13(d) if Y = £1,2- Let 
F = F X U {[s2], [s3], [s?,]} consisting of Qg + 3r — 6 elements. We claim 
that the corollary holds for Eg>r with respect to the set F. First to 
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show that 7TF is an embedding, we use the gluing lemma. It follows 
that -ÏÏF XUF Y is an embedding. However, by the construction, s1,s4 and 
sQ are in the subsurface X. Thus by the induction hypothesis, t m(si), 
t m{si) and t m{s§) are real analytic RC-functions in the coordinates of 
•KF X(m). Hence, we may drop the three elements [s\], [s4], and [sQ] from 
the set F X U F Y without effecting the embeddedness of TTF XUF Y- Ap­
plying Lemma 12 to F X and F Y and then dropping the three elements 
[si], [s4] and [sQ], we see that T(£g jr) has an RC-section with associated 
set F. Finally, we show that the image iF(T(Eg!r)) is defined by a finite 
set of RC-inequalities in the coordinates of 7F. Indeed, by the induction 
hypothesis, irX(T(X)) (resp. TTF Y(T(Y))) is defined by a finite set of 
RC-inequalities. By the gluing Lemma 1, the image -ÏÏF XUF Y (T(Eg,r)) is 
given by the same set of RC-inequalities for -KF X(T(X)), together with 
the RC-inequalities for -KF Y(T(Y)), and three equations expressing that 
the lengths of the three simple closed curves in d(X n Y) are the same 
in both metrics m X and m Y. Thus the result follows. 

5.4. P r o o f of the Corollary for c losed surface Sgjo w i t h g > 2. 
Given Tig = Sg,o, let Y be an incompressible subsurface of Eg home-

omorphic to E ^ i with boundary s\, and let s2 be a non-separating 
simple closed curve in int(Y). Set X = Eg — s<2 as in Figure 3(d). Thus 
Tig = X U Y and X n Y = Y — s2- By the gluing Lemma 1, each met­
ric m G T(Eg) is the same as a pair (m X,m Y) G T(X) x T(Y) with 
- X n Y ( ^ X ) = R XnYim Y). In particular the completion X of X un­
der the metric m X has the same geodesic lengths at the two boundary 
components. The following lemma describes hyperbolic metrics on Eo,4 
which have the same lengths at two boundary curves. 

L e m m a 14. Given Eo,4 with curves fi (i = 1,2,3,4,) as bound­
ary components, let a ij ((i,j) = (1,2), (2,3), (3,1)) be simple closed 
curves in Eo,4 so that a\i _l_o a23 and a34 = a12a23 and fi, b j and a ij 
bound a subsurface of signature (0,3). Let T'(Eo,4) be the subspace of 
the Teichmuller space T(Eo,4) defined by t m{b$) = t m{bi), and let F' = 
{[bi]) [b2]) [a12], [a23], [a31]}- Then F' : T'(Eo,4) —> R > 2 is an embedding 
whose image is defined by a real analytic RC-inequality in the coordi­
nates of -Fi. Furthermore, there is an RC-section f: T"(Eg) —> R'(Eg) 
where R'(Eg) stands for the subset of R(Eg) which projects onto T'(Eg) 
so that the entries of f(m)(^) are real analytic RC-functions in the co­
ordinates of iFi (m). 

Proof. Given a metric m G T'(Eg), let t i = t m([fi]), i = 1,2,3,4, 
and let t = t m([a ij]), (i,j) = (1,2), (2, 3), (3,1), where t3 = t4 . Now 
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these t i and t satisfy equation (13). Thus we obtain an equation in t 
(= t3 = t ) below, 

(2 + tit2 + t12)t
2 + (tit3i + tit23 + t2t31 + t2t23)t 

+ t1+t2 + t\t2t\2 + t12 + t23 + t31 ~~ t12t23t31 — 4 = 0. 

The coefficient of t2 is positive and the constant term is negative 
by (4). Thus the equation has two real roots of different signs and t3 
(= t ) is the positive root of the equation. Hence tz(= t ) is a real 
analytic RC-function of t\, t2, t\2, t23 and t31 which are the coordinates 
of TTF'(m). This shows that Fi is an embedding. The rest of the lemma 
follows by the same argument used in the proof of Theorem 2. q.e.d. 

Let T'(X) be the subset of T(X) so that tTO(s2~) = t m{s2) where 
s2 and s2 are the boundary components of X. Then in the proof of 
the corollary for £g-i,2 (= X) in §5.3, to construct m G T'(X), we 
decompose X = Xx U Yx where Xx = Sg_i,i, Yt = S0)4 and Xx n Yx = 
^0,3- We use Lemma 14 instead of Theorem 2 for metrics on Y\ in 
the gluing process. Thus, the same argument shows that there exists a 
subset F X C S{X) consisting of 6g — 7 elements so that 

nF X : T'(X) -> R^V7 

is an embedding whose image is an open set defined by a finite set of 
real analytic RC-inequalities in the coordinates of -Fx. 

Let s3 and s be two simple closed curves in int(Y) so that 
s3 _L s2 and s = s2ss. Now by the gluing Lemma 1, each 
m G T(X U Y) is determined by a pair (m X,m Y) G T'(X) x T(Y) 
so that the restrictions of m X and m Y t o X f i Y are the same. The 
gluing condition on X n Y is equivalent to that t m X (s^) = t m Y (s2) and 
t m X(si) = t Y(si) by Lemma 4. Also Lemma 5 gives the complete 
description of (t m Y(s2),t m Y(s3),t m Y(s4:)). Let F = F X U { [ s 3 ] , s } 
C S(Sg) consisting of 6g — 5 elements. Combining the previous facts, 
we obtain (1) F • T(Eg) —> R6g_ 5 is an embedding, (2) the image 
7TF(T(Eg)) is defined by a finite set of RC-inequalities (from those of 
irF X(T'(X)) and of 7r{[s2])[s3])[s4]}(T(Ei)i)) where we replace t m Y([s2]) by 
t m X([s'i\)-> and one real analytic RC-equation t m Y(si) = t m X(s\). Fur­
thermore, by Lemmas 13 and 14, there is an RC-section for T(Sg). 

q.e.d. 

Remark. The fact that F' is an embedding in Lemma 10 was first 
proved by P. Schmutz ([32]). 
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