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Abstract
The goal of the present paper is to find higher genus surgery formulas for the
set of finite type invariants of integral homology 3-spheres, and to develop
a theory of finite type invariants which will be applied in a subsequent
publication [7] in the study of subgroups of the mapping class group. The
main result is to show that six filtrations on the vector space generated by
oriented integral homology 3-spheres (three coming from surgery on special
classes of links and three coming from subgroups of the mapping class group)
are equal. En route we introduce the notion of blink (a special case of a
link) and of a new subgroup of the mapping class group.

1. Introduction

1.1. Motivation

The motivation/goal for the present paper is threefold:

• To find higher genus surgery formulas for the set of finite type
invariants of integral homology 3-spheres.

• To develop a theory of finite type invariants that has applications
in the study of subgroups of the mapping class group.

• To propose a philosophical explanation of duality In the recent
idea of p-branes in string theory.
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En route to achieving the above goals we came across the notion
of a blink (a special kind of link, see definition 1.8) and across a new
subgroup of the mapping class group; see Section 1.3.

Finite type invariants of integral homology 3-spheres, though intro­
duced less than a year ago by T. Ohtsuki [22), playa crucial role in
understanding the quantum invariants of 3-manifolds and may play an
important role in the interaction between arithmetic, combinatorics, low
dimensional topology and mathematical physics. They may also play an
inlportant role in understanding the properties of the Chern-Simons
path integrals, in a way that diverges from the measure-theoretic an­
alytic interpretation of the path integrals. And finally, they may shed
some light on the obscure and not at all understood arithmetic prop­
erties of the quantum invariants of links and 3-manifolds. Finite type
invariants are defined in terms of decreasing filtrations of the vector
space generated by oriented integral homology 3-spheres, for a review
see Section 1.2. In the present paper, there are two sources for such
filtrations: one from cutting and pasting along embedded surfaces in
integral homology 3-spheres, (see Section 1.3) and the other from doing
surgery on (framed) links in integral homology 3-spheres (see Section
1.4). An equality of such filtrations as shown in Corollary 1.21 answers
the first of the goals of the paper, and in fact characterizes finite type
invariants of integral homology 3-spheres in terms of their higher genus
surgery properties.

The above equality of filtrations can be used [7] to study subgroups
of the mapping class group generalizing the work of S. Morita [20], [21].
Due to the length of the present paper, we need to postpone the above
study to a subsequent publication; see [7].

Finally, a word about the third motivation for the present paper: p­
branes were introduced very recently in the physics literature; see [26].
Their role in explaining duality phenomena in string theory and field
theory has been exhibited in a number of ways. Since finite type invari­
ants are related to Chern-Simons field theory (a gauge theory in three
dimensions with the Chern-Simons function as Lagrangian and (colored)
knots in 3-manifolds as the observables) we may learn something about
duality of gauge theories in three dimensions by studying equivalences
of finite type invariants coming from surgery on one-dimensional (links)
or two-dimensional (surfaces) objects in 3-manifolds. This is a valid
thought since finite type invariants can be thought of as the partition
function of observables of quantum field theories.
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1.2. Finite type invariants and filtrations on M

All 3-manifolds are oriented and smooth and all diffeomorphisms are
orientation preserving unless otherwise mentioned. Let M denote the
vector space over Q on the set of orientation preserving diffeomorphism
classes of integral homology 3-spheres. Any decreasing filtration F*
on M defines a notion of finite type invariants of integral homology
3-spheres as follows: a map v : M --+ Q is called of F-type m, if
v(Fm +1M) == O. Examples of such filtrations were originally introduced
by T. Ohtsuki [22] and by S. Garoufalidis [3]. For a review of them see
Section 1.4 below.

In the present paper we describe two main sources for such filtra­
tions: completions of the (group rings) of subgroups of the mapping class
group and surgery on special classes of (framed) links. The first source is
essentially two-dimensional, examples of which will be F;M and Ff.< M
and F;M (described in the next Section 1.3). The second source is one­
dimensional, examples of which will be F~sM, FZM, FZ l M, described
in Section 1.4. The equality of all such filtrations may exhibit a dual­
ity between 1-branes and 2-branes in 3-dimensional gauge field theory
which has not yet been discovered by the physicists.

1.3. Filtrations on M from embedded surfaces

We begin by describing the filtrations on M that come from subgroups
of the mapping class group. We recall first some well known facts about
mapping class groups from the work of D. Johnson [12], [13] and S.
Morita [20]. Let r g) denote the group of isotopy classes of orientation
preserving diffeomorphisms of closed oriented genus g surfaces ~g which
are the identity on a disk D g ~ ~g. This group (which we refer to as
the mapping class group) acts on the fundamental group 1f of the open
surface ~g - Dg . Note that 1f is a free group in 2g generators. For the
sake of simplicity in notation, we will suppress the dependence of 1f on
g; we hope that this will not cause any confusion. The above discussion
defines a map:

(1) r g,1 --+ Aut(1f).

For a group G, let Gk denote the lower central series, defined induc­
tively by G 1 == G, and Gm +1 == [G, Gm ]. Here for H, K subsets of G,
[H, K] denotes the subgroup of G generated by [1], K] == 1]- l K- l 1]K, for
1] E H, K E K. The above action of the mapping class group induces
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(for every non-negative integer k) an action on 1f/1fk+1:

(2)

Let (fg,l)[k] denote the kernel of the above map. It is obvious that
{(fg,l)[k]}k~O is a decreasing sequence of normal subgroups of f 9,1- Note
that (f g,l)[k] is denoted by f g,l(k + 1) in [20]. The reason for shifting
the index by one in our present notation is to make the statements
of question 1 (in Section 1.7) easier. Much attention has been paid
to the first three members of the above sequence. The first, (f9,1 )[0]

coincides with the mapping class group f g,l itself. The second, (f9,1)[l]

is the Torelli group (i.e., the kernel of the map: f 9,1 --+ Sp(2g, Z),
in other words all diffeomorphisms of the surface that act trivially on
the homology), and will from now on be denoted by Tg,l. The third,
(fg,1)[2] was studied extensively in [12], [13] and [20] and, following their
notation, we will denote it by Kg,l.

In an alternative view, it was shown by Johnson ([12] and [13]) that
Tg,l (resp. Kg,l) is the subgroup of the mapping class group generated by
Dehn twists on cobounding (resp. bounding) simple closed curves. We
will find this alternative view very useful in the present paper. Note that
all the above groups and maps behave well with respect to an inclusion
of a lower genus open surface into a higher genus one, and with respect
to the action of the mapping class groups given by conjugation.

Consider the lower central series subgroups (Tg,l)n or (Kg,l)n and
their "rational closures" which we denote by (Tg,l)(n), (}(g,l)(n). Here,
for a group G define G(n) to be the normal subgroup consisting of all
elements 9 such that gk E Gn for some k > O. Recall that, in a nilpotent
group, the set of all elements of finite order forms a normal subgroup.
Thus, for every non-negative integer n, we can consider three interesting
sequences of normal subgroups of the mapping class group: (fg,l)[n],

(Tg,l)n and (Tg,l)(n). It was pointed out by Johnson [13] that (Tg,l)n ~

(fg,l) [n]. In fact, the following, somewhat stronger, inclusion is true:

(3)

because (fg,l)[n] is the kernel of a homomorphism from (fg,1)[n-1] into a
torsion-free abelian group (see [13]). Note that Johnson [13] has shown
that: (Tg,1)(2) = Kg,l = (fg,1)[2]· He asked whether (fg,l)[n] = (Tg,l)(n)
for every n, but this was answered in the negative by Morita [20] for
n = 3 and by Rain [11] for n 2 3.
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We now introduce one more subgroup of r g,1 which has apparently
not been considered in the literature up to now. Recall first that H 1{Eg )

is a symplectic 2g-dimensional vector space, the symplectic form being
the intersection form on the homology. Let L ~ HI (E g ) be any La­
grangian, i.e., a direct summand of rank 9 on which the intersection
pairing vanishes. For example, if M is an integral homology 3-sphere,
i : ~g ~ M is any embedding in M and M± is the closure of one
of the two components of M - i{Eg ), then ker{H1{E g ) -+ H1{M±)}
is a Lagrangian. Furthermore any two Lagrangians are conjugate via
an isometry of H 1 {E g ) and so any Lagrangian arises from an embed­
ding this way. If i : Eg ~ M is an embedding as above, then we set
L~ == ker{H1 {E g ) -+ H 1 {M±)}, where M+ is the closure of the positive
component of M - i{Eg ), i.e., the component into which the positive
normal vector to i{Eg ) points, and the other component is M_. For a
fixed Lagrangian L define [,~,1 ~ r g,1 to be the subgroup generated by
Dehn twists on simple closed curves representing elements of L; we will

call these L-twists. Note that if hErg,1 then £~~1(L) = h- 1£~,1h. Thus

[,~,1 depends upon the choice of L, but any two choices give conjugate

subgroups. Moreover Kg ,1 ~ [,~,1 for any choice of L, and the intersec­

tion of all the conjugates of [,~,1 is contained in Tg,l since every element
of H 1{Eg ) belongs to some Lagrangian. We will often just use the na­

tation £g,l for [,~,1 when no confusion will arise. For an embedding

i : ~g c:;;; M we will use the notation £~,1 = £~.t.
See the Appendix for more remarks on [,g,l.

In the present paper we will concentrate on the subgroups K g,l, Tg,l
and £g,l of the mapping class group.

For a group G, let QG denote the rational group algebra of G, and
let I G denote the augmentation ideal in QG (generated by all elements
of the form 9 - 1, for all 9 E G). Let us now define two decreasing
filtrations on M as follows: Let M be an integral homology 3-sphere
and i : E y M an embedded, oriented, connected, separating genus
9 surface in M. Such a surface will be called admissible in M. Given
any element f of the mapping class group of E, let Mf denote the
3-manifold obtained by cutting M along E, twisting by f and gluing
back. If f E £~,1 and M is an integral homology 3-sphere, then it is
easy to see that the resulting manifold will also be an integral homology
3-sphere. The assignment f -+ Mf defines maps Q[,~,1 -+ M and

(flTg,1 -+ M. We will be interested in their restrictions to the m th
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power of the augmentation ideals (for every non-negative integer m):

We now propose the following three filtrations on M:

Definition 1.1. Let, respectively, :F~M, :F~M and :F~M denote
the span of the images of the above maps for all admissible surfaces L:
in all integral homology 3-spheres M.

For the sake of motivation, we make a few renlarks which will be
proved later in Sections 2.1 and 2.3:

Remark 1.2. We will show, in Theorem 1, that the filtration:F~M
is equivalent to one considered by the first author in [3]. The other ones
are apparently new.

We now show how to describe these filtrations using only Heegaard
embeddings, i.e., embeddings whose complementary components M +
and M_ are handlebodies. For each 9 ~ 0 choose a Heegaard enlbed­
ding i g : ~g Y 53 and consider the associated nlaps: (ITg,1)1n -t M
and (IJCg,l)m -+ M.

Definition 1.3. Let :F~TM and :F~K M denote the union of the
spans, over the chosen ig , of the images of the maps, as defined above,
(ITg,l)m -+ M and (IJCg,l)m -+ M, respectively.

The filtration :F~M is more complicated to describe. If i : L: ~ M
is a Heegaard embedding and L ~ H == HI (L: g ) is a Lagrangian, we
will say that i, L are compatible if L == (L n L~) + (L n L~), where we
recall that L~ == ker{i±*: H -+ H1(M±)} and i±: L:g Y M± are the
inclusions.

Suppose that h is any orientation-preserving diffeomorphisln of L:.
Then it is easy to see that LiJ:-l == h*(Li ). Thus i, L are compatible if
and only ifih-1,h*(L) are compatible.

Proposition 1.4. If i, L are compatible and h E £~,l' then M h is
an integral homology 3-sphere.

Definition 1.5. For each genus 9 choose a Heegaard clnbeclding
i g : ~g ~ 53. Let :F~L M denote the union of the span, over all 9 and
all L compatible with i g , of the images of (I [,~,l )172 -+ M.

Proposition 1.6. The filtrations of M defined for Heegaard ern­
beddings in definitions 1.3 and 1.5 are the same as those defined for all
admissible embeddings in definition 1.1
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These propositions will be proved in Section 2.3.

Remark 1.7. We mention another set of related, and perhaps
equal, filtrations. Consider the lower central series subgroups (~,I)m or

(Kg,l)rn and their "rational closures" (~,l)(m), (Kg,I)(m). We will show

in Section 2.1 that F;"M (respectively F!!tM) contains the subspace of
M spanned by elements of the form M - M f for all admissible surfaces

I : ~ ~ M where I E (~,I)(m) (respectively (Kg ,I)(m)). But these
subspaces also define filtrations of M worth considering.

1.4. Filtrations on M from framed links

In this section we recall filtrations on M from special classes of framed
links (algebraically split and boundary) in integral homology 3-spheres,
and we introduce yet another filtration from what we shall call blinks.
We begin by recalling some definitions from [22] and [3].

A link L in a 3-manifold AI is called algebraically split if the linking
nunlbers between its components vanish. A link is called boundary if
each conlponent bounds an oriented surface (often called Seifert), such
that these Seifert surfaces are all disjoint from each other. Of course,
the Seifert surfaces are not unique. Let ILl denote the number of compo­
nents of a link L. A framing of a link L in an integral homology 3-sphere
M is a choice of (isotopy class) of an essential simple closed curve in the
boundary of a tubular neighborhood of each of its components. Since M
is an integral homology 3-sphere, then a framing I on a r component
link can be described in terms of a sequence I == (11,··· ,Ir), where
Ii E Q U {I/O}, with the convention that Ii == Pi/qi is the isotopy class
of the curve Pi(meridian) +qi(longitude). Note that a framing of a link
does not require the choice of an orientation of it. A unit framing f of
a link in an integral homology 3-sphere is one such that Ii E {-I, 1}
for all i. A link is called AS-admissible (respectively, B-admissible) if
it is algebraically split (respectively~ boundary) and unit-framed. It is
obvious that B-adrnissible links are AS-admissible. The converse is ob­
viously false, as the Whitehead link shows. If (L, f) is a framed link in
a 3-nlanifold M, we denote by !vIL,j the 3-manifold obtained by doing
Dehn surgery to each component of the framed link L. Let M denote
the set of integral homology 3-spheres. For an AS-admissible link (L, f)
in an integral hornology 3-sphere M, let

(5) [M, L, J] = L (-l)IL'IML',J' E M,
L'CL
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where the sum is over all sublinks of L (including the empty one), I'
is the restriction of the framing I of L to L', and IL' I is the number
of components of L'. Note that since (L, I) is an AS-admissible link,
M L , ,f' is an integral homology 3-sphere for every sublink L' of L.

Let F::: M (respectively, F~M) denote the subspace of M spanned
by [M, L, I] for all AS-admissible (respectively B-admissible) m com­
ponent links L in integral homology 3-spheres M. It is obvious that
F~sM, FZM are decreasing filtrations on the vector space M. Follow­
ing Ohtsuki [22] and Garoufalidis [3] we call a map v : M -+ Q an AS­
type (respectively B-type) m invariant of integral homology 3-spheres if
v(F:::+1M) == 0 (respectively, V(F:n+lM) == 0).

We now present an important definition for the present paper.

Definition 1.8. A blink L == L bl in an integral homology 3-sphere
M is a link with the following properties:

• The components of L bl are partitioned into classes of two compo­
nents each. These classes will be called the pairs of Lbl.

• Lbl is an oriented link.

• The pairs {p} bound disjoint oriented surfaces {~p} in M (called
Seifert surfaces of L bl ) so that, if p == (I, I'), then 8~p == I - I'
(using the orientations of land l').

An example is given in Figure 1. An r-pair blink L bl is one such that
ILbll == 2r. A subblink L~l of a blink Lbl is a sublink L~l of Lbl which
is a union of some of the pairs of Lbl. Thus an r-pair blink Lbl has 2T

subblinks.
We next discuss admissible framings of blinks. Recall that every

component of a blink is oriented (as a knot). A zero Seifert-framing
of a blink is the (isotopy class of a) parallel of it in the Seifert surface
that the blink bounds. The result is independent of the Seifert surface
chosen, and depends only on the orientation of the blink. A zero Seifert­
framing (together with the orientation of the blink) defines, for every
choice of a pair of integers (n, m), an (n, m) Seifert-framing of a I-pair
blink. A unit Seifert-framing of a I-pair blink is a (€, -f) Seifert-framing,
where € == ±1. A unit Seifert-framing of a blink is the choice of a unit
Seifert-framing to each of its pairs. A blink is called BL- admissible if
it is unit Seifert-framed.

Remark 1.9. Every r-component link in an integral homology 3­
sphere has a zero framing, which, for a choice of integers (11,··· ,IT)
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defines a (fl,··· ,fr)-framing. For a I-pair blink, an (n,m) Seifert­
framing is equal to a (n+lI2' m+lI2) framing of it, where 112 is the linking
nunlber between the two components of the blink. Note that a blink
is not necessarily an algebraically split link. The two components of a
pair may have a non-zero linking number, and components of different
pairs may also have non-zero linking number.

Remark 1.10. If a unit-framed link (L, f) is included (as a disjoint
union of simple closed curves) in the image of an embedded surface
i : E Y M, then ML,f = Mi,r(L,f) where T(L, f) is an f-dependent
product of Dehn twists along the simple closed curves on E represented
by L.

For a BL-admissible r-pair blink Lbl in an integral homology 3­
sphere M, we denote

(6)

where the sum is over all subblinks L~l of Lbl (including the empty
one), and f' is the restriction of the framing f of Lbl to L~l. The above
definition makes sense (i.e., each 3-manifold obtained by surgery on
some pairs of the blink is an integral homology 3-sphere) because of the
following lemma:

Lemma 1.11. If (Lbl , f) is a BL-admissible blink in an integral
homology 3-sphere M, then MLbl,f is an integral homology 3-sphere.

Proof. Since the order of the first homology of MLbl,f is the absolute
values of the determinant of the linking matrix of Lbl, we only need
to check that the linking matrix of Lbl is unimodular. We proceed by
induction on the number of pairs of ILl. If Lbl = (L 1 ,L2 ) is a I-pair
blink, consisting of two components L 1 and L2 with unit Seifert-framing,
then the linking matrix of Lbl is:

112 )
l12 - € '

where 112 is the linking number between L 1 and L2 (which does not
necessarily vanish) and € = ±I. It is clear that this is a unimodular
matrix. In general, if Lbl = L~l U (L 1 , L2 ) is an r-pair blink which is the
union of an r - 1 pair blink (with unimodular linking matrix A) and a
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I-pair blink, then the linking matrix of Lbl is:

A

We leave it as an exercise for the reader to show that this matrix is
unimodular. q.e.d.

We denote by F~M the subspace of M spanned by [M, Lbl, f] for
all BL-admissible m-pair blinks Lbl in integral homology 3-spheres M.
It is obvious that FZ l M is a decreasing filtration on the vector space M.
We call a map v : M ~ Q a BL-type m invariant of integral homology
3-spheres ifv(F~+lM) == o.

FIGURE 1. An unblink bounding a genus 0 surface.

Remark 1.12. The motivation and usefulness of the above notion
of blink comes from several facts.

• Blinks are closely related to bounding pairs of simple closed curves
in an embedded oriented surface in the 3-manifold; see Theorem 1.

We will show that the filtration FZ l M on M coming from blinks
is equal to the filtration F;M coming from the I-adic completion
of the Torelli group, in much the same way that (see Remark 1.2)
the filtration FZM coming from boundary links is equal to the
filtration F;< M; see Theorem 1.

• Johnson [12] proved that Dehn twists on bounding pairs of simple
closed curves generate the Torelli group and that Dehn twists on
bounding closed curves generate Kg,l.

Remark 1.13. For later reference, let us point out that F:nM ~

F~M. Indeed, given any framed boundary link we can convert it to a
blink by punching a small hole in each Seifert surface and putting the
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appropriate unit framing on the boundary of the hole. Framed surgery
on this blink obviously gives the same result as surgery on the original
boundary link.

Remark 1.14. We claim that F~M can be generated by [M, L bl , f]
for BL-admissible m-pair blinks such that each pair bounds a genus-l
surface. Indeed, this follows from the following identity (and induction
on the genus) where L 1 ,L2 ,K1 ,K2 are as in Figure 2:

where Lbl == (L 1 , L2 ), L~l == (L 1 , K 1 ) and L~l == (K2 , L2 ) are unit Seifert­
framed I-pair blinks.

FIGURE 2. Shown here is a I-pair blink (L 1 , L 2 ) of genus 2,
and two (parallel) knots K 1 , K 2 on the Seifert surface that it
bounds. The knots separate the surface in two genus-l surfaces,
and are oriented and framed in an opposite way.

We will find later on the following notation useful.

Definition 1.15. If N is any subspace of M, then

At this point we have introduced six filtrations on M:

The purpose of the paper is to show, among other things, that the six
associated filtrations

are actually equal (after renumbering); see Corollary 1.21.
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1.5. Statement of the results

We are now ready to formulate the main results of the paper which
consist of three parts. The division in three parts is for the convenience
of the reader, since the methods used in each part are very different.

In the first part, we compare mapping class group filtrations and
link filtrations as follows:

Theorem 1. For every non-negative integer m we have:

(a) F'!:tM = F~M,

(b) :F.KM = :F.b Mm m'

(c) F~M = F::: M,

as subspaces of M.

A part of the argument used in the proof of Theorem 1 will also
yield the following interesting fact.

Proposition 1.16. Every integral homology 3-sphere can be ob­
tained by surgery on a boundary link in S3.

The above proposition (which, as the referee informs us, was already
known to C. Lescop using a different argument) implies the following
corollary:

Corollary 1.17. The Casson invariant AC of an integral homology
3-sphere (which we may assume is diffeomorphic to Sr,f for a unit­
framed boundary r-component link L) is given by

(8)
r

Ac(M) = L Ji¢(Ld,
i=l

where {L i } are the components of the link, and ¢(L i ) is the second
derivative of the (normalized) Alexander polynomial of the knot L i ; see
[14J. The point, of course, is that the Casson invariant of an integral
homology 3-sphere can, therefore, be calculated in terms of the associated
knot invariant (i. e., the second derivative of the normalized Alexander
polynomial).

A generalization of the above corollary appears in [4].
In the second part we compare the three filtrations F~sM, FZM

and F~lM coming from special classes of links in integral homology
3-spheres. We have the following results:
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Theorem 2. For every non-negative integer m we have that:

(9)

as subspaces of M.

Corollary 1.18. Let v be an AS-type 3m invariant of integral ho­
mology 3-spheres, M an integral homology 3-sphere and ~ an oriented

embedded genus 9 surface. Let f E (~,1)(2m+1) be an element of the
rational closure Of(~,1)2m+1 in the Torelli group, as in Remark 1.7(b).
Then, using that remark, we have that v(M) == v(Mf)'

Theorem 3. There is an increasing function f : N -t N such that
for every non-negative integer m we have that:

(10)

Remark 1.19. In fact, since F~sM and F~lM are decreasing fil­
trations, the proof of Theorem 3 shows that we can take f (m) == cm13 ,

for some positive integer constant c.

Remark 1.20. En route to proving Theorem 3 we give, in Proposi­
tion 3.14, a 4-term relation that holds in M. The relation is apparently
new. The relation between the 4-term and existing relations on M
(namely the AS and the I H X, see [9]) is addressed in question 2.

Theorem 4.

• With the notation of definition 1.15, for every m we have:

(11 ) ----Ff:nM ~ F~~M.

• Together with Theorem 2 and Theorem 3 this implies that, for
every m:

(12)

Combining Theorem 4 and Theorem 2 from [6], we obtain the fol­
lowing corollary:

Corollary 1.21. For every non-negative integer m, the six filtra­

tions on M shown below are equal:
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--
F!m M F:fmMF~M- - :Fbl MFb M Ff:nMm 2m

Note that in the top row the three filtrations on M come from subgroups

of the mapping class group, and on the bottom row are their equivalent

filtrations that come from special classes of links (boundary, blinks and

algebraically split).

In the third part of the paper we discuss the relation between blink

surgery equivalence and the Seifert matrix of a blink. In [22] and [5]
it is observed that if two AS-admissible 71-component links are surgery
equivalent, then the associated elements in g~sM are equal. Since it
is known [19] that surgery equivalence is deterrnined by the triple p,­
invariants of Milnor, these numerical link invariants provide a set of
generators of g~sM. We now present an analogous result for blinks
and g~lM. This gives, as a consequence, a set of generators for g~lM.
Although 9~~M == 93~M, the above mentioned two sets of generators
seem to be different. We hope to explore this point further some time
in the near future.

Definition 1.22. Let (M, L) be a blink. An elementary (blink)

surgery equivalence on (M, L) is a surgery on a unit Seifert-framed blink
L" ~ M - L such that Land L" have Seifert surfaces which are disjoint
from each other. (Thus L U L" is a blink in M). We say (ML " , L)
is surgery equivalent to (M, L). More generally, surgery equivalence is
the equivalence relation among blinks generated by elementary surgery
equivalence.

Theorem 5. T11JO blinks are surgery equivalent if and only if they

admit equal Seifert matrices.

1.6. Plan of the proof

As mentioned in the abstract and the introduction, for the convenience
of the reader, the proofs of the results appear in three sections.

In Section 2 we review I-adic and nilpotent completions and prove
the claims in Remark 1.7, as well as Theorem 1 and Propositions 1.4, 1.6
and 1.16. The proofs in this section are mostly algebraic manipulations
in group algebras and a bit of cutting, pasting and tubing arguments.

In Section 3.1 we review the main identities in M in graphical and
algebraic form, as well as a few facts about blinks. There is a plethora



FINITE TYPE INVARIANTS~ THE MAPPING CLASS GROUP AND BLINKS 271

of identities on M, cOllling froIn Kirby calculus, that is, from different
ways of representing an integral hOlllology 3-sphere by surgery on a link.
~lost of the identities are known~ however in Sections 3.2 and 3.3 we
introducp a new one (the 4-ternl relation) that will be used crucially in
the present paper.

The identities of Section 3.1 together with induction are the main
tools used in the proofs of Theorellls 2~ 3 and 4. We warn the reader that
though the statelll(~nts of the above mentioned theorems seem similar,
the rnethocls used to prove thelll are different. Each theorem requires
its own use of the sarne identities.

III Section 4 we discuss the notion of blink surgery equivalence and
prove Theorenl 5.

\Ve collect in the appendix sorne results related to the subgroup £g,l

of the rllapping class group. These results are not directly used in the
present paper" but they lnay help clarify the structure of £g,l.

1.7. Questions

In this section we propose a few questions that may lead to a better
understanding of the subject. They are addressed to different audiences,
at least the way they are stated.

Question 1. Are the subspaces of M (defined in Remark 1.2)
spanned by elelIlcnts of the form M - M j , for (M,~) admissible and f E

(£9,1 )(Tn), (0J,1 )(rn) or (Kg,l )(m), respectively, the same as F~M,F~M
rrl"'M . I?or ..rTTl "respectIve y .

Question 2. In Sections 3.2 and 3.3 we show (three versions of) a
4- ternl relation that holds on M. In the first version this relation really
carnes fronl the 4-term relation on the space of knots (in S3) via the
Dehn surgery rnap. On the other hand, one knows that an antisymmetry
(AS) and an 1H X relation hold on M, see [9]. Is it true that the AS
and the 1H X relation are equivalent to the 4-term relation on M? Note
that the AS and the 1H X relation are equivalent to the 4-term relation
on the space of knots; see [1].

Question 3. The subgroup £g,l of the mapping class group which is
introduced in Section 1.3 is related to a larger subgroup £g,l consisting
of all hErg, 1 such that hi L == identity. In the appendix we discuss
these two subgroups and, for example, show that £g,l i=- £9,1. But is
the filtration of M defined by the powers (1£g,l)m different from that
defined by (1£g,l )m?
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In the appendix we also show that (£9,1)5 ~ K g,1 but (£g,1)4 Cl Kg,l.

Is (L9,1)4 ~ K g ,1?

1.8. Philosophical comments

In this section we propose a few questions of philosophical interest that
may lead to a better understanding of the subject. They are not directly
related to the results of the present paper, and the questions themselves
are somewhat vague. Positive answers may nevertheless bring presents
to a variety of areas.

Question 4. Interpret the results of the present paper in terms of
the not-yet-discovered duality of three-dimensional gauge theories.

Question 5. Give a Hodge structure on the complexified space
M 0Q C in a way compatible with the filtration discussed in the present
paper.

Acknowledgment

We wish to thank the Internet for providing the required commu­
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2. Equivalence of filtrations from links and from surfaces

2.1. I-adic and nilpotent completions

In this section we recall some facts about the lower central series of
a group and its relation to the I-adic filtration of the group algebra.
Let G be a group and QG the group Q-algebra, i.e., the vector space
over Q with G as basis. Multiplication is defined by linearly extending
the multiplication of G. The augmentation ideal IG ~ QG is the two­
sided ideal generated by all elements of the form 9 - 1, 9 E G. The
I -adic filtration of QG is the sequence of powers (IG)n of IG. It is not
difficult to show that if 9 E Gn the n-th lower central series subgroup
of G (see Section 1.3), then 9 - 1 E (IG)n. In fact a bit more is true,
namely let G(n) denote the rational closure of the group Gn defined in
Remark 1.7. Then 9 - 1 E (IG)n whenever 9 E G(n)' This follows
from the fact that grn - 1 E (IG)n for some m, and from the formula:
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gm -1 == L~l (7) (g-l)i. The point of considering the rational closures
is the Theorem of Jennings (see [23]) which says that the converse is
true: if 9 - 1 E (IG)n, then 9 E G(n). This proves Remark 1.7 (b).

2.2. Proof of Proposition 1.4

Let h be as in the statement of Proposition 1.4. A Mayer-Vietoris
argument shows that

Thus it suffices to show that h*(L+) = L+ mod L_. First we show
that L has a complementary Lagrangian L' which is compatible with i.
Assuming this then, since h is symplectic, h* /L' is the identity mod L.
Thus if 0 E L+nL', then h*(o) -0 E LnL+ mod L_. So, with respect
to the direct sum decomposition L+ = (L n L+) EB (L' n L+), h* IL+ has
the form (6 1).

To construct the complementary Lagrangian L' first choose any com­
plementary summand L~ of L n L+ in L+. Then let L'- ~ L_ be the
annihilator, under the intersection pairing, of L~. Since L n L_ must
pair non-singularly with L~, then L'- must be complementary to LnL_
in L _. It is clear that L~+ L,- is the desired complementary Lagrangian.

This completes the proof of Proposition 1.4.

2.3. Proof of Proposition 1.6

We will first prove F,HK M = F,K M F,HTM = F,T M and F,L M cm m' m m m-

F~£M. Suppose that i : ~g ~ M is an admissible surface in M
and f E £~,l. Then i(~g) separates M into the two components
M+, M_. Using handle decompositions of M+ and M_ we can find
two handlebodies H+ ~ M+, H_ ~ M_ such that the connected sum
~g' == i(~g) ~ oH+ ~ oH_ is a Heegaard embedding.Note that the com­
plementary components of ~g' are M± == (M±-H±) ~ H~, using bound­
ary connected sum. Thus we see that Mf = Mf" where f' E rg',l is the
image of f under the canonical inclusion £g,1 ~ rg,1 ~ rg' ,1. Note that if
f E Tg,l then f' E Tg' ,1, and if f E Kg,1 then f' E Kg',l. To complete the
proof that F~M ~ F!ft£ M we will need to show that there is a compat-
ible Lagrangian L ~ Hl(~g') so that L 2 ker{i+ : HIC2~g) --+ H1(M+)}.
(Note that ker{i+ : HIC2~g) --+ H 1(M+)} = L+ i L~ = ker{i+ :
Hl(~g') --+ Hl(M~)}.) We show this below. If g' is large enough it
follows from [20] that M = s~ for some h E ICg',l using our chosen
Heegaard surface ig'(~g'). Thus Mf == SJ'h·
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Now a generator of F~M is, by definition, a linear combination
EaiMfi' where Eaifi E (IL:~,l)m and all terms are defined with re­
spect to the same embedding in M. But the discussion above shows
that we can rewrite this as E aiS1;h" Note that E ad: E Q.c~, is

the image of E ai fi E (I L:~,I) m and so belongs to (I[,~I ) m. Therefore

Eaiflh E (I[,~,1)m since h E K g ,l' The same argument works for Tg,1

and K g ,1' Note that we have completed the proof of Proposition 1.6 for
K TFmM and FmM.

To complete the proof that F~M ~ F!:.L M we need to construct
the compatible Lagrangian L ~ HI ('2:/). Let A± ~ HI ('2:/) denote
the subgroup generated by the boundary circles of the meridian disks
of H±. Note that A± ~ L~. We now define L == L+ + A+ + A_.
To show that this is compatible, i.e., L == (L n L~) + (L n L'-), we
first observe that L+ ~ L~ + A+. This can be seen geometrically as
follows. If, is a closed curve in ~ representing an element of L+, then
i (,) bounds a (singular) surface in M+. This surface will intersect H +
generically as a union of meridian disks. Thus ,-the corresponding
element of A+ bounds a surface in M~ and so represents an element
of L~. Now suppose a E L. Then we write a == l+ + h+ + h_, where
l+ E L+, h+ E A+, h_ E A_. Now we can write l+ == l~ + h~, where
l~ E L~,h~ E A+. So now we have a == l~ + h~ + h+ + h_. Since
h~ +h+ E LnL'- and h_ E LnL~, we have l~ E L. Thus l~ E LnL~

and we conclude that a E (L n L~) + (L n L'-). This shows that L is
compatible.

This cornpletes the proof that F~M ~ F!!tL M. To prove the reverse
inclusion F!:. LM ~ F~M we will make use of Theorem 1 which says
that :F~M == :F~s M. Thus we want to show F!:.L M ~ F~sM. Since
the ideal (I[,~,I)m is generated by elements of the form (1- hI)'" (1­
h m ), where hi is a Dehn twist along a simple closed curve li representing
an element of L, it suffices to prove the following lemma.

Lemma 2.1. Let ll, ... ,lm be simple closed curves in 2: represent­

ing elements of a Lagrangian L which is compatible with an admissible

embedding i : ~ ~ M. Let lj be translates of i (l j) into disjoint parallel
copies of i(~) in M. Then the link {l~, ... ,l~} is algebraically split in

M.

Proof· Write [li] == At + Ai, where At E L n L±. Then At bounds
a surface N i± in M± (translated). Suppose that l~ lies on the M+ side
of lj. Then N i+ is disjoint from N j- and the linking number of l~ and lj
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is just the intersection number of N i- with Nj+. But this is the same as

the intersection number of Ai with At in ~. Since these both represent
elements of the Lagrangian L, the intersection number is zero. q.e.d.

This completes the proof of Proposition 1.6.

2.4. Proof of Theorem 1(b) and Proposition 1.16

We will need the following observation. Suppose that M == M 1 U M 2 ,

where N == 8M1 == 8M2 . Let I, 9 be diffeomorphisms pf N and consider
the manifold M h where h == Ig. We can describe M h alternatively
using f and 9 separately by writing M == M 1 U (I x N) U M 2 , splitting
M along two parallel copies of N ~ M. Then it is easy to see that
M h == M1 Uf (I x N) Ug M 2 .

We first prove Proposition 1.16. This will follow from the preceding
observation and a Theorem of Morita ([20, Proposition 2.3]) which says
that any homology 3-sphere M can be written in the form 5J for some
f E Kg,l and some g. Let us write 9 == gl ... gk, where· each gi is a
Dehn twist along some bounding simple closed curve ri in the Heegaard
surface ~g in 53. According to the observation we can split 53 along k ~

parallel copies of ~g in 53 and obtain M by simultaneously regluing by
Dehn twists along the now disjoint copies of ri in the parallel copies of
~g. This is the same as doing simultaneous ±1 surgeries along the link
L formed by these disjoint copies of ri. But since each ':'(i is a bounding
simple closed curve we see that L is, in fact, a boundary link.}' q.e.d.

We now turn to Theorem l(b). Suppose [M, L, I] is a generator of
F~M. The components of L bound disjoint Seifert surfaces VI,.·. , Vm .

Let ~ be a connected sum of the boundaries of tubular neighborhoods
of these surfaces. Thus ~ is an admissible surface in M and the com­
ponents of L are disjoint bounding simple closed curves ri on~. Let
hI, ,hm be the diffeomorphisms of ~ defined by Dehn twists along
rl, ,rm, so that, according to Remark 1.10, cutting M along ~ and
regluing using hi is the same as framed surgery along ri using flri. Note
that the hi commute with each other. If L' is any sublink of L, then,
since the ri are disjoint M L,,fIL' is obtained from M by cutting along
~ and regluing using the composition of those hi corresponding to the
components which appear in L'. Now [M, L, f] == L:L'CL( -l)IL'IML',f"
which is, therefore, the image, under the map Kg,! -+ Nt of the sum

L (-l)khil ···hik = (1-h1)···(1-hm ).

l~il~ ..·~ik~m
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But this is obviously an element of IKg,l.

Conversely suppose A E (IK g,l)m. Then A is a linear combination of
elements of the form h(l- 91) ... (1- 9m), where h, 9i E Kg,l. Now each
9i is a product PI ... Pk, where each Pi is a Dehn twist along a bounding
simple closed curve. Using the identity

k

Pl ... Pk - 1 = L Pl ... Pi-l (pi - 1)
1

and the normality of Kg,l again we can assume that each 9i is a Dehn
twist along a bounding simple closed curve. Now suppose ~ is an ad­
missible surface in an integral homology 3-sphere M. Let ~o,··· ,~m

be parallel copies of E in M. If 9i is a Dehn twist along ri E E, then
any Mh9il ."gi

k
can be obtained by cutting M along Eo, Ei1 , ... ,Eik and

then regluing using h, 9il , ... ,9i k on these copies of E. But this is the
same as considering the link L in Mh defined by the {ri E Ei } with
the framing f defined by the directions of the twists given by the {9i}.
From this we see that the image of h( 1 - 91) ... (1 - 9m) in M is exactly
[Mh , L, f]. q.e.d.

2.5. Proof of Theorem l(a)

The proof of Theorem l(a) is very similar to that just given for (b). We
need to use the result of Johnson that Tg,l is generated by what he calls
BP maps if 9 2:: 3. A BP map is obtained by doing Dehn twists along
two disjoint simple closed curves in Eg , which form a bounding pair, i.e.,
they are homologous or, equivalently, form the boundary of a subsurface
of Eg • The twists are in opposite directions. Note that the 2-component
link associated to a BP map is nothing but a I-pair blink. This gives
the main motivation for the role of blinks in the present paper. Suppose
we have a product 91 .. ·9m of BP maps. If we have m parallel copies
of an admissible surface E in an integral homology 3-sphere M and, in
the i-th copy, a pair of such curves associated to 9i, then the totality of
these curves forms a blink Lbl with a unit Seifert framing f defined by
the directions of the twists. Thus, just as with boundary links above,
we see that the manifold obtained by cutting M along E and regluing
by 91 .. ·9m is homeomorphic to MLbl,/. The proof of Theorem l(a) now
is identical to the proof of Theorem 1(b) with the substitution of blinks
for boundary links and Tg,l for Kg,l.
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2.6. Proof of Theorem l(c)

Suppose [M~ L~ f] is a generator of F~s ,;t\.1. Consider a tubular neighbor­
hood of L and define a connected submanifold M l ~ !vI by connecting
these conlponents by solid tubes in AI. For each component li of L there
is a canonical longitude Ai ~ 8!vII defined by the requirement that Ai
be null-honlologous in the compleillent of li. Since L is algebraically
split. {Ai} span Ker{H1(8All ) -t H 1 (fvf - AIl)} which is a Lagrangian
in HI (8fvf1 ). The result of doing ±l-surgery on any sublink of L is
the sallle as cutting AI along 8M1 and regluing by simultaneous Dehn
twists on the corresponding Ai ~ 8All . If we choose an identification
I:g ~ 8Al1, these Dehn twists define elements hi E [,~.l' where 'i is the
COlllposition I:9 ~ 8A11 ~ M. As in Section 2.4 we see that [AI, L, f] is
the image. under the map [,9,1 -t M defined by i, of (1- hI) ... (1- h rn )·

We now prove the converse stateillent. Suppose A E (1[,9. 1 )Tn. Then
A is a linear cOlllbination of elements of the forlll h( 1 - gl) ... (1 - gm).

where h. gi E [,9,1, Now writing each gi as a product of L- twists and
using repeatedly the identity 1 - gh == g(l - h) + 1 - g, we can write
this as a SUlll of elements of the form h( 1 - PI) ... (1 - Pm). where each
Pi is an L- twist.

We now proceed as in Sections 2.4 and 2.5. We see that the image
of h(l - PI)'" (1 - Pm) in M is an element [M,K,f] which can be
described as follows. We begin with an embedded surface I: in some
integral hOlll010gy 3-sphere M' and let M l be the closure of one of
the cOlllponents of M' - I:, so that L == ker{H l (2:) -t Hl(Ml )}. Let
I:, I: 1 , ... ,I:m be parallel copies of 2: appearing in that order as we
rnove away from MI. Then Pi is a Dehn twist on a curve Ai ~ 2: i , and
Ai is null-hoillologous in MI. Thus M is obtained by cutting M' along
I: and reattaching with h, K is the link consisting of the {Ai} and f is
the framing defined by the signs of the Dehn twists. To complete the
proof we need to see that K is algebraically split. But since Ai bounds a
chain in M l and h does not alter this, it follows that the linking number
of Ai with any Aj, when j > i, is zero.

3. Equivalence of AS, Band BL filtrations

In this section we prove Theorems 2, 3 and 4.
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3.1. A review of relations on M in graphical and algebraic form

In this section we review the forms of notation used in this paper as well
as some important identities among the elements of M. We follow the
conventions of [22], [5], [8]. For the convenience of the uninitiated reader,
we review them again here. The notation comes in two forms: algebraic
and graphical. By algebraic notation we mean [M, L, f]. Note that the
various filtrations on M have been written in algebraic notation. The
rules of the graphical notation are summarized in Figure 3. Since we are
talking about identities of (linear combinations) of integral homology 3­
spheres obtained by framed links in other integral homology 3-spheres,
it is allnost unavoidable to use graphical notation to represent framed
links, and surgeries on them.

Remark 3.1. We mention once and for all that any link (whether
algebraically split or boundary or blink) drawn in a figure corresponds
to a linear combination of integral homology 3-spheres, and therefore
represents an element of M. The figures represent identities of these
elements. We cannot stress too strongly the fact that in papers prior
to the ones talking about finite type invariants figures corresponded to
links or 3-manifolds, but never to linear combinations of them. Never­
theless, this point of view is very fundamental in the world of finite type
invariants.

-1 +1

FIGURE 3. Some drawing conventions for bands. Shown here
are ribbon parts of AS-admissible links that represent (linear
combinations of) integral homology 3-spheres. The numbers in
the bottom of each band indicate the number of twists that we
put in the band.

We are now ready to review identities of elements of M. We begin
with the following fundamental identity, (in algebraic notation) for an
AS-admissible link (L, f) in an integral homology 3-sphere M:
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Let L bl U L be the union of an AS-admissible link L and a BL­
admissible blink L bl (in the complement of L). Let l denote either a
component of L, or a I-pair of Lbl . Define

and

L' == {L
L -I

if I tf- L,

if I E L,

L' - {Lbl if I tf- L bl ,bl -
Lbl - I if I E Lbl .

Let f' (respectively, fll) denote the restriction of the framing f
of Lbl U L to L~l U L' (respectively l). Then we have the following
fundamental relation:

(13) [M, L bl U L, f] == [M, L~l U L', f'] - [M(l,fldL~l U L', f']·

The proof of the above equation follows by definition of the symbol
[M, L bl U L, f] and the following exercise, left to the reader:

Exercise 3.2. Show that the unit-Seifert framing flL bl of Lbl in M
is the same as the one of L bl in M(l,fll)'

Remark 3.3. This extends the notation of previous papers [3], [5],
[6], [8], [9], where L bl is the empty blink. If l is a knot that bounds a
disk D in M, then M(l,fll) is diffeomorphic to M and we may construct
the link in M corresponding to L~l U L' in M(l,fld from L~l U L' by just
giving the bundle of strands of L~l U L' which pass through D a full
clockwise twist if f == +1 or counterclockwise twist if f == -1.

Examples of equation (13) in graphical notation are given in Figures
4, 5 and 6.

-1 +1

FIGURE 4. A special case of equation (13) in a graphical way.
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FIGURE 5. Another special case of equation (13). The figure
represents an identity in M. There are two interpretations of the
above figure. Either each of the crossings shown belongs to the
same component (of an algebraically split link), or each of the
crossings shown is part of a ribbon of a piece of a Seifert surface
of a I-pair blink. It will be clear each tirrle we use the identity
shown in the figure which interpretation we have in rnind.

~
11 11

+
-1

+

-1
-1

FIGURE 6. Another special case of equation (13). The figure
represents an identity in M. Crossings are in the same cornpo­
nent of the link.
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3.2. A 4-term relation on M

In this and in the two sections we introduce three versions of a 4-term
relation on M, which will be used crucially in the proof of Theorem 3.

We begin by noting that there is a map from +1-framed knots in S3
to M, defined by K -+ [K, S3, +1] == S3 - Sk,+l originally introduced in
[3]. Dually this map induces a map from invariants of integral homology
3-spheres to invariants of knots in S3. Furthermore it is trivial to show
that finite type invariants of integral homology 3-spheres map to finite
type invariants of knots. Actually much more is known, namely that
AS-type 3m of integral homology 3-spheres map to type 2m invariants
of knots; see [10] and [6]. The vector space on the set of knots satisfies
a basic relation, the 4-term relation. This relation plays an important
role in studying finite type invariants of knots~ According to the above
defined map, we have a 4-term relation satisfied on the image of this
map in M. Strangely enough, the above relation has not been explicitly
introduced or noticed before. In the present paper we describe the 4­
term relation on M and use it in a crucial way in the proof of Theorem 3.
Furthermore, in Section 1.7 we pose the question of a possible relation
between the 4-term relation and the more well known AS and I H X
relations on M. With these preliminaries and motivation in mind, we
begin to describe the 4-term relation on M.

Let 0 U K be a two-component sublink of an AS-admissible link L
in 53, such that the following hold:

• The intersection of K with a 3-ball B in S3 consists of 3 arcs
shown in Figure 10.

• C is an unknot that bounds a disc D which lies in the interior of
the ball B. The disc D intersects K in two points, b, c. See Figure
10.

Choose 4 disjoint discs D j (for j == s, n, e, w) (8, n, e, w stands for
south, north, east and west) in the ball that intersect K in the 4 tuples
of points (j, a), as shown in Figure 12 with the abbreviations of Figure
11. Let OJ (for j == s, n, e, w) denote the boundary of Dj with framing
-1. Note that OJ UL is an AS-admissible link in S3. Let us momentarily
abbreviate the elements [S3, OJ U L, -1 U f] by [OJ U L], where f is the
framing of the AS-admissible link L. We can now state the following
proposition:
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o 0.0

-~~)
Ilcllb
~ uu

o 0 0 +1+1+1

~M
~ ~ ~ -#
+1+1+1 +1+1+1

+1+1+1

+1+1+1 +1+1+1 +1+1+1

FIGURE 7. A figure showing an identity in M. The links shown
are algebraically split. For a proof, see [5]. The numbers in the
bottom of each band represent twists, with the conventions of
Figure 3. The framings in all the horizontal components are +1.
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+1

-1

•
FIGURE 8. A figure showing an identity in M. The links
shown are algebraically split. For a proof, see [5]. This figure is
used to change the +1 framing of an unknot to a -1 and vice
versa.

n
u

-€) -

•

FIGURE 9. Another special case of equation (13). We assume
that all the arcs in the band lie in the same link component.
Then the link shown in the third picture from the left contains
a unit Seifert-framed I-pair blink (indeed, it bounds a Seifert
surface obtained by tubing the obvious disc along the strands
contained in the band). The fourth picture from the left contains
a I-component boundary link in the complement of the rest of
the link, and thus (using Remark 1.13) a I-pair blink.

b

•
a

FIGURE 10. We show the intersection of a 3-ball B with a knot
K, which consists of 3 arcs (two of them are shown, the third
is perpendicular to the page pointing towards you). Shown alsa
are 3 points a, b, c on the knot K, as well as an unknot that
bounds a disc which intersects K in b, c.
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Proposition 3.4. With the above notation, we have the following
relation on M:

(14) [Os U L] - [On U L] == [Oe U LJ - [Ow U LJ.

We call the above relation the (first version of the) 4-term relation on
M.

FIGURE 11. Some abbreviation conventions for drawing the
next figure.

++++
FIGURE 12. The terms s, e, n, W appearing in the 4-term rela­
tion on M with the drawing conventions of the previous figure.

Proof. The proof of the 4-term relation on M is the same as the
proof of the 4-term relation on the space of knots; see [1]. In both
proofs, we move the arc a of Figure 10 from the SW quarter, to the
N E quarter in two ways: by passing through either the NW quarter, or
the SE quarter. Using Figure 13, the difference in the first (respectively,
second) way equals to the left (respectively, right)-hand side of equation
(14), thus proving the proposition. q.e.d.

X=X x
FIGURE 13. An identity useful for the 4-term relation.

Remark 3.5. The points a, b, c, s, w, e, n (on the knot K) are dis­
played in the order sho·wn in Figure 14.
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b u'
e~--~

( )a
>--//

en

FIGURE 14. The order various points on a knot K.

Remark 3.6. If we represent the knot K by a circle and the knots
C. Cj (for j == S, TL e~ 11)) by chords (that intersect the above Inentioned
circle in two points each, nanlely the points of intersection K n D}),
then the 4-tern1 relation reads as in Figure 15. The 4-term relation will
be used. in the fornl of Figure 15~ in the proof of Theorem 3.

~" Jt)/ I" I
( ! \W ~ ( I

FIGURE 15. The first version of the 4-term relation on M,
with the notation of Remark 3.6.

3.3. Two more versions of the 4-term relation on ./\-1

In this section we will introduce two Inore refined versions of the 4-term
relation on M.

Let C U K 1 U K 2 be a three-colnponent sublink of an AS-admissible
link L in S3 ~ such that there is a three-ball B in S3 with the following
properties:

• The intersection of K 1 with B consists of 3 arcs shown in Figure
16.

• The intersection of K 2 with B consists of 2 arcs shown in Figure
16.

• C is an unknot that bounds a disc D which lies in the interior of
the ball B. The disc D intersects K 1 in two points and intersects
K 2 in two points. Furthermore, D intersects no other component
of L. See Figure 16.
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Let D j (for j == s,n,e,w) be 4 discs as in Section 3.2 (with Figure
16 replacing Figure 10). Let Cj be the boundary of the disc D j .

FIGURE 16. Shown here are the 3 arcs along which a ball B
intersects the knot K 1 and the 2 arcs along which it intersects
the knot K 2 . Shown also with bold are points of K I and K 2

where they intersect D.

Proposition 3.7. With the above notation, we have the following
relation on M:

(15) [Cs U L] - [Cn U L] == [Ce U L] - [Cw U L] + [E~] - [E;J,

where E1 , E2 are links shown in Figure 17. In the rest of the paper, the
above relation will be called the (second version of the) 4-term relation
onM.

FIGURE 17. Shown here are the two links E~ and E; mentioned
in equation (15). Note that E~ contains a I-pair blink and E;
contains a I-component boundary link.

Proof. Moving the arc of K (of Figure 16) from the SW quarter to
the N E quarter as in Proposition 3.4, it follows that:

(16) [Cs U L] - [Cn U L] - [Ce U L] + [Cw U L] == [EI ] - [E2L

where E 1, E2 are as in Figure 18.
follows. q.e.d.

Using Figure 9 the result
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FIGURE 18. Shown here are the links E 1 and E 2 of equation
(16) .

A few remarks are in order:

Remark 3.8. In analogy with Remark 3.6, if we represent the
knots K 1 ,K2 by two circles and the knots C,Cj (for j == s,n,e,w) by
chords (that intersect the above mentioned circles in two points each~

namely the points of intersection K 1 n D j and K 2 n D j ) then the 4-term
relation reads as in Figure 19. Note also that the error terms contain
I-pair blinks in the complement of the link L - C. The 4-term relation
will be used, in the form of Figure 19, in the proof of Theorem 3.

+error terms

FIGURE 19. The second version of the 4-term relation on M,
with the notation of Remark 3.8.

Remark 3.9. Proposition 3.7 implies Proposition 3.4. Indeed, con­
sider Figure 20. Notice that in this case, the error terms vanish. The
reason that we introduced Proposition 3.4 at all was as a warm-up ex­
ercise to make the proof of Proposition 3.7 more accessible, in light of
the similarity between Proposition 3.4 and the 4-term relation in the
theory of finite type knot invariants; see [1].
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FIGURE 20. A special link that reduces Proposition 3.7 to
Proposition 3.4.

FIGURE 21. Shown here on the left-hand side are the 3 arcs
along which a ball B intersects the knot K 1 , the 2 arcs along
which it intersects K 2 and the 2 arcs that it intersects the knot
K 3 . Shown also is an unknotted component C which bounds a
disc D, and with bold dots are the points where D intersects K 1

and K 2. On the right-hand side of the figure is shown one of the
links (Ow) that appears in equation (1 7) .
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We close this section with the third (and most refined) version of
the 4-term relation on M.

Proposition 3.10. Let C U K 1 U K 2 U K 3 be a four-component
sublink of an AS-admissible link L in S3. Assume that there is a ball B

such that the intersection of L with B is as in Figure 21. Let D and D j

(for j == s, n, e, w) be discs as in Section 3.2 (with Figure 21 replacing
Figure 10). Let Cj be the boundary of the disc D j and C the boundary
of D. Then, with the abbreviations before the statement of Proposition
3.4, we have the following:

(17) [Cs U L] - [Cn U L] == [Ce U L] - [Cw U L] + error terms,

where the error terms include I-pair blinks in the complement of
L - (C Uj C j ). In the rest of the paper, the above relation will be called
the (third version of the) 4-term relation on M.

Proof. The proof is similar to that of Proposition 3.7 and we briefly
sketch it here. Using the equation of Figure 22, after moving the arc
of K (of Figure 21) from the SW quarter to the N E quarter, we get
the following equality involving the terms [Cj U L], as well as two kinds
of error terms: ET1 (respectively, ET2 ) that come from moving the K 1

arc around the K 3 arcs (respectively, around the K 2 arcs):

(18) [Cs U L] - [Cn U L] == [Ce U L] - [Cw U L] + ET1 + ET2.

By definition, we have:

(19) ET1 = L ([Ei,s] - [Ei,n]) - ([Ei,e] - [Ei,w]),
i=1,2

where Ei,j (for i == 1,2 and j == s, n, e, w) are I-pair blinks that come
from Figure 22. Each of the differences in the parentheses is a sum
(with signs) of four terms (recall that for a I-pair blink E, [E] is a sum
(with signs) of two terms), two of which cancel. The remaining two
(with signs) can be combined as [e] for some I-pair blink e. These 1­
pair blinks {e} bound Seifert surfaces in the interior of the ball B (of
Figure 21), and these surfaces intersect the disc that C bounds, where
C is as in Figure 21. By the same argument as in Proposition 3.7, it
follows that ET2 can be written as a linear combination of links that
contain I-pair blinks that bound surfaces in the interior of the ball B.
This proves Proposition 3.10. q.e.d.
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---- ----
FIGURE 22. Moving an arc perpendicular to the page past
three others. On the left-hand side, there are four arcs shown,
one perpendicular to the plane, pointing towards your eyes. Of
these four arcs, the top horizontal one and the one represented
by a dot, belong to the same link component, and so do the two
others. Note that only two components of the link are involved,
and that this figure is a redrawing of Figure 9. The two blinks
on the right-hand side are denoted by E 1 and E 2 respectively.

Remark 3.11. In analogy with Remark 3.8, if we represent the
knots K 1 , K 2 , K 3 by three circles and the knots C, Cj (for j == s, n, e, w)
by chords (that intersect the above mentioned circles in two points each,
namely the points of intersection K i n Dj (for i == 1,2,3), then the 4­
term relation reads as in Figure 23. Note t"hat the error terms contain
1-pair blinks in the complement of the link L - (0 Uj OJ). The 4-term
relation will be used, in the form of Figure 23, in the proof of Theorem
3.

= +error terms

FIGURE 23. The third version of the 4-term relation on M,
with the notation of Remark 3.11.
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3.4. Proof of Theorem 3

This section is devoted to the proof of Theorem 3. The proof is long,
and rather involved. For the convenience of the reader, we divide the
proof in three propositions, each of which needs independent arguments.

All links considered in this section are AS-admissible links in S3.
Let us begin by introducing a definition that is useful in this section.

Definition 3.12. An AS-admissible link (L, f) (in S3) is near to
another one (L', f') (of not necessarily the same number of components)
if there is a finite set of AS-admissible L" containing L' such that:

(20) [S3, L, f] = L[S3, L", 1"] E F:sM.
L"

We caution the reader that being "near to" is not a symmetric relation.
Note also that any link is near to an arbitrary sublink of it. A note on
transitivity of the relation "near to": if (L, f) is near to (L', f'), which
itself is near to a third one (L", f"), then it is not clear that (L, f)
is near to (L", f"). However, if (L", f") is obtained from (L', f') (and
(L', j') is obtained from (L, j)) using the equalities of Figures 5, 6 and
7, then transitivity holds. We will use transitivity freely in the proof
of Proposition 3.13, because of the above note. As a variation, we call
a finite linear combination of AS-admissible links (Li , fi) near to an
AS-admissible link (L', f') if there is a finite number of AS-admissible
links (L",j") that include (L',f') such that:

(21 ) L[S3,L i ,Ji] = L[S3,L", 1"] E F:sM.
L"

With the above terminology we have the following:

Proposition 3.13. For every AS-admissible 4m-component link in
S3 there is a trivial Ltr(m) m-component link such that (L, f) is near
to (Ltr(m)~ f(m)).

Proof of proposition 3.13. We begin by remarking that the state­
ment in Proposition 3.13 is a finiteness statement, and not one using
downward induction. Furthermor, using Figure 8 it follows that if the
above proposition holds for one choice of unit framings, then it holds for
all. We will therefore omit mentioning the framings in the proof given
below.

We divide the proof of the proposition in two steps.
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x x
i i j j i i j j

FIGURE 24. Two local moves that generate the relation of
surgery equivalence. Here arcs labeled by the same letter (i or
j) belong to the same link component .

• Step 1 7 L is near to a (finite linear combination of) L(r)
where L(f) are links obtained by trivalent vertex oriented graphs
with 4m edges as in [3], [5].

Proof. The proof is similar to the proof of [6, Theorem 4]. Note
that the theorem [6, Theorem 4] states that [53, L, f] E 94:nM can be
written as a linear combination of terms of the form [53, L(r), f] where
f are trivalent vertex oriented graphs of 4m edges. In that theorem,
we first alter L by a surgery equivalent one (where surgery equivalence
is the relation generated by the local moves of Figure 24). Using a
relation shown in graphical form in Figure 7 we then replace L by a
linear combination of L(f) for trivalent vertex oriented graphs of 4m
edges.

Our present claim (of step 1) follows from the same argument (sket­
ched above) that shows [6, Theorem 4]' after we use the equations
(shown in graphical notation) in Figures 5, 6 and 7. Note that in Fig­
ures 5, 6 and 7 the extra terms that are present give links that contain
the links obtained by trivalent graphs. q.e.d.

• Step 2 If L(f) is a link obtained by a trivalent graph of 4m
edges, then L(f) is near a trivial m-component link Ltr(m).

Proof. This essentially follows from Lemma 3.4 of [3]. For complete­
ness, we repeat the argument here. Take a forest Forest of r containing
all of the vertices of f, and consider L(Forest). This is a sublink of
L(r), therefore L(f) is near to L(Forest), and an Euler characteristic
argument shows that L(Forest) has at least m components. q.e.d.
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The proof of Proposition 3.13 is complete. q.e.d.

We also have the following proposition, that depends crucially on
the existence of the 4-term relation shown in equation (14).

Proposition 3.14. There is a positive constant c E N such that for
every AS-admissible link (L, f) in S3 that contains a sublink L tr (cm3)U

K with the following properties:

• L tr (cm3) is a trivial link of cm3 components which bounds a dis­
joint union of discs UiDi.

• Each disc D i intersects the knot K in two points, and intersects
no other component of L.

Hence we have that [S3, L, f] E F:nM, so (using Remark 1.13) that
[S3, L, f] E F~M as well.

Before we give the proof of it, let us introduce one more definition
that will be useful in stating the proof. Recall (see e.g. [1]) the combi­
natorial notion of a chord diagram with support on a circle.

Definition 3.15. A chord diagram is called m-boundary if it con­
tains m nonintersecting chords. For an example, see Figure 25.

2 3

1 2

FIGURE 25. Shown on the left is a chord diagram with 3
chords. Two of them (1 and 3) do not intersect thus the chord
diagram is 2- boundary. On the right is shown the result of
tubing it along the two nonintersecting chords. The result is a
boundary link of two components in the complement of a two
component link.

Proof. Let Land K be as in the statement of Proposition 3.14, and
let CDK denote the associated chord diagram of K, .i.e., the ordered
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set of points of the intersection of K with the disk D i . The two points
of intersection of D i n K will be represented by a chord of CD K, as in
the theory of finite type invariants of knots.

We now give the proof in six steps:

• Step 1 If CDK is m-boundary, then [53, L, fJ E F~M.

Proof. Indeed, tube the m discs that represent m nonintersecting
chords, using an innermost circle argument. For an example, see Figure
25. The result is a boundary m component sublink L b of L that bounds
surfaces in the complement of L - L b, from which it follows easily that
[53, L, f] E :F~M. Note that the result is independent of the fact that
K may be knotted; it only depends on the associated chord diagram of
K. q.e.d.

Now, if CDK is not an m-boundary chord diagram, we have the
following steps.

• Step 2 We can always assume that the framing in each of the
components of L tr (cm4 ) is +1 or -1 as we please.

Proof. Use the equation in Figure 8. q.e.d.

Before we state the next step, let us introduce some useful terminol­
ogy. We say that a chord diagram is represented by an m-tower if it can
be written using the 4-term relation (see Figure 15) as a (finite) linear
combination of m-boundary chord diagrams. With this terminology we
have the next step:

• Step 3 If a chord diagram contains at least cm3 chords (where
c > 1 fixed positive integer), and is represented by an m - 1 tower,
then it is represented by an m-tower.

Proof. Without loss of generality, we may assume that the chord
diagram contains an m - 1 tower, Tm-l. The end points of the m - 1
chords of Tm-l partition the external circle of the chord diagram in
2(m - 1) arcs, see Figure 26. Each of the rest of the chords of the chord
diagram will begin and end in one of these arcs. If one of these chords
begins and ends in the same arc, then it, together with Tm - 1 , is a set of
m nonintersecting chords. If not, there are (2(~-1)) many possibilities
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for the beginnings and ends of the extra arcs. Using the pigeonhole
principle, if

(22) (
2(m - 1))crn3 -(rn-l)> 2 (rn-l)+l,

we can always assume that there are m many of the rest of the chords
that all begin in one arc, and end in another. Let 0, f3 be two arcs
in which (at least) m of the rest of the chords begin and end. Let us
declare one of these chords to be "special" if it has one end in ° and the
other in {3; otherwise declare it "nonspecial ".

Let us look at the chords that begin in the arc o. According to step
4 below, we can always move a "special" over a "nonspecial" one, and
according to step 5 below, we can always move a "special" over another
"special". After doing so, we may assume that the "special" m chords
do not intersect, and therefore, form an m-tower. q.e.d.

FIGURE 26. Shown on the left is a 3 tower, and two arcs 0, f3
of the external circle of the chord diagram. Shown on the right
are SOIIle of the extra chords.

• Step 4 With the notation of step 3, we can always move a
"special" chord over a "nonspecial" one.

Proof. The proof uses the 4-term relation. Fix a "special" chord and
move a "nonspecial" in four ways around the end of the "special" one.
Of the resulting four terms, two of them no longer have the "nonspecial"
chord, and the two others move the "special" one over the nonspecial
one. See Figure 27. q.e.d.

• Step 5 With the notation of step 3, we can always move a
"special" chord over a "special" one.
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FIGURE 27. The 4-term relation with a fixed "special" chord
and a moving "nonspecial" chord. For the convenience, the arcs
Q, f3 are shown, too. The first two terms show a "nonspecial"
chord after and before passing a special chord (in the Q arc).
The two last terms have no "nonspecial" chord.

Proof. The same as in step 4, see Figure 28. q.e.d.

• Step 6 Induction.

We can now finish the proof of Proposition 3.13 as follows: obviously,
a chord diagram contains (and therefore, is represented by) a I-tower.
Using step 3 and induction, Proposition 3.13 follows. q.e.d.

FIGURE 28. The 4-term relation with a fixed "special" chord
and a moving "special" chord. For the convenience, the arcs
Q, f3 are shown, too. The first two terms show a "special" chord
after and before passing a fixed "special" chord (in the Q arc).
The two last terms have chords that begin and end in the f3 arc,
and therefore, by the discussion of step 3, we can find a 4-tower.

We also have the following proposition, similar to, but different from
Proposition 3.14:

Proposition 3.16. There is an increasing function h : N ~ N
with the following property: for every AS-admissible link L in S3 (with
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framing f) which contains a sublink Ltr(h(m)) U L' with the following
properties:

• Ltr(h(m)) is a trivial link of h(m) components which bounds a
disjoint union of discs UiDi.

• Each disc D i intersects the link L' in either two or four points.
Moreover, the intersections of the disc D i with L' come in pairs
with opposite orientation for each component of L'. Furthermore,
in case a disc D i intersects L' in four points, we assume that these
four points do not lie in the same component of L'. See Figure 29.

Then we have that [S3, L, f] E F~M.

aa (3(3

FIGURE 29. Shown here are the two allowable types of in­
tersections of a disc D i with the components of L'. Here a, (3
denote components of L' and we assume that a :j: (3.

Remark 3.17. Before we give the proof of the above proposition let
us point out that the assumptions are weaker than those of Proposition
3.14. As a result, the conclusion is weaker than that of Proposition 3.14,
in the sense that [S3, L, f] lies in F~M and not necessarily in F:nM.
Note also that the proof of Proposition 3.16 shows that the function h
is constructible, e.g. we can take h(m) == cm13 for some constant c.

Proof of Proposition 3.16. Let L, L' be as in the statement of
Proposition 3.16. We begin by introducing the associated chord diagram
CDL , of L' relative to the union of discs Di . The chord diagram CDL ,

consists of external circles (one per component of L') and chords (as
many as the number of discs D i ). There are two types of chords: ones
that intersect the external circles in two points, (called of type I) and the
ones (called of type I I) that intersect the external circles in four points
(however two points are in one circle and two are in another). For an
example see Figure 30. Note that these chord diagrams are similar but
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different from the chord diagrams on links. At any rate, they include
as a special case the chord diagrams considered in Proposition 3.14.

FIGURE 30. An example of a chord diagram considered in
Proposition 3.16.

Two chords intersect if there is an external circle that they both
touch, such that the four intersection points of that circle with the two
chords is in the order 1212. See Figure 31. In analogy to Definition 3.15
we call a chord diagram m- boundary if it contains m nonintersecting
chords. The motivation for considering nonintersecting chords, is the
fact that they can be tubed, and therefore produce boundary links in
the complement of L'.

EBB
FIGURE 31. Examples of intersecting chords of various types:
(1,1), (11,11) and (I,ll).

This shows the first step in the proof of Proposition 3.16:

• Step 1 If CDL , is m-boundary, then [33 , L, f] E F:nM, and
therefore (using Remark 1.13) [33 ,L,f] E :F~M.

The rest of the proof will be devoted to the proof that we can assume
the hypothesis as in step 1. It uses, like Proposition 3.14, the 4-term
relation in a crucial way. We sketch the proof here:

• Step 2 We can always assume that the framing in each of the
components of L tr is +1 or -1 as we please.

Indeed, see step 2 of Proposition 3.14. We can now define (in direct
analogy with Proposition 3.14) the notion of a chord diagram containing
an m-tower. Let us concentrate on the chord diagram CDL ,. With the
above terminology we have the following:
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• Step 3 If the chord diagram CDL' has an external circle which
touches 90(m) » m (for some function 90), then it contains an
m-tower, and therefore (by tubing) we conclude that [53, L, f] E

F~M.

Before we give the proof, let us point out that the function 90 above,
(and the functions 91, 92, h to be introduced later), can be constructed
explicitly.

Proof. The proof uses the first, second and third version of the 4­
term relation on M. (See Figures 19 and 23). Consider such an external
circle, say C 1 . Ignoring the subleading terms, apply the first, second and
third versions of the 4-term relation (just as in step 3 of Proposition 3.14)
in order to get 91(m) many chords, where 90(m) > c91(m)3, as in Step
3 of Proposition 3.14, which are nonintersecting as far as their ends in
the external circle C1 are concerned. Concentrate on the 91 (m) many
chords that touch the external circle C 1 . Call these chords preferred.
Consider all other external circles that these chords touch. Now we
consider two cases:

Case 1 There are at least m such other external circles.

Then we can create, using at least m (of the 91 (m) many preferred
chords) an m-tower. See Figure 32.

Case 2 Assume there are at most m such external circles.

Then, if 91 (m) > m92 (m), there is at least one circle C2 containing
92(m) many preferred chords (that lie on the circle C1 and C2 ). Ignoring
the subleading terms once again, by applying the 4-term relation, we can
reach a linear combination of chord diagrams with a 3m-tower provided
92(m) > c(3m)3.

FIGURE 32. An example of an external circle C1 and 3 chords
that touch it and form a 3-tower as far as this circle is concerned.
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This is all good, except that we used the 4-term relation twice, and
we ignored the subleading terms in the 4-term relation twice. We need
to deal with the subleading terms, too. Let's consider the subleading
terms in the second case. The subleading terms of the 4-term relation
contain an extra I-pair blink in the complement of the rest of the link.
However, the Seifert surface of this I-pair blink may intersect the discs
(i.e., whose boundaries are the chords of the chord diagram) of at most
two chords. We call such chords marked. See Figure 21. Therefore each
time we apply the 4-term relation, the subleading terms have an extra
I-pair blink and we mark at most two chords. Note that without loss
of generality, the 4-term relation is applied to disjoint balls (embedded
in 8 3 ), and thus the I-pair blinks bound surfaces disjoint from each
other, and from the rest of the components of the link. Therefore, if in
case 2 we apply the 4-term relation more than m times, the resulting
subleading terms lie already in :F~M. If on the other hand, we apply
the 4-term relation at most m times in order to create a 3m tower, this
means that we mark at most 2m chords (of the preferred ones) and
therefore have a subtower of 3m - 2m == m chords. Similarly, we can
deal with the subleading terms of the 4-term relation in the beginning
of the proof. This concludes the proof of Step 3. q.e.d.

The above argument shows that ignoring the subleading terms in
the 4-term relation does not affect the validity of our arguments. In
the rest of the proof of Proposition 3.16 we will ignore such subleading
terms. Due to step 3, let us assume that every external circle of the
chord diagram CDL' touches at most go (m) many chords. If CDL' has
h(m) » go(m) chords, since every chord touches at most two circles,
it implies that the number n of external circles satisfies n >> m.

• Step 4 In this case, we have [83 , L, f] E :F~M .

Proof. Fix a circle, and choose a chord Cl that lies on the chosen
circle. The chord touches at most two circles, and these circles have at
most 2go(m) many other chords that touch them. Mark all the circles
that these chords touch and tube the chord Cl; see Figure 33. Now
consider the rest of the circles (remembering that the number of circles
is much greater than m), and proceed as above. q.e.d.

This concludes the proof of Proposition 3.16. Note that all the
functions mentioned taking values in N are constructible. In fact, we
leave it as an exercise to the reader to show that we can take g2(m) ==
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C2m3,gl(m) == clm4 ,gO(m) == com12 and h(m) == cm13 , for some con-
stants CO,Cl,C2,C. q.e.d.

FIGURE 33. An example of a chord Cl to be tubed and of the
external circles that it marks.

Combining Propositions 3.13, 3.14 and 3.16 enables us to give a
proof of theorem 3 as follows:

Proof of Theorem 3. Let h be the function as in Proposition 3.16.
We want to show that for every non-negative integer m, we have that
.F:~(m)M <;;; .F~M. We know that .F:~(m)M is spanned by all elements
of the form [M, L, f] where (L, f) is an AS-admissible 4h(m)- compo­
nent link in an integral homology 3-sphere M. For the convenience of
the reader, we give the proof in three steps:

• Step 1 We may assume that M == S3.

Indeed, it follows from the facts that: (i) every integral homology
3-sphere can be obtained by surgery on an AS-admissible link L" in S3,
(ii) the fundamental equation (13) and (iii) upward induction on the
number of components of L". See also [5, step 1, Theorem 1].

From now on, we assume that (L, f) is an AS-admissible in S3.

• Step 2 We may assume that L contains a trivial sublink
Ltr(h(m)) of h(m) components.

Indeed, this is nothing but Proposition 3.13.

• Step 3 We may assume that the trivial sublink Ltr(h(m))
bounds a disjoint union of discs satisfying the properties of Propo­
sition 3.16.
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Indeed, since Ltr(h(m)) is a trivial link, it bounds a disjoint union
of discs UiDi . Let L' be the sublink of L that the union of the discs
D i intersect. Since L is an AS-admissible link, the intersections of the
components of L' with each disc D i come in pairs with opposite orienta­
tions. Furthermore, using the equation shown in graphical notation in
Figure 7 (for each of the discs D i ), we may assume that each disc inter­
sects L' in two or four points. Furthermore, in case a disc D i intersects
the same component of L' in four points, then Figure 34 shows that
we can replace such intersections by a linear combination of discs that
intersect that component in two points only. This finishes the proof of
step 3, and together with Proposition 3.16 implies the proof of Theorem
3. q.e.d.

FIGURE 34. An equality in M. The -1 in the box indicates
a full twist. Notice that all arcs lie in the same link component,
and that the two links shown on the right-hand side of the figure
are homotopic, and therefore, by doing a number of crossing
changes we can rewrite the right-hand side as a finite sum of
terms each of which contains at least one disc that intersects
the link component in two points.

3.5. Proof of Theorem 4

In this section we prove Theorem 4.

Proof of Theorem 4. We will first show that for every m we have

(23)

This is equivalent to showing that :F~:nM spans the graded space 93:nM.
However, we know a set of generators for this graded space, namely
[L(f)], where f is a trivalent vertex-oriented graph with 3m edges, and
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L(f) is the associated 3m-component algebraically split link; see [22],
and [5]. We will use a slightly different set of generators of this graded
space namely [L(fw )], where

(24) [L(fw)] = I)L(r(v))],
v

where the sum is over all subsets of vertices of r, and r(v) is the result
of breaking the vertices of f in v according to Figure 35. Note that such
vertices were called white in [9].

FIGURE 35. The definition of a white vertex. Note that each
of the graphs represents a unit-framed algebraically split link in
53.

FIGURE 36. This figure represents a special case of equation
(13) in graphical notation. The present identity holds in g~sM.
()n the left shown is a I-pair blink, which (after surgery) corre­
sponds in M to the difference of two terms. The first term is
shown on the first part on right, and the second term is (surgi­
cally equivalent to) the result of blowing down the I-pair blink.
Notice that each of the two components of the blink is an unknot
and can be blown down in any order.

Using the identity in Figure 36 we see that summing over each white
vertex (in the sunl of [L(rw)]) is equivalent to summing over a I-pair
blink. Since the graphs f are trivalent with 3m edges, (and therefore of
2rn vertices), we have that [L(rw)] E F~~M. This finishes the proof of
equation 23. Now interpolating equation (23) implies that: Ff':nM ~---FS~M, which finishes the first part of the theorem.

The second part follows immediately from the first, using Theorems
2 and 3. q.e.d.
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3.6. Proof of Theorem 2

This section is devoted to the proof of Theorem 2.
The proof presented here is similar to the proof of Theorem 1 of [6].

It uses primary and secondary inductions as well as the identities (for
not-necessarily algebraically split links) of Section 3.1. For the conve­
nience of the reader, we separate the proof into 5 steps. We begin with
some definitions that will be useful. A triple of links T == (L,Lb,Lbl )
in an integral homology 3-sphere M consists of an algebraically split
link L, a boundary link L b and a blink Lbl such that each component
of Lb and pair of Lbl bounds a connected oriented Seifert surface in M,
and these surfaces are disjoint from each other and from L. Such a
(disconnected) surface is called an admissible Seifert surface for T. If
k == ILI,n == ILbl,m == ILbll, then we call T a (k,n,m) - clink. The
genus g(T) is the minimal total genus of an admissible Seifert surface of
T. An admissible framing for T is one which is unit on L U L b and unit
Seifert-framing on L bl . We can then define [M, T, f] E M in the usual
way. We will prove that

(25) [M, T, f] E .Ff~+3m/2M.

Note that in [6, Theorem 1] we proved this fact In the special case
m == 0, and also that the present Theorem 2 is the case n == 0 of
equation (25). The argument for equation (25) is a generalization of
that in [6], proceeding by primary downward induction on k(T) == k
and secondary upward induction on g(T).

• Step 1 We may assume that M == 8 3 .

The proof follows from the following 3 facts:

• Every integral homology 3-sphere M can be converted, by surgery
on an AS-admissible link L', into 8 3 .

• We may assume that L' above can be chosen so that the Seifert
surfaces bounded by L b U Lbl are disjoint from L'. This follows
by general position, since the Seifert surfaces are contained in a
regular neighborhood of some embedded graph in M, and we can
perturb L' away from this graph.

• Equation (13)
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and upward induction on the number of components of L', see also step
1 in Theorem 1 of [6].

Suppose now that (L,Lb,Lbl ) is a (k,n,m)-clink in 8 3 . If k ~ 3n +
3m/2 we are done by definition. If g(T) == 0 (i.e., Lbl is an unblink, see
Figure 1) we are also done, since in this case we have that [83 , T, f] == O.
Indeed, if L bl is a unit-Seifert framed unblink in an integral homology 3­
sphere M, then [M, L bl , f] == M - MLbl,t, and by applying Kirby moves
to a band of a genus 0 surface that L bl bounds, we deduce that MLbl,t is
diffeomorphic to M, and thus [M, Lbl , f] == O. This begins the induction.

• Step 2
ted.

We may assume that every component of L is unknot-

Equation (13) implies that the change of [83 , T, f] before and af­
ter a crossing change in the same component of L can be written as
[S3,T',! U ±1] where T' == (L u C,Lb,Lbl ), and C is a circle that en­
closes the crossing to be changed. Since k(T') > k(T), by using the
primary inductive hypothesis we can change crossings of components of
L, and thus assume that each component of L is unknotted.

• Step 3 Suppose that Lb U Lbl = o~, where ~ is an admissible
Seifert surface for T. We may assume that ~ is embedded in a
standard, almost planar (except for the necessary band crossings)
way. See Figure 38.

This follows using the same argument as in [6] by introducing extra
components into L in order to change band crossings.

Let {Ki } (for 1 ~ i ~ k(T)) denote the components of L. Since
by step 2 they are unknotted, we may choose embedded disks Di so
that K i == ODie Furthermore, since ~ is just a thickening of a wedge of
circles, we may choose the D i so that their intersections with ~ consist
of a number of transverse penetrations of the interiors of the Di by the
bands of~. See Figure 37. We will be interested in counting the number
of "band penetrations" .

• Step 4 We may assume that every band of ~ penetrates at
least one D i .

Proof. This follows by an argument similar to that in [6]. If some
band penetrates no D i , then we may arrange, as in [6], that the circle



306

FIGURE 37.
discs.
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A band of a surface penetrating two pieces of

in ~ going through that band bounds a disk in S3 disjoint from L U ~.

Therefore, depending on the band, we can either reduce the genus, as
in [6], or remove one component of that pair. Thus we have turned one
of the blink components into a bounding component and eliminated the
band with no penetrations. If T' is the new clink, then it is easy to see
that [S3,T',fIT'] == [S3,T,f]. q.e.d.

• Step 5 We may assume that each disc Di has at most two
band penetrations.

This follows precisely as in [6] .

• Step 6 If any component ~j of the Seifert surface of L b has
genus one and a band of ~j penetrates only one disk D i , then we
may assume that Di is penetrated by no other bands of ~.

Again this will follow by the same argument as in [6].
We can now complete the proof of Theorem 2 by counting the band

penetrations. Suppose that T is a (k, n, m)- clink satisfying all the
assertions of the previous steps. Since [S3, T, f] E Fk~nM, it suffices
to show that k ~ 2n + 3m/2. Let b be the number of penetrations of
UDi by bands of~. Set n == no + nl, where no is the number of Seifert
surface components for L b of genus one. Set 2no == n~ + n~ where n~ is
the number of bands of these genus-one Seifert surfaces with only one
disk penetration.

Now it follows from Steps 4 and 6 that

b ~ 3m + 4nl + n~ + 2n~.

If we write k == n~ + k', then it follows from Step 5 that b ~ n~ + 2k'.
Combining these two inequalities gives

n~ + 2k' ~ 3m + 4nl + n~ + 2n~.
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But then we have

2k == 2n~ + 2k' 2 3m + 4nl + 2n~ + 2n~ == 3m + 4n,

which was to be proved. The proof of Theorem 2 is complete. q.e.d.

FIGURE 38. An example of a I-pair blink that bounds a genus
1 surface. Note that the surface has 3 bands.

Remark 3.18. The bound obtained in Theorem 2 is sharp. Indeed,
if T is as in Figure 39, then [53, T, f] E :FgsM, by Theorem 2, but we
claim that [53, T, f] tt :F:tsM. Indeed, using Figures 35 and 36 we see
that Figure 39 represents the element [8] E :FgsM, where [8] E M is
the element represented by the trivalent graph 8, with white vertices.
But this element of Ffs M is nontrivial in Q3sM, see [9, Proposition
2.13]' or Proposition [5, Theorem 6]. This implies in particular that the
analogue of the key Lemma 2.1 of [6] for blinks is false, and that the
last step 6 of Theorem 1 of [6] would be false for blinks.

FIGURE 39. A special case of a 2-pair blink L bl union a 3­
component algebraically split link L. The result [53, T, f] lies in
:FfsM and is non-trivial in Q3sM.

4. Surgery equivalence and the Seifert matrix

In this section we prove Theorem 5. This theorem suggests that
finite type invariants in the sense of blinks, Le., corresponding to the
I-adic filtration of the Torelli group, according to Theorem 2, should be
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expressible in terms of Seifert matrix invariants of the associated blinks.
Thus Alexander polynomial type invariants rather than Jones polyno­
mial type invariants should suffice. This is an intriguing consequence
which we hope to exploit in future work.

It is clear that surgery equivalent n-pair blinks (with framings which
correspond) represent the same element of g~lM.

Recall the notion of Seifert matrix of an oriented boundary link. If
L == (K1,··· , K n ) and K i = 8Vi where {Vi} are disjoint oriented sur­
faces in an integral homology 3-sphere M, then the Seifert pairing is
the collection of bilinear pairings aij : H 1(Vi) x H1(Vj) -+ Z defined by
aij(a,{3) == Ik(a+,{3), the linking number, where a+ E H1(M - Ui\!i)
represents the translate of a off Vi in the positive normal direction. We
can represent the Seifert pairing by a square integral matrix A (the
Seifert matrix) divided into blocks, each of which represents one of the
aij. There is an explicit algebraic description of the relation between
two Seifert matrices of the same link corresponding to different choices
of {Vi} and different bases of the homology. This description uses the
notion of S-equivalence and the action of a certain group of automor­
phisms of the free group (see [16] for the details).

The definition of a Seifert pairing of a blink is exactly the same
using Seifert surfaces of the blink as defined in Definition 1.8. The
Seifert pairing is again represented by a square matrix A separated into
blocks representing the aij' The relation between two Seifert matrices
of the same blink will be generally similar to that for boundary links,
but more complicated, since it is permissible to change the orientation
any of the Seifert surfaces. We do not want to explore this question now
and our formulation of Theorem 5 allows us to avoid it.

4.1. Proof of Theorem 5

We first show that surgery equivalent blinks admit equal Seifert ma­
trices. Suppose (M, L) and (M', L') are surgery equivalent. We may
assume that they are related by a single blink surgery, i.e., if ~ is a
Seifert surface for L in M, then there is a 1- pair blink (1,1') in M so
that 1-1' = 8a where a ~ M - ~ is a Seifert surface for (1,1'), and that
(M',L') = (M(l,l,),L) using some unit Seifert-framing of (1,1'). Now we
may also regard ~ as a Seifert surface for L' in M', and so we need to
show that if a,{3 E Hl(~), then IkM(a+,{3) = IkM,(a+,{3) where IkM
denotes the linking number in M. In general, given two disjoint simple
closed curves ~, "I in M - ~, we show that their linking number in M
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is the same as in M'. Suppose rl bounds an orientable surface A in M.
By general position a n A is a collection of proper curves in a and so,
homologically, "7 == lk(~, "7)m + r(ml + mll ) in M - ~ - 1 - l', where m
is a meridian of ~, rnl and ml' are meridians of land l', and r is some
integer. Thus it suffices to observe that ml +ml' is homologically trivial
in M' - ~. But, by the definition of a unit Seifert framing m~ == ml + EI

and m~, == ml' - El', for some E == ± 1, and so

Tl~l + mi' == m~ + m~, + E(l' - I) == m~ + m~, + Ea~ == 0 E HI (M' - ~).

4.2. Conclusion of proof

Now suppose that two blinks (AI, L) and (M', L') admit the same Seifert
lllatrix. We rnay first of all assume that M == M' == S3 since, by
Proposition 1.16, we can convert any 3-ll1anifold into 53 by surgery on
a boundary link, which we can assume is far away from any other given
link. By the observation in Rernark 1.13 this is the same as surgery on
some blink. Let ~,~' be Seifert surfaces for L, L' which give identical
Seifert lllatrix A. Since A - ..4T is the intersection matrix of ~ and ~',

we conclude that ~ and L:' are diffeomorphic.
Now it is an easy consequence of Smale theory that the regular ho­

rnotopy type of an embedding of a bounded surface in 53 is determined
by the twisting numbers of the bands mod 2. Since these twisting num­
bers are deterlllined by the Seifert matrix, it follows that ~ and ~' are
regularly hOlllotopic. A regldar homotopy of ~ consists of a sequence
of isotopies and crossings of bands (see Figure 40), so we only have to
show that the band crossings can be achieved by blink surgeries.

FIGURE 40. An illustration of a crossing of bands.

Let bI , b2 be any two bands of ~, possibly the same band. Each
time when we encounter a crossing of b1 with b2 , there is a correspond­
ing change in the Seifert matrix. Since the net change in the Seifert
matrix must be zero, we conclude that there is an equal number of
crossings of b1 and b2 in each of the two directions. Now suppose that
our regular homotopy actually breaks up into a sequence of isotopies
and double band crossings, where we define a double band crossing as



310 STAVROS GAROUFALIDIS & JEROME LEVINE

two simultaneous crossings of a single pair of bands in opposite direc­
tions (see Figure 41). We illustrate in Figure 42 that a double band
crossing can be achieved by a blink surgery.

FIGURE 41.
directions.

A double crossing change of bands in opposite

FIGURE 42. A I-pair blink that achieves the double crossing
change of the bands of Figure 41.

We need to do two oppositely framed surgeries on circles around
the two bands at the crossing points. The surface bounded by these two
circles is obtained by taking the small twice punctured disks bounded by
these circles and connecting the punctures of one with the punctures of
the other by tubes along the two band segments connecting the crossing
points.

So it suffices to show that we can find a regular homotopy from ~

to ~' consisting of isotopies and double band crossings. Let us consider
E and ~' as disks D and D' with bands attached. By a preliminary
isotopy we can assume that D = D' and even a bit more, that ~ and ~'

coincide in a neighborhood of D = D'. Then we can choose a regular
neighborhood N of D, and assume that we have a regular homotopy
which moves the bands of ~ onto those of ~' in the complement of N
and is stationary inside N. Let us modify this regular homotopy of
~ by performing some additional band moves inside N. Every time
a band crossing occurs (outside N) let us introduce a crossing of the
same bands, but in the opposite direction, inside N (see Figures 43 and
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44) . Thus every band crossing in the original homotopy is replaced by
a double band crossing, and so our new regular homotopy will be a
sequence of double band crossings. This new homotopy now consists
of two independent parts: the original homotopy outside N and the
new part inside N. We have complete freedom in how we perform each
of the band crossings inside N and so, since the number of crossings
of each pair of bands in the two directions is equal, we can choose
the corresponding crossings introduced inside N to cancel each other.
Thus the net effect will be to leave E n N unchanged. In other words
our modified regular homotopy will have the same result as the original
regular homotopy, i.e., to move E onto E'. Since the modified regular
homotopy is a sequence of double band crossings, this completes the
proof. q.e.d.

FIGURE 43. An illustration of an original homotopy.

FIGURE 44. An illustration of a modified homotopy.
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5. Appendix

5.1. Remarks on the group £9,1

If L ~ H = H1(Eg ) is the Lagrangian used to define £g,l, then we can
also define a larger group £g,l = {h : h.IL = identity}, where h. is the
automorphism of H induced by h. Clearly £g,l ~ £g,l and 7;,1 ~ £g,l.

So we have a lattice of subgroups of the mapping class group:

£g,l

7;,1

£g,1 n 7;,1
t

ICg,l

Note that the above diagram defines a map

We can now show the following:

Proposition 5.1. The above defined map

is an isomorphism.

Proof. By its definition it follows that it is one-to-one. In order to
show that it is onto, recall first [10], [12], [20] the following classical
short exact sequence:

(26) 1 --+ 7;,1 --+ r g,1 -4 Sp(2g, Z) -4 1,

where the map r g,1 -4 Sp(2g, Z) is the map h --+ h. that sends a
surface diffeomorphism to its linear action on HI (Eg , Z). We therefore
have an isomorphism rg,I/7;,1 ~ Sp(2g, Z). We can therefore identify
£g,1/7;,1 with its image in Sp(2g, Z), and as such, £g,1/7;,1 consists
of all isometries ¢ of HI (Eg ) which are the identity on L. With these
preliminaries in mind, in order to show that the map of the proposition
is onto, it suffices to show that every isometry ¢ of HI (Eg ) which is
the identity on L is induced by some product PI . · · Pk of L-twists. If
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we write Hl(~g) = L E9 L' where L' is a Lagrangian dual to L, and we
choose a basis {ei} of L and dual basis {e~}for L', then </> has a matrix

representative: (~ ~) I where C is a symmetric matrix. If p is a Dehn

twist along a simple closed curve representing Ei Aiei, then it has such
a matrix representative, where the entries of C are given by Cij = ±AiAj.

We can certainly realize the elements ei and ei ± ej by simple closed
curves, and it is then an easy exercise to see that any C can be realized
by a composition of Dehn twists along such curves, using the fact that

(I C). (I C') = (I C+C')
0101 0 I ·

q.e.d.

Notice also that [£g,l, £g,l] ~ 7;,1 because £g,I/7;,1 is abelian.
The next natural problem to consider is the determination of £g,l n

7;,1/ICg,1. In order to do so, we will need an important homomorphism
r : 7;,1 -t A3H defined by D. Johnson (see [13]). We review its defini­
tion here: If h E 7;,1 then, by definition, h. is the identity on H. Thus,
for any (3 E 7f = 7fl (~g), we can write:

(27)

This defines a homomorphism t : 7;,1 -+ hom(H, A2H). We now have
the identifications:

(28)

where the latter isomorphism uses the symplectic structure on H. Thus
we obtain a homomorphism f : 7;,1 -+ H (l} A2H. Johnson showed that
im(t') ~ A3H, where the embedding A3H ~ H ~ A2H is defined by:

(29) x 1\ y 1\ z H- X (l} (y 1\ z) +Y~ (z 1\ x) + z (l} (x 1\ y).

This defines a homomorphism; : 7;,1 -+ A3H. Johnson showed that;
is onto and its kernel is exactly ICg,l.

With these preliminaries in mind, an important step in understand­
ing £g,l is the calculation of ;(£g,1 n 7;,1). For example, by Proposi­
tion 5.1, ;(£g,l n 7;,1) = A3H if and only if £g,1 = £g,l. But we now
show that this is false.

Proposition 5.2. Suppose h E 7;,1 n £g,l- Then

;(h) E ker{A3H -+ A3 (H/L)}.
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Proof. Let h E ~,1 n £9,1. With the discussion of Johnson's homo­
morphism above, and using the the following commutative diagram:

A3H ---t A3(H/L)

1 1
H®A2H ---t H/L®A2(H/L)

(where the vertical arrows are both injections, and L is the Lagrangian
used to define £9,1) it follows that the proposition is equivalent to show­
ing that t'(h) E ker{H ® A2H --t H/L ® A2(H/L)} or, equivalently,
t(h) E ker{hom(H,A2H) -t hom(L,A2(H/L)}. In order to show that
we need the following lemma:

Lemma 5.3. Suppose that ~ is a compact orientable surface with
one boundary component, and G a simple closed curve in the interior
of ~ representing, up to conjugacy, an element a E 1f = 1fl (~). Let
h denote the homeomorphism of ~ defined by a Dehn twist along G.
Then, for any (3 E 1f, we can write

h ((3)(3-1 fl fk* = "Yl ... "Yk ,

where each "Yi is a conjugate of a and, if [~] denotes the homology class
of ~ for any ~ E 1f, then Ei €i = ±[a] . [(3], the intersection number, and
the sign depends on the direction of the Dehn twist.

Proof. If A is any path in ~ which intersects G transversely, then
we can write h 0 A as a product Al · Gf l ••• Ak · Gfk • Ak+l, for some
factorization A = AI··· Ak+l as a product of paths. The Gfi insert
themselves whenever A crosses G, and €i is the sign of the intersection.

q.e.d.

We can rewrite h*((3)(3-1 as given in Lemma 5.3 in the form

where e = ±[a]· [(3]. In particular hold in mind the case of e = o. In this
case if we apply another homeomorphism defined by a Dehn twist along
a curve representing 'Y E 1f so that [a]· ['Y] = 0, then h*({3){3-I is mapped
to a new element which is still in the form of equation (30) with e = o.
Continuing in this way we obtain the following conclusion: suppose that
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h is a product of Dehn twists on curves representing elements in some
Lagrangian L. If (3 E 1r also represents an element of L, then

(31)

where [Oi] E L. But this shows that:

t(h) · f3 = ~)ei] 1\ [ail·
i

Since [Oi] E L, the right side clearly maps to 0 in A2(H/L). q.e.d.

Proposition 5.1 immediately implies the following corollary:

Corollary 5.4. As a subgroup of the mapping class group, £g,1 is
generated by ~,1 and £g,l.

Remark 5.5. tl~,1 n £g,1 actually extends to a homomorphism t :
£g,1 ~ hom(L,A2H) by the same definition as for t, using the defining
property that, if h E £g,1 then h.IL =identity. The above proof actually
shows that t(£g,l) ~ hom(L,K), where K = ker{A2H ~ A2(H/L)}.

Question 6. Is £g,1 = i-I hom(L, K)? Is r(£g,ln~,I) = ker{A3 H ~

A3(H/L)}?

5.2. The lower central series of £9,1

In this section we study the image of the lower central series of £g,1
under Johnson's map into A3H. In particular we prove:

Proposition 5.6. For all 9 ~ 1 we have: (£g,I)5 ~ JCg,l. In addi­
tion, for 9 ~ 1 we have: (£g,I)4 ~ JCg,1 if 9 ~ 3.

The proof of Proposition 5.6 will be based on the following:

Lemma 5.7. With the notation of Remark 5.5, we have the follow­
ing: t'([£g,I' £9,1]) ~ (L ® A2H) + (H ® K).

Using Corollary 5.4, and the fact that [~,1, ~,1] ~ JCg,l, the lemma
will follow from the following two assertions:

1. t'([£g,l, £g,I]) ~ H ® K.

2. t'([£g,l, ~,1]) ~ (H ® K) + (L ® A2H).
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Proof of (1). [£g,1, £g,1] is generated by elements of the form
[h, Dc], where h E £g,1, C is a simple closed curve in M, which rep­
resents an element of L, and Dc denotes a Dehn twist along C. Now
[h,Dc] = Dh(c) 0 (DC)-I. We can apply Lemma 5.3 to obtain;

(32)

where C represents a E 'Ir, up to conjugation, and d = ±[o]· [,8], for any
{3 E 'Ir. Similarly we have:

where e = ±[h.a] · [,8], for any ,8 E 'Ir. Putting these together we get:

(34)

(Dh(c»). 0 (Dc );1 (,8) == ,8 II[8i' h.(a)<] II[ei, afi]adh.(a)e mod 71"3,

where d = ±[a] · [,8] again, but now e = ±[h.a] · (DC);1[,8].
Since h E £9,1 and [a] E L, we have h.(a)o-1 E 'lr2 and so a and

h.(o) commute mod 'lr3. Thus equation (34) can be rewritten:

(Dh(c)). 0 (DC);I({3)

(35) == ,8 II [8i , h.(a)<] II[ei, afi ](h.(a)a- 1 )ead+e mod 71"3.

This simplifies considerably to:

(Dh(c)). 0 (DC);1(,8) == ,Bad+e mod 'lr2.

But Dh(c) 0 (DC)-1 E 7;,1, since h(C) is homologous to C, and so
d+e = O. (We can assume that [a] =F 0, otherwise we already have that
Dc E ~g,I.)

We can apply equation (31) to write:

h.(a)a-1 == II[l1i,ai] mod 71"3,

where [oil E L. Putting this all together into equation (35) we get:

(36)
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where [a~] E L. This translates into:

and this element lies in K. q.e.d.

Proof of (2). Suppose A E £g,l and h E 7;,1. Then [A, h] =
(AhA -1 )h-1 which can be written, as an element of the abelianization
7;,1/(7;,1)2, in the additive form A. h - h, where we use the canonical
action of the mapping class group rg,l on 7;,1/(7;,1)2 by conjugation. It
was pointed out by Johnson (see e.g. [13]) that T, or t' : 7;,1 --t H®A2 H,
is equivariant with respect to the action of r g,l (acting on the right side
by the canonical action on H). Thus

t'([A, h]) = t'(A· h - h) = (A - 1) . t'(h).

(37)

(A - l)a ® A(a1 1\ a2)

+ a ® ((A - l)a1 1\ Aa2)

+ a ® (a1 1\ (A - l)a2).

Now recall that, for any A E £9,1' the action on H satisfies:

• AIL = identity,

• (A - 1)(H) ~ L,

and so (A - 1)2 = O. Thus, in equation (37), the terms on the right side
are in either L ® A2H or H ® K.

This completes the proof of (2) and of Lemma 5.7. q.e.d.

Proof of Proposition 5.6. We will use an argument similar to that
in the proof of (2) above to prove the following assertions in order:

1. t'((£g,1)3) ~ (L ® K) + (H ® A2L),

2. t'((£g,1)4) ~ (L ® A2 L),

3. t' ((£g,l )5) = O.

Recalling Corollary 5.4, the above two assertions prove Proposition 5.6.
To prove (1) we apply equation (37), where we can assume, by

Lemma 5.7, either a1 1\ a2 E K or a E L, and we see that the terms on
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the right side of equation (37) lie in (L ® K) + (H ® A2L). Note that
(,\ -1)K ~ A2 L.

To prove (2) (or (3)) we use equation (37) in the same way, taking
into account (1) (or (2)) to tell where a ® (a1 /\ a2) must lie.

This completes the proof that (£;,1)5 ~ ICg,l. It remains to show
that, if 9 ~ 3 then t'((l9,1)4) i= o.

Suppose h E Tg,l so that r(h) = a1/\a2/\a3 E A3H. If ,\ E £g,l then
we have r(['\, h]) = (,\ - 1) . (a1/\ a2/\ a3). But we can use the following
analogue of equation (37):

(38)

(,\ - 1)a1 /\ '\a2 /\ '\a3

+ a1 /\ (,\ - 1)a2 /\ '\a3

+ a1 /\ a2 /\ (,\ - 1)a3.

Noting that (,\ - 1)ai E £ and (,\ - 1)1£ = 0, we can use equation (38)
in this way repeatedly to compute:

r(['\, ['\, ['\, h]]]) = 6('\ - 1)a1 /\ (,\ - 1)a2 /\ (,\ - 1)a3

Now suppose, following the conventions in the proof of Proposition 5.1,
that {ei} is a basis of L and {e~} is a dual basis of L' . For any symmetric
matrix C there is some ,\ E £g,l so that:

A(ei) = ei, A(eD = e~ +L Cijej.
j

Let us choose ,\ so that C is the identity matrix and ai = e~. Then we
have

r(['\, ['\, ['\, h)]]) = 6e~ /\ e~ /\ e~ i= 0

This completes the proof of Proposition 5.6. q.e.d.

Remark 5.8. It is not clear whether (£g,1)4 ~ JCg,l.
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