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EVEN SETS OF NODES ARE BUNDLE SYMMETRIC

G. CASNATI & F. CATANESE

o. Introduction

Let k be an algebraically closed field of characteristic p =1= 2, and
let F :== {f == O} ~ JP>~ be a normal surface of degree d. Let 1r: F --t

F be a minimal resolution of singularities. We denote by H ~ F a
general plane section of F defined by a general linear form h. Assume,
for simplicity, that F is a nodal surface (i.e., its singularities are only
ordinary quadratic, nodes for short).

Let ~ be a subset of the set of nodes of F, and let E:= 1r-1(~). ~

is said to be a 8/2-even set of nodes, 8 = 0, 1, if the class of E + fJ1r* H
in Pic(F) is 2-divisible (when 8 = 0 we shall simply say that ~ is even).

The condition that ~ is fJ /2-even is equivalent to the existence of
a double cover p: S --t F branched exactly along E + fJ1r* Hand (cf.
[6,2.11,2.13]) it is possible to blow downp-l(E) getting a commutative
diagram

(0.1)

where S is a nodal surface and p is finite of degree 2 branched exactly on
~ when 8 == 0 (respectively on ~ and H when fJ = 1; in this case d has
to be even). The surface S is then endowed with a natural involution
i such that F ~ S / i and p is the quotient map. Thus we have an 0 F­

linear map i#: p*Os -+ p*Os giving rise to a splitting of OF-modules
p*Os ~ OF EB F where OF and F are the +1 and -1 eigenspaces of i#.
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238 G. CASNATI & F. CATANESE

The sheaf:F is not locally free because of the nodes, but we shall see
later in Section 3 that it is reflexive and Cohen-Macaulay. Moreover the
multiplication map Os x Os ---t Os induces a non-degenerate pairing
F x :F ---t Os (-6). Therefore F is a 6/2-quadratic sheaf in the sense of
the following definition.

Definition 0.2. Let X be a locally Cohen-Macaulay projective
scheme. We say that a reflexive, coherent, locally Cohen-Macaulay
Ox-sheaf :F is a 6/2-quadratic sheaf on X, 6 E Z, if there exists a
symmetric isomorphism a: F(6) ~ 1lomox (F, Ox).

The aim of Sections 1 and 2 is to prove in dimension 3 the follow­
ing characterization of quadratic sheaves on hypersurfaces in projective
space.

Theorem 0.3. Let F ~ IID~ be a surface of degree d, and let F be
a 8/2-quadratic sheaf on F. Then F fits into an exact sequence of the

form

(0.3.1) o ---t t (-d - 6)~ £ ---t F -+ 0,

where £ is a locally free Op3 -sheaf and 'P is a symmetric map.
k

An entirely analogous proof with more complicated notation gives
the same result in all dimensions.

Theorem 0.3 and the above discussion yield the following.

Corollary 0.4. Let F ~ IID~ be a nodal surface of degree d. Then

every 8/2 -even set of nodes ~ on F, 8 == 0, 1, is the degeneracy locus of

a symmetric map of locally free Op3 -sheaves t (-d - b)~ £ (i. e., F is
k

the locus where rk( 'P) :::; rk £ -1, ~ is the locus where rk( 'P) == rk £ - 2).

In the above setting we say that ~ is a bundle-symmetric set of
nodes. If it is possible to find such an £ which is the direct sum of
invertible Op3-sheaves, then we say that ~ is a symmetric set of nodes

k

(see [6]).
Corollary 0.4 was conjectured in 1979 independently by W. Barth

and the second author. Barth proved in [1] that bundle-symmetric sets
are even while in [6] the converse result was proved under a cohomolog­
ical assumption which gives a complete characterization of symrnetric
sets of nodes.

As soon as Walter's beautiful solution of Okonek's conjecture came
out, it was immediately clear that his method would also work in our
case.
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Finally, in Section 3 we apply Corollary 0.4 to the study of nodal
surfaces of low degree d, namely d == 4, 5, 6. This study ties up to an
interesting history for which we defer the reader e.g. to [8], [6], [4], [7],
[15], [2], [12]. In particular we get the following result.

Theorem 0.5. Let F ~ IP~ be a nodal surface of degree 6. Then
every even set of nodes ~ on F has cardinality either 24 or 32 or 40.

Using the above result, J. Wahl (see [17]) was able to give a simple
proof of the result of D. Jaffe and D. Ruberman stating that a nodal
surface of degree 6 can have at most 65 nodes.
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1. A resolution of F

In this section we deal with the construction of a resolution R*
of any <5/2--quadratic sheaf F on a surface F ~ IP~ of degree d. We
shall make use of notation and results proved in [18] about Horrocks'
correspondence.

Lemma 1.1. Let F ~ IP~ be a surface and let F be a <5/2-quadratic
sheaf on F. Then pdo 3 Fx == 1 for each x E F and £xtb (F, OF) ==

Pk,x F

o.

Proof. By definition depthFx == dimFx == 2. Then the equal-
ity pdo 3 F x == 1 follows from Auslander-Buchsbaum formula taking

Pk,X

account that the depths of Fx as OF x-module and as Om>3 x-module
, lr k'

coincide. [xthF (F, OF) == 0 follows from [10, Theorem 6.1]. q.e.d.

Let d + <5 be even. From the spectral sequence of the Ext's, Lem­
ma 1.1 and Serre's duality, follows the existence of isomorphisms for
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Hi(F,F(m)) ~Ext~~i (F(m),wFlk)"

(1.2) ~H2-i (F, tlomo
F

(F, OF(d - 4 - m)))"
~H2-i (F, F(d - 4 - m + 8) )".

In particular, if m :== (d - 4 + 8)/2 is an integer, there exists a non­
degenerate alternating form

and we denote by U a fixed maximal isotropic subspace with respect to
~.

Define

w.== {EBm«d_4+8)/2 H1 (F,F(m))
. EBm«d-4+d)/2 H1(F,F(m)) EB U

if d + 8 is odd,

if d + 8 is even.

As usual H~ is the Serre functor associating to a quasi-coherent sheaf
9 the graded module H~ (~, 9) :== EBnEZ Hi (IP%, 9(n)). Let f * :== H~,

and let Rf* be its right derived functor in the derived category. Then
H! (~, 9) is the i-th cohomology module of the complex Rf*(9).

As in [18, Section 2] one considers the truncation. Let D* be a
complex with differentials 8i : D i ---+ D i +1 , let r, s E Z, r < sand
let W ~ H S (D*) be a subspace. Then W may be pulled back to W
satisfying im(8S

-
1) ~ W ~ ker(8S

). We denote by 7>r7<s,w(D*) (if
W == HS (D*) we will omit it in the subscripts) the comple~ C* defined
as follows:

o
D i

Dr / ker(8r )

W

if i S r - 1 or i ~ s + 1,

if r + 1 SiS s - 1,

if i == r,

if i == s.

Let us now consider the truncated complex C* :== 7>07<1 wRf*(F).- ,
By definition we have

if i = 1,

elsewhere,
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and there is a natural map
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Since Hl (F, F), hence W, has finite length we can apply to the com­
plex C* the syzygy bundle functor ([18, Theorem 0.4]. Cf. also the
construction given after Corollary 2.8). We obtain a locally free sheaf
Syz (C*) and a morphism of quasi-coherent sheaves

(3: Syz(C*) --+ F

such that (3 == T>OT~2Rr*(,B) ([18, Proposition 2.10]).

Let Q :== coker (H~ (,8)). This means that we have an exact sequence
of the form

o(TTl\.1 * ) H~ (J) 0 ( )H* llk'Syz(C) ----+ H* F,F --+ Q --+ O.

Let d1, ... ,dr be the degrees of a minimal set of generators of Q. These
generators lift to H~ (F, F), allowing us to define an epimorphism

r

r: £ := Syz(C*) El1 EB OlP~( -di) - :F
i=l

which is surjective on global sections. By construction £, is locally free.
If JC :== ker(,), then we have an exact sequence

(1.3) R*: 0 --+ JC~ £,~ F --+ O.

Proposition 1.4. In the above sequence (1.3) JC is locally free and
rkJC==rk£'.

Proof. We know from Lemma 1.1 that for each x E IIi one has an
exact sequence of the form

where JC~ and £,~ are free (and depend upon x E IIi). Moreover, since
F is supported on F,

anno 3 F x "# O.
P/c,Z

Therefore rkJC~ = rk£'~ (see [13, Theorem 195]). The statement now
follows from [13, Theorem A, Chapter 4] (Schanuel's lemma). q.e.d.
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Proposition 2.10 of [18] implies for i == 1,2 that

and that H~ (r) coincides with H~ (,8) . Thus the above construction
yields:

i) H~(r): H~(JIDZ,£) ~ H~(F,:F) is surjective by construction;

ii) Hl (r) : Hl (JIDZ, E) ~ H! (F, F) is injective since

(in particular H1(JIDZ,E((d - 4 + 8)/2)) == U);

iii) H; (r) : H; (JIDZ, E) ~ H; (F, F) is zero, in fact H; (JID~, E) == o.

From the above remarks taking the cohomology of the sequence (1.3)
we then get:

iv) H! (IPZ, K) == 0;

v) H;(IPZ,K) ~ H!(F,F)/W.

Recall that F(8) ~ HomoF (F, OF). On the other hand one has an
exact sequence

(1.5)

Applying Homo 3 (F,·) to sequence (1.5) gives
Pk

and since the multiplication by f is zero on Exth (F, 0IP3 (-d - 8)) we
P~ k

obtain an isomorphism
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Proposition 1.6. Let 80 be as above. If there is a cornmutative
diagram

243

(1.6.1)

then the maps Si are isomorphisms.

Proof. By construction So is an isomorphism, thus it suffices to
prove the bijectivity of Sl. This will follow from Lemma 2.12 of [18] if
we show that conditions (i), (ii) and (iii) of that lemma are satisfied for
the composition

E~ K(-d - 8) 'f) Extb 3 (F, Ojp3 ( -d - 8)).
P

k
k

Condition (iii) that £ and K( -d - 6) have the same rank was already
shown in Proposition 1.4.

Since -;y 0 81 coincides with the map,: E -+t F, condition (ii) holds
by the very definition of £.

We have to verify (i) namely that

H1 (Sl) : H1 (J!D~, £) ~ H1 (J!D~, K( -d - 6))

are isomorphisms for i == 1,2. Diagram (1.6.1) yields the equality

H1 (-;y) 0 H1 (81) == H1 (8 0) 0 H1 (, ).
Note that H1(so) are isomorphisms and the maps H1(,) are injective,
hence the same is true for the maps H1 (81) .

Since Ie and £ are locally free, both H1 (J!D~, K( -d-6)) and H-~ (IrD~, £)
have finite length, thus we have only to prove that their lengths coincide.

We begin with i == 2. Here both modules are 0:

h2 (J!D~, K(t )) == h I (J!D~, Ie (- 4 - t)) == 0

by iv) while h2 (TID~, E(t)) == 0 (cf. iii)).
Let now i == 1. One has

h1 (TID~, K(t)) == dim (H2 (TID~, Ie (- 4 - t)})
== dim (HI (F, F( -4 - t)) /W-4-t)

{

o if -4 - t < (d - 4 + 6)/'2,

~ dim(U) if -4 - t == (d - 4 + 6)/'2,

h1 (F,F(-4 - t)) if -4 - t > (d - 4 + 6)/'2.
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By (1.2), h1(IID~,F(-4-t)) == h1(IID~,F(t+d+J)) and so the desired
conclusion follows. q.e.d.

2. Proof of Theorem 0.3

This section is devoted to the proof of the following.

Claim 2.1. It is possible to construct diagram (1.6.1) in such a
way that S2 is the transpose of 81.

Assuming 2.1 we have the

Proof of Theorem 0.3. Just set ep :== 8 11
0 d which is obviously

symmetric. q.e.d.

Proof of Claim 2.1. Our first step is to extend the natural map
'TJ: S2 F -+ OF (- J), induced by the symmetric map a, to a chain map
¢: S2 R* -+ C* (see sequences (1.3) and (1.5)):

o-+ A2K~ K 0 £ ~ S2 £ --+ S2 F -+ 0

1<P2 1<PI AU 1<Po -!-
o --t OIP3(-d - 8)~ 0IP3 (-8) --t Op( -8) --t O.

k k

Assume that ¢ does exist. Then we get a map 81: £ -+ K( -d - 8). It
is obtained from ¢1 through the natural isomorphism

Let 82 be the transpose of Sl.

We claim that 81 0 d == do 82, i.e., that the above diagram (1.6.1)ac­
tually commutes. It suffices to verify this equality at every point x E IID~.

Choose a, {3 E K x · Since (81 od(a), (3) == <PI (d(a)0(3) and (do82(a), (3) ==
(a,s1 od({3)) == <PI (a 0 d((3)), our claim follows from

There remains only to prove the following proposition.

Proposition 2.2. <P exists.

Proof. In order to have cP it suffices to define cPo. Indeed the
image of <Po 0 80 is contained in the kernel of 0IP3 ( - 8) --+ OF (- 8) which

k

coincides with the submodule jOIP3( -d - J).
k
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Then we simply set cP1 :== ycPo 0 boo
We want to lift the composition

'l/J:== 7] 052,: 52 [ --t 5 2 :F --t OF(-b)

to a map cPo: 5 2
[ --t Op3(-b).

k

From the exact sequence (1.5) we obtain the exact sequence

o --t Homo 3 ( 52 [, Op3 (-d - b)) --t Homo 3 (52 [, Op3 (-b))
P k k P k k

-+ Homo 3 ( S2 E, 01"( -15)) ~ Exth 3 ( S2 E, Ojp3 (-d - 15))
P k P k k

~ HI (TJ?~, 52 £( -d - b)) ~ H 2(TJ?~, 52 [(d - 4 + b) )~.

We conclude that 'l/J is liftable if and only if

245

is the zero map. First of all notice that, interchanging the roles of A2

and 52 in Section 4 of [18] and imitating word by word the proofs of
Lemmas 4.1, 4.2 and Corollary 4.3 of [18] we easily obtain

if d + b is odd,

if d + b is even.

8( 'l/J) E H 2(TJ?~, 52 [(d - 4 + b))~ is identified with the map

..J(- 'J 8(1/J)): H 2(IPf, S2 E(d - 4 + 15)) -+ H 3 (IPt Ojp~( -4)),

where

'J: H2(TJ?~,52[(d-4+b))x H](I¥~,52£(-d-b))

--t H 3 (I¥~, 52 [ 0 52 £( -4))

is the cup-product and

is the natural contraction.
Thus 8( 'l/J) == 0 if and only if

(2.2.1)
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We have a commutative diagram:

1112 (1/')

H2 (F, GF(d - 4))

We claim that

1A2[/1 (-Y)

~ A2 H I (F,F((d-4+b)/2))

Lemrrla 2.3 . .J(' 'J o(VJ)) == -0' a H 2 ('ljJ).

The above assertion implies 8('ljJ) == 0 since, by formula 2.2.1,
EJ' a H 2 (VJ)(Q 'J (3) == 0 because 0;,(3 E HI(J}D~,£((d - 4 + b)/2)) == U
which was chosen to be isotropic with respect to <P.

Proof of Lemma 2.3. Let U :== {Ui}i=O, ... ,3 be the standard open

covering of nnz. Bar each i we fix a lifting ;;;i: S2 £1 Ui ~ OUi ( - b) of VJI Vi .

Notice that ;;;i -;;;j maps to fOJ?~(-d - 15) ~ OJ?~(-J). On the other
hand,

represents the obstruction to lifting 'l/J to 1Jo, whence

1 -. -- I 2'0'
8('IjJ) = y('ljJi - 'ljJj) E H (U,S £(-d - 15)).

We now compute explicitly EJ' a H 2
( 'ljJ) and -l (- 'J EJ(VJ)) using the

fact that each element inside H 2 (J}D~, S2 £ (d - 4 +b)) can be written as a
sum of terms Q 'J (3 where Q, (3 E HI (U, £( (d- 4+b) /2)). Q 'J f3 'J 8( 'ljJ)
is represented by the cocycle

hence
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, 2 1 --- ---
8 0 H (1/;)(a '-' f3)io,ilh i3 =y(1/;jo(ail,i2f3i2,i3) -1/;j} (aiO,i?f3i2,iJ

+ ;;;j2(aio,ilf3il,i3) - ;;;j3(aio,ilf3il,i2))~

where]h E {io, iI, i2, i3} \ {ih}. In particular choosing]o ==]1 ==]2 == i3
and]3 == i 2 and using that ail ,i2 - aio,i2 +aio,il == 0, f3il ,i2 -fJil ,i3 +f31:2,i3 ==
o we get

8' 0 H 2
( 'l/J ) (a '-J f3) i°,i 1,i 2,i3

1 --- --
= y(1/;i3(-aio,i1(f3i2,i3 - f3i} ,i3)) - 1/;i2(aio,i) f3i 1,i2))

1 --- --= y(1/;i3 (aio,i} f3il ,i2) - 1/;i2 (aio,i 1f3il ,i2)) .

Then the proof is complete. q.e.d.

Remark 2.2. Theorem 0.3 holds without the assumption F ~ TIDZ.

It suffices to consider any hypersurface F ~ JIDk endowed with a 6/2­
quadratic sheaf F.
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3. Examples and applications

In this section we shall consider the case of a nodal surface of small
degree d == 4, 5, 6 and we shall see how our main theorem can be used
to classify 6/2-even sets of nodes, going beyond [6], Section 3 and [4].

Moreover from now on the ground field k will be equal to the field
C of complex numbers.

Following the notation used in the introduction we begin by proving
the following.

Proposition 3.1. The sheaf F defined in the introduction is 6/2­

quadratic.

Proof. Notice that F1F\f:j. is invertible, hence reflexive.
The multiplication map Os x Os ~ Os induces a symmetric non­

degenerate bilinear form F x F ~ OF. If 6 == 1, such a map factors
through the multiplication by h, A(h): OF( -1) ~ OF. Thus, in both
cases, we get a symmetric bilinear map F x F -+ OF( -6) inducing a
monomorphism a: F(6) ~ :t :== 1{omoF (F, OF) which is obviously an
isomorphism outside ~, whence a global isomorphism since 5 is normal.
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Hence F is isomorphic to F~~ and, indeed, F is reflexive which nleans
that the natural map F~F~~ is an isomorphisnl (in fact jJ, is injective
since F is torsion-free, and coker (jJ,) == 0 since F and F~~ have the same
Hilbert polynomial). ~

If x E ~, the completion Fx fits into the exact sequence

where jJ, is induced by a matrix of the form

(: ~),

w, Z, Y being local paranleters in ()IP~,x. Therefore we see that :Fx is
Cohen-Macaulay as a module over ()IP~,x. q.e.d.

Imitating the construction of F, there ex~sts a decomposition
p*O:s ~ OF EB £ where £ is now invertible since F is smooth.

Moreover 1r*£ ~ F, p*Os ~ 0F EB £. Since

diagram (0.1) and the spectral sequences of the composite functors
RP1r*Rqp* and RPp*RQ1r* yield R I 1r*£ == 0 thus

Note that

(3.2) HI (F,F(-rr1)) ~ HI (F,F(m + d - 4 + 6))~== 0, m > 0

(Theorem 1 of [14] applied to p*1r*Os(l) and formula (1.2)). More­
over by [6], Theorem 2.19, we get that ~ is symmetric if and only if
hI (F, .:F(m)) == 0 for 0 ::; m ::; (d - 4) /2.

We have the long exact sequence

0--* HO(F,F) --* HO(F,F(l)) ~ HO(H,F(l)IH)

(3.3) --7 HI (F,F) ~ HI(F,F(l)) --7 H1(H,F(1)IH)

--* H 2 (F,.:F) --* H 2 (F,.:F( 1)) -+ O.

associated to every h E HO (IP~, OIP~ (1) ) (defining a plane section

H ~ Hi). Notice that in any case hO(F,.:F) == 0 since S is connected.
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Moreover, by (3.2) we have H 1 (F,F(-1)) == 0, and thusH1 (H,F1H ) ==

o for each H.
Since h does not divide f :== det(cp), the restriction to H of the

exact sequence 0.3.1 remains exact. Hence FIH is again a 6"/2-quadratic
sheaf. Mutatis mutandis, Theorem 2.16 and Proposition 2.28 of [6]
apply; therefore FIH has a free resolution

p p

(3.4) °---+ EB 0H(-fj )~ EB 0H( -ri) ---+ FIH ---+ 0,
j=l i=l

where H ~ JID~ is the plane defined by h. In (3.4) a :== (ai,j)i,j=l, ... ,P is a
symmetric matrix of homogeneous polynomials ai,j of degrees
(di+dj ) /2, where the di'S are in not-decreasing order, di == dj , d == 6" +di

(mod 2), £j == (d + 6" + dj )/2 and ri == (d + 6" - di )/2.
As in [6] we see the following:

i) di + dp+1- i > °since det(a) :I 0;

ii) di + dp - i > 0 if det(a) is square free;

iii) ri > 0 since hO (H, F 1H ) == 0, i.e., di S d + 6" - 2;

iv) di + dp - 1- i > 0 if H == {det(a) == o} is smooth.

Notice finally that

p

d = L di = L (di + dp+1-i) + d(p+l)/2 o

i=l i~p/2

Here d.x == 0 if A is not an integer. We then get the following cases for
the p-tuple (d1 , ... ,dp ):

d == 4, 6" == 0 (2,2), (0,2,2), (0,0,2,2);
d == 4, 6" == 1 (1,3), (1,1,1,1), (-1,1,1,3), (-1, -1,3,3);
d == 5, 6" == 0 (1,1,3), (-1,3,3), (-1,1,5), (1,1,1,1,1), (-1,1,1,1,3),

(-1, -1, 1,3,3);
d == 6, 6" == 0 (2,4), (2,2,2), (-2,4,4), (0,2,2,2), (-2,2,2,4),

(0,0,2,2,2).
On the other hand, if we assume that H is smooth, then most of the

above possibilities disappear and we are only left with:
d == 4 6" == 0 (2 2)·, "
d == 4, 6" == 1 (1,3), (1, 1, 1, 1);
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d == 5, b == 0 (1,1,3), (1,1,1,1,1).
d == 6, b == 0 (2,4), (2,2,2), (0,2,2,2).

3.5. The case d == 4, b == 0

For all H we have h1(H,F(1)IH) == hO(H,F1H ) == 0 whence
hO (H, F(l)IH) == 2 (Riemann-Roch), hence formula (3.2) yields

Moreover hI (j?, F) is dual to itself, whence it has even dimension. Recall
that

X(F) == (8 - t)/4,

where t is the number of n'odes of F (see [6, Proposition 2.11]).
If h I (F, F) == 0, then ~ is symmetric of type (2,2), hO (F, F( 1)) == 2

and t == 8.
If h1(F,F) == 2, then hO(F,F(l)) == 0, t == 16. It follows from

condition ii) of Section 1 that h1 (JID~, £) == 1 and h1 (JID~, £ (m)) == 0 for
m =1= O. Moreover recall that h; (JID~, £) == 0 (condition iii) of Section 1).

The Horrocks correspondence shows that £ is stably equivalent to
n~3 (stably equivalent means that adding respective direct sums of in­

k

vertible sheaves we get isomorphic sheaves). Therefore, by the construc-
tion of £, since hO(JID~,n~3) == hO(JID~,n~3(1)) == 0, we may assume that

k k

hO(TID~,£(l)) == O. Since we have hi (F,F(l)) == 0 for i == 0,1,

hO(F,F(2)) == hO(H,F(2)IH) == h°(Ip>~,n~3(2)) == 6.
k

Recall (Section 1 ii)) that there is an epimorphism

Let 6 - r be the rank of the induced map

Then
[ ~ n~3 EB Op3 (_2)EBT EB Op3 (_3)EBT3 EB ....

k k k

We claim that r3 == r4 == ... == O.
Indeed~ by Beilinson's theorem (see [5]) applied to [(1), since
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which, by Theorem 0.3, injects into HO(IfD~,£(l)) == 0, we get
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£(1) ~ (HI (111,£) ®nh(l)) EE! (H3(JlD~,£(-2)) ®OlP~(-l)).

Thus £ ~ 0~3 EB Op3(-2)EBr and [(-4) ~ 0;3 EB Op3(-2) Eer. It follows
k k II k k

that

== ('PI,1 'PI,2)'P... ,
'PI,2 'P2,2

where 'P2,2 is a constant r x r symmetric matrix which must be zero by
the minimality of £.

Ifr ~ 4, then det('P) == 0 which is absurd.
If r == 3, then rk( 'PI,2) ~ 2 on a surface Y of degree Cl (n~3 (2)) == 2,

k

and F == 2Y, again a contradiction.
If r == 2, then there is a curve r of degree C2 (0~3 (2)) == 2 where

k

rk('Pl,2) ~ 1, whence r is a double curve for F, which is again absurd.
Ifr = 1, then <PI,2 isasectionofHO(JlD~,n~~(2)) ~ A2HO(JlD~,OlP~(1)).

If the rank of this alternating map is 2 then 'PI,2 should vanish on a
line r (since 'PI,2 == XOdXI - XldxO for suitable coordinates), which is a
double line for F, absurd.

We conclude that 'PI,2 corresponds to a non-degenerate alternating
form. With a proper choice of the coordinates we can assume that <Pl,2

corresponds to XOdXl - XldxO + X2dx3 - X3dx2. Then 0IP3( -2) is iden­
k

tified to a subbundle ofn~3' and dually n;3 ~ Op3( -2) is surjective. As
~k ~k k

in [1] we define the null-correlation bundle Vo Ct.~

Vo := n~~(2)/ im(<PI,2(2)) and we obtain a self-dual resolution

o --t Vo --t Vo --t F(2) --t o.

Finally if r == 0 we get

We have therefore shown that for quartic surfaces all even sets of
nodes are either symmetric or t == 16 and we have exactly the two cases
described in [1].

3.6. The case d == 4, () == 1

As in the case () == 0 we have again h1 (F,F(1)) == O. We get by (1.2)
that h I (F, F) == h I (F, F( 1)) == O. It then follows that ~ is symmetric
of type either (1,1,1,1) or (1,3).



252 G. CASNATI & F. CATANESE

3.7. The case d == 5

In this case 8 == 0 as we already noticed. Sequence (3.3) is self-dual
and

maps to the subspace of alternating bilinear forms.
If H is smooth, FIH is of type either (1,1,1,1,1) or (1,1,3), and

thus hO (H, F(l)IH) == hI (H, F(l)IH) ~ 1 by (3.4).
The map )"(h) is an isomorphism if either hO(H,.r(l)JH) = 0 or

hO(F,F(l)) == 1. In fact in both cases, hO(F,F(l)) == hOlH,F(l)IH)
and the assertion follows easily from the self-duality of sequence (3.3).

If for a general H the map -X(h) is an isomorphism, then hI (F, F) is

even, and if it is not zero the pfaffian of -X(h) defines a surface B ~ IP~
of degree hI (F, F) /2 which is contained in the dual surface F of F.
Since F is nodal, then it is of general type, and by biduality also F is
of general type; therefore one has deg(F) ~ 5, whence hI (F, F) ~ 10.
We conclude that

t/4 - 5 == -X(F) ~ 10,

hence t ~ 60 which implies deg(F) ~ d(d - 1)2 - 2t ~ -40, an ab­
surd. Thus the only possibility is hI (F, F) == 0 and we get that ~ is
symmetric.

Finally if, for H smooth, hO(H,F(l)IH) == 1 and hO(F,F(l)) == 0
then dim(ker(A(h))) == 1, thus hI (F, F) f: 0 is odd (A(h) is alternating).

In any case hI (F,F(2)) == 0 (again (3.2)), hence we have the exact
sequence

In particular hO (H, F(2)/H) does not depend on H. If H is general, then
H is either of type (1,1,1,1,1) or (1,1,3), hence sequence (3.4) implies
hO(H,F(2)IH) == 5. On the other hand if hI (F,F) ~ 3, there exists
H such that dim(ker(-X(h))) ~ 3, whence H is of type (-1,1,5). Thus
looking at sequence (3.4) we get hO (H, F(2)IH) == 6, a contradiction.

We have therefore restricted ourselves to the case hI (F, F) == 1.
In this case hI (F, F( -1)) == 0 (formula (3.2)) and hO (F, F( -1)) == 0;

thus hO(F,F(2)) == h2 (F,F(-I)) == 4. Beilinson's theorem then yields
a sequence of the form
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where

(
''PL, 1'P==
'P2.1

'Pl,2) .
'P2,2

Moreover Beilinson's spectral sequence and the fact that A(h) == 0 for
each h ilnply that 'P2,2: n~3 (2) -t n~3 (1) is zero. In particular we see

If If

that 0ii EB n~3 (1) has the required properties for £; thus we may assunle
k k

that

and that 'P is symmetric.
However, the determinantal quintic F should be singular along the

set D ~ IID~ of points where rk('Pl,2) ~ 2 which has dimension at least
1 (generically D is a pair of skew lines). In fact det( 'P) belongs to the
square of the sheaf of ideals of D. We have reached the conclusion that,
for d == 5, ~ is always symmetric (as shown in [4]).

3.8. The case d == 6, 6 == 0

For each maximal isotropic subspace U ~ HI (F, F( 1)) we can define
the locally free Orr 3 --sheaf £ as in Section 1 satisfying conditions i), ii)

k

and iii) of that section. Since the square

£ ---t F
1A(h) lA(h)

£(1) ---t F(l)

is commutative for each h E HO (IID~, 0rr3 (1) ), we obtain that the image
k

of HI (IID~, A(h)) is contained in U. Taking into account the arbitrariness
of U, we finally obtain the following proposition.

Proposition 3.8.1. The multiplication map

zs zero.

We must make some remarks on the possible dimensions of certain
eoh~mology groups. Notice that the theorem of Riemann-Roeh applied
to F yields

t
X(F(l)) == 8 - -.

4
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If H is smooth, then F IH is of type either (2,4) or (2,2,2) or (0,2,2,2),
so that hO (H, F(l)IH) ::; 1; whence, by (3.3),

h°(F, F (1)) ::; h°(H, F (1) IH) ::; 1.

If hO(F,F(l)) == 1 then

hO (5, 7r*OF(l) ® £-1) == hO (5, 7r*OF(l) ® £) == 1;

thus there exists a curve C ~ F of degree 6 passing through the set of
nodes ~. Since Sing(F) is finite, for a general choice of the coordinates
Xl, ... ,X3 in IID~, the partial derivative a f /aXl does not vanish on any
component of C. Denoting the corresponding surface by G, we obtain
t :== card(~) :::; C . G == 30. Since t is divisible by 8, we conclude that
t ::; 24.

It follows that

O:=:; hI (F,F(l)) = 2 - X(F(l)) = ~ - 6:=:; 0,

and sequence (3.3) then becomes

If H is smooth, the only possible case is that H is of type (2,4) and
hO(F,F(l)) == hO(H,F(I)IH) == 1, i.e., hl(F,F) == O. Hence ~ is
symmetric of type (2,4).

From now on we shall therefore assume h°(F, F (1)) == h2
( F, F (1)) ==

0, so that

X(F(l)) = -h1(F,F(1)) = 8 - ~ :=:; O.

It follows that t ~ 32 and the equality holds if ~ is symmetric of type
either (2,2,2) or (0,2, 2, 2). Set 27 :== hI (F, F( 1)) == -8+t/4. Sequence
(3.3) becomes

o-t HO(H,F(l)IH) -t HI (F,F) ~ H I (F,F(l)) -t

-+ H l (H,F(l)IH) -+ H 2 (F,F) -+ H 2 (F,F(I)) ~ HO(F,F(I))"-+ O.

Since A(h) == °by Proposition 3.8.1, we obtain a :== hI (F, F)
hO (H, )--(I)IH) ~ 1, 27 ::; 3 + a == hI (H, F(I)IH), b :== h2 (F, F)
3 + a - 27. Finally, notice that hi (F,F(-I)) == 0, for i == 0,1.
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The Beilinson's table for F(2) is

c bOO
o a 2, a
o 0 0 b

Since b 2: 0, T :::; 2. If, == 2, then b == 0 and a == 1. If b == 0, since
also A(h) == 0, then the differential dl is zero. Thus E~2,1 == n~3(2),

/r

contradicting E~q == 0 if p =I -q.
We can summarize the above results in the following statement.

Theorem 3.8.2. Let F ~ IID~ be a nodal surface of degree 6. Then

for each even set of nodes ~ on F, t :== card(~) == 24,32, 40. ~ is not

symmetric if t == 40.

Let us briefly examine the case t == 40. Then we can choose e.g.
E :== n~3( -1) EB Op3( -2). We thus get the sequence

k k

In particular we have a sextic surface everywhere tangent to a Kummer
quartic. This example was already described in [6, Proposition 2.24].
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