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Abstract 
We prove that there are obstructions to the existence of an exact Lagrange 
embedding from a closed manifold L to T* N. This may be seen as an exten­
sion of Gromov's theorem as formulated by Lalonde and Sikorav, showing 
that no such embedding exists for N open. For example we answer positively 
a question by Lalonde and Sikorav on the non-existence of exact Lagrange 
embeddings from T into T*S . Our obstruction is in terms of the cohomol-
ogy of the loop space of L and N and the map induced by the embedding in 
the cohomologies of these loop spaces. In particular, we give obstructions to 
the existence of an exact Lagrangian embedding inducing a degree-zero map 
from L to N. As another application of our method, we prove the Weinstein 
conjecture in cotangent bundles of simply connected manifolds (removing 
an assumption in a previous joint paper with H. Hofer). A number of these 
results had been announced in [48] and [49] 

0. Introduction 

Let N be a manifold, T*N its cotangent bundle, endowed with the 
standard symplectic form, UJ = dX where A = ^n=i p dq in local coor­
dinates (the q i are coordinates on N, and the p i the dual coordinates). 

An embedding from a manifold L of dimension n = dim(L) = 
dim(N) to T*N is said to be Lagrange if UJ vanishes on the tangent 
space to L, and exact (Lagrange) if A induces an exact form on L. 

It is one of the striking results of [19], that there are no exact La­
grange embeddings from a compact manifold L into M = V X M., and 
in fact, as noticed by Lalonde and Sikorav ([28]), Gromov's argument 
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extends to the cotangent bundle of any non-compact manifold. From 
this they conclude that if L is an exact Lagrange submanifold in T*M, 
the projection p of L on M must be onto. It is then tempting to make 
the following: 

Conjecture , p has nonzero degree, 

as Arnold did in [1]. Unfortunately, right now very little is known on 
the question. To be precise the above conjecture has been proved in the 
following cases ([28], [34]): 

1. L = M and H n(M) is generated by elements of Hl(M) for in­
stance if M = T n. 

2. L and M are surfaces, and (L, M) / (T2 , S2). 

More generally, we may consider the easier question as to whether p*(a) 
is zero for some cohomology class a on M. In fact Gromov's statement 
is equivalent to the following: 

if M = V X S 1 then p*(l ® dO) / 0. 
This we shall generalize as 

Propos i t ion 0 .1 . Let M = V X W and W be a product of spheres 
and complex projective spaces. Then p* : H*(W) —> H*(L) is injective. 
In particular ifV = {pt}, p has nonzero degree. 

For simplicity, we assume throughout the paper that all manifolds 
are orientable. We leave to the reader the task of figuring out how these 
methods could be adapted to the nonorientable case. 

For the pair (L,M), we shall investigate whether exact Lagrange 
embeddings of L into T*M satisfy one of the following properties: 

(A) p has nonzero degree. 
(B) p is cohomologically nontrivial. 
(C) p is homotopically nontrivial. 
We just remind the reader that the injection of the constant loops 

c : M —> AM and evaluation map e : AM —> M induce maps in 
cohomology, and that e* yields an injection H*(M) —> H*(AM). We 
shall denote by ßM the top dimensional generator of H*(M) tha t we 
identify with its image by e* in H*(AM). Finally if f : L —> M is a 
map, we denote by Af : AL —> AM the induced map on loop spaces. 
We shall need the following: 

Definit ion 0.2. Let z G H*(AM) and a G H*(M). We shall say 
that z is tied to a, if for any map f : L —> M, (Af)*(z) / 0 implies 
f*(«)/0. 
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R e m a r k 0.3 . We also used the term "tied" in the paper [46]. The 
term "tied" is used here in a sense slightly weaker than that of "weakly 
tied" in [46] according to which for z to be weakly tied to ßM we would 
need the implication to hold for all maps from X to AM and not only 
maps of the type Af. We refer to [46] for methods to construct tied 
classes, in particular through the use of Massey products, as well as for 
applications of this notion to the calculus of variations. 

We may now state: 

T h e o r e m 0.4. Assume that H*(AM) contains an element z such 
that ßM • z is nonzero. Then for all product manifolds V X M, p is 
homotopically nontrivial. Moreover, let z be such that ßM • z / 0, and 
z is tied to a e H*(M). Then p*{a) / 0. 

We will also get obstructions to the existence of exact Lagrange 
embeddings with nonzero degree. In fact we have: 

Propos i t ion 0.5. Let j be such that p has non-zero degree. Then 
(Aj)* is an injection. 

R e m a r k 0.6. Note that it is not true in general that if f* is 
injective then so is (Af)*. As a counter example, consider f, a degree-
one map from T2n~l to S2n~l. The map f* is then obviously injective, 
while (Af)* cannot be injective since H k(AT2n~l) = 0 for k > 2n - 1 
while H2nr-1(AS2n~1) / 0 . 

Thus according to Proposition 0.5, we get: 

Corollary 0.7. 
There is no exact embedding of T n into T*S n. 

There is no exact Lagrange embedding from S2k+1 X S2l into 
T* S2(k+l) + l 

The first statement for n = 2 answers positively a question by 
Lalonde and Sikorav in [28]. 

The ring H*(AM,Q) may be computed using the minimal model 
of Sullivan, as in [38]. Its structure has been studied for a while, and 
we shall make use of the results of Burghelea, Goodwillie and Vigue-
Poirrier ([5],[6], [7],[18], e t c . ) . Proposition 0.1 then follows from 0.4 
and the structure of H ( A S 2 n - 1 , Q) (for a sphere (A), (B) and (C) are 
equivalent). 

The results of this paper are based on the following: 
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M A I N T H E O R E M . To the exact Lagrange embedding 
j : L —» T*M we may associate a map (Aj)! : H*(AL) —» H*(AM) 
such that the following hold: 

1. (Aj)! is a group homomorphism, and if j and k are respectively 
Lagrange embeddings of L into T*M and M into T*N, we have 
A(koj)l = (Aky.o(Aj)l 

2. (Aj)l(x A (Aj)*y) = (Aj)l(x) Ay. 

3. If jl is the usual transfer homomorphism, e L the evaluation map 
AL —T- L, and c L the injection of the constant loops (identified to 
L) in AL, then we have a commutative diagram: 

H*(AL) (-H ! H*(AM) 
tk tk tk tk 

c e c e 

H*(L) - j H*(M) 

The same holds if we replace H* by H S the equivariant Borel theory 
(see [3]), however the map e* is not defined, and must be replaced by the 
map B*e* where B* is the map from H*(X) to H*]~ (X) in the stan­
dard Gysin exact sequence connecting H*(X) and H S ^X). Moreover 
all maps are now H*(BS1) module homomorphisms. Also we have for 
Massey products (Aj) ! < (Aj)*(x),y, (Aj)*(z) > C < x, (Aj)'-(y),z >. 

The proof of this is the main goal of this paper, and a proof is 
sketched at the end of this introduction. In the next paragraphes, we 
shall state and prove some results based on this main theorem. 

Note also that , apart from the main theorem, most of our results are 
just examples of applications of this theorem. It would be easy to con­
struct many more examples of obstructions to the existence of Lagrange 
embedding. However, as we do not have any simple characterisation of 
manifolds such that H*(AM) contains a class z tied to a class a in 
H*(M), with ßM A z / 0, we prefer to give a number of significant 
examples, rather than a necessarily incomplete list of mostly "exotic" 
cases. 

To begin with, let us give proofs of Theorem 0.4 and Propositions 
0.1 and 0.5. Note that for a map j : L —> M, we have j ' ( l ) = deg(j) • 1 
and j (pL) = ßM-

Proof of O.4. We have that 

{Aj)\iiL A {Aj)*(z)) = {Aj)\iiL) Az = HMAz^Q. 
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Thus (Aj)*(z) / 0 which implies that j is not homotopically trivial. 
If moreover z is tied to a, we get that (Aj)*(a) = j*(a) / 0. q.e.d. 

Proof of 0.1. This follows from Sullivan's theory of minimal models. 
Let F(aa, bß, c 7 , . . . ) be the "free graded algebra" with generators 

aa, bß, c 7 , . . . of degrees a, ß, y,... . By "free graded algebra", we mean 
the tensor product of the exterior algebra in generators of odd degrees, 
with the symmetric algebra in generators of even degrees. Adding a 
graded differential d to F makes it into a differential graded algebra, 
with cohomology denoted by H*(F,d). 

Now the cohomologies of loop spaces are easy to express in terms of 
cohomologies of a free graded algebra called the "minimal model". For 
instance as the minimal model of: 

AS2k+l 
wehave F(x2k+i, x2k), d = 0, and UM = x2k+i, 

AS2k w e h a v e F(x2k,x2k_1,y4k_1,y4k_2), dx2k = dx2k-i = 0, 
dy4k-i = x\k , dy4k-2 = x2k • x 2 k - i , and the cohomology class fj,M 
corresponds to x2k, 

ACP2k w e h a v e F(x2,x1,y2k+1,y2k), dx2 = dxx = 0, dy2k+1 = 
x2

+ , dy2k = x k • x i , and the cohomology class \±M corresponds to x k. 
In all three cases, there is a class z tied to ßM-
Indeed for S2k+1

1 z = x2k will do. For we have that x2k • x2k+\ is 
nonzero in the cohomology ring of AS2k+l, and since for any map j , 
from L to M, (Aj)* commutes with the degree —1 map, ß tha t sends 
"unbarred" generators to "barred" ones ( the map ß corresponds on AM 
to interior product with g^, see [7]), we have that (Aj)*(x2k) / 0 implies 
that (Aj)*(x2k+1) = j*(x2k+1) / 0, and thus x2k is tied to x2k+1. 

In the case of S2k and CP2k (the exponent denotes the dimension 
of the space) we need to use Massey products. 

In AS2k, w e h a v e that < x 2 k - i , x 2 k , x 2 k - i > = y4k-2^2k-i and is 
thus nonzero. Using again that (Aj)* commutes with ß, we have that 
if (Aj)*(x2k_1) / O w e also have (Aj)*(x2k) = j*{x2k) / 0. 

We may then conclude as follows: assume we have a Lagrange em­
bedding of L into T*S2k1 inducing a map j : L —> S2k. Since we have 
that 

(Aj)!(< (Aj)*(x2k-i),/JL,(Aj)*(x2k-i) >) 

C (< x2k_1, (Aj)\(pL),x2k-i >) 

= < x 2 k - l , x 2 k , x 2 k - l > = yAk-2x2k-l / 0, 

we must have (Aj)*(x2k_i) / 0, hence j has nonzero degree. 
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Finally, in CP , we may use a similar argument. In ACP , we 
have that 

— k y q — q —|— X — 
< x i , x2, ÌJ2k x i > = yïk x l ' 

If j*(x2) = 0, than (Aj)*(y2k x \ ) = 0. Now for j induced by a 
Lagrange embedding, 

(Aj)!(< (Aj)*(xi),/xL,(Aj)*(y2k xi ) >) C < x u (Aj)!(^M), y2k xi > 

= < ^ i , x2> y2k ̂ i > = y2k ̂ i / 0, 

which implies that (Aj)*(y2k x i ) / 0, hence j * x ^) / 0. q.e.d. 

Proof of 0.5. Indeed, if j has nonzero degree, then j ! ( l ) = d / 0, 
and therefore (Aj)!(l U (Aj)*(u)) = (Aj)!(l) U u = j ! ( l ) U u = d • u. 
Hence (Aj)*(u) = 0 implies d • u = 0, tha t is u is 0. Thus (Aj)* is 
injective as claimed. q.e.d. 

Proof of 0.7. This follows again from the structure of the cohomol-
ogy of H*(AS r), and Propositions 0.1 and 0.5. Let us start with the 
first statement. 

It is easy to show that H*(AT n) = Q)x&n H*(T n) because for each 
connected component in the free loop space of the n-torus, parametrized 
in an obvious way by Z n, the set of free loops in this homotopy class 
has the homotopy type of the n-torus. Then according to 0.1, j cannot 
have zero degree. Thus according to 0.5, (Aj)* must be an injection of 
H*(AS n) into H*(AT n), but this is clearly impossible, since H q(AS n) 
is nonzero for arbitrary large values of q, while H q(AT n) vanishes for 
q > n + 1. 

Similarly, for the second statement j cannot have zero degree ac­
cording to 0.1; thus using 0.5, it must induce an injective map 

(Aj)* : H*(AS2^k+^+1) -+ H*(A(S2k+1 X S2l)) 

= H*(AS2k+1)®H*(AS2l). 

But this is impossible by the following argument. Let z2tk+l)+iz2(k+l) 
be the generators of H*(AS2k+1), x2k+i, x2k those of H*(AS2k+1), and 
H*(AS) be generated by y ̂ l yil-Xi u l-ij u l-2 with the relations 
du l_i = y2l,du l-2 = y2l y2l-1- Since the map (Aj)* commutes with 
the map ß, we have that z2tk+l) goes to an element of the type x p u q y 
(p,q > 0), because it follows easily from the computations in [5, p. 65] 
that this is the only element in ker(/3). Hence equality of degrees implies 
that 2k • p + (Al - 2) • q + 2l - 1 = 2(k + l) or else 

2k-p+(2l- 1) -(2q + l) = 2(k + l). 
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This is clearly impossible. q.e.d. 

R e m a r k 0.8. Let L (respectively M) have an exact embedding 
into T*M, (respectively T*N) but we do not assume here that M o r N 
is compact. Then, using Weinstein's theorem we see that L has an exact 
embedding into T*N such that the associated projection is homotopic 
to the composition of the projections L —> M and M —» N. 

We thus get alternatives of the following type: given a manifold M, 
either there is no exact embedding of S n into T*M with zero degree, or 
of M into T*S n with zero degree. 

The same holds for maps of nonzero degree, unless H*(AM) is iso­
morphic to H*(AS n). We may also recover the fact that for M open 
there is no exact embedding of L in T*M. Indeed it is sufficient to 
prove this for L = L X T k and M' = M X T k. Now let X be a com­
pact manifold such that there exists a map f : M —> X such that 
f*(TX) = TM © eR~ , where £R means some trivial real line bundle. 
It is easy to find X by taking a Grassmannian manifold of sufficiently 
large dimension and f to be the classifying map of the normal bundle to 
TM. Since f*(TX) ® C = TM ® C 0 k"1 , using Gromov's h-principle 
it is known that there exists a Lagrange immersion of M' = M X T 
into T*(X X R) . Because M' is open, we may even assume that the 
immersion is in fact an exact embedding. By composition, we find an 
exact embedding of L into T*(X X R) , a contradiction. 

R e m a r k 0.9. All our arguments are based on the study of the 
rational minimal model of the manifolds. Thus our proofs apply to any 
manifold with the same rational homotopy type as those we consid­
ered. On the other hand we have not used torsion information at all. 
Unfortunately, to our knowledge very little is known on this for loop 
spaces. 

We now turn to a different problem, that of finding conditions on 
the Maslov class of an exact Lagrange embedding. This problem is in 
particular relevant in studying invariant Lagrange manifolds for Hamil-
tonian flows (see [21], [2], [54]). It is also of a more "positive nature" 
since it gives information on the Maslov class of existing embeddings, 
and not restrictions on embeddings that are conjectured to be trivial. 

As a consequence of the above methods, we get: 

Propos i t ion 0.10. Let L be a manifold having the homotopy type 
of an Eilenberg-MacLane space, and M be a simply connected manifold. 
Then there is no exact Lagrange embedding from L into T*M. Moreover 
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given a (non-exact) embedding from L to T*M, the Maslov class fj, of 
the embedding satisfies that for some 7 in H\(L), 1 < < fj,,j > < n + 1 
and 0 < < A, 7 > 

Proof. According to the equivariant version of the Main theorem, 
we have a commutative diagram: 

H*Sl (AL) (-H ! H*Sl (AM) 

c* c* 

H*(L)<S)H*(BS1) ^ H*(M)<S)H*(BS1) 

According to Goodwillie's theorem (see Section 3 for a precise state­
ment), the right-hand side vertical arrow is zero into H n(M) after lo­
calization, while the left-hand one is onto in all dimensions (in fact the 
inclusion map from the constants to null homotopic loops induces a ho-
motopy equivalence, in this case). Thus let £ in H n ̂  (AL) be an element 
going to /iL(g)l in H n(L)®H*(BSl). Then its image by j-<S> 1 is nonzero 
in H n(M) ® H^BS1) (note that if f : L - • M is a map, f\nL) = fj,M, 
independently of the degree of f ) . So on one hand c* o (Aj)! is zero, 
since the right-hand side c* is zero in degree n, while j o c* sends £ to 
fj,M- This contradicts the commutativity of the diagram. 

The second part of the proposition is similar to the proof of 0.12 in 
Section 7, and is left to the reader. 

Similar theorems are as follows (see Section 7 for the proofs) 

Propos i t ion 0 .11 . Assume M is a manifold such that TÏI(M) has 
a center Z of finite index. Let j be an exact Lagrange embedding of T n 
into T*M. Then rankZ = n and the image of iri(T n) in Z is injective. 
Moreover if we do not assume j exact anymore and rank Z / n, there 
is a loop 7 on T n such that 

1. R ̂  pdq > 0, 

2. (Mj),l)e[2,n+1]. 

This generalizes an earlier result from [42], dealing with the case 
L = M = T n. 

More generally we have: 

Propos i t ion 0 .12. Let M satisfy the first assumption of Theorem 
O.4 and let j : L —> T*M be a Lagrange embedding such that deg(p) = 0. 
Then there exists c in H\ (L) such that: 
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(i) c e ker(p), 

(ii) < A, c > > 0, so in particular c ^ KerA, 

(iii) < [J,(j), c > < d M, where d M does depend not on L but only on M. 

This had been proved for L = M = T n ( cf. [42], and [33] for the case 
n = 2), and manifolds of negative curvature. More precise estimates for 
the Maslov class are due to Y.G. Oh in particular for monotone tori 
in R n (cf. [32]). In a certain number of cases, this implies that when 
deg(p) / 0, the Maslov class of L vanishes. 

R e m a r k 0 .13. It is not hard to verify that our proof of the 
MAIN THEOREM still holds if we replace ordinary cohomology by any 
cohomological theory (e.g. K-theory, stable homotopy, etc.) provided 
it has a Thom isomorphism. The same also holds for an equivariant 
cohomology theory, but besides the existence of Thom isomorphism, we 
need that the S 1 equivariant theory be in some sense determined by 
the knowledge of the Z k equivariant one. However the existence of the 
map B* is not granted, thus the commutative diagram in (3) does not 
necessarily exist. 

Finally we give a proof of the Weinstein conjecture in a cotangent 
bundle, provided M is simply connected. We refer to Section 3 for an in­
troduction to the subject, and detailed statement of the theorems. This 
is obtained as a byproduct of our method that we shall now describe. 

Sketch of the proof for the MAIN THEOREM: 
Even though our proof is based on a finite dimensional approach, 

inspired by the work of Chaperon, Laudenbach-Sikorav, Givental (see 
[8],[29], [16], [17]), we can easily give a heuristic description of it in terms 
of Floer cohomology, making it, we hope, much easier to understand. 

Note that a Floer cohomology proof is indeed possible as in [48], 
where we construct the analogue of the map (Aj)' at the level of Floer 
cohomology, satisfying the same properties as in our main theorem. 
Note that this does not really simplify the proofs of the present pa­
per, since we need the isomorphism between the Floer cohomology of a 
cotangent bundle, and the cohomology of the corresponding loop space, 
and this requires more or less the same methods as those used in the 
first sections. 

The discretization is carried out in Section 1. 
Given a symplectic manifold W with contact type boundary, we may 

consider the Floer cohomology associated to a Hamiltonian, H, which 
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goes to infinity near the boundary. In other words, FH*(H) is the co-
homology of a complex having one generator for each periodic orbit of 
period 1 of X H-, the Hamiltonian vector field of H, and coboundary op­
erator obtained by counting the number of solutions of an elliptic partial 
differential equation on an infinite cylinder, asymptotically converging 
to the periodic orbits. 

This corresponds also to the relative cohomology of the level sets for 
a finite dimensional reduction of the action functional 

A H{q,p)= S \pq- H(q,p)]dt. 

That is, for a finite dimensional reduction, A H,N of A H> we have an 
isomorphism (up to a shift in grading though) between H*(A c H N, A H c N), 
for c large enough, and FH* (H), where A c H N is the sublevel set of A H,N-

If W is the unit disk bundle of T*N, and the Hamiltonian is zero in 
the interior of W (see Section 1 for details), then FH*(H) is isomorphic 
to H*(AN), where AN is the free loop space of N. Now let L be an 
exact Lagrange submanifold of T*N. According to Weinstein's theorem, 
we may consider a tubular neighborhood U of L, and identify it with 
the unit disk bundle in T*L. 

Now choose a Hamiltonian K on T*N such that the following hold: 

-it is zero inside U, 

-grows very fast as we reach the boundary of U (in other words K 
is almost equal to H on U), 

-is constant outside U, up to the boundary of a unit disc bundle W 
ofT*N, 

-grows very fast as we reach the boundary of W. 

In Sections 2 and 4 we prove that the contribution of the charac­
teristics contained in U, the neighbourhood of L, to FH*(K) is again 
given by H*(AL). 

In Section 5 we show that , in computing FH*(K), and choosing ap­
propriately some parameters, the critical points corresponding to closed 
characteristics near L are at a higher level than the other characteristics. 
This yields a map from FH*(H) to FH*(K), tha t is, up to a limiting 
process, the map (Aj)! we are looking for. 

The other arrows in the diagram are obtained in Sections 5 and 6 
by restricting this map to the set of constant loops. Here we use the 
fact that with our choice of the Hamiltonians, constants correspond to 
the lowest critical levels 



430 c l a u d e v i t e r b o 

Let us now explain where the assumption that the Lagrange sub-
manifold be exact is used in our proof. If AL has several connected 
components, each of these contribute to the cohomology of FH*(H), 
but each of the components is on a different level for A H- The level is in 
fact approximately given by < A, 7 > (for 7 any loop in the connected 
component). Now if there is no trajectory of the gradient flow of A H (or 
rather A H,N) from one component to the other, each connected compo­
nent of AL will contribute to the total cohomology by just adding each 
contribution. This is of course the case, when A is exact on L, since 
then all components of AL will be on the same level, and there can be 
no gradient trajectory connecting two components. 

Finally in Section 7, we show more precisely that , unless the Liou-
ville and Maslov class satisfy some restriction, the trajectories of the 
gradient map above will not modify the above picture in the relevant 
cohomological degrees, and the above obstructions to Lagrange embed­
ding will still hold. This gives Maslov type obstructions to Lagrange 
embeddings. 

One more comment on our main theorem. We will show in this paper 
how algebraic topology of the free loop space yields obstructions to the 
existence of Lagrange embeddings. But one may wonder in general, 
given a map f : L —> M whether there exists a map (Af)! : H*(AL) —> 
H*(AM) satisfying the conditions of the main theorem. We essentially 
proved that there are certain obstructions to the existence of such a 
map. However the following question seems natural to us: 

Quest ion . Is there a functorial subring F*(AX) of H*(AX) such 
that (Af)! is well defined from F*(AL) to F*{AM)1 

Also we are ashamed to confess that in spite of all the above results 
about Lagrange embeddings the simple question 
"Is there a (non-exact!) Lagrange embedding of the Klein bottle in R " 
is still unanswered. 

Since this paper was written, Eliashberg and Polterovich proved that 
any Lagrange torus homologous to the zero section in T*T2 is isotopic 
to the zero section (but their proof does not say whether it is Lagrange 
isotopic), and the analogous result for S 2 in T*S2. 

Also Hofer proved that all exact Lagrange tori in T*T2 are isotopic. 
The methods seems to be purely 4-dimensional though. 

Finally I would like to thank Dan Burghelea and Micheline Vigue-
Poirrier for their patience in explaining to me some aspects of the coho­
mology of loop spaces. I am grateful to Dietmar Salamon for useful and 
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pleasant conversations. Thanks to Martine Justin for her skilful typing. 
I am very grateful to the referees, for going through an original 

manuscript riddled with misprints, typos, etc... and for pointing out 
much needed improvements. 

1. Discret izat ion of Hami l ton ian flows 

Let L be a (not necessarily compact) manifold, and ge a complete 
metric on L. The metric eg defines a fiberwise quadratic map on TL, 
and by duality, a fiberwise quadratic map on T*L, tha t we shall denote 
by g. In local coordinates, if eg = Yïeg ij dq i dq j, we have 

g = T,g ij dp i dp j , where {g ij) = {g ij)~ l . 

In this section we denote by UJ the canonical symplectic form on T*L, 
and by Ho a Hamiltonian on T*L of the form Ho(q,p) = h( |p | ) , where 

l 
\p\ = (g(p)p,p)2, and h : R —> R satisfies: 

(a) h is smooth, convex, 

(b) h(0) = h'(0) = 0, 

(c) h(u) = hoo • u for u large enough. 

Let XQ be the Hamiltonian vector field associated to Ho, i.e., 

u(X0,$) = dH0-$, 

and (p® its flow. It is clear that (p® is a reparametrization of the geodesic 
flow of g. Note that if we consider 1-periodic orbits of cp®, they will be 
in one to one correspondence with closed geodesics of length less than 
h 

The Hamiltonians which we shall consider in this paper will always 
coincide with Ho outside some compact set. Let H be such a Hamilto­
nian, X Hi 'pt its associated vector field and flow. 

We now explain how to discretize <pt. 
Let T*L denote the symplectic manifold (T*L, —u), and 

E r = (T ̂  L r x (T*L)r 

for some integer r. Let a : (T*L)r —> (T*L)r be the shift map 
u(zi,..., z r) = (z2, • • •, z r, z\), and $ = a o ((pi/r X . . . X (pi/r), tha t 
is 

$ ( z i , . . . , z r) = (ip1/r(z2),...,ip1/r(z r),ip1/r(z1)) . 
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Since a and <~pi/r X . . . X<~P\ir preserve the symplectic structure of (T*L)r, 
the same is true for <£>. The graph r(<£>) of <£> is then a Lagrange sub-
manifold of E r (endowed with the obvious symplectic structure). 

For convenience we shall often use the following notation or conven­
tions : 
— for z E (T*L)r 

z = {z j)j&/r so t h a t a{z j) = iz j + l) and z j = iq jip j), 

— for (z, Z) e E r 

z = (z j)jei/r, (z, Z) = ((j, Z jììjez/r so that T($) = (j, ip1/r(z j+1)), 

— the diagonal A = Ar = (AT*L)r C E r is the product of the diagonals 
in T*Lx T*L. 
Our first task will be to define a region of E r such that the portion 

of r(<£>) contained in this region will be a graph over Ar. We first 
make precise our identification of a neighbourhood of Ar in E r with a 
neighbourhood of the zero section in T*Ar. 

L e m m a 1.1. Assume the injectivity radius of eg is bounded from 
below by £Q. Let e < £Q small enough and Ue C T*L X T*L be the 
set Ue = {(q,p,Q,P)\d(q,Q) < e}. Then there is a proper symplectic 
embedding i : Ue —> T*(T*L) such that on UQ we have 

(1) i(q,p,q,P)=(q,P,P-p,0), 

(2) Di(q, p, q, P) {5q, Sp, SQ, SP) = {5q, SP, SP - 5p, 5q - SQ). 

The proof follows immediately from the Darboux-Weinstein theo­
rem. This tells us that if K is a submanifold of a symplectic manifold 
(M,uj), and (M' ,u / ) is some other symplectic manifold, then, given a 
map ip : K —» M' such that <-P*u',K = u\K, and an extension f of dip 
to a symplectic fibre map from T K M to TM', there exists a symplectic 
extension îe of ip to a neighbourhood of K such that dîe\K = f. 

Using this, the proof is easy and left to the reader. q.e.d. 

Remark . We shall denote by " P — p" the coordinate dual to q in 
T*(T*L). Let us point out that it is not the difference of " P " and "p" ! 

Similarly we may define "q — Q". Using the symplectic map i, we 
may pull back these coordinates on Ue. Then, both coincide with some 
"naive" definition up to a term of order s for " P — p" and s2 for "Q — q". 
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By a "naive" definition of "P—p" we mean for example the sum of — p (in 
T*L) and the image of P by the parallel t ransport from Q to q along 
the unique minimizing geodesic. Similarly, one may define a "naive" 
Q — q by using X G T q L such that exp X = Q. 

Let (Ue)r C E r, and consider the symplectic embedding i r : U re —> 

r* = r(r($)nt/r) . 

We first examine TId. Since 

r ( Id) = {(q j , p j , q j + i , p j+i) | (q j , p j) e T*L) , 

we have 

r ( Id) n ( U ) r = {(q j , p j , q j + i , p j + i ) | d q j , q j+i) < e} . 

We thus see that TId has a projection on the base of T*(T*L r) " essen­
tially" given by (q j,p j , q j+i,p j+i) —> (q j,p j+i) (again, we use parallel 
t ransport to define this). 

We may in fact assert tha t TId is a graph over 

U r,e = {(q^P j) E T*L r\d(q j,q j+1) < e/2). 

Since r(<£>) is close to TId (for the distance sup d(z j , z'j) provided r is 
j 

large enough, the same will hold for T$. Because (pt is Hamiltonian, it 
is easy to see that r(<£>) and thus T$ are exact Lagrange submanifolds. 

We may now conclude that over U rj£, T$ is the graph of dS§ for 
some function S$ : U r)e —> M.. 

The rest of this section is devoted to computing the Conley index 
(read further for the definition) of U r)e for some pseudo-gradient vector 
field Ç$ of S$ , when H = HQ (the next section is devoted to more general 
cases). 

We remind the reader of some results from Conley's book [9]. 
Let U be a manifold with boundary (and possibly corners) dU, and 

£ a vector field on U. The Conley index of £ of U, denoted by I*(U,£) is 
the homotopy type of the quotient U/d~U, where d~U is the exit set of 
£ (i.e., | x | (£ (x ) , v(x)) > 0} , where v(x) is the outward normal on dU). 

Let C be the maximal invariant set in U. Then, provided C C U—dU 
(in Conley's terminology, U is an isolating block for C) we have that 
I*(U,£) only depends on C (and of course on £), not on U. 
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In case £ is a pseudo gradient vector field for some function f (i.e., 
df(x) • £(x) < 0 with equality if and only if df(x) = 0 and then, also 
£ vanishes), C will be the union of the critical points of f, and the 
heteroclinic trajectories of £ connecting them. 

If we set U a = fx G Ujf(x) < ag, and if U is an isolating block, 
than U b — U a is also an isolating block for the set C b a of critical points 
with critical value in [a, b] and heteroclinic trajectories connecting them 
(provided a and b are regular values of f ) . 

Note that this has a straightforward generalization to the case where 
U is endowed with some group action, and everything is equivariant. 
The equivariant Conley index, denoted by I G (U,£) is then the equivari­
ant homotopy type of U/d~U. 

We now return to our original problem, and point out that it has an 
obvious Z / r symmetry, and that everything will indeed be equivariant, 
even if it is not specified. 

To be able to compute I , (U r i £ ,£$), we first have to define £$ ! 

Let E$(q) = supS$(q, P) in R U f+oog, and 
P 

a , e = {(q j ) eAr,sjE9(q) < a}. 

We shall need: 

L e m m a 1.2. For jPj < R(e,r), the map P —> S$(q,P) is strictly 
concave. For a < a(e,r), and q G Aae the map P —> S$(q,P) has a 
unique critical point, which is a maximum. 

Moreover R(e, r) and a(e, r) go to +oo, as re2 goes to zero. 

Proof. Let us write coordinates in U r)e as (q j , P j , X j , Y j) so that T$ 
is given by 

_ 9S$ _ 9S$ 

j ~ dq j ' j ~ dP j ' 

and we have that 

1 HH 
Y j = q j+i - q j - r7 tp"( j> P j ) + riq+1 - q j> P j ) ' 

where 7/(0, P) = D7/(0, P) = 0. 
Note that Y j only depends on q j , P j , q j+i, P j+i- Now 

dY j Id2 H. P . di). 
dP = — w { q jìj)+~P{q j+1~q jìj)ì 
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drj and gP goes to zero with q j+i — q j , while 

sup jp j j < R(e, r). Thus | P < - ^ + Ce2. 

ti 
r dp2 

1 &2H_ > C. for 

Since 

dY j 

dp j+i 
V(q j+i -q j,P j) 

for k / , j + 1, 

for k = j + 1 , 

we have 

d2S<s> d Y j 

9 P 2 dP 
< 

d2S$ 

d2S$ 

dY 

dP j + 1 

^ + Cs2, 
r 

<Ce2 

dP jdP k 
for k^j, j + 1. 

As a result, provided r < \C-s 2, we have that P —> S ̂ (q1P) is con­

cave. 
Note that Co goes to zero as R(e, r) increases, tha t is, as re2 goes to 

zero we may let Co decrease to zero (and still have re2 < \C C-), hence 
R(e, r) goes to infinity. 

Let us set Arj£ = f(q j) G L r jd(q j , q j+i) < ^/2g and ir : U r)e —> Arj£ 

be the obvious projection. Using Lemma 1.2, we see that the restriction 
of S$ to r~l([q j)) is either unbounded from above (and there are no 
critical points) or has a unique maximum P = P(q). 

From the properties of S$ it follows that 

d 
e a r,e = f(q,P)e(T*L r j — S<!>(q,P) 0, (q) e Kg 

is contained in U rj£, and is a graph over Aa e . We set P to be minus the 

gradient of the restriction of S$ to 7r~1(q), tha t is, —r p S$(q,P). Then, 

in V ae = 7r~1(Aae), P is a pseudo-gradient for S$ , except on e ae. 

We must now modify P near e ae to get a pseudo-gradient every­
where. This is easily achieved, using £o> an extension of minus the 
gradient of S$ restricted to e ae. We may set 

& = (1 - « ( j P - P(q)j)P + a ( j P - P ( q ) j ) 6 

file:///C-s
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where a is a real nonincreasing function with values in [0,1], such that 

a = 1 near 0, and a = 0 outside a neighbourhood of 0. 

It is clear that Ç$ is a pseudo-gradient for S$ in V ae. 

We now denote by N a£ a tubular neighbourhood of e ae, and by 

V a£(R),U a£(R) the intersection of V r a , U r a with {(q, P)jsup'jPtj < R}. 

We first prove 

L e m m a 1.3. 

Proof. We shall take for N a£ the disk bundle over e ae given by 

a ( j P - P ( q ) j ) > 0 . 

To prove the lemma, we only have to prove that the maximal in­

variant set for Ç$ in V ae(R) is already contained in N a£. We must thus 

show that : 

(a) N a£ contains all the critical points in V a e(R), 

(b) N ae contains all the heteroclinic orbits in V a£(R). 

The first statement is trivial, since at a critical point of S$ , gpS$ 

vanishes, i.e., all critical points are in e ae . 

As for (b), it follows from the concavity of S$ as a function of P. 
Indeed, outside N a£, Ç$ = Çp is — r S $ . Hence if some orbit exits from 
N a£, it does so through a point where a(jP — P(q)j) = 0 (at the other 
points of dN a£, Ç$ enters N a s , see Figure 1.1). 

F i g u r e 1.1 
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But this orbit is then in a region where S$ < a, hence it cannot 
reenter N a£, since it would have to reach a region where S$ = a (£$ 
enters N a£ only where S$ = a). This concludes our proof. q.e.d. 

It is also easy to prove 

L e m m a 1.4. 

Proof. The proof is the same as for 1.3. 
Finally, we have to compute I ̂ ,(N a£, £$). We first need a definition. 

Let E —T- X be a vector bundle. We denote by T<E X the Thom space 
D(E)/S(E) where D(E) and S(E) are respectively the disk and sphere 
bundles associated to E. More generally, for A in X, 

EE(X/A) = D(E)/(S(E) U D(E jA)). 

The Thom isomorphism tells us that , provided E is orientable, 
H*{YIE(X/A)) = H*~k(X/A), and the same is true in equivariant co-
homology (see [10]). 

Remark . From our proof of 1.3 it follows that if U is any bounded 
open manifold with boundary, containing N a£ and not other critical 
points than those contained in N as, then 

IÌ/r(U,e) = IÌ/r(N r a , & ) 

for any pseudo-gradient e of S$ coinciding with Ç$ on N a£. In fact 
this is even true for any pseudo-gradient of S$ , since our argument only 
used the properties of the restriction of S$ on the boundary of N a£. 

L e m m a 1.5. 

where N is the normal bundle of Ar in Ar. 

Proof. Since e ae is a graph over Aae , we may as well replace the 

right-hand side of 1.5 by S N ( e a e ) . Now N a£ may be identified with the 

disk bundle associated to N. Since we saw that the exit set of Ç$ on 

N a£ is S(N) Pi N a£, the lemma follows immediately. 

To summarize our finding we proved 
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Propos i t ion 1.6. 

I / r ( U r a ( R ) , & ) = I / r ( V r a ( R ) , & ) = SN(Ar a ) . 

The same proof yields 

Propos i t ion 1.7. For a(r,e) < a < b < b(r,e) 

Here a(r,e) goes to — oo and b(r,e) goes to +oo as re 2 goes to 0. 

Remark . In the relative case we may replace U rtS(R) by U rj£, since 

U re - U re{R) = U ae - U a e{R). 

Note that for b and r going to +oo, and e going to 0, we have that 
Ar e converges to A?'N = {loops in N with length less than 7 } , where 
j = hoo is the slope of h at infinity. 

2. General izat ion and localization of the results of the 
previous sect ion 

In this section, we shall be again interested in computations of Con-
ley indices I*(U,£) with £ a pseudo-gradient for S $ . 

Here <I> is associated to a Hamiltonian H as in Section 1, but we do 
not assume H to be convex in p. We shall consider the following two 
cases 

(1) H(qlp) = H0(qlp) for \p\>R. 

(2) H(qlp) = H0(qlp) for \p\<R. 

We start with the first case, which is based on the following idea. 
We consider a family HT of Hamiltonians such that 

(a) HT = H0 for \p\ > R, 

(b) the fixed points for the time-one flow ipT of HT have their action in 

some interval J of M., tha t is, if <p\{xT) = xT, then xT(s) = <pTs{xT) 

is such that RQ \pq — HT(xT(s))]ds is in J. 
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We first want to prove : 

Propos i t ion 2 .1 . Let HT satisfy (a) and (b) above, and assume J 

is contained in ]a, b[. Then there is a pseudo-gradient ÇT of S$T on U r)e 

such that Ço = Ç$0 ; and 

I ( U r b , £ ( r ) - U r a ( r ) , £ T ) 

does not depend on T. 

Proof. The idea is that since we may add a constant to S$ , so that 
the critical value of S$ associated to a critical point (which corresponds 
to a fixed point of (p) coincides with the action of the periodic orbit (cf. 
[40], [41]), if J C]a, b[, then no critical point of S$T will "interfere" with 
U r £ (T ) or U a : £(T), hence I*(U rE (T) - U a S { T ) ^ T ) will not depend on r . 

We first consider the following abstract situation. Let fT be a family 
of functions on U, such that 

(i) fr\dU has no critical value in [A,/i], 

(ii) fT has A and fj, as regular values. 

Let ÇT be a pseudo-gradient for fT such that on dU (~) fT1([A, fj,]), ÇT 

is tangent to dU. Then I*(UA1(r) — U ( T ) , £ T ) does not depend on r . 
The proof of this statement follows from the standard properties of 

the Conley index, provided we remark that I*{U ^{T) - UX{T),£T) = 
U ^(T)/UX(T) because ÇT does not exit on dU C\ f'1 ([\, /i]), and that (ii) 
implies that the homotopy type of Uß(T)/U (T) does not depend on r . 

To prove our proposition, we will show that we are in the above 
situation, with U r)e and S$T replacing U and fT. 

Because as we said before, the critical values of S$T are the actions of 
the periodic orbits, (b) implies that S$T has a and b as regular values. 
Property (ii) is then satisfied, and we only have to check that S$T 

restricted to dU r)S has no critical value in [a, b], for e small enough. 

Arguing by contradiction, we see that otherwise, we would have a 

solution of •JP S$T(q,P) = 0, S$T(q,P) G [a, b] for (q,P) G dU r^. Now 

if (q, P) G dU rte, we must have d(q j , q j+i) = e for at least one j in Z / r . 

Now, up to higher order terms, gP S$ = q j — q j+i — ̂ ~dP(q ji P j)- If this 

vanishes, we have s = d(q j , q j+i) < -

rJH 

rJH < C where C is a bound for 

dp 

dp 

on T*L. This implies r < C, so it cannot hold for r large enough 

(remember that we assumed r < \C ̂ -£ 2, which is however compatible 
with the above condition). Thus assumption (i) is satisfied. q.e.d. 
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Corollary 2 .2 . Assume that H = Ho outside some compact set, 

and that the quantity p-g H(q,p), which is compact supported, is 

bounded by the real numbers a < 0 < b. Then I ̂ , (ÎU r S — Z r e , £ ) = 

EN(Ab e) , where £ is a pseudo-gradient for S§ tangent to the boundary 

ofU r,e-

Proof. Set HT = (1 — T)HQ + TH. Then provided 

a < p— H0(q,p) < b, 

and the same holds for H, it will hold for HT. Since the action of a 

periodic orbit of HT is given by RQ p-g^ — HT (note that for a solution 

q = -QH-), T is thus in [a, b]. q.e.d. 

We now consider case (2). 
Since H = Ho in | P | < R, we see that S$ = S$0 on U r)e{R). Hence 

we may assume that £$ = £$0 in this set, and as a result 

I*(U r,£(R),^) = I*(U r,£(R),^0), 

and the same holds for U r^e{R) replaced by U r e {R) — U,ae(R). 
Here we shall be interested in a case where we may drop the "R" 

in U r)e{R). This indeed happens if S$ has no critical point with critical 
value in [a, b] outside U r j £(R), or else X H has no 1-periodic orbit with 
action in [a, b] outside {(q,p)\ \p\ < R}. We may summarize this in 

Propos i t ion 2 .3 . Assume H(q,p) = Ho(q,p) for \p\ < R. Then 

=SN(Ar j £ /Aa e ) . 

Moreover if the 1-periodic orbits of X H outside {(q,p)\ \p\ < R} have 
their action outside [a,b], then 

3. Per iodic orbits on hypersurfaces of T*N 

The aim of this section in to use the results of the first two sections, 
in order to find a closed characteristic for a hypersurface SQ in T*N. 
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We shall assume that So is the boundary of a compact submanifold 
UQ of T*N. Moreover, we assume that a neighbourhood of So is foliated 
by hypersurfaces St , t in [—e,e], and we set S t = dU t-

If for any positive S, there exists t with \t\ < S such that S t has 
a closed characteristic, we shall say that the foliation S t has property 
(QE) (= quasi existence of periodic orbits). If this holds for any foliation 
of a neighbourhood of So, we shall say So has property (QE). 

Note that if So is a hypersurface of contact type (see [53] or [41]), 
then (QE) for So actually implies that So itself carries a closed char­
acteristic, since in this case we may choose the S t to be conformally 
equivalent to So-

This means that if (QE) holds for all hypersurfaces in a certain class, 
then the Weinstein conjecture will hold for the contact hypersurfaces in 
the same class. For instance, in [23] we proved that if UQ contains the 
zero section and N is compact, then (QE) and thus the Weinstein con­
jecture holds. This assumption is rather strange, since it was proved in 
[41] and [25] that (QE) holds in R2n and as pointed out by M. Chaperon 
that this implies that if N is compact and has a Lagrange embedding 
in R n, then (QE) holds with no need of such a condition in T*N. 

We shall prove in this section that (QE) holds provided the image 
of TTI(UO) in TTI(N) is finite. 

T h e o r e m 3 .1 . Assume the image of TTI(UO) in TTI(N) to be finite. 
Then property (QE) holds in T*N for So = ÔUQ. In particular ifiri(N) 
is finite, the Weinstein conjecture and (QE) hold in T*N. 

Remark . In [36], Michael Struwe proved that in R n, (QE) may be 
replaced by the stronger property (AE) (almost existence) : for almost 
all t in [—e,e], S t has a closed characteristic. In the sequel one may 
replace (QE) by (AE). 

The rest of this section is devoted to the proof of 3.1. 
We first assume that TTI(N) = 0 (hence N is orientable). 
We may in fact assume N to be compact since U is, and (QE) only 

depends on U. So if we assume that U C T*V for V bounded in N, and 
we carefully choose V so that its double W is simply connected, then 
we may replace N by W. 

As is now classical, the problem may be reduced to finding a 1-
periodic solution for a Hamiltonian flow, defined as follows: 

(i) H = 0onU-£. 

(ii) H = a in B(R) - U£. 
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(iii) H(T<t) = k(t) with k as in Figure 3.1. 

(iv) H(q,p) = g(jpj) with g such that g is increasing, convex, satisfies 
g'(u) •u-g(u) < 0, g(u) = a for u near R, and lim u - ^ g'(u) = g oo • 

F i g u r e 3.1 

We easily see from the above assumptions on H, tha t there are no 
periodic orbits with positive action outside B(R). 

We now assume that T,t has no closed characteristic, implying that 
H has no nonconstant periodic orbit inside B(R). 

Thus the 1-periodic orbits of X H fall in three classes: 

(I) The constants inside Uo, with action zero. 

( I I ) The constants outside Uo, with negative action (H > 0 implies 
R pq- H < 0). 

( I I I ) The nonconstant periodic orbits outside B(R), corresponding to 
closed geodesics of length bounded by some function y of g ^. 
Because g'(u) • u — g(u) < 0, the action of such orbits is negative. 

Let us point out that provided we sufficiently increase a, the constant 
goo may be taken arbitrarily large. 

Now, let S$ be associated as in Section 1 to the flow of H. Then we 
know that for b large enough H ̂ ,(U£,U~^) ~ H*7d(e r e ) , since e~b£ 

is empty, S$ being bounded from below. 

On the other hand, in U&re-U-J!, for 8 small enough, the only critical 
points of S$ are given by the constants in UQ. A small perturbation 
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easily yields that 

8 -8 *-d Hi/r(U r t e ,U-J) ~ H*~d (U0, dUo) ® H*(BZ/r), 

because the critical points considered are all fixed points for the Z / r 
action. 

Now since S$ has no critical value in [S,b], we may identify 

H ̂ ,(U r e ,U~e) with H ̂ ,{U r £ ,U~ç) , and write down the cohomology 

exact sequence of the triple {U r e,U~'e, U~b), tha t is, 

Remember that 7 = h ̂ . Let ^n be the generator of H2n(Uo, ÔUQ). 

i/r We want to consider the image of fi2n ® 1 in Ht {U r e,U r^). This will 
lead to a contradiction. 

First of all we set H * ( B Z / r , Z / r ) ~ A(a) <g) Z/r [u] where A(a) is 
Z[a] / ( r , a 2 ) , deg a = 1, and deg u = 2. 

We first have 

L e m m a 3.2 . Provided g ̂  is large enough, the image of ^n <S> Mj 

in H% I {U r e,U~b) ~ H , ( e r,e) is zero for j large enough, independent 

of goo-

We shall prove that for a class <7 in H^n (e r i S), provided a has zero 

projection on H ̂ / r ( p t ) (the projection H * / r ( e r,e) ~ H* / r (A"N) -> 

H , (pt) being induced by the inclusion pt —> AN) we have that au j = 0 

for j large enough (j > n + 1 is sufficient). This is based on the following 

theorem 

T h e o r e m (Goodwillie [18]). Let AN be the free loop space of N. 
S! (AN, Q) has zero projection on H S If a in H S1 (AN, Q) has zero projection on H S i(pt,Q), then we have 

u k+1a = 0. 

The Lemma may now be proved as follows. 

Proof of Lemma. According to Appendix at the end of this paper, 
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we have that for r large enough, 

H* /r(Ar i £ , Z / r ) ~ H*Sl (AIN, Z) ® H*(S\ Z / r ) , 

f S i (A^N, Q) ~ f S (A7N, Z) ® Q . 

If we choose r prime, large enough so that i S (A7 N , Z) has no Z / r 
torsion, then any a G H ̂  * (Ar,e, Z / r ) may be written as e <8> /3 with 
e G H*S1(A^N,Z), ß G H*{S1, Z/r) and au j corresponds to e u j ® ß. 

According to Goodwillie's result, e u j is torsion, since it vanishes after 
tensoring with the rationals. Because there is no r-torsion, au j ~ e u j <g> 

ß vanishes. 

The proof of our lemma will be complete if we show that the im­

age of fj,2n in H ̂ ,(Ar}£, Z / r ) has zero projection on the submodule 

Hg/r(pt, Z / r ) ~ H*(BZ/r); embedded in H*/r(Ar,s) through the con­

stant map e r,e —T- pt. 

We first need to remind the reader of the definition of the localiza­
tion. Let S be a multiplicative subset of a ring R (i.e., a,b G S =>• a-b G 
S). Let M be an R module. We denote by S~1M the quotient module 
S X M/ ~ where (si , mi) ~ (s2, m2) if and only if there exists t in S, 
such that tsimi = ts ^ m ^- Then S_1M is an S~XR module, called the 
localization of M (at S). Note that localization commutes with exact 
sequences (i.e., it is an exact functor). 

If S = H*(BG) - H°(BG), and X, Y are G spaces, with fixed 
point sets F Xi F Y, then given an equivariant map f : X —> Y we 
may consider fQ : H G(Y) —> H G ( X ) . Thus a classical result states 
that S^H^Y), S^H^X) coincide with H*(F X) <g> S^H^BG) and 
H*(F Y) ® S^H^BG), and S"1f,^ is induced by f*F where f |F is the 
restriction of f to the fixed point sets (see [10]). 

In our case the map 

H*(U0l dU0) ® H*(BZ/r) -> H / r ( e r e ) 

localizes to a map induced by the obvious map 

H*(Uo, dU0) - • H*(B(R),dB(R)) ~ H*-n(N) . 

This map sends ^2n to An the generator of H n(N). Because N is com­
pact, Xn is nonzero. 
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Consider the diagram 

this is the localization of the diagram: 

In the above diagrams 

D = {(plP)\q=q0l \P\<R}, 

dD = {(qiP)\q=q0l \P\=R}1 

and D n,dD n are the fixed point sets of D,dD for the Z / r action. 
q.e.d. 

Now H*(U0,dU0) - • H*(D n,dD n) ~ H*~n(pt) maps /x2n to zero. 
Hence the image of Xn in H* {BZ/r) is zero. We may thus apply Lemma 
3.3 to get a contradiction : the image of fi2n u is zero but it is nonzero 
after localizing. This concludes the proof of Theorem 3.1. q.e.d. 

Remark . We assumed here that 

H ( A L ) = lim H p(Ac L). 

According to [20, p. 410], it is enough to check that the inverse limit of 
cochain complexes which we are considering satisfies the Mittag-Leffler 
condition, that is: 

1) Çlp(Ac L) whose inverse limit is Çlp(AL) is such that the image of 
Ç}p(AL) in Ç}p(Ac L) does not depend on c, for c large enough. 

2) For each fixed a, the image of H p(Ac L) in H p(Aa L) does not 
depend on c, for c large enough (depending of course on a). 

The first property is obvious, since any form on Ac L extending to 
Ac L actually extends to AL. Since the H p(Aa L) are finite dimensional 
for each a, the second property is trivially satisfied. 
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We also have used that Ar,e has the Z / r equivariant homotopy type 
of A7 for which we refer to [31]. 

Remark . The above proof has in fact a wider range than the 
theorem. Indeed Goodwillie's theorem states that the localization of 
H S1(AN) only depends on TTI(N). Now we only needed that the inclu­
sion N -> AN induces a map H*S1(AN) -> H*(N) <g) H*(BS1) which 
does not contain H n(N) <S) H*(BS1) in its image. 

In particular this will be satisfied if TÏ\ (N) is abelian of rank < n = 
d i m N , because we may compute H*Sl(AN) for N = T k X R n~k. We 
thus get 

Propos i t ion 3 .3 . Assume that the image of TTI(UO) in TTI(N) has a 
finite index subgroup which is abelian of rank strictly less than n. Then 
(QE) holds for T,0 = dU0. 

4. T h e case of a Lagrange submanifold in T*N 

Let L b e a Lagrange submanifold in T*N. Using Weinstein's theo­
rem by a symplectic map we may identify a neighbourhood of L with 
Bp = {(q,p)eT*L\\p\<p}. 

Let H be a Hamiltonian on T*N such that : 

- in Bp, H(z) = h( |p | ) , h is convex and will be made precise later, 

- in D R — Bp, H is constant equal to a, 

- outside D R , H(z) = y (Ho) with y convex and lim y'(t) = y^. 
t—>oo 

The reader will be careful to distinguish between (q,p) coordinates 
in Bp and (q,p) coordinates in T*N. 

We consider the map <I>i associated to the flow (pu of H, as in the 
previous sections, and L(<I>i) its graph in (T*N X T*N)r. 

In the subset (Bp X Bp)r, L(<I>i) coincides with L(<I>2), where <I>2 is 
associated to the Hamiltonian K defined on T*L by K(q,p) = h( |p | ) . 

Note that L($ 2 ) C (T*L X T*L)r. We may then identify its inter­
section with (Bp X Bp)r to a subset of (T*N X T*N)r, using Weinstein's 
theorem. 

One may then think that this implies S ̂ 1 = S$2 on some subset. 
But this is wrong for the following reason : the maps i\ and ii obtained 
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by applying Lemma 1.1 to T*N and T*L define vertical foliations in Ue 

which do not coincide (see Figure 4.1). 

F i g u r e 4.1 

F i g u r e 4.2 

The goal of this section is to analyze the contribution of the neigh­
bourhood of L to the variational picture of S $ . In the sequel we shall 
assume r and e to be fixed. Before stating the main proposition of this 
section, we remind the reader that any loop in L has a Liouville number 
£(j) and a Maslov number m(j), and these numbers only depend on 
the free homotopy class of 7. Set e2 = ej! eL, then e2 may be identi­
fied with a subset of the free loop space of L. In particular, to every 
connected component of e2, we may associate its Liouville and Maslov 
numbers £ and m. 

We may now state 

P r o p o s i t i o n 4 . 1 . Let a < b be such that ipu has no periodic orbit 

with action in [a,b] outside Bp. Then there exist Z / r bundles M\,Mi 
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such that 

= S M I ® J V ( e 2
+ / e 2

+ ), 

where £ is the Liouville number of the connected component of e 2 which 
we are in, M\, M 2 are Z / r vector bundles such that rk(M\) —rk(M2) = 
m(7) is the Maslov class of the connected component, and N is the 
bundle from Lemma 1.5. 

This proposition tells us that up to a suspension and shift in levels, 
the change in the topology of the sets fS§1 < is}, for v in [a, b], is the 
same as the change in topology of the sets fS$ 2 < v}. Nothing changes 
outside Bp, and what happens there has been described in Section 2. 

The proof of the above theorem will take up most of this section. 
We first consider the following abstract situation. 
Let W be a manifold with boundary dW, Xt a Hamiltonian isotopy 

of T*W, such that \t = Id on the union of 0W and a neighbourhood of 
TgW W, and Lo the graph of dfo for f : W —> R a smooth function. 

We denote by L t the Lagrange submanifold xt(Lo). 

L e m m a 4 .2 . There are g.f.q.i. So and S\ of Lo and L\ which are 
diffeomorphic, i.e.; So o G = S\, with G a diffeomorphism of W X R . 
The diffeomorphism G may be assumed to be the identity over dW, but 
it is not, in general, fiber preserving. 

Proof. Let S t be a g.f.q.i. of L t, we may assume that S t = So 
over a neighbourhood of dW X R k, using the fact that W U dW X [0,1] 
is a deformation retract of W X [0,1]. We then look for the flow G t of 
a vector field X t such that S t ° G t = SQ. By Moser's lemma, this is 
equivalent to solving dS t • X t = —-^S t-

Whenever dS t(x,£) / 0, the above equation is trivial to solve, so we 
only have to consider the neighbourhood of critical points of S t- Such 
points correspond to the intersection points of L t with the zero section, 
and the order of the critical point corresponds to the order of the contact 
of L t with QW Now since Xt is the identity on 0W, the points of L tDOW 
and their order of contact do not depend on t. 

Assume now that ( x , £0) is a critical point of S t, and that S t ( x , £0) 
does not depend on t. Then gt S t ( x , £ o ) must vanish to the same order 
as dS t(x,£o), so we may solve dS t(x1^)X t(x1^) = — ^ S t(x,£) near 
(x,£o)-
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To conclude our proof, we just have to show that t H-> S t(x>£o) 
does not depend on t. This is a priori not correct, but we have that 
for (x0,^0), (xi ,£i) two critical points of S t, S t ( x i , Z ) — S t(x0,^0) does 

not depend on t. Indeed, this quantity is given by pdx, where jt is 
it 

a path in L t connecting (xo, 0) to (x1, 0) (cf [40]). 
If we take Z t = \t (lo), the fact that \t is symplectic and preserves 

0W, and that pdx may be identified with the symplectic area of a 
it 

disk with boundary jt°Jt~ , where jt is a path in 0W connecting (x, 0) 

and (x i ,0) , readily imply that Z pdx does not depend on t. 
it 

As a result we may replace S t by S t(x,^) +c(t) such that the critical 
values of this function do not depend on t, and thus conclude our proof. 

q.e.d. 

Remark . The assumption that Lo in the graph of dfo may be 
removed. We only need that Lo has a g.f.q.i. 

By uniqueness theorem for generating functions quadratic at infinity, 
abbreviated as g.f.q.i. ([45], Section 1) we have that So = ( f + Q o ) ° F + 
c where F is a fiber preserving diffeomorphism, Q a nondegenerate 
quadratic form on R and c some constant (actually this is only true 
provided we also add a nondegenerate quadratic form in new variables 
to So, that we may always do). 

Now assume that Li is the graph of df\. Then Si = ( f i + Q i ) o F i + c i . 

Set E = W X R k, 

E a = {(x,Ç)eE\S i(x,Ç)<ag, 

W a = {x e W\f i{x) < ag . 

By the above argument, E b/E a = Y,k i (W i ~c i/W a~c i) and from Lemma 
4.2, we infer that E aJE b ~ E ̂ /E b0. We may thus state 

Corollary 4 .3 . Under the assumptions of Lemma Jh2, we have 

T,kl (W b~c i /W a~cl) = Sk (WQ~c/WQ~c) . 

Similarly if rji is a pseudogradient vector field for f i such that r)\ = 770 
near dW, then we have 
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Corollary 4 .4 . 

EklI*(W b~cl - W a~c l,Vi) = ZkoI(W b-c - W a-cr,0). 

The proof is the same. 
The reader may wonder how this is related with the proof of 4.1. To 

see this, one should think of L t as a fixed Lagrange submanifold, while 
the vertical foliation of T*W is moved by x~t • The above corollary 
thus holds if f and f\ are generating functions of LQ with respect to 
two distinct but isotopic vertical foliations, tha t coincide over dW (see 
Figure 4.2). 

Except for this last condition (and for the fact that we did not deal 
with the Z / r action) this is exactly our situation : LQ = T(<I>i) = 
r(<£>2), and the vertical foliations are determined by i\ and ii- These 
foliation are Hamiltonianly isotopic, at least in some neighbourhood of 
the diagonal. Indeed it is a general fact, tha t any two vertical foliations 
are Hamiltonianly isotopic near the zero section. This just means that 
any two tubular neighbourhoods of the zero section are isotopic. But 
r(<i>i) and r(<£>2) are contained in a neighbourhood of the diagonal. 

We now go back to our abstract situation, and shall consider the 
case where \t does not coincide with the identity near TgW W. 

Let U C W be some open subset, and assume that Xt(Lç> H T*U) (~) 
TgW W = (f>. Then we may modify our isotopy \t into Xt such that 
Xt = Xt- The image by xi of Lo coincides over U with x i ( L ) ) hence 
if S*i is the g.f.q.i. of xi(Lo) on W, we may assume that Si(x,£) = 
fi(x) + Qi(0 ove rU. 

If U is such that for some pseudogradient vector field rji of fi, U 
is an isolating block for the maximal invariant set of rji in W, then 
E bIE a ~ Y,klW b l W a ~ Ek U b/U a. 

Since E bIE a ~ E b E^we conclude Hk ̂  I { U b - U ^ 771) = Sk I*(U b -
UQ,T]O). This may be summarized as 

Propos i t ion 4 .5 . Let us assume that the following hold: 

(1) xt(L0nT*U)nT*W W = ^. 

(2) U is an isolating block for the maximal invariant set of a pseudo-
gradient 7/1 of fi in W. 

Then Sk I*(W b - W a,ìj) = Sk l I*(U b-c - U ̂ ~c,rn) where rji = 771 
ondW. 
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Now we apply this to W = UX{R), U = U), L0 = i ( I ^ J = 

i2 ( r $ 2 ) , and Xt has been described previously. 

Then (1) is satisfied since Lo is arbitrarily close to the zero section 
(for the sup norm) and (2) is satisfied according to Proposition 2.3. 

Now Proposition 4.1 follows from 4.5. 

5. T h e variational picture 

We start again with the situation of Section 4, but we make our 
choice of H more precise. 

We assume the following: 

(1) Outside D R, p-g H < 0. This is possible provided R/a is small 

enough (see Section 3). 

(2) h is as on Figure 5.1, depending on the parameters a,S,c,a (c is 
the slope of the dotted line) and we have 

(i) jh'(u)j<c, 

(ii) uh'(u) - h(u) < 5, 

(iii) h(u) = a for u > p . 

The critical points of S ̂ 1 corresponding to the periodic orbits of the 
flow may be gathered in families as follows: 

F i g u r e 5.1 
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(I) Periodic orbits in Ba, corresponding to closed geodesics of L with 
length less than c. 

( I I ) Periodic orbits in Bp — Ba. 

( I I I ) Constants in D R — Bp. 

( I V ) Periodic orbits outside D R . 

To describe the associated critical values, we associate to a loop 
(q,p) in Bp the value (A, q) of the Liouville class on the projection of 
the loop on L. 

Now the critical values are given 

(I) \p\h'(\p\)-h(\p\) + (\,q)in[0,S\+(\,q), 

(II) \p\ h{\p\) - h{\p\) + (A, q) in ] - oo, 0[+ (A, q), 

(III) in ] — oo, —a[, 

(IV) i n ] - o o , 0 [ . 

We see that if [A] = 0, the " type (I)" orbits are above the other critical 
points. 

Thus, there is a map 

where a is less than any critical value, and ß < 0 is greater than the 
negative critical values. 

Now, according to Proposition 4.1, the left-hand side may be iden­
tified with 

H*(I*(U2'5 - U2'ß, & 2 ) ) ~ 0 H*-k~m^ (I*(A5c L)), 
c 

where c G 7TO(AL), and Ac L is the connected component of c. KQL will 
be the connected component of constant paths, and k is equal to rk(M\) 
as in 4.1. 

On the other hand, since Sq,l has no critical value outside the interval 
[a, S], we have 

H'iIiU1'6 -U1'!3,^)) ~®H*-k(AclN). 
c l 
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Thus we get a map, denoted by (Aj)!, 

0 H m(c)(Ac L) - • Q)H*(Ac N) . 

For c = 0, this restricts to a map 

H*{A0L) -+ H*{A0N) . 

The goal of this section is to prove the following. 

T h e o r e m 5 .1 . If L has an exact Lagrange embedding into T*N, 
there is a map 

(Aj)l:H*(A0L)^H*(A0N) 

satisfying the following property: 
if (Aj)* is the natural map H*(AoN) —> H*(AQL), induced by the 

inclusion Aj : AQL —> AoN, then 

(Aj)l(Çu(Aj)*(r1)) = (Aj)l(OUr1. 

The above statements still holds if we replace cohomology by Sl-equiva-
riant cohomology. 

Remark . It is crucial to have an exact Lagrange embedding 
as exactness will prevent interaction between the different factors in 
H*{U2, — U2 '^,Ç$2). Indeed such interaction would mean that there 
are trajectories of the gradient flow connecting H*(AQL) and H*(Ac L) 
for some c / 0. This will then imply that the isolating blocks are one 
below the other, hence hA, ci / 0. 

Remark . If f : M —> N is a map between manifolds, we may 
define a cohomological push-forward f• : H*(M) —> H*+ (N) (k = 
dim N — dim M) satisfying f'(x U f*(y)) = f'(x) U y. We may write f 
(up to homotopy) as the composition of an embedding and a fibration. 
Then, f• corresponds to integration over the fibers in the case of a 
fibration. If f is an embedding, the Thom isomorphism sends H*(M) 
to H*+ (U) where U is a tubular neighbourhood of M in N, while there 
is an obvious map H*+k(U) —> H*+k(N). Composing these two maps 
yields f. 

It seems impossible to extend the definition of f to maps like Aj 
while preserving nontriviality and the identity f'(xL)f*(y)) = f'(xL)y). 

On the submodule H* (L i) of H*(A0L i) (i = 1, 2) we would like that 
(Aj)! and j \ coincide. We shall see in Section 6 that this is true if j 
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is an exact Lagrange embedding. In fact we shall see shortly that we 
derive the non existence of certain exact Lagrange embeddings from the 
algebraic impossibility of finding (Aj)! with these property. 

If j : L —T- N is a map, we denote by Aj the induced map AL —> AN. 
Theorem 5.1 is based on the following: 

Propos i t ion 5.2. With the assumptions of Theorem 5.1, there is 
for each positive c a map (ACj)IH*(AQL) —> H*(AQN) satisfying 

( A j c ) ! ( C U ( A j c)*7?) = ( A j c ) ! ( 0 U T ? . 

Moreover the same holds if we replace H* by H ̂ , . 

The map (Aj c)! has been constructed above. We still have to prove 
that (Aj)! satisfies the required identity. In fact, in our framework, the 
map (Aj)! is obvious, while we have to construct (Aj)*. 

Let us transpose once more our situation in an abstract setting. 
Let E be a vector bundle over a space B, f a function on E, and £ a 
pseudogradient vector field for f. 

If B (hence E) has a boundary, we assume that the flow of £ preserves 
E. 

Now if f is quadratic negative definite outside a compact set, we 
have H*(E c, E a) ~ H*~i(B) where i is the index of the quadratic form. 
The above isomorphism is induced by the Thom isomorphism of E. 

We now assume that in E c — E , there is a normally hyperbolic 
manifold, P, so that 

H*(E c,E b) ~H*-j{P), 

where j is the codimension of P (P is a repeller). Again the isomorphism 
is the Thom isomorphism of the normal bundle of P. 

We may now consider the inclusion 

a: (E c,E a) -> (E c,E b) 

inducing a diagram: 

H*(E c,E a) *^— H*(E c,E b) 

H*-i B) «•ppp H*~j(P) 
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We denote the dotted map by ßl. We now prove 

L e m m a 5.3 . Let 7 be the restriction to P of the projection E —» B. 
Then we have for any w in H*(P), y in H*(B), 

ßl{wU1*{y)) = ßl{w)Uy. 

Remark . We also have the following result. Let z in H*(B). Then 

ßl((1*(y),w,1*(z))) = (y,ßl(w),z), 

where (a, b, c) denotes Massey's triple product. Similar results hold for 
generalized Massey products (see [30, pp.290-297] and [27]). 

Proof. The map 7 defines an H*(B)-module structure on H*(P). 
This structure is the same one induced by the natural map H*(E) —> 
H*(P); note that H*(E) « H*(B). Now all the maps in the above 
diagram are H*(E)-module homomorphisms. It is clear for a*, and also 
for both Thom isomorphisms, since they are restrictions of the Thom 
isomorphisms associated to the inclusions B -̂> E and P -̂> E. 

From this we conclude that ßl must be an H*(B) module homomor-
phism. q.e.d. 

Proof of 5.2. We apply Lemma 5.3 to E = V1' , and get 

B = A5N , P = A5L ,c = S,b = a,a = ß. 

This tells us that the map (A j)\ is a (A j)* module homomorphism, 
that is what we wanted to prove. q.e.d. 

Finally to prove 5.1, we have to show that all the maps (A j ) * which 
we obtained are somehow compatible as we change H. 

Let us consider a Hamiltonian H\ satisfying the assumptions of Sec­
tion 4, as well as (1) and (2) of this section. In particular outside D R , 
we have that H\ = y\Ho. 

Now we set H2 to be equal to Hi in D RIM for R > R, and H2(z) = 
7 2 ( H ) where 72 is a function such that 72 is convex, with derivative 
increasing from 71 to 72. We shall assume that 7 2 ( H ) = 72 • Ho outside 
D R.. 

Now as we go from H\ to H2, we introduce new periodic orbits in 
D RI — D RI/2, corresponding to closed geodesics with length in [71,72]-

We may choose 72 (and Rr) so that all these critical values lie above 
those of the critical points inside B RIM- Indeed, outside B R , H2(q,p) = 
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h2(jpj), and the critical value corresponding to a periodic orbit on jpj = t 
of length h'(t) is given by h'(t)t — h(t), tha t is the ordinate of the 
intersection of the tangent to the graph of h at t. Now we assume 
that for R < t < R , h'(t) = 71 is not the length of any geodesic. 

F i g u r e 5.2 

We may in fact assume that this still holds for 7 in ]7i — e, 71 + e[ 
so that we only have to consider the quantities h'(t) -t — h(t) for h'(t) > 
71 + e. If h! goes from 71 to 72 as t goes from t to to + r , then for 
h'{t) > 71 + £, we have h(t) < a + 7 t + (71 + £)(t — t ) and hence 
h!(t) • t — h(t) > — a + £ t - For t large enough, this will be arbitrarily 
large. 

Now, let b separate the two families of critical values which associ­
ated to geodesics inside and outside D RI 12- We thus have, according to 
Proposition 2.3, 

I U ^c(R')-U ^a(R'),C<s> ~ S N A c N 

Now the map 

U1'b/Ui-a ^U^/U l . a 
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induces a map SNA L —> SNAc L. 
From the definitions it is easy to check that this map is in fact 

induced by the inclusion Ai b : A L —> Ac L. 
On the other hand, we have the maps constructed in 5.2, 

H*(Ab L) -> H*(A5N) 

and 

H*(Ac L) -+ H*(ASN). 

We claim that the following diagram is commutative: 

( A i h ) * 
H*(Ab L) — H*(Ac L) 

The map Ab L -> A8N is obtained using the Hamiltonian Hi, while the 
map Ac L -> A8N is obtained using H3, where H3 looks like H2, except 
for the fact that all the new critical values are below zero; this is easy 
to achieve; see Figure 5.2. 

We shall denote by Ii (i = 1,2,3) the sets Ul,c associated to H i. 
We claim that the following canonical isomorphisms hold: 

U b2/U a ~ U b/U a, 

and 

U cJU a ~ U cJU a for a small enough, 

Indeed, the first isomorphism follows from 2.3 since H\ = Hi in D R , 
and the periodic orbits of Hi (and of any linear interpolation between 
H\ and H ̂ ) outside D R have action above b. 

As for the second one, the same argument applies, except for the fact 
that the assumptions of 2.3 will be satisfied only if a is small enough, 
since we deform Hi to H3, the action of the periodic orbits outside 
B R'/2 moves down from [b, c] to a compact subset of ] — 00, 0[. The 
maps (Ab j ) ! , (Ac j ) ! , (Ai c * are induced by the maps : 

U bIU a - • U b/Uy s with 8 > 0 small, and a small enough, 

U /Ha ^U/U^, 

U b/U a - • U c/U a . 
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As we identify U b/U a with U b/U a and U ̂ /U a with U / W a , we may 
compose the last two maps to a map U b/U ̂  —> U ̂ jU . Finally as 
we identify U ̂ /U~S with U b lU~\ we get the map U blU a - • U b/U^S 

inducing Ab j , and thus prove (Ai b)*(Ac! = (Ab j ) ! . 
As a result we get a map 

H*(Ab L) -> H*(AN). 

Using a similar argument, we may replace Ab L by AL, and hence get a 
map (Aj)!. That this map is a H*(AN) module homomorphism (using 
(Aj)*) follows from the fact that this is true for (Ac j ) ! . q.e.d. 

We conclude this section with a remark. Let j : L —» N. Then we 
have a map j \ : H*(L) -> H*(N). 

On the other hand we have the maps c i : L i —> AL i associating to a 
point in L i the constant loop at this point. We claim 

Propos i t ion 5.4. The following diagram is commutative 

H*(L) j — - H*(N) 

H*(AL) - ^ L H*(AN) 

There is also a commutative diagram for S1 equivariant cohomology, 
where H*(AL i) is replaced by H*Sl(AL i), and H*(L i) by 

H^L^^H^BS1). 

Proof. This follows immediately from the equality 

(Mbr(Ac jy. = (Ab jy.. 

If Hi has small C 2 norm, there are no periodic orbits but the constant 
ones, and then (Ab j)l ~ j \ and (Ai c)* corresponds to c*. Thus, associ­
ated to H\, we have a commutative triangle: 

H*(L) - H*(N) 

H*(AN) 
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The other triangle is obtained similarly. q.e.d. 

6. Loops spaces , i terat ions , appl icat ions 

In the previous section we proved that if Li —> T*L\ is an exact 
Lagrange embedding, there is a map (Aj)! : H*(AL2) —> H*(ALi) such 
that the following hold: 

(i) (Aj)l(xU(Aj)*(y) = (Aj)l(x)lly. 

(ii) If c i is the natural embedding from L i —> AL i induced by the 
inclusion of constants, we have j\c\ = c\(Aj)\. 

The main difficulties in finding obstructions to the existence of such 
a map are due to the fact that for a general manifold M, very little is 
known about the algebra H*(AM). The theory of minimal models, due 
to Sullivan, only deals with rational cohomology of simply connected 
spaces (or at least with nilpotent fundamental group). However, even 
in this case, very few general properties of the above cohomology ring 
are known. 

One of the results that we shall be using is due to Burghelea, Fiodor-
owicz and Gajda, it describes how the map e(k) induced by iterating k 
times a loop, acts on this cohomology. 

T h e o r e m . ([6]) All cohomologies being intended with rational co­
efficients, we have that H*(AM) decomposes, under the action of e(k) 
into subspaces H*'i(AM), eigenspaces for the eigenvalue k i. These sub-
spaces do not depend on k. Moreover we have H*'°(AM) = e*(M), 
where e is the evaluation map. 

The aim of this section is to prove: 
Propos i t ion 6 .1 . All cohomologies being intended with rational 

coefficients, we have 

(Aj)le* = e*jl 

We shall need the following lemma. 

L e m m a 6.2. Let S : M X N X R k -> R be a g.f.q.i. for 
L C T*(MxN). LetL M = Ln{(x, y,Ç, 0)}/{y} = LC\T*{MxN)\M/N. 
Then L M is a Lagrange submanifold of T*M, provided L is trans­
verse to v*N the conormal to N. This implies that for each (x,p) the 
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equation S = 0 has a unique nondegenerate solution y(x,p). Then 

S M{x, p) = S(x, y(x, p),p) is a g.f.q.i. for L M-

The proof is obvious. 
Let <f> = tp be close to the identity map, and S$ be the generating 

function of T$ C {(z j,(f>(z j+i) j j G Z / r Z } . Let e r(k) be the map 
{z j,Z j) -> (z kj,Z kj). Then e r(k)(FìS)k) ~ T$, 

(tj,4>k(tj+k) -> ( k j , ^ k(kj+k)) - (Vj,4>k(Vj+i)) 

We now claim that S ^ is equivalent to S ̂ . Indeed let us write T\$ as 

{ ( l , ^ ( l + i ) j l e Z / k r Z } ; 

we may consider its reduction through 

zfcj = - k j ) z kj + l = Z kj + 1, • • • , z kj + k-1 = Z kj + k-1, 

tha t is we make 

kj = V'Ckj+i)) kj+i = ^ ( k j+2 ) , • • • , k j+k- i = VKkj+k)) 

or else 

kj = ^(Ckj+k), Ckj+i = ipk~i{C,kj+k) i = 0 , . . . , k. 

Using the coordinates (q j , P j,p j — P j , Q j — q j) we get 

{q kj,P kj,p kj - P kj,Q kj - q kj) j (Q kj,P kj) = i1 (q kj+k,p kj+k)}-

So we have S$ as a generating function, and S,ptk — S$ according 
to the above lemma. The map e r(k) which we obtain induces on the 
base U r)t a map £j —> ^ kj, tha t is e r(k). Through this map, S,ptk and S$ 
coincide so that the map e r(k) induces e r(k) on Ar N. 

Since f*j'i = j[f*, we have: 

j 

Pi 

Using the results from Section 5, it follows that e r(k)* and (Aj)! 
commute, so that (Aj)! preserves H*'°(AM). Because c*(Aj)! = jlc*, 

W2 

j 

P 
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we see that e*c* is the projection on the subspace H*'°(AM). This 
concludes the proof of our proposition. 

Remark . We have used here the fact that e*(H*(M)) = H*>°(AM). 
This follows from [6], because e* is injective, its image is obviously con­
tained in H*'°(AM), and we have equality of dimensions. 

Remark . We shall also use the following generalization of the 
identity (i) of this section. Denoting the Massey's triple product by 
< u,v,w > , we have 

(Aj)!(< (Aj)*(x),y,(Aj)*(z) >) C (< x, (Aj)l(y), z >), 

which again follows from a similar property of the Thom isomorphism. 

This concludes our proof of the MAIN THEOREM. The equivariant 
generalization is left to the reader, since it offers no special difficulty, 
and we only used it in the proof of Proposition 0.10. 

7. T h e Mas lov class of e m b e d d e d Lagrange submanifolds 

Let j : L —> T*M be a Lagrange embedding, L and M being compact 
manifolds, and p : L —> M the composition of j with the projection 
T*M —T- M. From the results obtained in the previous sections, we may 
conclude that if deg(p) = 0, there is some obstruction to the exactness 
of j , and moreover this obstruction lives in H-d(AM) for some finite d 
(corresponding to the degree of the tied class z plus n). This means that 
even in the case where j is not exact, the cohomology of I*{U1, —U1^,Ç) 
may not coincide with H*(AM) in degree less than d. Now when j is 
not exact, the cohomology of I*(U1,e — U1^,Ç) is given as follows (see 
Section 5). H*(AQL) becomes 

©p(c)=0;<A,c>=0H *~m (c ) (Ac L) , 

where c is a free homotopy class of loops on L, and the condition p(c) = 0 
means that c is contractible as a loop in T*M. Also, only the homotopy 
classes with < A, c > = 0 occur, since for the other ones, either the 
critical level obtained will be either above e or below ß, provided we 
take these two numbers close enough to 0. 

The really new fact in the nonexact case is that there may be crit­
ical levels above ß, corresponding to connected components of Ac L 
such that < A, c > > 0. Each of this contributes to the cohomology of 
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I { U l ' l + e -Ul'l~eX) (l = < A , c > ) by H*-m^(Ac L). But we see that 
this vanishes in degrees less than m ( c ) . If the m ( c ) such that < A, c > > 0 
are all larger than d + 1, the contributions of the H*(Ac L) to the to­
tal cohomology in degree less than d of I*(U1 ' — U1^,Ç) will vanish, 
so that the total contribution is given only by the contractible loops. 
Thus we may repeat the argument of Section 6, and deduce from this 
that the main theorem still holds in degree less than d. As a result, our 
obstructions to the existence of exact Lagrange embedding still hold in 
the nonexact case, provided the proof only involves cohomology classes 
of degree less than d, and the Maslov class satisfies 

< A, c > > 0 = > m(c) > d + 1. 

In particular, the proof of Theorem 0.4 does not involve cohomology 
classes of degree larger than d M = deg(z) + dim(M). 

We hence have proved: 

Propos i t ion 0 .12. Let M satisfy the first assumption of Theorem 
O.4 and let j : L —> T*M be a Lagrange embedding such that deg(p) = 0. 
Then there exists c in Hi(L) such that: 

(i) c e Ker(p), 
(ii) < A, c > > 0 (so in particular c ^ KerA^), 
(iii) < fJ,(j), c>< d M (d M depends not on L, but only on M). 

Corollary. With the assumptions of the above proposition, we have 
that A is not in the image of p1 : Hl(M) —> Hl(L). 

A p p e n d i x 
S1 and Z jk equivariant cohomolog ies 

Let M be a S 1 space. Let S°° be the unit sphere in a Hilbert space 
endowed with the S 1 action e (z j)je^ = (e z j). 

Then M X S°° is a free S 1 space for the diagonal action e iô(m, z) = 
(e m , e~ z), and we denote by M Si the quotient space M X S00/S1. 
We then define H*, (M) to be H* (M Si ). We refer the reader to [3] for 
more details, but remark that most natural constructions from ordinary 
cohomology carry over trivially to the equivariant case. 

Let us point out that we have two fibrations associated to the above 
construction. 

First the fibration M -> M Si -> S ^/S1 = CP°° yields a spectral 
sequence with E ' q = H p(CP°°) ® H q(M), converging to H*S1(M). 
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For the second fibration S 1 —> M X S00 —> M Sì, we notice that 
M X S00 has the homotopy type of M since S°° is contractible. This 
yields a spectral sequence with E p ̂ 'q = H p S l(M) ®H q(Sl) converging to 
H*(M). Since H q(Sl) is nonzero only if q = 0 or 1, this last sequence 
has d k = 0 for k > 3. It is determined by 

d2 : H p(M Si) ® H^S1) - • H p+2(M Si) ® H 0 S 1 ) . 

Because H 0 ( S 1 ) ~ H 1 ( S 1 ) ~ R, d2 is determined by some map d : 
H*(M Si) —» H * + 2 ( M Si) . It is a classical fact that d is the multipli­
cation by c G H2(M S i) , the first Chern class of the above S 1 bundle. 
Because E p ̂ 'q ~ H p+q(M) and E p ̂ ' is the cohomology of E ^q, d ̂ )) these 
information may be summarized by the Gysin exact sequence 

- • H p+1(M Si) ^ H p+1(M) -+ H p(M Si) ^ H p+2(M Si), 
p\ 

where p is the projection M X S 0 0 —> M Si, and pi the map induced in 
cohomology by integration over the fibers of p. 

Since E p^q ~ E p ̂ 'q, H*(M) decomposes into two subspaces corre­
sponding to H*(M Si) ® H 0 S 1 ) and H*(M Si) ® H 1 ( S 1 ) . The map p* 
has for image the first factor (i.e., E ̂ ' ), while pi corresponds to the pro­
jection on the second one E p ̂ ' identified to the kernel of multiplication 
by c in H p S1(M). 

We would like to consider the following problem. Let M be a S 1 

space; we may of course consider M as a Z / k space for any k > 1, 
if we look at Z j k as the subgroup of k-roots of 1 in S1. We wish to 
understand whether the knowledge of H ̂ ik(M) determines H S1(M). 

Now M^/k) that we shall denote by M k, is the quotient 
(M X S°°)/(Z/k). Thus M Si = M k/S1, and we have the following 
diagram of fibrations 

S1 M x S M Si 

S1 M k M Si 

the vertical map from S 1 to S 1 corresponds to z <—> z . 
This diagram induces a map between Gysin exact sequences: 
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H'S1(M) H*(M k) Hl-1 {M) HT (M) 

id id 

H'S1(M) H* (M) H S-1 (M) H St1 (M) 

Note that if p divides k, then 

H*/k(M; Z/p) ~ H*(M S1 ; Z/p) ® H*(S1; Z/p). 

The map between H ̂ ,k(M; Z/p) and H ̂ ,kd(M; Z/p) induced by the 
map M k —T- M kd corresponds to the map 

id®vd: H* (M Si ; Z/p) ® H* (S 1 ; Z/p) -> H* (M Si ; Z/p) ® H * (S1 ; Z/p) 

where vd : H*(S1;Z/p) -> H*(S1;Z/p) is the identity on H 0 and mul­
tiplication by d on H 1 . 

Note that if p divides d, the map id <8> zd has both kernel and image 
isomorphic to H*(M Si ; Z/p). Moreover for p such that H*(M Si ; Z) has 
no p-torsion, we have 

H* (M Si ; Z/p) = H* (M Si ; Z) ® Z / p , 

H * ( M Si ;Q) = H * ( M S i ; Z ) ® Q . 

Thus H* (M S1, Q) determines the free part of H* (M S1 ; Z) , which in turn 
determines H*(M Si;Z/p) and hence H*,k(M; Z/p). 

Vice versa, H*(M Si; Z/p) may be recovered from H*(M k; Z/p) and 
H*(M kp; Z /p ) , as the image of H*(M kpi Z/p1) -> H*(M kl Z /p ) , the map 
being induced by the Z / p covering M k —> M kp. 

This may be summarized in 

Propos i t ion . Let p divide k, and assume R = H*(M Si;Z) has no 
p-torsion. Then R(g>Q = H*(M Si ; Q) and 

H*ï/k{M,Z/p) = R®H*{S\Z/p). 

Moreover R <g> Z/p may be identified with the image of H ̂ ,k (M, Z/p) 

inH*/k(M,Z/p). 
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