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RIGIDITY OF HYPERBOLIC CONE-MANIFOLDS
AND HYPERBOLIC DEHN SURGERY

CRAIG D. HODGSON & STEVEN P. KERCKHOFF

The local rigidity theorem of Weil [28] and Garland [12] for complete,
finite volume hyperbolic manifolds states that there is no non-trivial de-
formation of such a structure through complete hyperbolic structures if
the manifold has dimension at least 3. If the manifold is closed, the con-
dition that the structures be complete is automatically satisfied. How-
ever, if the manifold is non-compact, there may be deformations through
incomplete structures. This cannot happen in dimensions greater than
3 (Garland-Raghunathan [13]); but there are always non-trivial defor-
mations in dimension 3 (Thurston [24]) in the non-compact case.

In this paper, we extend this rigidity and deformation theory to a
class of finite volume, orientable 3-dimensional hyperbolic cone-manifolds,
i.e., hyperbolic structures on 3-manifolds with cone-like singularities
along a knot or link. Our main result is that such structures are locally
rigid if the cone angles are fixed, under the extra hypothesis that all
cone angles are at most 2w. We can view the singular structure as an
incomplete, smooth structure on the complement of the singular locus
whose metric completion is the singular cone structure. The space of
deformations of structures on this open manifold has non-zero dimen-
sion, so there will be deformations without the condition that the cone
angles remain fixed. We show that it is possible to deform the struc-
ture so that the metric completion is still a cone-manifold, and that one
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can always deform a 3-dimensional hyperbolic cone-manifold to make
arbitrary (small) changes in the cone angles. In fact, we show that the
collection of cone angles locally parametrizes the set of cone-manifold
structures.

The condition in the classical local rigidity theorem that the defor-
mation be through complete hyperbolic structures can be interpreted
as a boundary condition “at infinity” on the family of structures in the
deformation. Specifically, it implies that the group elements correspond-
ing to the end of the manifold must remain parabolic. In our case, too,
the condition that the cone angles remain fixed can be viewed as the
boundary condition that the traces of the group elements of meridians
remain constant. In both cases, these algebraic boundary conditions
lead to analytic growth conditions. Any infinitesimal deformation of a
hyperbolic structure can be represented by an E-valued 1-form, where
E denotes the flat vector bundle of local Killing vector fields (i.e., lo-
cal infinitesimal hyperbolic isometries). The hypothesis that the cone
angles remain fixed implies that this 1-form can be chosen to be in L2.
Our main result is really an L? rigidity theorem.

Our proof also gives information about hyperbolic 3-manifolds with
“Dehn surgery” type singularities and gives new information on the
structure of the “hyperbolic Dehn surgery spaces” introduced by Thurston
in [24]. For example, the results described above imply that the hyper-
bolic Dehn surgery space is always a smooth manifold parametrized
locally by Thurston’s “Dehn surgery coordinates”, near points corre-
sponding to cone-manifolds with cone angles at most 27. Equivalently,
the space of representations of the fundamental group into PSL,(C) is
locally a smooth manifold near the holonomy representation of a hyper-
bolic structure with these Dehn surgery type singularities. Previously
these results were only known to be true in a neighborhood of the com-
plete hyperbolic structure.

We conjecture that the current restriction on cone angles is not
essential, and we hope to remove this restriction in a future paper.
The techniques we develop also give specific models for the infinitesimal
deformations which change the cone angle. These should lead to a
better understanding of the changes in geometry as cone angles (and
Dehn surgery coordinates) are changed. This, in turn, should imply
new global results on the structure of hyperbolic Dehn surgery space.

It is conjectured that, as in the complete, finite volume case, a global
(Mostow) rigidity should hold for hyperbolic cone-manifolds: Two hy-
perbolic cone-manifolds with the same underlying manifold and singu-
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lar locus with the same cone angles are isometric. However, the known
proofs for Mostow-Prasad rigidity all use the sphere at infinity to an-
alyze the problem through ergodic theory or some other device. For
cone-manifolds there is no known, reasonable analytic object to take
the place of the sphere at infinity so that it is not so clear how to pro-
ceed along these lines.

However, our methods do provide controlled 1-parameter families of
hyperbolic metrics with varying cone angles. Together with an under-
standing of the global analysis of how a sequence of hyperbolic metrics
can degenerate, this should lead to some global results. The analysis of
Hodge representatives in this paper suggests the following global conjec-
ture: If some collection of cone angles is realizable, then all smaller cone
angles are realizable. In particular, it should be possible to decrease all
of the cone angles to zero which corresponds to a finite volume, com-
plete structure on the complement of the singular locus. This would, in
turn, prove the global rigidity conjecture for hyperbolic cone-manifolds.
The argument is simply to deform any two, possibly distinct, structures
with the same singular data back to the complete structure. There,
they must be isometric by the standard Mostow-Prasad global rigidity.
By the results of this paper, there are no branch points in the varieties
along the way, so the two families of structures must have been the same
throughout.

More generally, it is conjectured that hyperbolic Dehn surgery space
is star-like with respect to the rays from the origin to infinity. The above
conjecture on cone-manifolds is equivalent to this conjecture for lines of
rational slope.

Analyzing what happens as the cone angles are increased seems much
more difficult. Of central interest is the problem of finding sufficient con-
ditions to guarantee that angle 2w can be reached for all components.
If all cone angles equal 2w, the metric is smooth; reaching these an-
gles would imply that the underlying closed manifold has a hyperbolic
structure with geodesics in the given isotopy classes.

Here is an outline of the rest of the paper. Section 1 gives the
statement and outlines the proof of our L? rigidity result (Theorem 1.1).
We present preliminary material and notation and outline the proof of
infinitesimal rigidity in the compact and in the complete; finite volume
cases. These results are due to Calabi [5], Weil [28], and Garland [12].
Our presentation follows that in Matsushima-Murakami [21] and makes
use of Hodge theory and a Weitzenbock formula to prove a cohomology
vanishing theorem. In Section 2, we describe the general structure of
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the closed and co-closed forms which arise in the deformation theory
of hyperbolic 3-manifolds. We then adapt this to derive the necessary
Hodge theory for the cone-manifolds studied in this paper. In section
3 we study the asymptotic behavior of our harmonic forms near the
singular locus. This allows us to complete the proof of Theorem 1.1.
Finally, in section 4, we give some general results relating the topology
of representation spaces to cohomology groups. We also explain some
of the consequences of Poincaré duality for the study of representation
spaces of 3-manifold groups. From these results and Theorem 1.1, we
obtain proofs of the results on deformation spaces of hyperbolic cone-
manifolds and hyperbolic Dehn surgery spaces mentioned above. In the
appendix, we give a proof that the Laplacian on real-valued forms on
a 3-dimensional cone-manifold is self-adjoint, with the domain used in
section 2 in the proof of our Hodge theorem.

We would like to thank Rafe Mazzeo for his help and the University
of Warwick for their hospitality during the preparation of this paper.

1. An L? rigidity theorem

In this section, we state our main results and outline the methods
of Calabi [5], Weil (28] and Matsushima-Murakami [21] used to prove
infinitesimal rigidity in the closed manifold case. (See Raghunathan [26,
Chap. 7] for a detailed exposition of these methods.)

We first consider the following general situation. Let M be an ori-
entable n-dimensional smooth manifold, possibly with boundary. As-
sume that M has a geometric structure modelled on (X,G) where X
is a simply connected, analytic Riemannian manifold, and G is a Lie
group of isometries acting transitively on X. Then X = G/K, where
K is the (compact) stabilizer of a point in X under the G action. Let
G denote the Lie algebra of G, and Ad the adjoint representation of G
on G. Associated to a (X, G) structure on M is the holonomy represen-
tation p : m1(M) — G, which is defined in terms of the developing map
M — X for the structure (see [24] or [27]).

Then there is a flat G vector bundle E over M associated with Ado
p; this can be interpreted geometrically as the bundle of (germs of)
Killing vector fields on M. Using the flat connection on E gives an
exterior derivative d on forms with values in E, which we denote by
Q*(M; E). The kth (de Rham) cohomology group of M with coefficients
in E, denoted H*(M; E), is defined to be the closed forms in Q¥(M; E)
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modulo the image of Q¥~1(M;E) under d. There is also a natural
metric on E. Together with the metric on M, this allows us to define
an inner product on QF(M; E) and, in particular, to define the notion
of an element of Q¥(M; E) being in L2. We will give details below.

We will be concerned with closed orientable 3-manifolds which have
a singular hyperbolic structure, with “cone-like singularities” along a
link. In particular, on the complement of the link there will be a smooth
hyperbolic structure, i.e., a geometric structure modelled on (X, G),
where X = H?3 is hyperbolic 3-space, and G = PSL,C is the group of
orientation preserving isometries of H3. We let M denote the closed
manifold with its singular structure, and let M denote the complement
of the singular locus. Then M has a smooth, but incomplete hyperbolic
structure, and the holonomy representation p : m; (M) — G as above is
still defined.

We will call the singular manifold M a hyperbolic cone-manifold.
The precise definition of such a structure is that there is an incomplete
hyperbolic structure on the complement of a link whose metric com-
pletion determines a singular metric with singularities along the link.
The link is totally geodesic, and in cylindrical coordinates around a
component of the singular locus, the metric has the form

dr? + sinh? r d6? + cosh? r d2?,

where 7 is the distance from the singular locus, z is the distance along
the singular locus, 8 is the angular measure around the singular locus
defined modulo o for some o > 0. Then «a is called the cone angle at
that component. Note that the metric in a disk in the (r,8)-plane is
induced from that of a wedge of angle a in the hyperbolic plane H?,
with sides identified. This is the cone from which the name arises.

Our main goal in this paper is to prove the following:

Theorem 1.1. Let M be a finite volume, 3-dimensional hyperbolic
cone-manifold, whose singular locus ¥ is a knot or link. Let M denote
the open, incomplete hyperbolic manifold M —X. If all cone angles along
¥ are at most 2, then every closed L? form in Q!(M; E) represents the
trivial cohomology class in H'(M;E).

Remark. Although we don’t prove it here, it is not hard to show
that the L? forms in the theorem above are the images of sections which
are also in L2. Hence, the L? cohomology group H},(M;E) is trivial.

If N = M — U(X), where U(Z) is an (embedded) open tubular
neighborhood of ¥, then every class in the.image of the natural map
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(H'(N,ON;E) - H'(N; E) can be represented by a form with compact
support in M = M —X. More generally, we shall see (in Lemma 3.3) that
any infinitesimal deformation preserving cone angles can be represented
by an L? form. This gives the following result:

Corollary 1.2. For M, M as in Theorem 1.1 and N = M - U(X),
the following hold:

(a) the natural map H'(N,0N; E) - H'(N;E) is zero,

(b) there are no infinitesimal deformations of the hyperbolic struc-
ture keeping the cone angles fized. More precisely, if y; denotes a
meridian curve about the ith component of ¥ and v = U; ;, then
the natural map H'(M,~; E) — H'(M; E) is zero.

Our proof of Theorem 1.1 involves the use of Hodge theory and a
Weitzenbock type formula (as in [28], [21]) to prove the desired coho-
mology vanishing theorem. We first outline the background material
needed in the classical situation before adapting it to our particular
situation in Section 2.

We begin with the general situation of a (X, G) structure on a man-
ifold M as above. The model space X is of the form G/K, where K is
the compact stabilizer of a point in X under the G action. We identify
the Lie algebra G of G with the right invariant vector fields on G. Be-
cause K acts on the right there is an induced G bundle over X which
is a product. We let G act on X on the left as a group of isometries;
the induced action on the fibers of the bundle, identified with G, is the
adjoint action. A (X, G) structure on M is determined by charts on
M, mapped diffeomorphically to open subsets of X. Each transition
map is required to be the restriction of an element of G acting on X.
Since the transition maps are locally constant, the bundle over X pulls
back to a flat G bundle over M, which we denote by E. We can define
cohomology groups on M with coefficients in this bundle in the usual
way since it is a flat bundle.

Although the flat structure on the bundle E allows one to define
cohomology groups, it is not well-adapted to the local geometry on X,
or equivalently, on M. A single element in G, acting globally on X
can behave geometrically in very different ways at different points of
X. For example, an element of the Lie algebra of K, viewed as an
infinitesimal isometry of X fixes some points but has a huge effect on
points far away from the fixed points. On the fibers of the bundle over
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X there is a natural positive definite metric which does not respect the
flat structure but reflects the way in which an element of the fiber over
a point z € X acts on X near z. It can be described geometrically as
follows:

At each point of X, the fiber, viewed as the germs of isometries of
X, decomposes as a direct sum P @ K where K consists of the infinitesi-
mal rotations about the point, and P consists of the infinitesimal “pure
translations” at the point. This decomposition is defined to be an or-
thogonal sum; to define a metric on the fiber it suffices to define one on
P and one on K. But P is naturally identified with the tangent space
of X at the base of the fiber and we give it the metric induced from
the Riemannian metric on X. Similarly, since an element of K operates
linearly and isometrically on the tangent space, the metric on X comes
from identifying it with a subspace of o(n) with its usual metric. (In
our case of constant curvature, G acts transitively on the frames based
at any point so K = o(n).) Again, we emphasize that this metric is not
compatible with the product structure of the bundle over X; from the
point of view of the product structure the metric varies with the point
of X. On the other hand, the metric is, by definition, invariant under
isometries of X. In particular, it pulls back to a metric on the bundle
E over M.

Remark. This metric on the bundle E and its associated orthogonal
decomposition are often derived more algebraically in the Lie groups
literature. The bundle over X is lifted to the Lie group G where, as
before, it is identified with the product bundle of right invariant vector
fields with fiber the Lie algebra G. However, the bundle on G is also
isomorphic to the bundle of left invariant vector fields (via the adjoint
action); it is again realized as a product bundle with G as fiber. The
Lie algebra of G has a standard splitting (the Cartan splitting) which
is invariant under the adjoint action of K. There is also a standard
inner product, derived from the Killing form on G which is invariant
under this action and in which this splitting is orthogonal. Using the
identification of the fibers with the Lie algebra, this induces a metric
on the lifted bundle. By construction it is invariant under the action of
G on itself by left multiplication. The product structure of the bundle
of left invariant vector fields doesn’t descend to a product structure on
X since K acts on the right; the bundle over X has structure group
K, with the adjoint action, from this point of view. However, since the
metric and the splitting are invariant under the adjoint action of K,
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they descend to the bundle over X. Since G acts on the left as a group
of isometries of X, the metric and the splitting are again seen to be
invariant under isometry. Hence they are well-defined on the bundle E
over M.

The metric on E gives an inner product ( , ) on A*TM* ® E and
an L? inner product ( , ) on E-valued forms defined by

(e, ) = /M<a, 8),

when the integral exists. Using this we obtain an adjoint § of d such
that (o, B) = (o, dB) whenever a or 3 has compact support. Then the
associated Laplacian is given by A = dé + 4d.

If M is a closed manifold, then the classical Hodge theorem shows
that each cohomology class in H*(M; E) can be represented by a form
w which is harmonic, i.e., Aw = 0. Further, such a harmonic form is
automatically closed and co-closed, i.e., dw = 0 and dw = 0. To study
these cohomology groups, we need to analyze the Laplacian in more
detail.

Above we have described two ways of viewing the bundle E. The
first, considering it as a flat bundle, leads to the definition of cohomology
groups which are connected with variation of the holonomy representa-
tion of hyperbolic structures. The second, endowing it with a metric
structure and splitting derived directly from the local differential geom-
etry on the manifold, will lead to a description of the variation of the
metric itself. (See Section 2 for some further discussion of these ap-
proaches.) The key to the vanishing results for H'(M; E), which lead
to local rigidity for hyperbolic manifolds, is the relationship between
the operators d and 6 which are connected with the flat structure on F
and the covariant exterior derivative (and its adjoint) associated with
the metrics on M and E.

Explicit expressions for d and § which relate the two ways of viewing
the bundle were calculated by Matsushima-Murakami in [21]. Using the
formalism of Wu'’s paper {30, Chap. 6], these can be written as follows:

d=Y"w' A (Ve +ad(E;))

and

6=~ ile;)(Ve, - ad(Ey)).

j



RIGIDITY OF HYPERBOLIC CONE-MANIFOLDS 9

Here {e;} can be any orthonormal frame field for TM, {w'} is the dual
coframe field, and () denotes the interior product on forms. V denotes
the covariant differentiation in X induced by a natural metric connection
on E, as described below. Further, in the expressions ad(Ej;), E; is the
element in the fiber over any point in M which is the infinitesimal
translation in the direction e; at that point. The operator ad(E;) sends
an element Y in the fiber to [E;,Y] where the bracket is the usual one
on Killing fields.
Then d = D + T and § = D* + T™*, where

D=ZwiAVe,.,
i

T= Zwi A ad(E;),

(1) D* ==Y i(e;)Ve;,

J

T* = i(e;)ad(E;).
J
Note that these expressions reduce to the formulas given in [21] or
in Raghunathan’s book [26] for a suitable choice of frame field.
There is a natural decomposition:

(2) Q' (M; E) = Q*(M;P) & Q' (M; K).

Here, we can identify Q*(M; P) with the T M valued i-forms Q*(M; T M),
by identifying a tangent vector to M at a point with the corresponding
infinitesimal pure translation at that point. Then D and D* preserve
the decomposition (2), while T and T* map Q*(M; P) to @*(M; K) and
vice versa. The metric connection which determines D restricted to
T M-valued forms is the standard metric (Levi-Civita) connection on
M. On K C so(n) C Hom(TM,TM), it is again the standard metric
connection, induced by the one on TM. In other words, a section is
flat if it is represented by a constant matrix with respect to a parallel
orthonormal frame for TM. Expanding out the expressions for d and
J, we get '

A =dé+éd = (DD*+D*D+TT*+T*T)+(DT*+TD*+D*T+T*D),
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but the last term vanishes: i.e., DT* + TD* + D*T +T*D = 0. (See
[21].) In particular, the Laplacian A preserves the decomposition (2).
This gives us a Weitzenbock formula of the form

(3) A=AD+H,

where Ap = DD* + D*D and H = TT* + T*T. Using the above
expressions for T', T* we can also write

(4) H =Y ad(E:)? - o' Aie;)ad([E;, Ei]).
i 1,j
Applying A = dé + 6d to w and integrating by parts gives the fol-
lowing formula which will be crucial for our rigidity results:

Proposition 1.3. Let M be a compact, oriented manifold with
boundary and let w € QY (M; E) be an E-valued 1-form. Then

(5) (dw,dw) + (dw,éw) = (Dw, Dw) + (D*w, D*w) + (Hw,w) + B,

where B denotes the boundary term

(6) B=—-/ ((TwAw+ T*w A *w).
oM

Here, a A 3 denotes the real-valued form obtained by using the
Hodge star operator * on M and the inner product on E.

Proof. This formula is derived from (§dw + ddéw,w) = (Apw,w) +
(Hw,w) by integrating both sides by parts and subtracting the boundary
term on the left from that on the right.

To derive the boundary terms we use the identity

d(aAB)=DaAB+ (-1)’a A DB,

where a and § are E-valued forms, p = deg 3, A denotes the exterior
product using the inner product on E, and d is the exterior derivative
on real-valued forms. (Compare [16, Chap. 3] and [30].)

In particular, this gives

d(a A *B) = ((Da, B) — (o, D" B)) dvol,

where D* = (—1)™P+)+1 4 D& p = deg B = dega+ 1 and m = dim M.
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We also have:
0=TaAxB—aA*T*S,

and sinced = D+ T, § = D* + T* this gives:

d(a A *B) = ((da, B) — (e, 6B)) dvol,

when deg 8 = dega + 1.

The boundary terms now follow immediately. For example the in-
tegrand in the boundary term for (ddw,w) = (dw,dw) + B’ is *dw A w
‘and for (D*Dw,w) = (Dw, Dw) + B” the integrand is *Dw A w. Thus
the integrand for B” — B’ is — x Tw A w since d = D + T. The other
summand in the integrand of B in (4) is derived similarly. q.e.d.

Now Weil showed that the algebraic term (Hw,w) is (strictly) pos-
itive definite when G satisfies the hypotheses of the Mostow rigidity
theorem. Then there is a constant ¢ > 0 such that

(7) (Hw,w) 2 ¢(w,w)

for all 1-forms w € Q!(M; E). In particular, this holds for a hyperbolic
manifold M with G = isom H"” and X = H", when n > 3.

If M is closed, every class in H'(M; E) is represented by a (unique)
harmonic form w such that dw = éw = 0 and the boundary term B = 0.
Then (5) and (7) show that 0 > ¢(w,w), so w = 0 and H(M; E) = 0.
This is the essence of the Calabi-Weil argument. In the complete, finite
volume case, Garland [12] works with cut-off functions to deduce that
any L? harmonic form is a coboundary. From this, he deduces that
there are no non-trivial deformations of the hyperbolic structure through
complete structures.

To prove Theorem 1.1, we apply a similar argument in the situation
where M is a finite volume 3-dimensional hyperbolic cone-manifold and
M = M —X. Since M is both non-compact and non-complete, both the
Hodge theory and the control of the boundary terms in (5) are much
subtler.

We begin this analysis in the next section, and prove a Hodge the-
orem for hyperbolic cone-manifolds. If M is a compact 3-dimensional
hyperbolic cone-manifold and M = M — X, then we will show that
any cohomology class in H!(M; E) can be represented by a form in
Q}(M; E) which is closed and co-closed with controlled behavior near
3. Note that in this situation, harmonic forms need not be closed and
co-closed in general.

11
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To prove our rigidity theorem we also need to study the boundary
terms in (5) more carefully. The basic idea is to study the asymptotic
behavior of the closed and co-closed forms given by our Hodge theorem
in an open tubular neighborhood U; of radius r about the singular locus,
using separation of variables to obtain a Fourier series type expansion.
If M is a 3-dimensional hyperbolic cone-manifold we apply proposition
1.3 to the compact manifold M — U,, and show the boundary terms
B = B, approach zero as  — 0 whenever the cone angles are at most
2m. Then (5) and (7) again imply that each of our closed and co-closed
L? forms is zero. The details of this asymptotic analysis will be given
in Section 3 below.

2. The structure of harmonic forms

Throughout this section M will denote a closed, orientable 3-dimen-
sional hyperbolic cone-manifold with singular locus £, and M will de-
note M — ¥, endowed with its smooth, but incomplete hyperbolic met-
ric. Our ultimate goal is to compute the cohomology group H!(M; E)
where E denotes the bundle of local Killing vector fields on M. In par-
ticular, we want to show that its L? part is trivial. We will use the
de Rham point of view in this section and consider cohomology classes
as equivalence classes of E-valued 1-forms. In Section 4 we switch to
a simplicial or group cohomology point of view and use our results to
analyze representation spaces.

In this section we first discuss the structure of closed and co-closed
E-valued 1-forms and prove some identities for such forms. We will
then prove a Hodge theorem which will give us a unique closed and co-
closed representative in each cohomology class with specific control on
the behavior of the form as it approaches the singular locus. Since the
point of a Hodge theorem is to pick out a particularly nice representa-
tive within a cohomology class, we first discuss the data provided by a
representative and how this changes when we alter it by a coboundary;
i.e., by d of a section of E.

Consider an element in H!(M; E), regarded as an equivalence class
of closed E-valued 1-forms. Let w be any closed representative. Choos-
ing a point £ € M, we can locally define a section s of the bundle
E by integrating w along paths beginning at z. (Note that we are us-
ing the flat connection on E to identify the fibers at different points
along the path in order to do the integration.) Because w is closed, the
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value of the integral depends only on the homotopy class of the path;
a well-defined section is determined on any simply connected subset of
M. Then ds = w on such a subset.

In general, the section will not extend to a global section. Integration
of w around a closed loop based at z will give a non-zero element of the
fiber of E at z, depending only on the homotopy class of the loop. We
choose an isomorphism of the fiber at z with the Lie algebra G; using
the flat connection, this determines an isomorphism of the fibers to G
along any path from z. This defines a map z : m(M,z) — G which

_satisfies the cocycle condition,

z(ap) = z(a) + Ad(p(@))z(B).

Thus, integration determines an element of the group cohomology,
H!(m(M); Adp). This element is trivial precisely when the 1-form w is
exact, or equivalently when the locally defined section, possibly plus a
constant, extends to a global section.

The closed E-valued 1-form w also determines an infinitesimal de-
formation of the hyperbolic structure on M (see below), and the cocycle
z determines the corresponding infinitesimal deformation of its holon-
omy representation. Specifically, if p; : m;(M) — G, t € R is a smooth
1-parameter family of holonomy representations such that py = p is the
holonomy for the initial hyperbolic structure on M, then

z(v) = —=pe(V)p(y) !

dt ¢=0
We discuss group cohomology and the connection with representations
m1(M) = G in more detail in Section 4.

An alternative measurement of the non-triviality of the de Rham
cohomology class determined by the closed form w is given by looking
at the universal cover. If we lift the form and the bundle to the universal
cover M of M, integration defines a global section of the lifted bundle
E — M. This section is a lift of the local section defined on M; it will
still be denoted by s. The fundamental group, m(M,z), acts on_the
universal cover M by covering translations and on the fibers of E as
described above, so it acts on sections of E. (The result of y € m; (M, )
acting on a section s will be denoted by +,s.) In general, the section
is not equivariant with respect to this action: it is equivariant exactly
when the local section defined on M, possibly plus a constant, can be
extended globally, hence when the form w is exact. However, the lifted
section does always satisfy an automorphic property:
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3 Lemma 2.1. Let w be a closed E-valued 1-form on M and s : M —
E be a global section defined by integrating w. Then for any element v
of m1(M, ), the new section defined by y — (v 's)(v(y)) — s(y) is d-
closed.

Remark. If the fibers of E are identified with the Lie algebra G
using the flat connection, y — (v, 1s)(v(y)) — s(y) becomes a map from
M to G. Lemma 2.1 says that the map is constant, i.e., independent of
y. For any vy € 7 (M, z), this element of G is the value 2(-y) at y of the
cocycle z defined above.

Proof. The lemma follows from the fact that the 1-form w is
globally defined on M. Since ds is the lift of w to M, it is equivariant;
i.e., 77 }(ds) = ds. Since the action of the fundamental group on sections
commutes with d, the derivative of the section y — (v, 1s)(v(y)) — s(y)
is zero. q.e.d.

We will call a section satisfying the conclusion of Lemma 2.1 auto-
morphic.

Although the flat connection on F is important in defining and un-
derstanding the cohomology theory related to deformations of hyper-
bolic structures and in relating it to deformations of representations,
we will find an alternative structure on £ more useful. It will help us
understand the cohomology theory in terms of purely differential ge-
ometric concepts. It is based on the decomposition, as described in
Section 1, of the fiber of E at each point in M as P & K. This decom-
poses E into an orthogonal direct sum of two sub-bundles (which are not
flat) which we also denote as P and K, respectively. We emphasize that
this splitting is not compatible with the flat connection; i.e., it is not
preserved under parallel translation using the flat connection. In partic-
ular, on the lifted bundle, E’, over the universal cover of M, where the
flat connection allows a global identification of the fibers with the Lie
algebra, this splitting does not come from a single splitting of the Lie
algebra. Similarly, the flat exterior derivative d does not take (local)
sections of the sub-bundles to (local) 1-forms with values in the sub-
bundles. On the other hand, the covariant exterior derivative D does
take (local) sections of the sub-bundles to (local) 1-forms with values in
the sub-bundles. The relations between the two exterior derivatives and
between their adjoints (as in equation (1)) are the key to the analysis
in this section. We have found that these relations are best expressed
in terms of this decomposition of the bundle.
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The two sub-bundles of E lift to sub-bundles of E, denoted P and
K, respectively. A section of E (resp., E) is equivalent to the pair of
sections of P and K (resp., P and K) obtained by orthogonal projection.
The bundle P is naturally isomorphic to the tangent bundle TM of M;
its lift is isomorphic to the tangent bundle TM of M. The action of
the fundamental group respects the isomorphism between P and TM.
Thus a section of the lifted sub-bundle can be interpreted as a vector
field on M. It is equivariant under the action of the fundamental group
precisely when it corresponds to a vector field defined on M. From now
on we will pass freely between the notion of sections of P (resp., P) and
vector fields on M (resp., M ) without distinction.

The section of E determined by integrating a closed E-valued 1-
form was seen to be automorphic in Lemma 2.1. Similarly, we will say
that a vector field v on M is automorphic if for any v € m (M, z), the
difference (7, !)v(y(y)) — v(y) is a vector field which is the projection
to P of a d-closed section of E. This definition is clearly made so that
the projection of an automorphic section to P will be automorphic. In
Lemma 2.3 below we will see how to lift an automorphic vector field to
an automorphic section.

We now comment on the geometric interpretation of the automor-
phic vector field determined by integrating a closed E-valued 1-form and
then taking the vector field part of the resulting automorphic section.
A hyperbolic structure on M is determined by local charts modelled
on X = H". These determine, via an analytic continuation argument,
amap ® : M — X, called the developing map, which is determined
uniquely up to post-multiplication by an element of G = isom(X). The
developing map satisfies the equivariance property ®(ym) = p(y)®(m),
for all m € M, v € (M), where m;(M) acts on M by covering trans-
formations, and p : m;(M) — G is the holonomy representation of the
structure. (See [24] and [27] for a complete discussion of these ideas.)

A 1-parameter family of hyperbolic structures defines a 1-parameter
family of developing maps ®;. The derivative at ¢ = 0 of this family
defines a map ® : M — TX. For any point m € M, ®;(m) is a curve in
X describing how the image of m is moving under the developing maps;

®(m) is the initial tangent vector to the curve. The tangent bundle TX
of X is isomorphic to the bundle ’P over X, and the analogous bundle P
over M is the pull-back of the bundle over X via the initial developing
map ®;. Thus the automorphic vector field is just describing the in-
finitesimal motion of the points of M under the variation of hyperbolic
structures.
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In this way, we see how a choice of representative for a cohomology
class in H!(M; E) determines an infinitesimal variation of the devel-
oping map. Taking a different representative for the cohomology class
amounts to changing it by ds for a globally defined section s of E. The
corresponding new infinitesimal variation of the developing map has
been altered by the lift of a globally defined vector field on M. This is
the infinitesimal result of changing the developing map by an isotopy
on M; it determines an equivalent hyperbolic structure. This suggests
that we should be able to study the cohomology theory in terms of
automorphic vector fields modulo equivariant vector fields.

To do this, we need to analyze the operator d on local sections of E.
There are some special features of the 3-dimensional situation, which
simplify this analysis. The Lie algebra G = sl2C has a natural complex
structure which is related to the decomposition E = P& K by K =i P.
To see that multiplication by ¢ in the Lie algebra induces a bundle
isomorphism from P to K, we recall from the previous section that this
splitting of E comes from viewing the fibers as left invariant vector
fields on G. This identification is only well-defined up to the adjoint
action of K, but the adjoint action commutes with multiplication by 3.
More geometrically, if £ denotes an infinitesimal translation, then it is
an infinitesimal rotation whose axis is the axis of ¢. Further, ¢ and it
are orthogonal, and ||t|| = ||it| is the length of the tangent vector in M
corresponding to t. We will now think of Q*(M;P) and Q*(M;K) as
the real and imaginary parts of Q*(M; E). Recall the decompositions
d = D+T, é§ = D*+T* from equation (1) of the previous section. Then
D and T (respectively D* and T™*) are precisely the real and imaginary
parts of d (respectively 9).

Using the complex structure on the fibers, a local section of F deter-
mined by integrating an E-valued 1-form is just a pair of vector fields,
defined locally on M, called the real and imaginary vector fields. An
E-valued 1-form is exact precisely when it is the derivative of a global
section; i.e., when these vector fields are globally defined. We are free
to alter the local vector fields by adding globally defined ones without
changing the cohomology class. The image of d lies in the space of E-
valued 1-forms, and can be decomposed into real and imaginary vector
valued 1-forms. If v is a real vector field on M, then the real part of dv
is Dv; by (1) this is the vector valued 1-form Vv. The imaginary part of
dv is another vector valued 1-form T'w, where T is the purely algebraic
operator from (1).

A vector valued 1-form is an element of Hom (T M,TM); using the
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metric on T'M, it decomposes into its symmetric and skew-symmetric
parts. Furthermore, in dimension 3, there is a canonical isomorphism
from vector fields to skew-symmetric elements of Hom(T M, T M), which,
for example, sends e to e; ®w; —e; ®w;, when {ex, e, e} is a positively
oriented frame and {w;} is the dual co-frame.

Lemma 2.2. Let v be a locally defined, real vector field on M. Then
the element Tv € iHom(TM,TM) is skew-symmetric and corresponds
to the vector field —iv under the above canonical isomorphism.

Proof. This follows from the formula (1) for 7" and the equations
for the bracket in the Lie algebra G = sloC. Choose a local frame
{e;} on M, and denote by {w;} the dual co-frame and by {E;} € P
the corresponding infinitesimal translations. Then the formula for T
gives that TEy = ¥;[E;, Exlw;. From [E;, Ex] = —iE; when {e;, e, e}
form an oriented basis, we see that the sum has two terms, which are of
opposite signs. Since T is linear and purely algebraic, this implies that
Tv is skew-symmetric. Further Tv is the image of —iv under the above
isomorphism. q.e.d.

The decomposition of Dv as an element of Hom(TM,TM) has a
useful geometric interpretation. The skew-symmetric part is called the
curl of v. The trace of the linear transformation is the divergence of
v. The traceless, symmetric part is often called the strain of v. The
symmetric part can be considered as a symmetric 2-tensor (using the
metric), which describes the infinitesimal change in the metric under
the deformation. The divergence measures the infinitesimal change in
the volume and is the conformal part of the change in metric. The
strain measures the non-conformal change in the metric. Under the
identification of skew-symmetric transformations with vectors, curl v,
becomes a vector field. (This vector field is half the usual cur! considered
in elementary vector calculus.)

The following result allows us to work exclusively with vector fields,
rather than E-valued 1-forms. It also shows that a cohomology class is
completely determined by the infinitesimal change in the metric induced
by the real vector field. This is to be expected since the cohomology
class represents an infinitesimal variation of the hyperbolic structure,
but it is useful to see explicitly how this fits in with the cohomology
theory. ) _

Consider the local section, s, = v — % curl v, which we call the
canonical lift of v. Clearly, it is determined by its real part.
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Proposition 2.3. Let v be an automorphic vector field on M. Then
the following hold:

(a) The canonical lift s, = v — i curl v is an automorphic section of
E.

(b) The real part of ds, is symmetric. The imaginary, skew-symmetric
part of ds, is —(curl curl v + v).

(c) If s is any automorphic section of E, then the cohomology class of
ds on M is determined by its real, symmetric part. Furthermore,
any cohomology class may be represented by a form whose associ-
ated local section is the canonical lift of its associated local vector

field.

Proof. We first show that a d-closed section of E is determined by
its projection to P: if v is the projection of a d-closed section s, then
s=v — icurlov.

To see this, note that if s = v + 7 w and ds = 0, then the real
part of ds, which equals Dv + i Tw, is zero. By Lemma 2.2, : Tw is
skew-symmetric, corresponding to w. Thus Dv is skew-symmetric equal
to —w. By definition, the skew-symmetric part of Dv equals curl v.

(a) A vector field v is automorphic if, for any v € (M, z),
the vector field y — (v !)v(y(y)) — v(y) is the projection of a d-closed
section of E. From the observation above, this d-closed section equals

y = () —v(y) — i curl((v)o(1(y)) — v(y)).

Since the action of v is by isometries, it commutes with taking the curl.
Thus the section is to equal y — (v;!)s(y(y)) — s(y) for the canonical
lift s = v — ¢ curl v. This shows that the canonical lift s is automorphic.

(c)  Let s =v+1w be any automorphic section with vector fields
v and w as its real and imaginary parts. Then ds is equivariant, and, in
particular, its real skew-symmetric part dsyeql skew i €quivariant. Thus,
it determines a vector field on M. On the other hand, the decomposition
of d shows that

ds =dv + idw = (Dv + Tv) + i(Dw + Tw)

(®) =(Dv + iTw) + (Tv + iDw),

where we have decomposed ds into its real and imaginary parts. Further,
by Lemma 2.2, Tv and Tw are skew-symmetric tensors identified with
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the vector fields —iv and —iw. So the real, skew-symmetric part of ds,
interpreted as a vector field, is

dsreal,skew =curl v+1iTw = curl v+ w.

It follows that w differs from —curl v by a globally defined vector field
on M; hence, s differs from the canonical lift of v by a global section.
In particular, the cohomology class is determined by the canonical lift
of v, hence by the real part of s. Furthermore, the canonical lift of v
may be chosen to represent this cohomology class.

Note also that the real, symmetric part of ds is not affected by the
imaginary part of a local section s. Thus, the cohomology class of ds is
completely determined by the real, symmetric part.

(b) If s = v+iw is the canonical lift of v, then w = —curl v, so the
real skew-symmetric part of its derivative (ds)reqt,skew = curl v+w = 0,
and the imaginary, skew-symmetric part of its derivative is

(ds)imag,skew =Tv+ curl w = —v — curl curl v.

q.e.d.

We now consider the structure of a closed and co-closed form in
Q!(M; E). Note that since M is not complete this is a stronger condition
than saying that the form is harmonic. Later we will prove a Hodge
theorem which shows that there is a unique such representative in each
cohomology class with certain controlled behavior at the singular locus.
First we give a local description of such forms.

A closed and co-closed form w in Q!(M;E) determines a locally
defined harmonic section s by integration, since s satisfies As = dds =
dw = 0. By equation (3), the Laplacian on sections preserves the real
and imaginary parts of the section: if s = v + 1w, then As = Av +
tAw. So, to understand locally defined harmonic sections, it suffices to
understand the structure of locally defined harmonic vector fields. The
Laplacian on vector fields has a Weitzenbdck formula which decomposes
into a second order operator plus a order zero operator. Specifically, we
have

9) Av = V*V o+ 2,

where the operator V* is the adjoint of V. (Sometimes V*V is called
the “rough Laplacian”.) The factor of 2 is a reflection of the fact that
the Ricci curvature of M is —2. This formula can be easily derived from

19
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(3) and (4) of the previous section since V*V = D*D. In this case,
H = T*T = ¥;ad(E;)? is multiplication by 2 since [E;, [E;, Ej]] = E;
for i # j. Note that if v is automorphic, then Av is equivariant, since
for any automorphic lift s of v, ds is equivariant and the real part of
dds is Av.

Most of the identities that we need are derived most easily by con-
sidering the local, real-valued 1-forms on M, which are dual to the local
vector fields with respect to the metric. We will denote by v the 1-
form dual to v and by A the usual Laplacian on 1-forms. Then the
relationship between the various Laplacians is determined by

(10) A = (V*V ) - 20.

This follows from the general relation between the Laplacians (see [30]
or [31]), using the fact that the Ricci curvature of M is —2. From this
and (9) above, we see that

(11) Av — 45 = Ad.

If we denote by cz, 5 the usual exterior derivatives of real-valued forms
on M and their adjoints, then A = db + éd. Tt is well-known that the
function 84 is the divergence of v, that the 1-form *dd is the dual of the
vector field 2 curl v, and that d f is the dual of the gradient vector field
grad f. Thus by taking the dual of formula (11) we obtain

(12) Av — 4v = grad div v + 4 curl curl v.

The last equation immediately yields several useful properties of
harmonic vector fields.

Lemma 2.4. Suppose that v is a harmonic vector field, i.e., v
satisfies Av = 0. Then the following hold:

(a) div v satisfies

~

(13) A(div v) = —4 div v,

(b) w = curl v is harmonic and satisfies

(14) curl curl w = —w,

(c) if v also satisfies div v =0 (i.e., it is volume preserving) then it
satisfies
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(15) curl curl v = —v.

Proof. By taking div of (12) and noting that d and § commute
with A, we see that div v satisfies

~

A(div v) = div grad (div v) = —4 div v.

Similarly, by taking cur!l of (12) we obtain equation (14). Since div curl v

= 0, it follows from (12) and (14) that A(curl v) = 0. If v satisfies

div v = 0, then, by equation (12), it satisfies curl curl v = —v itself.
q.e.d.

Remark. In particular, part (c) shows that the identity cur! curl w
= —w holds for the vector field induced by a d-closed section (i.e., a
Killing vector field). This also follows from the proof of Lemma 2.3 (b).

We will use these observations to study the canonical lift of a har-
monic vector field. But first we need to establish the formulae for T' and
T* on real, E-valued 1-forms.

Lemma 2.5. The algebraic operator T*, acting on sections of
Hom(TM,TM) sends each skew-symmetric element to 21 times the cor-
responding vector field and sends each symmetric element to 0. The
operator ¥T sends a traceless element of Hom(TM,TM) to i times its
transpose and multiplies the identity by —21, i.e.,

«T(n) = i(n" — tr(n)I).

Proof. This is proved in the same manner as Lemma 2.2. Choose
a local frame {e;} on M, and denote by {w;} the dual co-frame and
by {E;} € P the corresponding infinitesimal translations. Then the
formula for T* gives that T*(E; ® wi) = [Ex, E;] which equals ¢E; when
{ej,ex,e;} form an oriented basis. Thus T*(E; ® wx + Ex ® wj) = 0
(including the case k = j) and T*(E; @ wi — Ex Qwj) = 2i1E) as claimed.
Similarly, T(E; @ wk) = Xj[Ey, Ej] @ wy Awg. If j # k, the only non-zero
term is when | # j, k. Taking the x of this gives iEx @ wj. If j = k we
get +T(E; Qw;) = —i(Ex @ wi + E; ®w;). Thus «T sends the difference
of any two such diagonal elements to ¢ times itself and multiplies the
identity by —2i. q.e.d.
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Proposition 2.6. Let s be the canonical lift of a divergence-free,
harmonic vector field (locally defined). The E-valued 1-form ds is closed
and co-closed, and ds = n + i x Dn, where n and *Dn are symmetric
and traceless. Futhermore, D*n =0, D*Dn = —1.

Proof. Given a harmonic vector field v, its canonical lift, s =
v — 1 curl v, is a harmonic section since curl v is harmonic by Lemma
2.4(b). Thus ds is a closed and co-closed E-valued 1-form. The real
part of ds is symmetric and the imaginary, skew-symmetric part is
—(curl curl v + v); this is the case for any canonical lift by Lemma
2.3(b).

If v is also volume-preserving (div v = 0), then curl curl v+ v =0
by (15), so both the real and imaginary parts of ds are symmetric and
traceless. In particular,

(16) ds = str v — i str curl v.

Here str v denotes the strain of v (the traceless, symmetric part of
Vv). Let n = str v. Then Dv = curl v+ 7. The real part of éds =
D*n — T*(i str curl v) is zero since s is harmonic. But, by Lemma
2.5, since str curl v is symmetric, T* of it is zero. Thus, if div v = 0,
we get that

(17) D*n=0.

Next, consider the equation d?s = 0. By equation (16) and the
decomposition of d in (8), the real part of d%s is Dy — T(i str curl v).
By Lemma 2.5 +T is just multiplication by 7 on this symmetric, traceless
element of Hom(TM,TM). It follows that *xDn = —str curl v; in other
words,

(18) ds=n+1 x Dn.
Applying *D to *Dn gives str curl curl v since curl v is also harmonic
and volume preserving. Since curl curl v = —v by (15), we get *D x
Dn = str (—v) = —n or, since D* = xDx,
(19) D*Dn = —n.

q.e.d.

Remark. These equations have geometric derivations as well.
Equation (19) represents the condition, in the presence of the divergence-
free hypothesis and equation (17) that the curvature is (infinitesimally)
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remaining constant. Under the divergence-free hypothesis, equation
(17) is the condition, that the deformation is L2-perpendicular to those
induced by global vector fields on M. These equations also arise in the
deformation theory of Einstein structures ([3], Chapter 12).

We will now use the structure that we have developed for closed and
co-closed forms to study the cohomology group H!(M;E). We make
some preliminary assumptions about the E-valued 1-form representing
the class. First, we assume that the local section which it determines is
the canonical lift of the real vector field associated to it; this is possible
‘by Prop. 2.3 (c). This allows us to restrict our attention to the real
part of the associated section. Secondly, we assume that it is equal to a
standard form in an open tubular neighborhood U of the singular locus.
This form will depend only on the value of the cohomology class when
applied to cycles on the boundary tori of the manifold M — U. If the
cohomolgy class is trivial on the boundary, the standard form will have
compact support. More generally, we will give explicit representatives
in U using cylindrical coordinates. (See (23) and (24) in Section 3). For
now, it suffices to say that in U, the form will be of the kind described in
Proposition 2.6; in particular, it will be closed, co-closed, and traceless.
We will say that a form satisfying the above conditions is in standard
form. Once we give the explicit local representatives, it will be immedi-
ate that each cohomology class has a representative in standard form.
(See Lemma 3.3).

Our main analytic result is that in each cohomology class there is a
unique representative which is closed, co-closed and traceless, and differs
from any standard form by the derivative of an L? section.

Theorem 2.7 (Hodge Theorem for Cone-Manifolds). Let
M be a closed, orientable 3-dimensional hyperbolic cone-manifold and
M = M -3, where ¥ is the singular locus. Given a cohomology class in
HY(M;E), let & € QY(M; E) be a smooth, E-valued 1-form in standard
form representing that class. There is a closed and co-closed represen-
tative w in the same cohomology class, whose associated local section is
the canonical lift of a divergence-free, harmonic vector field. There is
a unique such representative satisfying the condition that ® — w = ds
where s is a globally defined L? section of E.

Remark 1. A l-parameter 'fé,mily of complete hyperbolic struc-
tures determines a vector field on hyperbolic space which often (e.g.
for closed surfaces) extends continuously to a vector field v, on the
sphere at infinity. On the interior of hyperbolic space there is a new
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vector field, called the visual average of v, which determines an equiv-
alent infinitesimal variation of structure. (See [24, Chap. 11], [22] and
[1].) It is canonically defined, depending only on the vector field at infin-
ity; hence, it is invariant under infinitesimal change of co-ordinates with
compact support on the underlying manifold. The induced infinitesimal
change of metric 7 coming from such a vector field has exactly the same
local properties as those in Proposition 2.6. Our choice of Hodge rep-
resentatives can be viewed as a substitute in the cone-manifold setting,
where there is no nice sphere at infinity, for this canonical representative
of the variation of structure.

Remark 2. It should be noted that the closed and co-closed
1-form guaranteed by the theorem above is not necessarily in L? itself,
even if the standard form @ is in L2. This will only be the case under the
condition that the cone angles are at most 27. A seemingly more natural
Hodge theorem would be one in which the unique representative 1-form
is in L2. Such a theorem is also true; however, for cone angles greater
than 27, the Hodge representative will not necessarily be traceless; i.e.,
the deformation is not volume preserving. For a more detailed discussion
of these issues and the role which they play in the deformation theory
of surfaces, see [18].

Proof. Consider the globally defined section d&. We want to
solve the equation As = dw for a globally defined section s. Then we
can define w by w = @ — ds, and w will be closed and co-closed. By
restricting the domain of the Laplacian carefully, we can insure that w
has the required properties.

Since, by hypothesis, @ is in standard form, & has compact support;
in particular, it is in L?. Being in standard form also means that the
local section determined by @ is the canonical lift of its real part w, say,
@ = d(w —1 curl w). Then é& = dd(w — i curl w) = A(w —i curl w) =
Aw — ¢ curl Aw, since curl and A (on local vector fields) commute.
It follows that dw is the canonical lift of its real part. Thus, it suffices
to solve Av = ¢, where ¢ is the real part of dw, for a globally defined
vector field v.

It is easiest to describe the domain of the Laplacian on (globally
defined) vector fields, by considering the dual 1-forms as before. Thus,
if ¢ is the dual to ¢ then, by equation (11), we want to find a 1-form
satisfying

A+ 4T =¢.

Note that ¢ is C*® with compact support, so it is in L2.
pp
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To describe the domain of A, first assume that 7 is C®. Then
the conditions are that T, J’r, o, JST, ddr are all in L2. We then take
the closure, in the L? sense, of these conditions. With this domain, the
operator (A +4) is a self-adjoint elliptic operator with trivial kernel (see
Theorem 5.4). The domain is essentially the same as that considered
by Cheeger [6] for manifolds with conical metrics and the proof of the
properties of the operator are similar. Since our metrics are not conical
in his sense, but rather asymptotically like a cone crossed with a circle,
we will give the proof in an appendix.

Assuming this result, we can solve the above equation uniquely with
T in our domain. By the usual regularity theory for elliptic operators,
7 will be C* since ¢ is C*®. (See Gaffney [10], [11].)

We now let w = @ — ds, where s is the canonical lift of the vector
field v which is dual to 7. It is closed and co-closed by construction.
Furthermore, since 7 and dr are in L2, v and curl v (which is dual to
1 xdr) are in L2 Thus s = v — i curl v is in L? as desired.

Finally, to see that w is traceless, recall that the trace of @ has
compact support by definition of “standard”. Since 6t and déT are in
L2, div v and its derivative are in L2. Thus, the trace of w and its
derivative are in L2. However, since w is closed and co-closed, its trace
satisfies

Atr(w) = —4 tr(w),

by equation (13). (Recall that the trace is just the globally defined
function which is the divergence of the local vector fields determined by
the E-valued 1-form.) As with 1-forms, A on functions is self-adjoint
with non-negative spectrum, if the domain is restricted to functions
which together with their derivatives and Laplacians are in L2. Thus,
tr(w) =0. q.ed.

3. Asymptotic behavior of harmonic forms near singular
locus

In this section we study the asymptotic behavior near the singular
locus of the harmonic forms given by the Hodge theorem for hyperbolic
cone-manifolds. Using this we will be able to analyze the boundary term
in formula (5) of Section 1 and prove Theorem 1.1.

We assume that the form w € Q!(M; E) representing the cohomol-
ogy class is of the form guaranteed by the Hodge Theorem 2.7. This
means that w = n + ¢ * D7, where both n and *Dn are traceless and
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symmetric, representing the strains of a locally defined vector field and
of minus the curl of the vector field, respectively. We want to study the
behavior of the boundary term arising in (5) when we remove a tubular
neighbourhood of radius r about the singular locus and let r approach
0. To do this, we first investigate the growth rate of the forms n and
*Dn near the singular locus.

The behavior of the forms 7 and *D7 in a tubular neighborhood
of the singular locus is determined by our choice of the domain of the
Laplacian in the proof of the Hodge Theorem 2.7. We began with a
form @ which equals a multiple of a standard closed and co-closed form
(whose explicit description is given in (24) below) in a neighborhood of
the singular locus. In particular, §& has compact support. The form w
given by the Hodge theorem equals @ — ds where s is a globally defined
L? section satisfying As = 6. Thus, in a neighborhood of the singular
locus, w equals ds plus a multiple of (24), where As = 0 and s is in our
chosen domain.

The section s is the canonical lift v — 7 curl v of a globally defined
harmonic vector field v. The domain of the Laplacian acting on sections
was given in terms of the 1-form 7 dual to v. For smooth forms the
condition is that 7, dr, ST, dd,8dr are all in L2. The equation Av = 0 is
equivalent (by (11)) to A7 = —4 7. Thus we will analyze the asymptotic
behavior near the singular locus of forms 7 satisfying this equation,
under these L? constraints. We will do this by separation of variables,
essentially expanding 7 into a Fourier series.

A sufficiently small neighborhood of the singular locus will be mapped
by the developing map into a neighborhood in H3 of a geodesic. If
we use cylindrical coordinates, (r,6, z), the hyperbolic metric is dr? +
sinh? r d9% + cosh® r d22, where the angle 8 is defined modulo the cone
angle a. We denote the moving co-frame adapted to this coordinate
system by (w;,ws,w3) = (dr,sinhr dé, coshr dz).

Consider a real-valued 1-form, 7, defined in this neighborhood. If
we express it in these coordinates as

T= f(r’ 0, z)wl + g(r,0,z)w2 + h(r,oaz)wiia

then, by explicit computation, we get the following expressions for the
w; components of (A + 2)7, for i = 1,2, 3 respectively:

—frr — (tanh + coth) fo+(tanh? + coth?)f — csch? fgg — sech? f,,
+2csch coth gg + 2sech tanh h,
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—grr — (tanh + coth)g,+coth® g — csch® ggg
—sech? g,, — 2csch coth fq

—hyy — (tanh + coth)h,.+tanh® h — csch? hgg
—sech? h,, — 2sech tanh f,.

(Subscripts denote derivatives with respect to a variable and “tanh” is
short for “tanhr”, etc.)

Since 7 comes from a neighborhood of the singular locus on the cone-
manifold it will satisfy equivariance properties, depending on the shape
of the neighborhood. If the cone angle equals « then 7(r,0 + o, 2) =
7(r,0,z), and if the singular locus has length £, it will further satisfy
7(r,0,z + €) = 7(r,0 + t, z), where t measures the twist in the normal
direction along the singular locus. (The complex number £ + it is called
the complez length of the singular locus.)

Because of the decomposition of the Laplacian in a neighborhood
of the singular locus, we can use separation of variables, assuming that
f(r,6, z) equals a function f(r) times a function on the torus which is the
boundary of the tubular neighborhood of the singular locus. Similarly
for the other functions. It suffices further to decompose the functions
on the torus into eigenfunctions of the Laplacian, which are of the forms
cos(af + bz) and sin(af + bz), where a and b denote the quantities 2%"
and @—"—;ﬁg, for n,m € Z. We now assume that such a 1-form 7 is
an eigenform of the Laplacian. Then, from the explicit expression for
the Laplacian, we see that 7 must be of the following type (or the same
form with sin and cos interchanged):

(20) 7 = f(r) cos(af +bz)w1 +g(r) sin(af + bz)w + h(r) sin(abd + bz)ws.

Then the w; coefficients of (A +2)7 are given by the following (times
cos(afd + bz) when i = 1 and times sin(af + bz) when i = 2,3):

—f" — (tanh + coth) f'+(tanh? + coth? + a?csch® + b*sech?) f
+(2a csch coth)g + (2b sech tanh)h

27
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—g" — (tanh + coth)g’+(coth2 + a%csch? + bzsech2)g
+(2a csch coth) f

—h" — (tanh + coth)h' +(tanh? + a%csch? + b?sech?)h
+(2b sech tanh)f.

Expanding the functions in r as Taylor series,

fr)=r*(fo+ fir+---),
(g0 + gir + 1),
h(r) =r¥(ho + har +---),

@
~~
S
N
Il

we get linear equations for the coefficients. Solving the linear equations,
we get the following lemma whose proof we leave to the reader.

Lemma 3.1. If 7 is an eigenform of the Laplacian of the form (20),
then the indicial roots (leading powers) for T are k =1+ a,+a,—1ta.
The leading coefficients for (f(r),g(r), h(r)) are multiples of (1,+£1,0),
(0,0,%1),(1,F1,0) respectively. (Without loss of generality we will al-
ways assume that a > 0.)

Note that these are independent of b and the eigenvalue of the eigen-
form 7; they depend only on the cone angle and the frequency n in the
0 direction. A general solution will be a linear combination of these six
solutions. As usual, it may be necessary to introduce a logarithmic fac-
tor when the indicial roots differ by a positive integer (which is always
the case here), and when there are repeated roots. The analysis below
involves only the leading coefficients, so it will only be affected when the
logarithmic term is in the leading power; i.e., when there are repeated
roots. This occurs only when a =0, a = %, and a = 1. These cases will
be analyzed separately below.

We will first show that our choice of domain for the Laplacian re-
quires that only the “positive” roots, k = 1 + a,a,—1 + a, appear.

Proposition 3.2. Let 7 be an eigenform for the Laplacian on
real-valued [-forms of the type (20), defined on a neighborhood of a
component of the singular locus of M. Then T has the property that
7,dr,b7,dé7,8dr are all in L? in a nezghborhood of the singular locus
if and only if T has leading powers r* with no leading logarithmic term,
where

k=1+4a,a,-1+aifa#0,andk=0,1ia=0
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Proof. First assume that a # 0, 3 5,1. Then the leading terms will
be powers of r with no leading logarithmic terms. Note that a form
whose pointwise norm is ~ r* is in L? precisely when k > —1. Since we
are assuming that a > 0, we see that kK = —1 — a is never allowed and
k =1+ a is always allowed.

The divergence of the vector field dual to 7, is

67 = (f' + (tanh + coth) f + a csch g + b sech h) cos(af + bz).

Its leading coefficient, of order k — 1, equals (1 + k) fo + a go which is
non-zero only when k = 1+ a. In this case it equals (2 + 2a) fo which is
non-zero unless ¢ = 1 and k£ = 0 (which is considered later). Similarly,
the coefficients of 7*~2 in dér are

((k = 1)((1 + k) fo + @ g0), —a((1 + k) fo + @ g0),0),

which is non-zero as long as a # 0. It follows that, if dé is in L2, then
k # 1 —a. Conversely, if Kk = —1 + a or a, then 67 is still in L2 since
the k — 1 coefficient vanishes. Since d§ is again an eigenform for the
Laplacian, its leading power must be at least —1+a (rather than —2+a,
which is not an indicial root). Thus, if kK = -1 + a or a, dér will still
be in L2

We also compute that the w; coefficients of *dr are given by the
following (times the respective trigonometric function):

—bsech g+acsch h
(22) — (K’ +tanh h + b sech f)
g + coth g + a csch f.

The coefficients of r*~! are (ahg, —kho, (k + 1)go + afo). The first
two are non-zero when k = +a so, if we assume that dr is in L?, then
k # —a. On the other hand, when k& = —1 + a, the coefficients are
all zero, so, even in this case, dr will be in L2. Since xdr is again
an eigenform for the Laplacian, the same analysis holds for it and we
conclude that ddr = *d(xdr) will be in L2. Thus, for k = —1 +a or a,
both dr and ddr will be in L2.

The case of repeated roots is only slightly more complicated.

The vectors of leading coefficients for K = a and k = 1—a are linearly
independent, so no logarithmic term is necessary for the repeated root
that occurs when a = % The argument aboye goes through unchanged.

29
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When a = 1, then solutions for k = —1 + @ and k = 1 — a coalesce
and it is necessary to introduce a logarithmic solution. For both solu-
tions the leading coefficients are (1,—1,0). From the formula above for
the divergence, it follows that the divergence of the solution with the
logarithmic term is not in L2, so this case is not allowed (and plays the
role of the 1 — a solution). The argument that the other solution is in
the domain is the same as that for the general —1 + a case above.

The case a = 0 involves three repeated roots. If k = +a = 0, then
it is necessary to introduce a logarithmic solution in order to a get a
2-dimensional solution space. However, from (22) above we see that the
w9 coordinate of +dr will have leading power —1, and hence this case is
not in our domain. This plays the role of the negative solution above.
The positive solution, without the logarithmic term, is seen to be in our
domain by the previous analysis. Since we will include this case in the
analysis below, we omit the details. If kK = —1 or k = 1, the solution
space is already two-dimensional, spanned by (1,0,0) and (0,1,0) in
both cases. Clearly the case K = —1 is not in our domain. To check
that the entire solution space is in the domain for k = 1, it suffices to
check that dé7 and ddr are. Again, we omit the details. However, we
note that, in a sense, the 1 — a solution has been allowed in this case.
The significance of this fact is unclear. q.e.d.

Remark. At this stage, we can see why the size of the cone angle,
a, might play a role in our analysis. It is related to the growth rates
of the forms via the quantity, a, which equals 2%" If n # 0, a will be
> 1 precisely when a < 27. For the eigenforms above which are in our
domain, when either a = 0 or a > 1, the pointwise norms of 7 and dr
(and hence of v and curl v) are bounded. This plays a key role in the
proof of Theorem 1.1 later in this section. Even more significantly, this
angle restriction is necessary to ensure that the Hodge representative
w=1n+1 % Dn from Theorem 2.7 will be in L? when the cone angle is
unchanged. The reason for this is suggested by the above computation
because 1 and *Dn differ from the standard form in a neighborhood of
the singular locus by the strains of vector fields v and curl v respectively.
Since these are dual to 7 and dr, their Fourier components will have
growth rates of, at most, r~1%8¢ if ¢ > 0. This means that the strains
will generally have growth rates of, at most, 2%, This is in L? only if
a > 1. This illustrates the fact that, while our domain for the Laplacian
ensures that some combinations of the covariant derivatives of the vector
fields are in L?, it doesn’t control all of them. For large cone angles, no
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self-adjoint extension can do this. This is one of the main subtleties of
this kind of singularity.

We will now go back to our analysis of the closed and co-closed E-
valued 1-forms which, by Theorem 2.7, will represent the cohomology
classes in H!(M; E). In a tubular neighborhood U of the singular locus,
these will differ from ds, where s is a global section of E which is in
the domain analyzed above, by certain standard forms. The infinitesi-
mal change of metric induced by the standard forms is invariant under
the entire stabilizer of the singular axis in isomH? and preserves the
orthogonality of the vectors in the cylindrical orthonormal frame in a
neighborhood of the axis. Thus, when written in terms of cylindrical co-
ordinates, the real part of the E-valued 1-form depends only on the ra-
dial distance from the axis. Considered as an element of Hom(T' M, T M)
it will be diagonal in these co-ordinates. Explicit forms which induce
all possible infinitesimal changes in the holonomy in a neighborhood of
the singular axis are given below.

Since the tubular neighborhood U of a component of the singular
locus is diffeomorphic to a torus T2 cross an open interval, m (U) =
71(T?) = Z ® Z and the cohomology class is determined by its value
on any two generators of the fundamental group of the torus. We take
as generators the meridian, which is the class which wraps around the
singular locus once and bounds a singular disk with cone angle o, and
a longitude which intersects the meridian once.

To define our standard forms, we use the cylindrical coordinates on
U defined above, and we denote by e;, ez, e3 the orthonormal frame in
U dual to the co-frame w;,wsy, w3 defined above. In particular, e; is tan-
gent to the meridian and e3 is tangent to the singular locus, which
is homotopic in the cone-manifold to the longitude. We can inter-
pret an E-valued 1-form as a complex-valued section of TM @ T*M =
Hom(TM,TM). Then an element of TM ® T*M can be described as
a matrix whose (3, j) coordinate is the coefficient of e; ® wj.

The form in equation (23) below is a “standard” closed and co-closed
(non-L?) form which represents an infinitesimal deformation which de-
creases the cone angle but does not change the real part of the complex
length of the meridian. It preserves the property that the meridian is
elliptic and, hence, that there is a cone-manifold structure.
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__._2%_ 0 0
cosh®(r) sinh*(r) .
—i
(23) 0 SWR(r)  cosh(r)sih(7)
0 cosh(r) ;inh(r) cosh?(r)

The form in equation (24) below is a “standard” closed and co-
closed, L? form which stretches the singular locus, but leaves the holon-
omy of the meridian (hence the cone angle) unchanged.

-1
cosh? () 0 ) .O

(24) 0 -1 T

0 —isinh(r)  cosh(r)?+1

cosh(r) cosh(r)?

We now explain how to find the infinitesimal change in holonomy
representation produced by a closed E-valued 1-form w on U. The hy-
perbolic structure on U determines a holonomy representation
p:mU) £ Z®Z - G = isomH?, which is defined up to conju-
gacy. The image of p preserves a geodesic axis A in H3, namely the
image of the singular locus under a developing map. Hence, p is deter-
mined up to conjugacy by the complezr lengths of two generators. (The
complex length of a group element is the translation distance along its
axis plus ¢ times its rotation angle around the axis. See Section 4, for
further discussion.)

The form w determines an infinitesimal deformation of the holonomy
representation given by the cocycle z : 71 (U) — G obtained by integrat-
ing w around loops based at a point in U, after identifying each fiber
of E along the loop with the Lie algebra G. Let A denote the subspace
of G consisting of infinitesimal translations and rotations about the sin-
gular axis A. Choose a point z on A and use the metric at that point
to define the subspace AL of G orthogonal to A. A is generated by
translations and rotations with axes, based at z, perpendicular to the
axis A. So elements of AL give infinitesimal deformations which move
the invariant axis, but do not change any complex lengths. It follows
that the infinitesimal change in the complex length of a group element
7 is precisely the orthogonal projection of z(-y) onto the subspace A of
Gg.

In order to compute z(7) by integration along a curve, G is identified
with the fiber at a general point in U by parallel translation along an arc
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from z. Note that A is elementwise invariant and A+ is setwise invariant
under translation and rotation along A, so orthogonal projection and
the A component of an element of the fiber are independent of z € A.
Similarly, since the holonomy image, p(7(U)), is contained in the group
of translations and rotations around A, it commutes with projection
onto A. Thus, the A component of an element of the fiber over a point
in U is independent of the path from z. The infinitesimal change in the
complex length of v is obtained by integrating the .A component of w
around any representative in U of ~.

In terms of the cylindrical coordinates used above, the subspace
A of G consists of complex multiples of ¢4, where t4 represents the
infinitesimal pure translation in the e3 direction, along the singular axis
A where 7 = 0. The A components of the elements {e;, e2,e3} at a point
with cylindrical coordinates (r,0, z) are seen to be {0, —isinhr, coshr}
times t 4, respectively. The A component of w is the C-valued 1-form
w4 = v4 - w obtained by taking a pointwise inner product with the
complex-valued vector field v4 = coshre3z — isinhr ey using the inner
product on M. (Note that this product satisfies ia - b = —a - b.) So,
explicitly, the derivative of complex length of « is:

/(coshreg -w—1sinhre; - w).
v

To see the effect of the form defined by (23) on the holonomy of
the meridian, it suffices to integrate the A-part of the form around a
meridian at radius r. This integration is in the ey direction, so only
involves the second column of (23). From the previous discussion, we
see that the derivative of the complex length of the meridian is

1 7
" €2 — " e
sinh? r coshrsinhr

a
/ (coshrez—isinhrey)-( 3) sinhr df = —2ia.
0

In particular, the derivative of the cone angle is —2a. Also, the complex
length £ of the longitude has derivative —2L. In particular, the length
¢ = Re(L) of the singular locus has derivative

—1

£
/ (coshr ez —isinhres) - ( e3) coshrdz = —2¢.
0 .

sinhr coshr €2 cosh?r
Similar calculations show that for the 1-form given by (24), the
derivative of the complex length of the longitude is 2¢, while the complex

length of the meridian has derivative zero.
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Lemma 3.3. Given any closed ¢ € Q'(M; E) there is a cohomol-
ogous form w which equals a complez linear combination of the forms
above in a neighborhood of the singular locus. Thus w will be in standard
form. It will be in L? if and only if the corresponding infinitesimal defor-
mation leaves the complez length (or trace) of the meridian unchanged.
If it is in L2, it will actually be bounded.

Proof. The cohomology group H' (T?; E) is easily seen to have com-
plex dimension 2 (see the proof of Theorem 4.4, Section 4), parametrized
by the infinitesimal changes in the complex lengths (or traces) of the
longitude and the meridian. By taking a complex linear combination of
the forms above, we can define a form which effects any given change
in these generators in the neighborhood of the singular locus. Thus, a
general form will equal this linear combination plus an exact form. We
can subtract off this exact form in our neighborhood and then damp
it off outside of the neighborhood to get a cohomologous form which is
now standard in the neighborhood of the singular locus.

The linear combination of the above forms will include (23) if and
only if the trace of the meridian is changed. Since (23) is not in L? and
(24) is bounded, the remainder of the lemma follows. q.e.d.

Note that when the cone angle is unchanged, the standard form will
be bounded near the singular locus so the growth rates of the closed and
co-closed forms representing the cohomology class in H!(M; E) will be
determined, up to a bounded amount, by the derivative ds of a section
s which is harmonic and is the domain studied above.

We also will use the following observation.

Lemma 3.4. Let w be an E-valued form which is L? in a neighbor-
hood of the singular locus. Then w does not change the complex length
of a meridian around the singular locus.

Proof. If the change in holonomy of a meridian is non-zero, then
Js,wa=c#0, for each meridian circle S, at radius r. Then, using the
Schwarz inequality for vectors and for functions on S;, we see that

o<é=([ u 'w(ez))2 <([ |tA||w<e2)|)2
(L) ()

_<_ Cl’l’(/ l(dl2),
S,
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where | | denotes the pointwise norm of a form. It follows that
c
i > =2,
T, r

where T, denotes the torus at radius r from the singular locus. Now
choose 0 < 79 < 7; such that the cylindrical region 19 < r < r; is
contained in the tubular neighborhood of the singular locus. Then the
L? norm of w in this region is

r1 1
/ (/ |w|2>dr > / 2.
ro T: ro T

But the last integral diverges as 1o — 0, so the form w is not in L? in a
neighborhood of the singular locus. q.e.d.

We now have enough information to prove the main result of this
paper, Theorem 1.1, which we now recall.

Theorem 1.1. Let M be a finite-volume, 3-dimensional hyperbolic
cone-manifold, whose singular locus ¥ is a knot or link. Let M denote
the open, incomplete manifold M — X. If all cone angles along T are at
most 27, then every closed L? form in Q!(M; E) represents the trivial
cohomology class in H'(M; E).

Proof. Let ¢ € Q}(M;E) be a closed, E-valued 1-form which is
in L2. Then Lemma 3.4 shows that ¢ does not change the trace of the
meridian. So, by Lemma 3.3, ¢ is cohomologous to a form which is in
standard form and is bounded. We denote this new form by ¢ as well.

Using Proposition 2.6 and Theorem 2.7, the Hodge theorem for cone-
manifolds, we can find a closed and co-closed representative in the coho-
mology class which is volume preserving and is of the form w = n+: *Dn.
Here 1 and *Dn are the strains of a locally defined vector field and the
negative of its curl, respectively. In a neighborhood of the singular lo-
cus the local section determined by w is the canonical lift of a globally
defined vector field plus the local section determined by a complex mul-
tiple of (24). Since (24) is bounded, the growth of 7 and *Dn near the
singular locus are determined by the strains of the globally defined vec-
tor field and its curl. We will denote by v this globally defined vector
field; it and its curl are in L? by Theorem 2.7. '

We now use formula (5), obtained by integrating by parts, to get

0 = (Dw, Dw) + (D*w, D*w) + (Hw,w) + B,
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where B is the boundary term

B = —(*Tw Aw+ T w A xw),
N
and N is the cone-manifold M minus a tubular neighbourhood of the
singular locus. But, since w is closed and co-closed, Dw = —Tw and
D*w = —T*w. Furthermore, since the real and imaginary parts of w
are traceless and symmetric, T*w = 0, *Tw = i w, and Hw = w. (See
Lemma 2.5.)
Thus, we get
0=2|w||®+ B,

where the integrand of B is —*TwAw = *DwAw. To prove that w = 0,
it suffices to prove that the boundary term goes to zero as r — 0 on the
tori T, which are the boundary of a tubular neighborhood of radius r
around the singular locus. In fact, it suffices to find a sequence of radii
tending to zero for which the boundary term goes to zero.

We first note that, since w = n+ 1 * Dn and *D x Dy = —7), the
integrand for B, *Dw A w, equals 2 * Dn A 7. (Here we use the facts
that a Ab =ia Aib and a Aib = 0 for P-valued 1-forms a and b.) To get
a more explicit expression for this integrand we interpret an element of
TM ® T*M as a matrix whose (7, 7) entry is the coefficient of e; ® w;.
Then, explicitly, the integrand is n(ez) - *Dn(e3) —n(e3) - *Dn(ez), where
- denotes the inner product on M. Now

/ n(ez) - +Dr(es) — n(es) - *Dn(es)
oN

< /a  In(ez) - +Dn(es)
+ /a In(es) - +Da(ea)l.

We analyze the second term in this sum; the first is done similarly. By
the Schwarz inequality for the inner product of vectors and the Schwarz
inequality for the L? inner product, this is

S/ In(e3)| | * Dn(e2)| < |In(es)llr || * Dn(e2)ls-
oN

Here we have used |n(e3)| to denote the (pointwise) norm of the vector
n(es), and ||n(es)||r to denote the L2-norm of the function |n(e3)| on the
torus 7T, distance r from the singular locus with its induced metric.

At this point, we must invoke the hypothesis that the cone angle is
at most 2w. As we noted in the Remark after the proof of Proposition
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3.2, this is necessary to ensure that 7 and *Dn are in L2. What we
noted there was that the growth rates of the covariant derivatives of the
Fourier components of the vector fields v and curl v are at most r—2+¢
and that @ > 1 when the cone angle is smaller than 27. (The case a =1
is handled separately.) We will see in Corollary 3.6 below that this also
implies that 7 and *Dn are themselves in L2. For now, we assume that
this is true.

Since *Dn is in L2, so is *Dn(ez). An easy estimate (see (26) in the
appendix) shows that, for a sequence of distances r going to zero,

|| * Dnes)|lr = o(r™"/?|logr|~V/?).

If we compare the L2-norm of a function f on T} with that of the same
function measured in the metric on T, we see that ||f||» ~ r1/2||f]l:.
Thus, to prove that the boundary term goes to zero it suffices to show
that ||n(e3)||1 is bounded near the singular locus. To do this, we will
show that, up to bounded terms, it behaves asymptotically like ||v||;
and ||curl v||;. (Recall that v is a globally defined vector field and
that str(v + vg) = 7, where vg is the local vector field determined by a
multiple of (24).) This is a power of r slower than one would expect;
indeed, it is slower than the overall growth of ||n]|;.

By subtracting a complex multiple of (24) from w, we can obtain a
closed form whose local section in a neighborhood of the singular locus
is the canonical lift of v. Since (24) is bounded, it suffices to consider the
case where w = ds, s = v—1 curl v. From the decompositiond = V+T,
we see that 7(e3) differs from V. v by terms from curl v. (Recall that
T is a purely algebraic operation.) But, ifv = f(r,0,2)e; +g(r,0, 2)ez +
h(r, 0, z)es, then

Ve, v = (sech f, — tanh h)e, + (sech g,)ez + (sech h, + tanh f)es.

This follows immediately from the formulae V.,e; = tanh e3, Veze3 =
—tanh e;, and e3 = sech 2%. It suffices to show that ||v||1, ||curl v||1,
and ||Ve,v||; are bounded in a neighborhood of the singular locus.

We first will do the case of v; the case of curl v is identical and we
will indicate the changes needed for the case V¢ v. In a neighborhood
of the singular locus, the vector field v satisfies Av = 0 and is globally
defined there. Above we analyzed the asymptotic behavior of the dual
one-forms by using separation of variables and a Fourier decomposition
on each of the T.. Thus v is a sum of the form

v = E Um,n,
. mn ,

37
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where each vy, is dual to a 1-form of the form (20), with a and b

2mn 2rm+at

denoting the quantities <% and , respectively, as usual, and
possibly sin and cos interchanged. The analysis there showed that, with
our choice of domain, the leading power was at most r-lte ifq > 0.
In particular, these vector fields vanish at the singular locus as long as
a > 1. Since a = 2’{7", where the cone angle is a, this occurs whenever
the cone angle is less than 27 and a # 0. This is the second point
at which we need to impose the cone angle restriction in our proof of
Theorem 1.1. We will analyze separately the special cases a = 0,1,
where the individual terms are bounded near the singular locus but
need not vanish there.

Unfortunately, the fact that the individual terms go to zero in norm
is not enough to conclude that the vector field is bounded as one ap-
proaches the singular locus. For, if the convergence to zero is erratic
enough, there could be terms further and further out which grew be-
fore going to zero. The fact that the vector fields are harmonic gives
the needed control to rule this out. Specifically, we have the following
lemma:

Lemma 3.5. If v is a harmonic vector field, then it satisfies
Alol? = —2(2|[v][? + || Dol ).
In particular, if v is non-zero and ||v||? vanishes along the singular locus,
then ||v(r)||? is an increasing function of r.

Proof. For any vector field one has the equality,
Alvl? = 2((Apv,v) — ||Dv]?).

(See [30] or [31].) But, since v is harmonic, we have Apv = —2v,
proving the above formula. Integrating over the torus (with the metric
from r = 1), we get that

~(Ilo(r)I1})" = (tanh + coth)(|[v(r)II}) < ~4llo()IIF.

This implies that there are no positive local maxima for the func-
tion ||v(r)||?. Since ||v(r)||? vanishes at the singular locus and is non-
negative, it must be increasing in the neighborhood of the singular locus
where it is globally defined (assuming it is non-zero). q.e.d.

We use this lemma to show that the results we obtained for Fourier
components, by the earlier analysis of growth rates, are true more gen-
erally.
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Corollary 3.6. If the cone angles are at most 2x, then ||v(r)||1,
llcurl v(r)||1, and ||Vezv(r)||l1 are all bounded in a neighborhood of the
singular locus. Furthermore, Dv and D(curl v), hence n and *Dn, are
in L? under this angle constraint.

Proof. We apply Lemma 3.5 (when a # 0,1) to each of the terms in
the sum v = ¥ vy, to conclude that each of the ||vy, 4||? are increasing
in r. Since, by Parseval’s theorem, ||v(r)||? = = ||vm,n(r)||?, this implies
that ||v(r)||1 is bounded near the singular locus as desired. To apply
the lemma to the special cases where a = 0, 1, it suffices to note that the
derivative (||v(r)||?)’ vanishes at the singular locus, so the norm squared
still is non-decreasing in r near the singular locus.

The same argument applies to curl v since it is also harmonic and
each term in its Fourier decomposition satisfies the same growth con-
ditions from our previous analysis. Similarly, the vector field V,v =
f.€e1 + g.€2 + h,e3 is also harmonic since V, commutes with A. Hence,
its norm is also bounded near the singular locus. From the explicit
formula for V., v given above, it follows that this is also bounded in
norm.

Since 77 and *Dn are the symmetric parts of Dv and D(curl v), they
will be in L? if Dv and D(curl v) are. We show that Dv is in L?; the
argument for D(curl v) is the same.

From the formula in Lemma 3.5, Dv will be in L? if the integral of
A||v||? over a neighborhood of the singular locus is finite. Integration by
parts shows that this is finite precisely when the integral of the normal
derivative of ||v||? over the torus at distance r from the singular locus
is bounded as r — 0. This will fail to be bounded only if there is a
sequence of such tori where the integral of the normal derivative goes
to —o0o. (By Lemma 3.5, A||v||? and, hence, the integral of the normal
derivative are non-positive.) Since the area of the torus at distance r is
sinh7 coshr times a constant, if the integral of the normal derivative
goes to —oo as r — 0, then —(||v(r)||?)’ times r goes to co. But then
there is a constant K such that —(||v(r)||?)’ > X, for all sufficiently
small r. This implies, by integrating with respect to r, that ||v(r)||? is
not bounded near the singular locus, a contradiction. q.e.d.

Corollary 3.6 contains the estimates necessary to conclude that the
boundary term B goes to zero on a sequence of T, with r — 0. This
implies that ||w||? = 0 as desired.

This completes the proof of Theorem L1 q.e.d.
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4. Cohomology, Poincaré duality and representations of
3-manifold groups

In this section, we give some general results relating the topology
of representation spaces to cohomology groups. We also explain some
implications of Poincaré duality for the study of representation spaces
of 3-manifold groups. From these results and Theorem 1.1, we obtain
proofs of the results on deformation spaces of hyperbolic cone-manifolds
and hyperbolic Dehn surgery spaces mentioned in the introduction.

First we introduce some notation. Let I' be a finitely presented
group, let G be a Lie group and let G denote the Lie algebra of G.
Then R(T',G) will denote the space of all representations (i.e., homo-
morphisms) from I' into G. There is a natural action of G on R(T',G)
by conjugation: (g9-p)(7) = gp(y)g~! for g € G and v € I". If T has
a presentation with n generators and m relations, then R(I", G) can be
identified with the analytic subset of G™ consisting of n-tuples of ele-
ments of G satisfying m equations given by the relations of I. If G is
an algebraic group, then R(I',G) is an algebraic variety.

If p: T — G is a representation, we write Adp to denote the I'-
module G with the I' action Adop, where Ad denotes the adjoint action
of G on its Lie algebra G. Let Z!(T'; Adp) denote the space of 1-cocycles
of " with coefficients in the module Adp, consisting of all mapsz : I' = G
satisfying the cocycle condition

z(ab) = z(a) + a-z(b) = z(a) + Adp(a)z(b),

for all a,b € T, and let B!(T'; Adp) denote the space of 1-coboundaries,
i.e., all maps z : I' = G of the form

z(a) =v —a-v = v — Adp(a)v,

where v € G.  Then the cohomology group H!(T;Adp) is
Z\(T'; Adp)/B*(T'; Adp), and the cohomology group HO(T;Adp) is
{v € G:v = Adp(y) v for all v € T'}. The higher cohomology groups
H(T; Adp) can be defined in a similar way.

It is useful to note that these cohomology groups can also be de-
fined in terms of singular, simplicial, Cech or de Rham cohomology. In
particular, given a manifold N and a representation p : m;(N) = G, we
can define H*(N; Adp) and H*(N,8N; Adp). Then H*(m1(N); Adp) =
H*(N; Adp) if N is a K(m,1) space, and in general H'(N;Adp) =
Hi(m(N); Adp) for i = 0,1. Note also that H*(N; Adp) = H*(N; E),
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where E denotes the flat G-bundle over N associated with Ad o p con-
sidered in the previous sections.

These cohomology groups are related to the local structure of the
representation space R(I',G) by the following fundamental results of
‘Weil [29]. In order to state them properly, we need to define a scheme,
R, associated to R(I',G), using a presentation of I'. (See [17] and the
proof of Theorem 4.4 below.)

Proposition 4.1. If p: ' = G is a representation, then:

(a) the Zariski tangent space TR, of R at p can be identified with
Z\(T; Adp),

(b) the Zariski tangent space to the scheme associated to the orbit of
p under conjugation by G can be identified with B*(T'; Adp),

(c) HO(T; Adp) is the infinitesimal centralizer of the representation p,
i.e., the Lie algebra of

Z(p) ={9€G:gp(7)g™" = p(7) for all y € T}.
q.e.d.

In particular, H!(T, Adp) can be thought of as the “Zariski tangent
space” to the scheme associated to the space R(I',G)/G of representa-
tions I' = G up to conjugacy.

Next we discuss how Poincaré duality can be applied to the cal-
culation of these cohomology groups. Let N be a compact oriented
n-manifold with boundary dN, and let p : m;(N) — G be a represen-
tation into a Lie group G defined over a field F = R or C. Given a
symmetric bilinear pairing pairing (, ) : G x G — F invariant under the
Adp-action on G, there is an induced cup product map

U: HY(N; Adp) x H" {(N,8N; Adp) — F.

If the coefficient pairing is non-degenerate, then we have Poincaré du-
ality: the cup product U gives a non-degenerate (hence perfect) pairing
and a natural isomorphism: .

PD : H'(N; Adp) = H" (N, 8N; Adp)*,

defined by the map a— a U -.
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The most important example of such a non-degenerate pairing is
the Killing form on a semi-simple Lie algebra G. For example, for the
matrix group G = SL,(C) the complex Killing form is essentially the
trace map

8l;m(C) x slyp(C) = C, (A, B) — tr(AB).

Now let N be a compact orientable 3-manifold with boundary, and
p: m(N) = G a representation into a semi-simple Lie group G. From
the exact sequence of the pair (N, dN) and Poincaré duality one obtains
the commutative diagram:

H\(N;Adp) -5 H\(ON;Adp) -2 H2(N,ON; Adp)

{ l J
H2(N,8N; Adp)* £ HY(ON; Adp)* =5 HY(N; Adp)*,

where the vertical maps are the isomorphisms given by Poincaré duality.
It follows that im 8 = ima* but ima = imo* and im a = ker 3, so

dim H'(AN; Adp) = dimker 8 + dimim 8 = 2dimim c.
Hence, dimima = }dim H'(dN; Adp). Putting £ = dimkera, we
obtain

dim H'(N; Adp) = dimim & + dimker a = %dimHl(BN; Adp) + z.

So dim H(N; Adp) >  dim H'(8N; Adp) with equality if z = 0. Note
that
z = dimim(H'(N, 8N; Adp) — H'(N; Adp))

from the exact sequence of the pair (N, dN). We summarize this calcu-
lation for future reference.

Lemma 4.2. Let N be a compact orientable 3-manifold with bound-
ary, and let p : m(N) = G be a representation into a semi-simple Lie
group G. If the natural map

HY(N,3N; Adp) — H'(N; Adp)
is zero, then

(a) the map H'(N; Adp) = H'(ON; Adp) is injective, and
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(b) dim H'(N; Adp) = } dim H'(ON; Adp). q.ed.

We will be interested primarily in the case where G = PSL,(C) is
the group of orientation preserving isometries of 3-dimensional hyper-
bolic space, and I is the fundamental group of a compact orientable
3-manifold N whose boundary 9N is a union of tori. In this situation
Thurston proved the following fundamental result (see [24], [8]).

Theorem 4.3. Let N be a compact, connected 3-manifold with non-
empty boundary consisting of t incompressible tori T1,... ,T;. Let p :
m(N) — PSLy(C) be an irreducible representation such that
p(mi(T;)) # 1 for each i. Then each irreducible component of R =
R(m(N), PSLy(C)) containing p is a complez variety of complex di-
mension at least t + 3.

We now refine this result by showing that under an extra cohomo-
logical condition, R is a smooth manifold near p of complex dimension
equal to ¢t + 3.

Theorem 4.4. Let N be a compact, connected 3-manifold with
non-empty boundary consisting of t incompressible tori Ty, ... ,T;. Let
p : m(N) — PSLy(C) be an irreducible representation such that
p(mi(T3)) # 1 or Za & Zy for each i. If the natural map

HY(N,8N; Adp) - HY(N; Adp)

is zero, then the representation space R(mi(N), PSL2(C)) is a smooth
manifold near p, of complez dimension equal to t + 3.

Proof. First we use Poincaré duality and Lemma 4.2 to calculate
HY(N; Adp) and Z'(m(N); Adp).
For a torus T, a generic representation

¢ : m(T) = G = PSLy(C)

has centralizer Z(¢) of complex dimension 1. In fact, this is true unless

the image of ¢ equals Z, ® Z5 or is trivial. Hence dimc H°(T; Ad¢) = 1

since this is just the Lie algebra of Z(¢). Now 3°,(—1)* dim H*(T’; Ad¢) =
x(T)dim G = 0, so it follows from. Poincaré duality that

dimc H(T; Ad$) = dimc H(T; Ad¢) = 1,

and dimc H(T; Ad¢) = 2.
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Hence dimc H'(ON; Adp) = 2t, and since H!(N,ON) — H!(N)
is zero by our hypothesis, we can apply Lemma 4.2 to conclude that
dimc H'(N;Adp) = t. Since p has a trivial centralizer, we have
Z°%(my(N); Adp) = 0 and dimc B!(n(N); Adp) = 3. Hence

dimg Z' (71 (N); Adp) = t + 3.

Suppose that I' = m;(N) has a presentation with n generators and
m relations. Then R = R(m(N), PSLy(C)) can be constructed as the
preimage of (1,1,...,1) under the map f : G - G™ which evaluates
an n-tuple of group elements on a set of defining relations for I'. This
defines a scheme R whose Zariski tangent space TR, = ker df, can be
identified with the 1-cocycles Z!(T; Adp) (see Lemma 4.1). In general,
dimTR > dim R, but by the calculation above and Thurston’s result
(Theorem 4.3) we have at p:

t+3=dimTR > dimR >t + 3.

Hence dim7TR = dim R =t + 3 and it follows that p is smooth, reduced
point of R (see [17]). In particular, R is a smooth manifold of complex
dimension ¢ + 3 near p. q.e.d.

Our next result gives a local parametrization of representations by
holonomies of certain peripheral elements. It is convenient to state the
result in terms of complex lengths rather than traces. We recall that
the complez length L of an element of SLy(C) is related to its trace by
2cosh(L/2) = trace. The map £ — trace is a local diffeomorphism,
except when trace = £2.

We will be interested in the complex lengths of the elements corre-
sponding to the boundary tori of a compact 3-manifold N. Since the
torus has abelian fundamental group, if the complex length of one of
its elements has non-zero real part, then the whole group will consist
of isometries which preserve a single axis. The real part of the com-
plex length describes the amount of translation along the axis, and the
imaginary part describes the amount of rotation around the axis. For
example, when there is a cone-manifold structure, this applies to the
manifold N obtained by removing a neighbourhood of the singular lo-
cus. In this case the imaginary part of the complex length can be defined
as a real number, not just modulo 2x. There is also a choice of sign,
which can be made locally in a well-defined way. See [24] for details.

Theorem 4.5. Let N be a compact, connected 3-manifold with
non-empty boundary consisting of t incompressible tori T, ... ,T;. Let
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p: m(N) — PSLy(C) be a representation such that each p(m1(T;)) is
non-trivial and preserves a geodesic in H3. Let vy C Ti,... ,y: C T;
be simple closed curves in ON and let v = U;~y;. If the natural map
HY(N,~; Adp) — H'(N; Adp) is zero, then the representations near p
are parametrized up to conjugacy by the complez lengths of their values
on the homotopy classes g; = [vi] € m1(N). More precisely, the map

L: R(Wl(N),PSLz(C)) - C!

defined by L(¢) = (LPH(g1),--- ,LP(gt)) is a submersion from a neigh-
borhood of p onto a neighborhood of L(p), whose preimages are precisely
the conjugacy classes of representations near p.

Proof. Since the composition
H'(N,8N) —» H(N,v) - H(N)

is zero by our hypothesis, Theorem 4.4 shows that the representation
space R(m(N), PSLy(C)) is a smooth manifold near p, of complex di-
mension equal to ¢t + 3, and dimc H!(N; Adp) = t. From the exact
sequence of the pair (N,7) we see that H!(N; Adp) — H!(v; Adp) is
injective since the map

H'(N,7; Adp) - H'(N; Adp)

is zero by our assumption.
First assume that each ¢(g;) # 1. Then it is clear that

H'(v;; Adp) = H'(y;; Adp) = C.

Hence dimc H'(v; Adp) = t, and the map H!(N; Adp) — H(v; Adp) is
an isomorphism. Now the derivative of the complex lengths gives a nat-
ural isomorphism between H'(v; Adp) = @, H(vi; Adp) and C*. This
follows since elements in PSLy(C) preserving an axis are parametrized
up to conjugacy by their complex lengths. It follows that £ is a sub-
mersion, whose preimages are conjugacy classes of representations.

If some p(g;) = 1, then the previous argument breaks down since
elements of PSLy(C) near the identity are not determined uniquely up
to conjugacy by their complex lengths. (Nearby parabolics have the
same complex length as the identity.) However, in this case we can find
another element h; € m(T;) such that p(h;) # 1 since p(m1(T3)) # 1.
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Now g; and h; commute, and p(h;) is non-parabolic. Hence ¢(g;) and
¢(h;) are both non-parabolic, for each representation

¢ : 7(1(N) — PSLQ(C)

near p. It follows that the elements ¢(g;) are parametrized locally up to
conjugacy by their complex lengths. Thus we obtain the result by the
same arguments as before. q.e.d.

For the case of a 3-dimensional hyperbolic cone-manifold M, we
apply these results where N is the complement of an open tubular
neighborhood of the singular locus, and therefore N is a union of tori
Ti,... ,T;. First we collect some well-known facts about the holonomy
representation of N.

Lemma 4.6. Let M be a 3-dimensional hyperbolic cone-manifold
of finite volume, whose singular locus X3 is a knot or link, and let N be
the complement of an open tubular neighborhood of the singular locus.
Let Ty, ... ,T; be the tori making up ON, where T; is the boundary of a
tubular neighbourhood of the ith component ¥; of X.. Then the following
hold:

(a) The holonomy representation p : m(N) — PSLo(C) 1is irre-
ducible.

(b) The holonomy p(n1(T})) is an infinite group preserving a geodesic
azis in H? for each boundary torus T;. In fact, p(71(T})) = ZSZ
(hence OT; is incompressible) if the cone angle along L; is not a
multiple of 2m.

Proofs. (a) If p is reducible, then its image p(m1(M)) fixes a point
Zoo On the sphere at infinity of hyperbolic space H3. Thus we can define
a flow on H? by moving each point at unit speed along the geodesic
which passes through the point and ends at zo,. This flow is volume
decreasing and is invariant under the holonomy group p(m (M)), so it
can be pulled back via the developing map @ : M - H3 to give a
volume decreasing flow on M. But this is impossible unless M has
infinite volume.

Part (b) follows immediately from the local structure of a hyperbolic
cone-manifold near its singular locus. In fact, the holonomy of any
curve homotopic to a component ¥; of ¥ represents a translation plus
rotation about a geodesic axis, where the translation length is equal to
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the length of the geodesic ¥;. Since m;(T;) = Z&® Z is abelian, p(m(T}))
breserves the same axis. The last statement follows since the holonomy
of a meridian curve around ¥; is a rotation by the cone angle along ¥;,
and so is non-trivial unless this cone angle is a multiple of 27. q.e.d.

Remark. Infact, N is a compact, irreducible, atoroidal 3-manifold
(for any cone angles). One proof of this involves modifying the hyper-
bolic metric on M inside a tubular neighbourhood of £ to produce a
complete negatively curved Riemannian metric on the manifold M — &,
which is homeomorphic to the interior of N (compare [14], [4, §3].) The
result then follows from standard results on the structure of negatively
curved manifolds (e.g. [9], [2]). Topological arguments are given in [23]
for the case where the cone angle is 27. In [19], the local rigidity results
of this paper are used to derive these further topological restrictions for
all cone angles at most 2.

Combining the results of Corollary 1.2, Theorem 4.5, and Lemma
4.6 gives the following:

Theorem 4.7. Let M be a 3-dimensional hyperbolic cone-manifold,
whose singular locus ¥ is a knot or link, and let M = M — . Let
p: m (M) = PSLy(C) be the holonomy representation for M. If all
cone angles along ¥ are at most 2m, then the space

R(m1(M, PSLy(C))/PSLy(C)

of representations up to conjugacy is a smooth manifold near p, of com-
plez dimension equal to the number of components in the singular locus
Y. Further, if g1,... ,9: are homotopy classes of meridian curves for
the components of L, then the complex length map

L : R(m (M), PSLy(C))/PSLy(C) = Ct

defined by L(¢p) = (LPH(91),.-- ,LP(gt)) is a local diffeomorphism near
p. qed.

Now hyperbolic structures on M near a given structure are paramet-
rized (locally) by the conjugacy classes of their holonomy representa-
tions 7, (M) — PSLy(C) (see [24, Chap. 5] or [15, Chap. 1]). If the
initial hyperbolic structure corresponds to a hyperbolic cone manifold,
it is easy see that each conjugacy class of nearby representations cor-
responds to a unique hyperbolic cone-manifold structure provided that
the holonomy of each meridian is elliptic. Other nearby representations
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correspond to nearby hyperbolic structures with Dehn surgery type sin-
gularities. We will see that from the results above it follows that these
structures are locally parametrized by their Dehn surgery coordinates
under the hypotheses given above. The reader unfamiliar with these
concepts is referred to [24, Chap. 4], [15] or [27]. Below we will recall
enough of the definitions to state our final theorem.

If we choose two generators of the fundamental group of a cusp of
M, and denote their complex lengths by u, A, then we can uniquely solve
the equation

(25) Tp+yr=2m1i

for real numbers z,y whenever 4 and ) are linearly independent over
the reals. The pair (z,y) € R? is called the (hyperbolic) Dehn surgery
coefficient of the hyperbolic structure. This name refers to the first case
studied by Thurston in [24], where the complement of the singular locus
M was a knot complement, and the standard meridian and longitude
generators were chosen. When (z,y) = (p, q) are relatively prime inte-
gers, the hyperbolic structure on M completes to a smooth hyperbolic
structure on the manifold M, o) obtained by doing (p,q) Dehn surgery
on the knot. Similarly, if z,y have rational ratio, (z,y) = a (p,q),
the completion of the hyperbolic structure on the complement defines a
cone-manifold structure on M, .y with cone angle %’l (In other words,
the (p, q) curve bounds a singular, hyperbolic disk.)

In our case, we can choose generators so that the meridian bounds a
singular disk; then the Dehn surgery coefficient is (a,0) where the cone
angle is %” Note that the complex length of the meridian is pure imagi-
nary, and the real part of the complex length of the longitude is non-zero,
so the two complex lengths are linearly independent over the reals as
desired. An obvious problem is to describe how the Dehn surgery coef-
ficient varies as the holonomy representation varies. We have seen that,
near the holonomy representations of cone-manifolds (with our angle
restriction), the representation variety modulo conjugacy is a smooth
manifold of real dimension 2¢, where ¢ is the number of components of
the singular locus. This is the same as the dimension of the space of
possible Dehn surgery coefficients if we define one for each component.
The natural conjecture is that the map from the representation vari-
ety (modulo conjugation) to the space of Dehn surgery coefficients is a
local diffeomorphism. Theorem 4.7 implies that this conjecture is true
near the holonomy representations of cone-manifolds with cone angles
at most 2.
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Theorem 4.8. Let M be a 3-dimensional hyperbolic cone-manifold,
whose singular locus £ is a knot or link with t components, and let
M = M-X. Letp: m(M) — PSLy(C) be the holonomy representation
for M. If all cone angles along ¥ are at most 2w, then the t Dehn
‘surgery coefficients give a map from the space of representations up to
conjugacy to the space R? = {(z;,y:)|zi,yi € R,i = 1,--- ,t} which is
a local diffeomorphism near p.

Proof. We saw in the previous theorem that the map from the
representation space to complex lengths of meridians is a local diffeo-
morphism. Thus, it suffices to prove that the map from complex lengths
of the meridians to the Dehn surgery coefficients is a local diffeomor-
phism. It suffices to prove this for each component of the singular locus
individually.

Let X denote the (column) vector representing the Dehn surgery
coefficient (z,y), and let P be the 2 x 2 matrix whose columns represent
the (real and imaginary parts of) complex lengths of the meridian and
longitude respectively. Then the formula (25) for the Dehn surgery co-
efficient becomes the matrix equation PX = C where C is the (column)
vector (0,27). The variational formula becomes X' = —P~! P’ X. Since
X = (o, 0) at the cone-manifold representation, P’ X depends only on
the variation of the first column of P, or, in other words, on the varia-
tion of the complex length of the meridian. Since P~! is a isomorphism,
this is exactly what we needed. q.e.d.

Remark. A hyperbolic cone-manifold structure with some cone
angles of zero along ¥ can be interpreted as a structure which is complete
(i.e., has cusps) along some components of ¥. Then the results of
Theorems 4.7 and 4.8 extend to this case, provided L is regarded as a
map into (C/ % 1)! in Theorem 4.7, and Dehn surgery coefficients are
regarded as elements of ((R? Uoco)/ £ 1)! in Theorem 4.8. This follows
from the arguments of this section together with the work of Garland
[12].

5. Appendix: Self-adjointness of the Laplacian

In this appendix, we will sketch a proof of the self-adjointness of
the Laplacian on real-valued forms on a 3-dimensional hyperbolic cone-
manifold with the domain described in Section 2. This was used in the
proof of Theorem 2.7, the Hodge Theorem for Cone-Manifolds. This
proof follows closely Cheeger’s proof in [6], but his proof is for singulari-
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ties which are the cones on manifolds rather than for the S!x cone case
which we are considering. Some of the finer aspects of the functional
analysis of such “edge singularities” are extremely delicate (see [20]),
but, fortunately we can avail ourselves of the “softer” aspects of the
theory which generalize fairly readily.

The main step is to prove a Stokes’ theorem for L? forms on the non-
complete manifold M — £, where M is a cone-manifold with singular
locus ¥. We will state and prove the theorem in the smooth case and
then suggest afterwards how this extends to the case of L? distributional
derivatives. Since there are no E-valued forms in this section, we will
revert to using d (rather than d) for the exterior derivative on real-
valued forms, and we will use ( , ) to denote the L? inner product of
real-valued forms.

Theorem 5.1 (Stokes’ Theorem). Let M denote a closed, ori-
entable 3-dimensional hyperbolic cone-manifold with singular locus X.
Denote by M the non-complete manifold, M — . If a, B are smooth
L2-forms on M such that da and 88 are in L?, then the Stokes’ theorem
holds, i.e.,

<da’ ﬂ) = (aa Jﬂ)

Remark. We will give the proof in the case that a is a 1-form and
B is a 2-form. For the remaining degrees, either a or %3 is a function,
and the argument is similar, but easier.

Proof. The main goal is to control the behavior of the forms as
they approach the singular locus so that the boundary term which one
gets by applying the usual Stokes’ theorem to the complement of a
neighborhood of the singular locus goes to zero as the neighborhood
shrinks down onto the singular locus. A smooth, L? form does not gen-
erally vanish as one approaches the boundary, but the extra condition
that their derivatives are in L? implies that a crucial part of the forms
does go to zero. This proof is patterned after that of Cheeger (6], who
proves it in the case where the boundary is coned to a point. Due to
the non-homogeneous form of our boundary (some directions coned to
a point, some not), the proof has to be altered somewhat. Although
the proof below is based on the explicit form of the neighborhood of the
singular locus, it uses only the asymptotic behavior and only in a rough
(“quasi-isometric”) way.
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The metric in a neighborhood of the singular locus is of the form
sinh? r d6? + cosh? r d¢? + dr?, where r is the distance to the singular
locus, and @ and ¢ are standard angular coordinates on the torus with ¢
defined modulo 27 and 6 defined modulo the cone angle. For simplicity

'we assume instead that the metric is r2d6? +d¢? +dr2. The proof makes
use only of the asymptotic growth of the metric so this will not affect
the proof.

We remove a small tubular neighborhood N of the singular locus,
consisting of all points in M whose distance to the singular locus is less
than or equal to some small constant. The constant should be small
enough so that N is topologically a solid torus minus the singular locus.
Assume that the metric on N is the flat one given above. It suffices
to prove that Stokes’ theorem for manifolds with boundary holds for
N. In other words the only boundary term comes from the outer torus
boundary. Together with the usual Stokes’ theorem with boundary,
applied to M minus the interior of N, this implies Theorem 5.1.

The proof of Stokes’ theorem with boundary for N will involve two
main steps, both of which are essentially contained in [6]. However, we
will outline how to put them together in our particular case, referring
to [6] for some of the more technical points.

We first prove Stokes’ theorem with boundary for a cross-section
defined by fixing ¢. This is topologically a disk minus a point, where
the point is the cone point obtained by intersecting the closed disk with
the singular locus. The closed disk is a 2-dimensional cone-manifold in
the usual sense so this follows as a special case of Theorem 2.2 in [6)].
However, it would seem to be useful to highlight the salient points of
the argument in this special case.

Denote by D the (punctured) disk cross-section which is topologi-
cally a circle crossed with a half-open interval. We denote by S, the
circle S' x {r}, at distance r from the singular locus, with the induced
metric. If o is a form on the circle, we denote by ||al|, the L? norm of
a on S, (with its induced metric). If n is an L? form on D, then the
norm of 7(r) grows slower than r—1/2) where 5(r) is the restriction of n
to Sy. In fact

(26) lin(r)lls = o(r=1/2|log r|~1/2).

(See Cheeger [6, Lemma, 1.2]. Strictly speaking, this estimate holds only

on a sequence of radii, r; = 0, but this will not affect our argument.)
It is tempting to believe that if an L? form 7 also satisfies the condi-

tion that dn is in L2, then the above growth estimate could be improved.
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Unfortunately, this is not the case. However, the growth estimate of a
piece of the form can be improved. Except for a special “middle dimen-
sional” case, one gets an improved estimate on the co-closed part of the
portion of the form with no dr piece. ([6, Lemma 2.3]) This is enough to
control the boundary terms in Stokes’ theorem near the singular locus
for a general space with cone-singularities, except for the case where the
dimension of the link of the cone point is twice the degree of the form,
where Stokes’ theorem fails. In our case, one of the forms is actually a
function, so the co-closed part is everything and the needed estimate is
particularly easy.

Lemma 5.2. Suppose g is an L? function on D such that dg is also
in L2. Then it satisfies the growth condition

llg()ll- < Kr'/?|log r|"/2.

Assuming this estimate we can prove an L? Stokes’ theorem with
boundary for the disk cross-section.

Proposition 5.3 (Stokes’ Theorem for cross-sections). Let D
be a punctured disk which is a cross-section of the tubular neighborhood
N = D x S! of the singular locus. Let n be a smooth L2 1-form, and T
a smooth L? 2-form on D such that dn and 67 are in L2. Then Stokes’
theorem with boundary holds for D, i.e.,

(dn,T) = (n,01) + / n A *T.
aD

Proof of Stokes’ theorem for cross-sections. If we remove a small
neighborhood of the puncture in D, we can apply the usual Stokes’
theorem with boundary to the resulting annulus. We need to show that
the boundary term coming from the boundary of the small neighborhood
of the puncture goes to zero as the radius r of the neighborhood goes
to zero. This term is of the form

/ n N\ *T.

n = p+ hdr

If we write
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*T =g,

then this boundary term becomes

[

Using the estimate for g from the Lemma above and the general L?
estimate (26) for p, it follows immediately from the Schwarz inequality
that this inner boundary term goes to zero as r goes to zero.

This completes the proof of Stokes’ theorem for cross-sections, as-
suming the estimate. q.e.d.

Proof of Lemma 5.2. To get the necessary estimate for ||g(r)||,
first we note the relationship between the L?-norms on S, for different
values of r. If g is a fixed function on the circle S!, then the norms
satisfy

llgll = r*/2llglls.

We choose a radius a so that S, is contained in D, and then consider
the integral of %‘rl from R to a, where R < a. We see that

F2l <12l
RO, Jr 1 R

By the Schwarz inequality, this is less than or equal to

(o) (),

where the constant K depends on the L2 norm of g& on the neigh-

9
or

9
or

r

@2

1/2 )
< 1/2
3 ) < K|log R|"/*,

r

borhood of the singular locus. Note that %g is in L? because dg is by
hypothesis. Thus
|3
, Or

|5
s Or

But since [* 2 = g(a) — g(r) and ||g(a)||; = r/?||g(a)|l1, We get that

— 12

< K|logr|'/?r!/2.
1

r

llg(r)ll- < K|logr|'/?r1/2

for some new constant K. ‘
This completes the proof of the Lemma and hence of the L? Stokes’
Theorem for cross-sections. q.e.d.

53
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Finally, to prove the L? Stokes’ Theorem for the tubular neighbor-
hood N itself, we need to use a variant of Theorem 2.1 of [6] which
shows that, if the the theorem is true for a manifold, then it is true for
that manifold crossed with an open interval. The proof which we give
is essentially the same as the one given there.

Proof of 5.1 (concluded). Let a be a 1-form and § a 2-form such
that o, B8, da and d * 3 are in L2(N). We write

@ =w+ fdp, B =¥ + gdo,

where w and 1 are 1-forms with no d¢ part, and f and g are functions.
Let d denote the exterior derivative restricted to a cross-section D, where
¢ is a constant. Then d = d+dpA 3%. Since do and d * 3 are in L%(N),

the following are in L?(D) for almost every cross-section:

w, f’ (a¢-df)
'(/) ~
¥, g, dy, (6¢ dg).

The only technical difficulty is that one can’t immediately conclude
that df and dg are in L?(D) themselves. This is handled in [6] by
considering the J-regularization of the forms. For a form 7 this is defined

to be
1 [¢+3
5 [ nds

and denoted by 7s. In particular, the é-regularization of (‘?T‘; —df ) is

seen to be 649 ( 5
w(@+35)—w(d—3 ~
D@5 _ gy,

Since this and w are in L2, (J f)s is in L2. The argument which we give
below can then be done for the regularized forms for any 4. Letting é go
to zero, we get the desired result. We leave the details of this limiting
argument to the reader (who can read it in [6]) and proceed under the
assumption that d if and dg are actually in L2.

We can now go through a standard integration by parts argument:

Ow
/Swda/\*ﬂ = /suo(dw + d¢/\( 9% df)) A (Y + gdo)

L ann)e
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We can apply Stokes’ theorem on D to the first and third term above
to get

[ (Jpon s Somss | ([ 00 o)

If we interchange the order of integration and integrate the third
term by parts we get

- - )
/SIXD(wAdg + fd¢—wAa—¢)Ad¢+/Sl(/aDwg - 1/)f)d¢.

This is seen to be equal to

/slxDaAd*ﬁ.*_/sl(/aoaA*ﬁ).

Thus Stokes’ theorem holds for N.
This completes the proof of the Theorem 5.1. q.e.d.

We want to apply this Stokes’ Theorem to prove that the Laplacian
on 1-forms with our desired domain is self-adjoint. The main issue here
is to check that the domain of the operator is the same as the domain
of its adjoint. Since our manifold M is non-compact and non-complete,
this issue is non-trivial, for the Laplacian on forms with compact support
may have distinct maximal and minimal extensions (in L?). Not all ways
of extending the operator in L? would be self-adjoint. Note also that if
it is not essentially self-adjoint, there will be a continuum of choices for
a self-adjoint extension. We have chosen the one used for Theorem 2.2
because of the nice geometric representatives for E-valued forms that
it gives us in the Hodge theorem on cone-manifolds. It also turns out
that this domain is the natural one from the point of view of Cheeger’s
analysis [7], when applied to real-valued 1-forms.

First, we describe some extensions of the operator d on smooth
forms. Think of d as defined first on smooth forms which are in L?
and d of which are in L2. Following [6], define the “strong closure”
of this operator to mean that da = 7 when a and 7 are in L?, and
there are smooth forms a; — a such that do; — 7. (Convergence in
this section will always mean in L? unless stated otherwise.) Using a
smoothing operator (see [6, p.141]) this is equivalent to having distri-
butional derivatives in L? or the statement that da = n weakly; i.e.,
that (n,8) = (e, dp) for all B smooth, with compact support. This is



56 CRAIG D. HODGSON & STEVEN P. KERCKHOFF

called the “maximal” extension of the operator d in L2, which we will
denote by dy,4;. Similarly, we can define é;,4,. The Stokes’ theorem
proved above holds for the strong closure and hence for dp,,,; and dpmqq
by taking limits.

Another closure which is important to us is the graph closure of d
on smooth forms with compact support, which we will denote by dy. In
other words, dpa = 1, if there is a sequence of smooth o; with compact
support which converge to a such that do; — 1. This is the “minimal
extension” of d, denoted d,in. Similarly, we define é,;y,.

It is a general fact, proved by Gaffney [10] that the adjoint of dmqs
is dmin and that of dpmer iS dmin. Stokes’ theorem implies that the
domain of the adjoint of dmey contains that of ez Thus, dmaz = dmin.
Similarly, dmez = dmin-

To apply this to the Laplace operator, we need another result of
Gaffney [10]. Define two extensions of the Laplacian on smooth forms
with compact support

AD = dmin 5max + 5maz dmin

and
AN = dmaz 6min + er'n dmaza

called the Dirichlet and Neumann extensions, respectively. We are using
the convention in writing the operators in this manner, that the domain
of a composition A o B of operators are those objects a in the domain
of B, such B(a) is in the domain of A, and the domain of a sum is the
intersection of the domains of the summands. Gaffney proved that these
extensions are always self-adjoint. From the fact that d,q; = dpmin and
Omaz = Omin, we get that

Ap = AN = dmaz maz T Jmaz dmaz-

The latter operator is precisely the one we are using; hence it is
self-adjoint.
We have now essentially proved our desired result:

Theorem 5.4. Let M denote a 3-dimensional hyperbolic cone-
manifold with singular locus £. Then the Laplacian on real-valued forms
for the smooth, incomplete manifold M = M — ¥ whose domain consists
of those forms a such that a,da, 6o, déa, dda are all in L? is a closed,
non-negative, self-adjoint, elliptic operator.
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Proof. The derivatives in the statement of the theorem are generally
to be interpreted in the distributional sense. Thus, the operator is just
the one above, dnaz Omaz + Omaz dmaz, Which is closed by definition and
is clearly elliptic since it has the same symbol as the Laplacian. We
have seen that it is self-adjoint since it equals both the Dirichlet and
the Neumann extensions. Finally, it is non-negative since

((dé + éd)c, B) = (dv, dB) + (Scx, 63)
for o, 8 in our domain, by the above Stokes’ theorem. q.e.d.

It is, perhaps, important, to emphasize what we are not saying here
as well. It still may be that Apmez # ODmin; indeed, this is the case
where a cone angle is larger than 27. In fact, even the Dirac operator
d + ¢ is not essentially self-adjoint in this case. (See [18].) Thus, even
though an L? form is closed and co-closed, it is not necessarily true that
there is a sequence a; — a of smooth forms with compact support such
that da; — 0 and da; — 0. The fact that dyez = dmin and dpmaz = dmin
only guarantees one such sequence for d and another for 4.

It is not hard to see that, if there were always such a single sequence
of forms with compact support (in the case with E-valued forms), then
the Calabi-Weil arguments would go through easily. This is the crux of
Garland’s argument and illustrates the essential difference between the
the finite volume, complete case and the cone-manifold situation. In
(18], it is shown that the assumption that there always is such a single
sequence for closed and co-closed E-valued forms in the 2-dimensional
cone-manifold setting actually leads to an incorrect computation of the
L?-cohomology Hj,(M;E). Thus, it seems highly unlikely that this
phenomenon can be avoided directly in the 3-dimensional context.
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