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Abstract 
For a family of Dirac operators, acting on Hermitian Clifford modules over 
the odd-dimensional compact manifolds with boundary which are the fibres 
of a fibration with compact base, we compute the Chern character of the 
index, in K of the base. Although we assume a product decomposition 
near the boundary, we make no assumptions on invertibility of the bound­
ary family and instead obtain a family of self-adjoint Fredholm operators by 
choice of an auxiliary family of projections respecting the Z2 decomposition 
of bundles over the boundary. In case the boundary family is invertible, this 
projection can be taken to be the Atiyah-Patodi-Singer projection and the 
resulting formula is as conjectured by Bismut and Cheeger. The derivation 
of the index formula is effected by the combination of the superconnec-
tion formalism of Quillen and Bismut, the calculus of b-pseudodifferential 
operators and suspension. 

Introduction 

Let (f> : M —> B be a fibration of Riemannian manifolds, with B 
compact and with fibres diffeomorphic to a fixed odd-dimensional com­
pact manifold with boundary X. Suppose that the fibres carry smoothly 
varying spin structures and that the Riemannian metrics on the fibres 
have smoothly varying product decompositions near the boundary. Let 
g = 3z be, for z G B, the associated family of Dirac operators and 
let g = g,z be the boundary family. If g,z is invertible for each 
z G B, the Atiyah-Patodi-Singer boundary condition makes 3z into a 
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continuous family of self-adjoint Fredholm operators and thus, follow­
ing Atiyah and Singer in [8], defines an element Ind(g) G Kl(B). Under 
this assumption of invertibility of the boundary family a formula for the 
Chern character Ch(Ind(g)) G H odd(B) was conjectured by Bismut and 
Cheeger in [12]. In this paper, using ideas similar to those used in [24] 
for the even-dimensional case, we prove such a formula without making 
any assumptions on the boundary family and for the Dirac operator of 
general Hermitian Clifford modules with unitary Clifford connections. 

To explain how we define a continuous family of self-adjoint Fred-
holm operators consider, for simplicity, the spinor bundle but with no 
invertibility assumptions on the boundary family. Observe first tha t 
the restriction of the spinor bundle to the boundary of the fibration is 
Z2-graded, SQM = SQ ®SQ. Let <7, defined by Clifford multiplication in 
the normal direction, be the parity operator on SQM '• 

The boundary operator g is odd with respect to this Z2 grading and 
self-adjoint 

(1) ag + g a = 0, g = g*0. 

For any Z2-graded vector bundle L on a fibration tp : M' —> B, with 
fibres diffeomorphic to a fixed closed compact manifold Y, and for any 
family of elliptic, self-adjoint, Z2-graded odd differential operators A 
(i.e., satisfying (1)) we introduce the notion of a Cl( l) spectral section 
P. This is a spectral section as in [24] (a family of generalized Atiyah-
Patodi-Singer projections, see Definition 1 of §2) with the additional 
property that 

aP+Pa = a. 

We then prove that a Cl(l) spectral section exists for such a family A if 
and only if the virtual bundle Ind(A) = [null(A+)] — [null(A -)] vanishes 
in K°(B). Since, by cobordism invariance, it is always the case that 
I n d ( g ) = 0 in K°(B) there does exist a Cl( l) spectral section P for the 
boundary family g - The choice of a spectral section fixes a self-adjoint 
boundary condition, varying smoothly with the base point, 

(2) gu = f in M, P{u \ dM) = 0; 

this also carries over to the case of an Hermitian Clifford module E. 
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To compute the index of this family of self-adjoint Fredholm oper­
ators we follow the idea of Atiyah, Patodi and Singer in replacing the 
incomplete metric on the fibres by a complete metric with cylindrical 
end. In fact we prefer to think of the index theorem as in this 'category' 
of exact b-metrics, as in [24]. A Cl(l) spectral section for g fixes a class 
of (families of) Z2-graded finite rank smoothing operators, A P , with the 
property that (g + A P)z is invertible for any z G B. One can think of 
A P as a trivializing perturbation for g corresponding to the fact that 
I n d ( g ) = 0 in K°(B). The b-calculus allows us to use this perturba­
tion to define an index class Ind (g ,P ) G Kl(B). Although there is no 
completely natural choice of A P , the index class is independent of the 
particular choice of trivializing family corresponding to a fixed spectral 
section and it is shown in §4 to be equal to the index class of the elliptic 
boundary problem (2). As in the even-dimensional case, we prove a 
relative index theorem showing that the difference of the index classes 
Ind(g ,P i ) — Ind(g,P2)) for two choices of Cl( l) spectral section, to be 
the class in Kl(B) corresponding to the formal difference of Pi and P2. 
For fixed P?, as Pi varies over Cl(l) spectral sections for g the formal 
difference classes exhaust K1(B); see Proposition 12. 

The main result of this paper is a formula for the Chern character 
of Ind(g, P ) . The global boundary term is given by the differential form 
on B 

(3) Vodd,P = ± Z STr9M (e e - e A du, 

0 

where 

B u = u (g + x(u)A°P) +B[t] + u~B[2] 

is the rescaled perturbed Bismut superconnection on the boundary fi-
bration. The cut-off function \ £ C°°(R), with x(u) = 0 for u < 1 and 
x(u) = 1 for u > 2, is introduced to ensure convergence at u = 0. The 
supertrace appearing in (3) is the natural one defined by the Z2-grading 
of EQ. The differential form ?7odd,P is well defined, up to an exact form, 
independently of the particular choice of the trivializing family A P . For 
a family of Dirac operators on odd-dimensional manifolds with bound­
ary as above and for a choice of a Cl(l) spectral section P, for the 
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boundary family g > we establish the index formula 

Ch( Ind(g ,P) ) = ( 2 ™ ) - ^ Z A{M/B) • Ch'{E) 

(4) M/B 

~Vodd,P in H odd(B) 

in the context of Dirac operators associated to Hermitian Clifford mod­
ules, where Ch ' (E) is the Chern character of the twisting curvature. 

To prove this formula we extend to manifolds with boundary the 
suspension argument used by Bismut and Freed in [14]. When dealing 
with elliptic boundary problems, the suspension, in the obvious ana­
lytic sense, of the Dirac operator with Atiyah-Patodi-Singer boundary 
condition does not give the Atiyah-Patodi-Singer boundary condition 
for the suspended Dirac family. This prevents a trivial reduction to the 
even-dimensional case. For the related reason that the suspension of a 
cone is not a simple cone, the operation of suspension has not been suc­
cessfully integrated into the approach of Bismut and Cheeger ([10] and 
[12]) in which a metrically incomplete cone (see also [18] and [19] for the 
analytic background) is attached to the manifold with boundary. This 
has prevented the application of such a method in the odd-dimensional 
case. It is a feature of our approach via the b-calculus that the analysis 
of suspension on manifolds with boundary is relatively straightforward. 
This can be stated succinctly as the fact that for the complete problem 
replacing (3) the boundary condition is just the L2 condition on the 
domain of the operator and that L2 is preserved under suspension. 

We remark that if the boundary family g is invertible then, in the 
case of exact b-metrics, no perturbation is needed, each 

(5) g z:H b(M z;S)^L2(M z;S) 

being Fredholm and self-adjoint. For the Chern character of the index 
class Ind(g) G K1(B), defined by (5), we obtain the index formula 
proposed by Bismut and Cheeger 

(6) Ch(Ind(g)) = ( 2 ^ ) - ^ Z A(M/B) - ±Vodd in H odd(B). 

M/B 

Here 
00 

(7) odd = p Z STr9M(du e"(B u)2)du' 

0 
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and 

B u = u ^ g 0 + B [ 1 ] + u - ^ B [ 2 ] 

is the rescaled Bismut superconnection of the spinor bundle SQM = 

S ^ S * 
In §1 the decomposition of Dirac operators on products is discussed. 

The extension of the notion of a spectral section from [24] to the odd-
dimensional, Cl( l ) , case is described in §2. Suspension in the context 
of K-theory is discussed in §3 and used in §4 to prove the equality 
of the index classes in the incomplete and complete (exact b-metric) 
senses. Suspension at the level of Dirac operators is in §5; this passage 
from odd to even-dimensional cases is our basic tool. The boundary 
behaviour of the suspended Dirac operator is treated in §6. In §7 the 
relative index theorem, giving the change of the index class under the 
change in spectral section, is reduced to the even-dimensional theorem 
from [24]. The suspension of the superconnection is examined in §8 and 
used to define the odd eta form in §9. In the last two sections the index 
formula, (4), is derived from the index formula of [24], first in the case 
of an invertible boundary family and then, in §11, in the general case. 
The main result is stated precisely at the end of the paper. 

1. P r o d u c t decompos i t ions 

For Clifford algebras we shall use the convention of [23] and demand 
that for any two covectors a and ß 

(1.1) cl (a) cl(/3) + cl(/3) cl(a) = 2(a, ß). 

Product decompositions of Clifford modules and the associated Dirac 
operators arise here in a neighbourhood of a boundary in both the odd-
and even-dimensional cases. The even-dimensional case is well known, 
so we suppose that X is an odd-dimensional manifold with boundary 
equipped with an exact b-metric. Let x G C00(X) be a distinguished 
defining function for the boundary, meaning that the metric takes the 
form 

(1.2) g = ( ^ + g', 
x 

where g' is a smooth 2-tensor inducing a metric, h, on the boundary. 
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Let E be a Clifford module for the Clifford bundle of T*X. Over 
the boundary the bundle b T*X decomposes orthogonally as follows: 

(1.3) b T*dX X = R ( — ) 0 T*dX. 
x 

As in [24] we fix a Clifford action of T*dX on EQX by 

dx 
(1.4) cl9(j7) = icl(—)cl(?7) 

for each rj G T*dX. If <7 = cl(—) then a2 = 1 and we obtain a decom­
position of the Clifford module: 

(1.5) EdX = E+®E~, 

where E0 are respectively the ± 1 eigenspaces of the action of —. As­
suming that dim X > 1 these two bundles have the same rank, since 
Clifford multiplication by any non-zero element of T*dX gives an iso­
morphism between the fibres at any point. 

Propos i t ion 1. If E is an Hermitian Clifford module with (true) 
unitary Clifford connection for a smoothly varying family of exact b-
metrics on the odd-dimensional compact manifolds with boundary form­
ing the fibres of a fibration with compact base, the indicial operator of 
the associated Dirac operator is 

(1.6) I ( g ) = , ( x ( i x ) + ig 

with g : CO0(dX; Eo) —> CO0(dX; EQ) the Dirac operator associated 
to the boundary Clifford action (1-4) and the induced graded unitary 
Clifford connection. Moreover 

(1.7) ( g ) * = g , o"g = - g o - , o* = a. 

Proof. This follows directly from the definition of the Dirac opera­
tor. 

From (1.7) we deduce that 

g g+ o 

g 

with g~ = (g+)* and g : C°°(dX;E$) —> ^{dX^E^). The Dirac 
operator g is Fredholm on the natural Sobolev spaces of the metric 
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provided the indicial operator (see [23]) is invertible. This in turn is 
equivalent to the invertibility of the indicial family 

(1.8) I(g,X) = a(X + ^ g ) 

for A G R. Since g = ( g ) * this is certainly invertible for each real 
A ̂  0. Thus g is Fredholm as a map 

(1.9) g:Hl(X;E)^L2
h(X;E) 

if and only if the boundary Dirac operators 

g± : C°°{dX; E±) — • C°°{dX; E*) 

are invertible. 
Consider now a fibration of compact manifolds (f> : M —> B with 

fibres, M z for z G B, diffeomorphic to a fixed odd-dimensional manifold 
with boundary X as above. Let E be a Hermitian Clifford module for 
the vertical b-cotangent bundle b T* (M/B) endowed with a fibre (true) 
unitary Clifford connection. Let g = g z, for z G B, be the associated 
family of Dirac operators and assume that each operator of the boundary 
family g is invertible. The discussion above shows that in this case the 
family of operators g defines a continuous family of self-adjoint Fredholm 
operators 

(1.10) 3z : Hl{M z;E z) —> L2
h{M z-E z) 

and thus an element Ind(g) of Kl(B). In the general case we need to 
deform the Dirac operator to get such a Fredholm family. 

2. Cl(l) spectral sect ions 

The notion of a spectral section for a family of self-adjoint opera­
tors was introduced in [24]. For an odd, Z2-graded, elliptic differential 
operator 

(2-1) A=(A+ A0") , A " = (A*)*, 

acting on a superbundle L = L+ © L~ we refine this notion to that of a 
Cl( l) spectral section. If a is the parity operator 

<-> - ( J - 0 : ) . 
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then, for a self-adjoint operator, the existence of the block decomposi­
tion (2.1) is equivalent to the anticommutation condition 

(2.3) aA + Aa = 0. 

Notice that it follows from (2.3) that if u is an eigenfunction of A with 
eigenvalue A, then au is an eigenfunction of A with eigenvalue —A. 

If A is invertible, we define its Atiyah-Patodi-Singer projection to 
be the orthogonal projection onto the span of the eigenfunctions corre­
sponding to the positive eigenvalues of A. If this projection is PQ, then 
GPQG is the orthogonal projection onto the negative eigenspaces of A so 

Po + vPov = Id • 

In the general case we need a smooth family of projections with this 
property. 

Definit ion 1. For a family, A z, of odd Z2-graded self-adjoint ellip­
tic differential operators (of positive order and acting on the compact 
fibres of a fibration) a Cl( l) spectral section is a spectral section, P z, 
for A, i.e., a family of self-adjoint projections such that for some R > 0 

, , Au = Au, A > R ==?- Pu = u, 
^ ' ' Au = Au, A < -R =^ Pu = 0, 

with the anticommutation property 

(2.5) aP+Pa = a. 

Notice that the additional condition (2.5) can also be written as 

(2.6) aPa = Id -P. 

Propos i t ion 2. A family of odd Z ^-graded self-adjoint elliptic dif­
ferential operators, A, admits a Cl(l) spectral section if and only if its 
index vanishes in K° of the base of the fibration. 

Proof. The K1 index of the whole self-adjoint family A vanishes, 
as can be seen from the fact that it is homotopic through self-adjoint 
families to 

(B A-\ 
A+ - B ' 

which is invertible if B is a first-order positive elliptic pseudodifferential 
operator. By Proposition 1 of [24], A admits a spectral section. In fact, 
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as shown in Proposition 2 of [24], if r > 0 is preassigned, there is a 
spectral section, P', such that P'u = 0 if u is an eigenfunction with 
eigenvalue less than r; in particular P' annihilates the null space of A. 

It follows from (2.3) that the family of self-adjoint projections P" = 
aP'a annihilates all eigenfunctions of A corresponding to eigenvalues 
A > —r, and P' and P" commute. Since, on each fibre, it is contained 
in the finite dimensional space spanned by the eigenfunctions of A, with 
eigenvalues in the range [—r, r] the null space of the projection P' + P" is 
a finite dimensional bundle, denoted N. Moreover a acts as an involution 
on N which therefore splits into the sum of the ± 1 eigenspaces: 

(2.7) N = N+®N~. 

The properties of P' imply that 

A = A' + A", where 
(2.8) A'= P'AP' + P"AP" 

= (P' + P")A{P' + P"), 

with both terms on the right Z2-graded. Since A' is invertible on the 
range of P' + P" and A" is finite dimensional, N, as a superbundle, 
represents the index of A in K°(B). 

By assumption the index of A vanishes so N+ and N~ have the 
same dimension and are stably isomorphic. Let U be a smooth bundle 
such that N+ © U is isomorphic to N~ © U. There is an integer q such 
that any bundle over B of rank at least q contains U as a subbundle. As 
shown in Proposition 2 of [23] the initial choice of spectral section, P', 
can be replaced by P' such that ran(P ' ) C ran(P ' ) has arbitrarily large, 
preassigned, codimension. This new choice replaces N by N © W 
where A+ gives an isomorphism between W+ and W~. The dimension 
of W can be made arbitrarily large, so by an appropriate initial choice 
we can ensure that N+ and N - are bundle isomorphic. 

Let (f> : N+ —> N~ be a unitary bundle isomorphism. Using this to 
write operators on N as 2 X 2 matrices, the projection 

is self-adjoint and satisfies (2.5) on N. Thus we finally have a Cl(l) 
spectral section: 

(2.10) P = P' + P N. 
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For the converse see Lemma 1 below. 

As in the non-graded case discussed in [24], a Cl( l) spectral section 
for a Z2-graded operator fixes a class of finite rank deformations of the 
operator. 

L e m m a 1. If A is a smooth family of odd Z ^-graded self-adjoint 
elliptic differential operators of positive order on the fibres of a compact 
fibration and P is a Cl(l) spectral section for A, then there is smooth 
family, A P , of self-adjoint Z-graded finite rank operators, in the span 
of a finite number of eigenfunctions for A, such that A-\-A P is invertible 
and P is the Atiyah-Patodi-Singer projection for A + A P; the space of 
such deformations is connected. 

Proof. As noted in the proof of Proposition 2 a spectral section for 
A, P', can always be chosen such that P'AP' is strictly positive on the 
range of P'. As shown in Proposition 2 of [24], it can always be arranged 
that P' and the given spectral section, P, commute. Set Q' = P — P', 
P" = aP'a and Q" = aQ'a and then consider the decomposition: 

(2.11) A = Ai + A2 , Ai = P'AP' + P"AP". 

Thus Ai is Z2-graded, and A2 is finite rank and acts in the span of a 
finite number of eigenspaces of A. The deformed operator 

(2.12) A + A°P = Ai + Q> - Q", A°P = Q> - Q" - A2 

satisfies the requirements of the Lemma. Different choices clearly give 
homotopic deformations; in fact the space of such deformations is con-
tractible. 

Let us now turn to the special case in which A = g , the boundary 
family considered in the previous section. The same proof as given in 
[24] establishes the family version of the cobordism invariance of the 
index: 

Propos i t ion 3 . The analytic index of the boundary family g is 
always zero in K°(B). 

Corollary 1. Given a family of Dirac operators g as in §i there 
always exists a Cl( l) spectral section P for the boundary family g -

3. Suspens ion 

In this section we briefly recall the basic properties of suspension. 
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Atiyah and Singer in [8] show that for a compact manifold, B, the 
space, [ B ; b , of homotopy classes of continuous maps into the self-
adjoint Fredholm operators on a fixed (infinite dimensional) Hilbert 
space is naturally identified with Kl(B). This identification is obtained 
by suspension, mapping an homotopy class in [B; b] to the element of 
[B'; J7] given by 

(3.1) Sus(A) : (0,7r) 9 t i—> cost + iAsint, 

where B' = (0, IT) X B. If A is a family of unbounded self-adjoint op­
erators, with domains forming a Hilbert bundle, then (3.1) should be 
replaced by 

(3.2) Sus(A) : (0,7r) 9 t i—> (1 + A2)^ cost + iAsint, 

where (l + A2)? is the positive square root, so has the same domain as A. 
In fact it is shown in [8] that this suspension map induces an homotopy 
equivalence of [B;.b onto [B'-jJ7], where for a non-compact manifold 
the Fredholm operators are required to be invertible outside a compact 
set of the parameter space. Since the latter space is naturally identified 
with K°(B'), B' = (0, 7T) X B, we see that , by suspension, any family of 
self-adjoint Fredholm operators fixes an index class Ind(A) = [Sus(A)] 
in KX{B). 

Notice that if A is a family of formally self-adjoint elliptic differential 
operators, then we can alternatevely define the associated index class 
in Kl(B) as the class obtained by suspending as in (3.1) the Oth-order 
elliptic self-adjoint pseudodifferential family A/'(1 + A2)?. In either case 
we shall use the notation [A] for the class fixed by A in [B; b and the 
notation Ind(A) for the class fixed by the suspended family [Sus(A)] G 
[B';f\ = K\B). 

Recall from [1] the definition of the Chern character homomorphism 

Ch : KX{B) -+ H odd(B,C) = H odd(B), 

(all our cohomology groups will be taken with coefficients in C). The 
inclusion of (0, n) X B into S X B, S = R/7rZ, defines a natural in-
jective homomorphism j : Kl(B) —> K0^S X B) with image equal to 
e 0 ^ S X B) = ker(i* : K ̂ ( S 1 x B ) 4 K°(B)), i being the inclusion of 
B into S 1 X B fixed by the inclusion of the point po = [0] = [ir] into S1 . 
On K0^S X B) there is a well-defined Chern character homomorphism 
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Ch : K ^ S 1 x B ) 4 H ^ S 1 x B) with 

C h ( e ° ( S 1 x B)) C H eveniS1 X B) 
= ker(i* : H ^ S 1 x B ) 4 H even(B)). 

If S " 1 : e ^ S 1 X B) - • H odd(B) = H odd(B) is the inverse of the 
suspension isomorphism S : H*(B) —> H* (S X B) (the map S - 1 is 
usually referred to as desuspension), then, by definition, 

Ch(a) = S - 1 ( C h ( j ( a ) ) ) e H odd(B),a e K°((0,ir) x B). 

If a G Kl(B) is the index class of a continuous family A of self-
adjoint Fredholm operators, a = Ind(A), there is some additional struc­
ture. By definition Ind(A) equals the (regularized) virtual bundle 
[null(Sus(A))] - [null(Sus(A)*)] over (0, IT) X B. The Chern character 
of this virtual bundle is well defined as a closed differential form with 
compact support on (0, n) X B. The Chern character of j(Ind(A)) is 
obtained by extending this differential form to all of S 1 X B so as to 
vanish near {0} X B. Thus, in this case, 

Ch(Ind(A)) = i - Z Ch(j(Ind(A)) 

(3.3) = — Z Ch([null(Sus(A))] - [null(Sus(A)*)]) 

e H odd(B). 

The choice of the normalizing factor will be explained after Proposi­
tion 7. 

We first use a simple suspension argument to show that two Cl(l) 
spectral sections for a fixed family define an element in K1 of the base. 

Propos i t ion 4. If P\ and Pi are Cl(l) spectral sections for a fixed 
family of Z ^-graded elliptic operators of positive order for a compact 
fibration with base B, then suspension defines a difference element 

(3.4) [P1-P2]eK1{B). 

Proof. Let A i = A-\- A°P. for i = 1, 2 be deformations of the family 
A, as in Lemma 1, corresponding to the two Cl(l) spectral sections. In 
each case consider the family of elliptic operators: 

(3.5) A i(t) = a(1 +A i ) ^ cost + A i sin t, te[0,n]. 
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These are also families of self-adjoint operators with A i(^TT) = A i. More­
over A i(t) commutes with A i for all t and on the two-dimensional space 
spanned by u and au, where u is an eigenfunction of A i with eigenvalue 
A, A i(t) reduces to the matrix 

(3.6) ( ( 1 + A2)* cost A sint \ 
A sint - ( 1 +A 2 )2 cost 

Thus A i(t) has eigenvalues ± ( c o s 2 t ( l + A2) + sin2tA2)2 where the A 
are the eigenvalues of A i. In particular the A i(t) are invertible for all 
t G [0,7T]. Let P i(t) be the Atiyah-Patodi-Singer projection for A i(t). 
Then we define the class in (3.4) to be just 

(3.7) [Pi - P2] = [Pi(t) - P2(t)] G K°( (0 , TT)XB). 

Certainly the projections Pi(t) and P2(t), for each point in B, differ 
by a finite rank operator. Thus, as discussed in [24] the difference 
is a well-defined virtual bundle over [0, IT] X B. We will briefly review 
the construction of this virtual bundle in §7. This difference bundle is 
trivial over t = 0, and t = IT since the operators A i(0) and A i(TT) are 
each independent of B and i. The class in (3.7) is therefore meaningful. 
Different choices of deformation give homotopic operators so the result 
is actually independent of all choices. 

In particular it follows from (3.7) that the odd Chern character of 
the difference element in (3.4) is just the integral in t of the Chern 
character of the virtual bundle on the right in (3.7). 

4. T h e odd index 

Using Corallary 1 and the deformations given by Lemma 1 we can 
now associate a class in Kl(B) to a choice of Cl( l) spectral section for 
the boundary family of the family of Dirac operators. As in [24], choose 
non-negative C°° functions <j)\ and <f)2 G C c°(R), where <j)\ is even and 
has integral 1, and <f)2 is identically equal to 1 near 0. For S > 0 small 
enough consider the operator 

(4.1) A P = 5-1^2{5x)^1{5xD x)^2{5x)A Pl 

where A°P is a perturbation of g as in Lemma 1, and <j)\ is the Fourier 
transform of <j)\. Since A P is a finite rank smoothing operator, A P is a b-
pseudodifferential operator of order — oo on [0, oo) X dX and its support 
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is close to x = 0. Thus for 8 > 0 small enough A P can be transferred to 
X by choice of a collar neighbourhood of the boundary. 

Definit ion 2. If P is a Cl( l) spectral section for the boundary fam­
ily of the family of Dirac operators associated to an Hermitian Clifford 
module with unitary Clifford connection for exact b-metrics on the odd-
dimensional fibres of a fibration of a compact manifold with boundary, 
then Ind(g, P) = Ind(g + A P) G KX{B). 

Since different choices of the perturbation A P produce homotopic 
self-adjoint Fredholm families, the index class in Definition 2 depends 
only on g and P. 

Although we take this definition of the index, involving Fredholm 
operators on the complete manifold, as the basic one, we shall also 
connect it to a more traditional definition of the index for an elliptic 
boundary problem in the usual, incomplete, sense. Thus, let M —> B 
be a fibration with compact odd-dimensional fibres being manifolds with 
boundary as before, but consider instead a smoothly varying family of 
metrics (incomplete, i.e., smooth and non-degenerate up to the bound­
ary) with smoothly varying product decompositions near the boundary. 
If E is an Hermitian Clifford module on the fibres, with unitary Clif­
ford connection with product decomposition near the boundary, then 
the associated family of Dirac operators e has a decomposition similar 
to (1.6), 

e = a(~Tx + _go), 
i OX i 

where we again write g for the boundary Dirac operator which is Z2-
graded odd for the same decomposition as in (1.5), except that a = 
cl(dx), where x is the normal variable to the boundary. 

Of course the connection between this incomplete case and the ex­
act b-metric case discussed above is very close. Following [3] one can 
pass from the incomplete case to the (product) exact b-case by adding 
the semi-infinite cylinder ( — 00, 0)x X dM and then compactifying this 
fibration by introducing the new boundary defining function x = e x. 
Similarly one can pass from the product exact b-case to the incomplete 
case by introducing x = log(x/a) with a > 0 chosen so small tha t x = a 
is in the product region of the metric. Then restricting to x > 0 gives 
a family of incomplete product metrics. The bundles can be similarly 
trivialized. To pass from the exact b-metric case to the product case, 
and hence to the incomplete product case, requires a small homotopy. 

(4.2) 
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Now in the incomplete case a spectral section P for g , the existence 
of which follows as before, specifies a boundary condition of 'generalized 
Atiyah-Patodi-Singer' type. Namely the boundary problem 

(4.3) e z u = f, P z(u z \dM z) = 0 

is a (pseudodifferential) elliptic boundary problem varying smoothly 
with z G B. Thus on the Sobolev spaces 

(4.4) n u z G Hl{M z-E z)-P z{u z \dM z) = 0o 

this gives a smooth family of Fredholm operators which are, by Green's 
formula (see for example [25]), self-adjoint in view of the requirement 
that P be a Cl( l) spectral section. 

Propos i t ion 5. The index in Kl(B) of the family of generalized 
APS boundary problems (3.4), for a family of Dirac operators with re­
spect to incomplete metrics (as discussed above) is equal to the index of 
the Dirac operators, with perturbation fixed by the spectral section, as 
in Definition 2, for the (product) exact b-metrics obtained by adding a 
semi-infinite cylindrical end and extending the product structures. 

In case no perturbation is necessary (or for a single operator in 
general) this is the approach taken by Atiyah, Patodi and Singer to the 
proof of their index formula for a single even-dimensional manifold. 

Proof. Using the notation above, let e be the Dirac operator for an 
incomplete metric structure on the fibres of a fibration M —> B, and 
let g be the corresponding Dirac operator arising from the extension to 
a (product type) exact b-metric structure. To show that the two index 
classes are the same we first deform the operator e. With the boundary 
defining function x consider the homotopy 

(4.5) e + tÄP, ÄP = (T-p(x)A°P 

for t G [0,1]. Here, p G C c°(R) has p(x) = 1 near x = 0 and such 
small support that it vanishes outside the product neighbourhood. The 
perturbed operator is no longer a differential operator but it remains 
a self-adjoint Fredholm operator on the fixed domain (4.4). Moreover, 
for t = 1 the original boundary condition in (3.4) becomes the Atiyah-
Patodi-Singer boundary condition for the perturbed boundary operator 
g + A P . Thus the index class of (3.4) is the same as that of (4.5) with 
the same boundary condition. 
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Consider the spectral family of g + A P , i.e., the operators 

(4.6) (g + ÄP)u- Xu = 0, P(u \ dM) = 0. 

The operator is of product type and an eigenfunction u satisfies 

(4.7) -x u + (g + A P-aX)u = 0 

near the boundary. Let fj,j be the positive eigenvalues of the self-adjoint 
operator g + A P , with e j corresponding orthonormal eigenfunctions. 
The negative eigenvalues are —fj,j with eigenfunctions ae j , and by con­
struction 0 is never an eigenvalue. Let fj, > 0 be a lower bound for the 
eigenvalues (for all values of the parameter.) Then, for A G C small, 
|A| < fj,, the eigenvalues of g + A P — aX are 

Sj = < hi2 + A2 with eigenfunction f + = e j — j ,ßj ae j , 
(4.8) v _ / A \ 

-Sj with eigenfunction f j = [j-f^ j) e j + ae j 

For t G [0,1] consider the basis 

f j ( t ) = tTnh-e j + ™j 
(4-9) _ 

which is a homotopy from the e j , ae j basis to the f + and f~. Let PA (t) 
be the projection satisfying 

(4.10) Px(t)f(t) = f j ( t ) , Px(t)f-(t) = 0. 

This is a pseudodifferential operator of order 0 with the same principal 
symbol as Po, the Atiyah-Patodi-Singer projection, for all t £ [0,1] and 
|A| < fi. 

For A = is, s G R and with |s | < fj,, the Sj are real and the f~(t) 
satisfy 

(4.11) ( , f - t , f - ( t )> = j j + j j = 0, 

which means that the elliptic boundary problem 

s u = i I g + A P — is ) , u = 0, 
(4.12) 

P is(t)(u t 9 M ) = 0, t e [0,1], s G [-fi, fi] 
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satisfies the integral identity 

(4.13) Im((e + A P)u — isu, u) = —s||u||2 

on its domain and hence is invertible for 0 / s G [— ^/i, ^/i] and t G [0,1]. 
Moreover for s = — ^/i the self-adjoint part of Q s is strictly negative, so 
there is an obvious homotopy to a fixed invertible operator. Similarly 
for s = ^/i the self-adjoint part is strictly positive. For t = 0 this 
family (as the parameter z, mostly suppressed in this discussion, varies) 
represents, by suspension, the K1 index of the family of Dirac operators; 
cf. (3.1). By homotopy invariance the same is true for t = 1, i.e., the 
index is represented by the family of Fredholm operators 

Q s = i(e + A P) + s : Dorns — • L2(M; E), 

(4.14) Dom s = n ue H1 {M-E); P is{l){u \ M ) = o o , 

s e [~2fJ',2t^' 

Now we extend the manifold, M , to a manifold, M, with cylindrical 
end and the boundary defining functions related by x = exp(x). The 
domain Dom s can be embedded as a subspace of H ̂ (M; E) by mapping 
each element u s to the section u's over M where 

u' = u s in x > 1, 
(4.15) s „ 

(3 + A P ) u s — isu s = 0 in x < 1. 

Notice that , by definition of P is(1), there is a unique square-integrable 
solution of the equation in x < 1 with boundary data at x = 1 in the 
null space of P is(1). Thus the map u s \—> u's is an isomorphism onto a 
closed subspace of H ̂ (M; E); we can therefore write 

(4.16) Dom s c H b ( M ; E ) . 

To find an appropriate complementary subspace choose \ £ C°°(1R) with 
x(x) = 1 in x < 1 but with x(x) £ C°°(M) having support in the collar 
neighbourhood of the boundary and set 

G s = {ueH b{M;E) ;u 0 = u \ {x = 1) 
(4.17) satisfies P i s ( 1 ) u = u 

and u = x(x)uo in x > 1} . 

Then 

(4.18) H b (M;E) = Dom s ®G s, 
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which is a direct sum of closed subspaces, but not an orthogonal sum. 
That the intersection of these two closed subspaces is {0} follows from 
the fact that if u G H ̂ (M; E) is in both, then u = 0 on x = 1 and hence 
from (4.17) u vanishes in x > 1 and from (4.15) u = 0 in x < 1. Given 
v G H ̂ (M; E) let v\ = v + + v _ be the decomposition of v\ = v \ (x = 1) 
under Id = P is(l) + (Id —P is(1)). Then v_ can be continued into x < 1 
as a solution, u's, of the equation (4.15). Let v" = v — u's in x < 1 and 
v" = x(x)v+ in x > 1. Then v" G G s and v' = v — v" £ Dom s. This 
proves (4.18). 

Consider the action of g + A P on G s. In fact 

(g + ÄP-is)G s = H scLl(M;E) 

is closed and 

(4.19) (g + A P — is) : G s —> H s is an isomorphism. 

To see this first note that 

(g + ÄP-is) : {ueHl([0,l]xdM;E); 

P - s ( l u l ) = u ( l ) } — > H , 
(4.20) i 

H = {feLlc((0,l)xdM); I I l f ^ y ) ! 2 — d y < o o } 

0 

is an isomorphism, always for s G R, |s | < ^/i , as can be seen using 
the Mellin transform (see [23]) or separation of variables. Thus the 
restriction map H s —> H is an isomorphism, and this shows that H s is 
closed in L ̂ (M;E) and that (4.19) holds. This in turn shows that the 
decomposition 

(4.21) L2
h(M;E) = L2(M;E)®H s 

is a topological (but again not an orthogonal) direct sum and hence that 

i(g + ÄP) + s o y 
o i(g + ÄP) + s-

Dorns ®G s — • L2(M; E)®H s = L2
h(M; E) 

with the second diagonal entry an isomorphism. 

(g + ÀP) + 
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As in the initial part of the argument, i (g + A P — is) represents, by 
suspension, the K1 class of the self-adjoint family g + A P. Thus we have 
shown that the index classes, in K1 of the base, of the elliptic boundary 
problem and of the complete problem, with perturbation, are the same. 

5. Dirac suspens ion 

To compute the Chern character of 

Ind (g ,P ) = Ind(g + A P) £Kl{B) 

we need to express the Atiyah-Singer suspended family (3.1) as a family 
of perturbed Dirac operators on even dimensional manifolds fibering 
over B'. It is only to such a family that the results of [24] apply. 

We start by analyzing the structure of the external tensor product 
of two Clifford modules over the product of two Riemannian manifolds. 
Recall tha t by a Clifford module over a Riemannian manifold X we 
shall mean a complex vector bundle over X with a smooth non-trivial 
fibre action of the Clifford algebra, and in case the manifold is even-
dimensional we demand that the module be Z2-graded, i.e., L = L+®L~ 
with cl(a) : C°° (X ;L ± ) —> C°°(X;L ^) for each a G C°°(X;T*X). 
With these conventions we find: 

L e m m a 2. If L\ and Li are Clifford modules, with Clifford actions 
cli and cl2, over Riemannian manifolds X\ andXi, then for the product 
metric on X = X\ X Xi 

, cl(a) = c l 1 ( a ) ® I d ® r 1 fora G C ^ X ^ T * X ) ; 
{ ' cl( /3)= Id ® cl2 ( / 3 )®r 2 for ß G C°°(X2 ;T*X2) 

gives the bundle L = L\ <S) L2 ® C2 a Clifford module structure provided 
Ti and T2 are anti-commuting involutions; for example 

(5.2, r1 = ( ; J) andr, = (_»i i ) . 

Proof. That (5.1) gives an action on L of the Clifford bundle for 
the product metric follows from the conditions 

(5.3) r2 = Id, r̂  = Id and rir2 + r2ri = 0. 
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If both X\ and X2 are even dimensional then, by assumption, both L\ 
and L2 are Z2-graded, and the Z2-grading on L can be taken to be 

(5.4) 
L+ = L\ 0 L\ 0 C2 + L~ 0 L~ 0 C2 , 
L~ = L\ 0 L~ 0 C2 + L\ 0 L~ 0 C2 . 

In case both X\ and X2 are odd dimensional, the Z2-grading can be 
taken as the trivial Z2-grading on C2 : 

( , L+ = L10L20(C0{O}), 
{ ' L- = L10L20({O}0C). 

If the Clifford actions are unitary for an Hermitian inner product 
on the bundles, then this product action is also unitary. Similarly if 
L\ and L2 carry unitary Clifford connections, then the tensor product 
connection on L, trivial on the factor C2 , is also Clifford and unitary. 

We are now ready to give a Dirac representative for the suspended 
family (see [14] for the closed case). Set S ) = R/2TTZ and §t = R / T T Z 

Consider the fibration 

(5.6) V : S] X S t —• Et 

and the Hermitian line bundle L, over the total space, obtained by 
identifying the points (9,0, v) and (9,ir,exp( — i9)v). We endow L with 
the Hermitian connection 

t - l 

(5.7) VL = d+i 2-d9. 
iï 

These data restrict to each fibre to define a Hermitian Clifford mod­
ule with Hermitian Clifford connection. The resulting family of Dirac 
operators 

has spectral flow equal to one since 

t - k 

(5.9) the eigenvalues of 3t are Xn(t) = n -\ -. 
iï 

Notice that the family (5.8) is periodic precisely because of the def­
inition of the line bundle L. The eigenfunctions of 3t corresponding to 
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the eigenvalues Xn(t) = n-\- (t — \)/n are given explicitly by the smooth 
sections e n G COD(S t X S j ; L) defined by 

e n{t,0)=e in6 i f t G [0,7T), 

e n(t,9) = e i ( n - 1 ) e ift = TT. 

Let E be the original Clifford module for the fibration (f> : M —> B. 
We consider the product fibre Clifford structure of Lemma 2 on the 
bundle F = L <g> E <g> C2 over the product fibration 

(5.10) t/> X </> : S j X S t X M —>S t x B . 

The family of Dirac operators defined by these data is 

(5.11) 

g F _( o aL ®Id{z) + Id{t)®{ig z)\ 
(t•z) g L ®Id(z)-Id(t)<8) (ig z) o 

for each (t, z) G S 1 X B . 
Assume for the time being that 

(5.12) the boundary family g is invertible. 

We shall deal with the technical difficulties of the general case in the 
second part of this section. 

As explained in §1 the family g fixes a smooth family of unbounded 
self-adjoint Fredholm operators and thus, according to §3, an index class 
Ind(g) = [Sus(g/(l + g2)^)] G K O ( (0 ,TT) X B). By applying the natural 
inclusion j : K°((0,K) X B) —> K0^S X B) we obtain an element in 
K°(S1xB). 

Consider now the family g defined by (5.11). Using Lemma 5 of §6 
below we see that , under assumption (5.12), the family g is Fredholm. 
Thus there is a well-defined index class Ind(g ) G K0^S X B). 

L e m m a 3. Let po = [0] = [vr] G S 1 = R /7TZ and let UQ be a small 
neighborhood of po in S1 . For each t G UQ and each z G B the operator 
g F t % is invertible. 

Proof. It suffices to show that (g N)2 is invertible V (t, z) G UQ X B. 
Since 

(g F ) ) 2 = ((g L)2 ® I d ^ + I d t ® (g z)2) ® I d ^ 

and (3L)2 is a strictly positive operator for each t G UQ, it follows that 

spec(g/t x)2 Pi ( — oo,0] = 0 for each (t,z) G UQ X B and the lemma is 

proved. 
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From this Lemma we obtain at once 

L e m m a 4. The index class Ind{g F) lies in the image of the natural 

inclusion j : K°((0, n) X B) — • K ̂ ( S 1 X B). 

Propos i t ion 6. Under assumption (5.12) we have the following 
equality of K-classes: 

(5.13) j ( [Sus (g / ( l + g2)^)]) = Ind(g F) in K ^ S 1 X B). 

Proof We certainly have Ind(g F) = Ind(g F / ( l + (g F ) 2 ) ^ ) . Let 
S1!t X M z be the fibre of (5.10) over the point {t, z ) G S ' X B. If e n{t) 
is the eigenfunction of 3L corresponding to the eigenvalue An(t), then 
there is an orthogonal decomposition 

L ( S 1 t ) xM z;F) = Q) (Ce n(t) ® L2b{M z; E)®C2), 
nez 

which is valid globally on (0, n) X B. By Lemma 4 it suffices to prove 
that 

j - i ( I n d ( - r ) ) = [Sus( - ) ] , 

i.e., tha t g / ( 1 + (g ) 2 )^ and Sus(g/(1 + g2)2) are homotopic as con­
tinuous Fredholm families over (0, n) X B. 

The eigenvalues Xn(t) of the operators 3L are given by (5.9), so 
are different from zero for each n / 0 and for each t G [0, ir] whereas 
Ao(t) = (t — \)/TÏ vanishes only for t = -j . On each summand of the 
decomposition the operator g / ( 1 + (g F)2)ï reduces to 

/ o ^ r + g - \ 
^ • 1 4 J A ^ _ l g i _ 0 

\ ( i + A „ ( t ) 2 + g | ) 2 ( i + A „ ( t ) 2 + g | ) 2 / 

This operator has spectrum equal to the range of 

±(An(t)2 + a ( z ) 2 ) / l + An(t)2 + a ( z ) 2 ) * 

as a(z) runs over the spectrum of g z. Thus if n / 0 it is invertible for 
each value of (t, z) G (0, ir) X B, whereas if n = 0 it is invertible for each 
t / ì and each z G B. It follows that g F / ( 1 + (g F)2)ï can be written 
as the direct sum of an invertible family and the family corresponding 
to (5.14) for n = 0. Since the former does not contribute to the index, 
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we conclude that Ind(g F / ( l + (g F) 2 )^) is equal in K ° ( ( 0 , T T ) X B) to the 
index bundle associated to the continuous family 

(5.15) ^ r + (ig z 
(i + A0(t)

2 + g2)2 (i + Ao(t)2 + g2)2 

acting from (Ce0 (t) Cg>L{M z; E) ® C2) + to (Ce0 (t) Cg>L{M z; E) ® C 2 ) " , 
both spaces being isomorphic to L2(M z; E). The family (5.15) is clearly 
homotopic to 

-X0(t) + i — r , 
(l + g z)^ 

which is in turn homotopic to the Atiyah-Singer suspension 

Susi ritt Ì = cost + i r s i n t . 
\l + g)knt'z) (l + g z 

The proposition is therefore proved. 

According to the definition (3.4) of the odd Chern character we have 

Ch(Ind(g)) = — Z Ch(Ind(g F)) . 
2 v r S 

We now drop assumption (5.12) and consider the general case. Let 
P be a Cl( l) spectral section for g and let Ind(g, P) = Ind(g + A P) be 
the associated index class in Kl(B). It would be natural to consider 
the family of Z2—graded operators 

(5.16) 
F ( 0 g t L ® Id(z) + Id(t) ® (ig + iA P)z 

vg t L ® Id(z) - Id(t) ® (ig + iA P)z 0 g(tz) - L 

with (t, z) G S 1 X B . However to get a family for which the results of 
[24] apply we need to further deform the family cF ; the problem comes 
from the operator Id(t) (g) (A P)z which is not b-pseudodifferential on 
S1(t) X M z. We consider instead the following family. Let 0 < e < l , e 
small and let fe G C c°([0, n] X R) be a smooth function equal to zero on 
{ O j x R a n d {K}XB, and equal to one for (t, x) G [5,K-5]X [ -1/e , l /e] ,£ 
small. Consider the smooth family of operators, Re, with Re(t) the 
smoothing finite rank operator with Schwartz kernel 

(5.17) K{Rt(t)){6,6') = X f t , n ( t ) ) e n(t)®n). 
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Let e ,e be the family of b-pseudodifferential operators 

Notice that e F,e is globally defined on S 1 X B; moreover for each value 
of the parameter it is the sum of a generalized Dirac operator and a 
b-pseudodifferential operator of order — e . Using the results of the next 
section we see that the indicial family of 3 ,e is invertible for A real; thus 
e F,6,+ defines a smooth family of Fredhom operators and so an index 
class Ind(e F'e) G K 0 (S1 X B). The proofs of Lemma 3 and Proposition 6 
can be easily modified to give: 

Propos i t ion 7. As classes in K°(S X B) 

Ind(e F'e) = j([Sus(g + A P)]) = j ( Ind(g , P)). 

Notice once again that it is really the restriction of e ,e to (0, n) X B, 
tha t determines the index class Ind(g, P). 

In fact over (0, n) X B the family e ,e is homotopic to the family 
obtained by considering instead of Rt in (5.18) the family of finite rank 
smoothing operators Qe = (Qt(t))te(o,Tr) with Schwartz kernel 

(5.19) K(Qe(t)) = YJ^XXn{t))e n{t) (FjeJt), 
n 

with (f>t G C c°(R) a smooth function equal to one for x G [—1/e, 1/e] 
(thus, compared to fe in (5.13), with no dependence on the t variable). 
Hence if we denote by g ,e the family of b-pseudodifferential operators 

0 g 
( 5 - 2 0 ) g ) " g tz) - iQM ® (A Pz 

(tz) + iQe(t)®(A P)z 

0 

with (t, z) G (0, ir) X B and if we recall (3.4), we obtain 

Propos i t ion 8. As classes in K°((0, n) X B) 

(5.21) Ind(g, P) = [Sus(g + A P)] = j - 1 ( I n d ( e F'e)) = Ind(g F-e). 

Moreover 

(5.22) Ch(Ind(g, P)) = — Z Ch([null(g F'e'+)] - [null(g F'e ' -)]). 
2vr 0 
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We will obtain formula (4) for the Chern character of the index class 
associated to the original family g and the choice of P by applying the 
family index theorem of [24] to g ,e

1 computing the normalized t-integral 
in (5.22) and letting e go to zero. 

We end this section by observing that the analogue of Proposi­
tion 6 in the boundaryless case and a straightforward application of 
the Atiyah-Singer family index formula for the Dirac suspension g of 
(5.8) imply that 

(Ch(g L), [S1]) = 1 = spectral flow of g L, 

which is consistent with [5] and explains our choice of the normalizing 
factor in (3.4) 

6. B o u n d a r y behaviour 

In order to analyze the boundary behaviour of the Dirac suspension 
we shall follow the identifications explained in [24]. We consider the 
bundle F \ dM' = L®(E\ dM) ® C2 over the manifold dM x S 1 X S1 . 
Let EQ denote the restriction of E to dM; as in [24] we identify F \ dM' 
with (L <g> EQ) © (L <g> EQ) through the isomorphism N given by the block-
diagonal matrix 

'Id 0 
o i I d ® c l 2 ( ^ 

Clearly N~l : (L ® E0) 0 (L ® E0) —> F \ dM' is then 

Id 0 
o i I d ® c l 2 ( f 

Consider the additional matrices of (5.2). Writing the Dirac suspen­
sion in block form and using the definition of the isomorphism N we 
find 

N • I(g F, A) • N'1 

(6-1) = r ! A + I d ® g ® r 2 

- g L ® c l 2 ( — ) ® r 2 

x 
with g equal to the boundary Dirac operator of the original structure 
with respect to the Clifford action 

cld{rj) = icl( — )cl(7/). 
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Note that although the matrices I i are different from the ones consid­
ered in [24], it is still true that if T3 is the matrix 

f 0 
0 - f 

then i r s T i = r 2 . This is the only relation among the 2 x 2 matrices 
appearing in the indicial family that was used in the proof of the family 
index theorem in [24]. 

There is a natural product boundary Clifford structure underlying 
formula (6.1). Namely, on the bundle L®EQ over the boundary fibration 
dM' —> S 1 X B consider the Clifford action: 

(6.2) 

dx 
cl9(77) = Id<g>icl2(—)cl2(T/), 

dx 
cld(d0) = icl1(d9)<S)icl(—) 

The family of Dirac operators associated to this product structure (with 
respect to the connection induced on the boundary as in Lemma 2) is 
precisely the family 

I d ® g - g L ® c l 2 ( — ) 

x 

on the fibre-Clifford module EQ® L. 

Propos i t ion 9. If the boundary operator g t z is invertible, then so 

is the indicial family 

r\A + Id®g,z ® r2 - aL ® cl2(—) ® r2, 
x 

acting on L <8> E0 <8> C2 , for each (t, z) G S 1 X B. 

Proof. Since A is real and Id <g>g,z — 3L ® cl2( dx) is self-adjoint, 
it suffices to check the result for A = 0. Thus we need to show that 
I d ® g , z - 3 L <S>cl2(x) is invertible for each (t,z) G S 1 X B. Let fe n(t)} 
and ff k(z)} be orthonormal bases of eigenfunctions for 3L and g , z 
respectively; let fXn(t)} and f^ k(z)} the corresponding eigenvalues. For 
each (n,k) G Z 2 consider the two dimensional subspace of L2(S1(t) X 
dM z; L 0 EQ) spanned by the sections v = e n 0 f&, u = e n 0 cl2 (dx)f&. 
We denote this subspace by V(n, k). Clearly 

(6.3) L2(S\t)xdM z;L®E0)= 0 V(n,k), 
(n,k)&2 



a n i n d e x t h e o r e m f o r f a m i l i e s o f d i r a c o p e r a t o r s 313 

and moreover each V(n, k) is invariant under the action of 

I d ( t ) < g > g , z - 9 L ® c l 2 ( — ) , 

the restriction being given by the self-adjoint matrix 

(6-4) \ 

with eigenvalues equal to ±(An + /ik)2. Since by assumption ßk / 0 for 
each kc.Z, the proposition is proved. 

Consider now the general case. Let P be a spectral section for 
the boundary family g and let g be the perturbed Dirac suspension 
considered in the previous section : 

g F,, = / 0 g F(t-) + iQe(t)®(A P)z\ 
{t'z) g + z ) - i Q e ( t ) ® ( A P)z 0 ' 

We can easily extend the formula for the indicial family (6.1); suppress­
ing obvious tensor products we obtain 

N • I(g F>e, A) • N-1 = r\A + g0r2 - g L ® c l2(x)r2 + Qe ® A P(\)r2. 

Propos i t ion 10. For any (t, z) G S 1 X B the indicial family 
I(g,tz, A) is invertible for A g R . 

Proof. Using the explicit definition of A P (see (4.1)) we obtain 

I(g F-£, A) = Ti A + g0r2 - g L ® c l2(x)r2 + Qe ® M^)A PT2. 

Since A is real, it follows that <f>\ is also real. Thus I ( g ,e
1 A) is invertible 

for each A / 0 real. To check the result for A = 0 i.e., for the boundary 
family 

(6.5) g 0 r 2 - g L®c l 2 (x ) r 2 + Q e ® A r 2 , 

we need to modify the argument given in Proposition 9. Let {e n(t)} 
be an orthonormal basis of eigenfunctions for 3L and let {Xn(t)} be the 
corresponding eigeinvalues. Consider the function <j)t G C c°(R) used in 
the definition of the smoothing family Qe. Thus (j)e(x) = 1 for \x\ < 1/e, 

http://kc.Z
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and there exists an e' > 0, e' < e < 1, such that (j)e(x) = 0 for \x\ > 1/e'. 
For each (t, z) G S 1 X B we consider the following decomposition of 

L2{S\t) xdM z;L® E0) = U1®U2®U3 

with 
U1= 0 (Ce n ( t ) ® L 2 ( 9 M z ; E ) ) , 

|An(t ) |<l /e 

U2= 0 {Ce n{t)®L2{dM z-E0)), 
l/e<\\n(t)\<l/e' 

Us= 0 {Ce n{t)®L2{dM z-E0)). 
|An( t ) |> l /e ' 

Now decompose each U i as in (6.3) but with ff k(z)} and fßk{z)} eigen-
functions and eigenvalues associated to the elliptic pseudodifferential 
operators g , z + A P(z) for U\, to g , z + 4'e(Xn(t))A P(z) for U2 and to 
the elliptic differential operator g , z for U3. On each two-dimensional 
invariant subspace of this decomposition the operator is equal to the 
matrix (6.4) with eigenvalues equal to ±(A2 + /ik)2. Since g , z + A P(z) 
is invertible we see that the restriction of g — g L ®cl2(dx) +Qt <S> A P to 
U\ is invertible (the eigenvalues /^k(z) are always different from zero); 
on the other hand on U2 and U it is always the case that Xn(t) / 0. 
Thus g — g L ® c l 2 ( d x ) + Q e ® A P is always invertible and the proposition 
follows. 

It is important to point out that the boundary family (6.5) of g F,e 

is equal to a family of generalized Dirac operators, 

(6.6) g r 2 - g L ® c l 2 ( x ) r 2 , 

plus a family of finite rank operators with values in a finite sum of 
eigenfunctions of the family (6.6). In other words the perturbation 
Qe (g) A PT2 corresponds to a spectral section for (6.6). It is for this 
reason that the index theorem in [24] can be applied to g ,e. 

7. Re lat ive index t h e o r e m 

As a first application of the Dirac suspension described above we 
will now prove the relative index theorem in the odd case using the 
corresponding relative index theorem of [24]. As in the even-dimensional 
setting the relative index theorem can be obtained as a corollary of the 
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full index theorem; however it is much more elementary. We therefore 
give an independent proof which also serves to illustrate the reduction 
of odd- to even-dimensional cases by suspension. 

Let P\,P2 be two Cl(l) spectral sections for the original boundary 
family g , and consider the difference of the two corresponding index 
classes Ind(g ,P i ) — Ind(g,P2) £ K1(B)- By Proposition 7 this class 
corresponds under suspension to 

I n d ( g ' £ ) - I n d ( g ' £ ) G K°((0,n)xB), 
{ ' ' w i t h g ' e = g F + Qe®A PT 2 . 

To this difference we can apply the relative index theorem of [24]. Thus 
consider the boundary families corresponding to g i ' ' which are given 

by 

g - g L ® c l 2 ( — ) + Q£®A°P. 
x ' 

respectively. Both these families are invertible by Proposition 10, and we 
can therefore consider the corresponding Atiyah-Patodi-Singer spectral 
projections Pi and P2. The relative index theorem of [24] then gives 

(7.2) I n d ( g ' e ) - I n d ( g e ) = [P2 - Pi] G K°((0, TT) x B) . 

Recall how this difference class is defined. By construction there ex­
ists r G R such that the range of Qe <g> P i is contained in the span of 
the eigenfunctions of g — g L <S> cl2(dx) corresponding to the eigenval­
ues belonging to the interval [—r, r]. We can always choose an auxiliary 
spectral section Q for g — g <S> cl2(dx) such that Q annihilates all the 
eigenfunctions corresponding to eigenvalues less than or equal to r and 
with Q acting as the identity on the span of the eigenfunctions corre­
sponding to eigenvalues greater than R > r, for some R G R . Consider 
the orthocomplements of ran Q in ran Pi and ran P2 respectively. These 
are smooth bundles over S 1 X B, denoted respectively (Pi — Q) and 
(P2 — Q). The K° class is given by the virtual bundle 

(7.3) [P2_P1] = [P 2 _Q]_[P 1 _Q] . 

By a further simple homotopy (see (7.5)), both Dirac suspensions in 
(7.1) can be reduced to g near t = 0, and n. Thus [P2 — Pi] is an 
element of K°( (0 , ir) X B) as required. It is shown in [24] that this class 
is well defined, independent of the particular choice of Q. 
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Recall tha t in §3, Proposition 4, the difference class of two Cl(l) 
spectral sections, [P2 — P\] G Kl(B), was defined. After these prelim­
inaries we can state and prove the relative index theorem in the odd 
case. 

Propos i t ion 11 . If P\ and Pi are two Cl( l) spectral sections for 
the boundary family g , then 

(7.4) Ind(g, Pi) - Ind(g, P2) = [P2 - Pt] G K\B). 

Proof. Following the discussion above it only remains to show that 
the virtual bundle [P2 — P\] associated to the difference of the index 
classes defined by the Dirac suspensions is equal to the right-hand side 
of (7.4). 

We first perform a preliminary homotopy on the Dirac suspensions 
in (7.1). Let tpe G C°°([0,7r]t X R ) be a function, which vanishes on the 
complement of the open rectangle (0, IT) X (a, a + bir) and is equal to one 
on the rectangle [e, ir — e] X [a + e, a + bir — e]. Let Rt be the family of 
operators defined by (5.17) but with tpe in place of (f>t, and consider the 
Dirac suspensions defined now as 

(7.5) g ' e = g F + R e ® A P T 2 . 

The behaviour of the eigenvalues of g L is described in the proof of 
Proposition 6. Since only the nearly zero modes of g contribute to the 
index class of the Dirac suspension (see the proof of Proposition 6) the 
index class of (7.5) still represents, in K°( (0 , K) X B), the Atiyah-Singer 
suspension of the index class Ind(g, P i). Let g + Re <S> A°P. — g L®cl2(dx) 

be the boundary operator associated to g i 'e' . For each (t,z) G S 1 X B 
we take the decomposition 

L ^ S 1 t ) X dM z; L®E0) = V®V0 

with 
V(t, z) = V = 0 ( C e n (t) ® L2(dM z; E0)) 

and 
V0(t, z) = Vo = Ce0(t) ® L2(dM z- E0). 

These two subspaces are invariant under the action of the boundary 
operator 

(7.6) g , z + Re(t) ® A°P.(z) - 3L ® c l 2 ( — ) . 



a n i n d e x t h e o r e m f o r f a m i l i e s o f d i r a c o p e r a t o r s 317 

The Atiyah-Patodi-Singer spectral projection P i(t, z) with i = 1, 2 splits 
accordingly as a pair of projections P i ( t , z) and P i °(t, z) on V and Vb 
respectively. As the point (t, z) in the base varies we obtain, for i = 1, 2, 
families of spectral projections which we still denote by P i and P i °. 
Using the definition of t/>e we conclude that the restrictions to V of 
the two boundary operators (7.6) are both equal to the unperturbed 
boundary operator and hence coincide. It follows that [P2 — P\] = 

[Pp-P?0]. 
Let f i(z) be a basis of eigenfunctions for the boundary operator 

(7.6) restricted to Vo(t, z), which is just 

dx 
(7.7) g , * + Mt, Mt))A°P i - Ao(t) c l 2 ( — ) , 

and let {fJ,i(z)} be the corresponding eigenvalues. We decompose Vb as 
the direct sum of the two-dimensional invariant subspaces spanned by 
eo(t) <S> f i(z) and e0(t) 0 cl2(—)f i(z) as in the proof of Proposition 10. 
The action of the boundary operator on these invariant subspaces is 
given by the matrix 

' / i z - A °W 
-Ao(t) -tii{z) 

the eigenvalues are er now the families 
1 d x 

(7.8) (1 + (g + A i)2)2 cos(t) c l 2 (—) + (g + A°P i) sin(t) 

an 

(7.9) 

1 d x 

(l + (g + ^ ( t , 0 ) A ) 2 ) 2 c o s ( t ) c l 2 ( — ) 

+ (g + ^e(t,0)A P.)sin(t), 

and let [P2
 — Pi] and [ P | — P l l be the corresponding difference classes 

as in §3. Since the two families (7.8) and (7.9) are always invertible, 
from the assumed properties of tpe it follows that [P2 — Pi] = [ P | — P[]. 
Since [ P | — P±] = [P2 ° — P 1 °], the proposition is proved. 

As mentioned in the Introduction any K1 class can be represented 
by such a difference although we do not make use of this result here. 

Propos i t ion 12. Provided an elliptic family of Z2-graded differen­
tial operators is trivial in K° of the base, so Cl( l) spectral sections exist, 
as P\ ranges over all such spectral sections, for a fixed P 2 , (3.4) exhausts 
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Kl(B). Similarly, provided a given elliptic family of self-adjoint opera­
tors on the fibres is trivial in Kl(B), the difference classes of spectral 
sections exhausts K°(B) 

Proof. Consider the second case, of a self-adjoint family, A z. The 
assumption of the vanishing of the index of A in Kl(B) implies that 
A has a spectral section, P; see [24]. Also the results of [24] allow 
us to find a second spectral section, P", commuting with P and such 
that V" = null (P")/ null (P) is a vector bundle with rank larger than 
any preassigned integer. Let V be a vector bundle over B. There is an 
integer, N, such that V is a subbundle of any vector bundle over B of 
rank at least N. Thus V can be embedded as a subbundle of V" for an 
appropriate choice of P". Let P' be the self-adjoint projection with null 
space null(P) © V. Clearly the difference element [P' — P] represents V 
in K°(B). It follows that the formal difference, VQW, of any two vector 
bundles can be represented by a difference of spectral sections. 

In order to prove the first case we consider the description of Kl(B) 
and K°( (0 , n) xB) as equivalences classes of Cl ' and Cl ' bundles with 
involutions as in Karoubi's book [20]. Following the notation given there 
we can represent a class in KX(B) as d(V, 771,7/2) with V a Cl ' -module, 
i.e., a Z2-graded vector bundle V = VQ © V\, and rji odd involutions on 
V. Similarly a class in K0((0,7r) X B) is given by a triple d(W,(1,(2) 
with W a vector bundle on [0, IT] X B and i involutions on W with 
(^ = £2 on d[0, IT]. The suspension isomorphism in this context is given 
by the map ([20, Theorem III.5.10]) 

r 7 i m S u s : K 1 B ) — • K°([0,Tr]xB,d[0,7r]xB), 

[ j d(V,Vl,V2)^ d(V,Ci(t)X2(t)), 

where V = ir*V, IT : [0, n] X B —> B, and 

i (t) = a cos t + r]i sin t. 

Fix a class d(Vo © V\, 7/1, 7/2) G Kl(B) as above. Up to the addition of 
a trivial element we can assume that VQ and V\ have the same dimen­
sion ([20, Proposition III.4.26]). Using any one Cl(l) spectral section, 
P', to deform the operator, as in Lemma 1, it suffices to consider the 
case that the self-adjoint family is everywhere invertible. The bun­
dle VQ can then be embedded in the image of the span of the positive 
eigenspaces, i.e., the range of the Atiyah-Patodi-Singer projection, to 
be orthogonal to all eigenfunctions with sufficiently large eigenvalues. 
Similarly V\ can be taken to be (JVQ, thus a subbundle in the span 
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of the negative eigenspaces. Consider the spectral section P i equal to 
P' on the orthocomplement of VQ © V\ and to the projection onto the 
+ 1 eigenspace of rji on VQ © V\. Since rji is odd with respect to a, it 
follows that P i is a Cl(l) spectral section. The proposition then fol­
lows by observing that , by definition of the difference class in (3.5), 
Sus(d(V,m,m)) = [P^t) - P'(t)] - [P2(t) - P'(t)]. 

8. Suspended superconnect ion 

As a first step towards the application of the index formula of [24] we 
shall find the explicit form of the Bismut superconnection adapted to the 
operator g for the fibration (5.10), we call this simply the suspended 
Bismut superconnection and we denote it by A'. 

Set M' = SIX S t1 X M and B' = E>t X B. Let TT2 and TT3 be the obvious 
projections from M' onto S* and M respectively. Consider a choice of 
connection for the original fibration: 

(8.1) TM = T H M®T V M. 

On the fibration n' : M' —> B' we take the product connection: 

(8.2) T H M' = {n*2Tnt) © (T^T H M). 

Let V'y, TÏ'H denote the projections onto the vertical and horizontal sub-
bundles. Then denote by (•, •) the inner product induced on the vertical 
tangent bundle of M' by the family of exact b-metrics 

g M'/B'
 = do +g M/B, 

and by (•, -)o the degenerate inner product on TM' which extends (•, •) 
to be identically zero on the horizontal bundle (8.2). 

The curvature tensor, Ci', of the connection (8.2) 

n,(X,,Y,)(Z,) = -([n,H X,yH Z,],Z,)0 

is determined by the curvature tensor, Ci, of the original fibration through 

Q'(X,Y)(Z)= Q(X,Y)(Z), 

Q'(X,§-t)(Z')= 0 a n d ^ ( X ' , Y ' ) ( M ) = ° 

for each X,Y,Z G C ° ° ( M ; T M ) and X',Y',Z' G C°°(M';TM'). Let 
A be the Bismut superconnection for the original fibration. It follows 
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from the above remarks that the 2-form piece of the suspended Bismut 
superconnection is 

A{2] = 7 r ; ( I d ® A [ 2 ] ® r 2 ) G C ( M ' ; ( h o m F ) ® (0 o TT3)*A*B). 

As far as the 1-form piece is concerned we simply observe that the mean 
curvature of the product fibration is just 

k' = n^k eCco(M';((f)o7r3)*A*B). 

Suppressing all the pullbacks and all the obvious tensor products in­
volved, the suspended Bismut superconnection is therefore 

1 d 
(8.3) A' = g ® r 2 + g L ® r i + A{1] + -dt— + A [2] ® r 2 . 

Direct computation then shows that 

(8.4) (A')2 = A2 + (g L)2 + -dticlide) ® T1), 
iTT 

where cli is the Clifford action on L. 
To find the boundary behaviour of A' we write the suspended Bismut 

superconnection in block form and use the definition of the isomorphism 
N, obtaining 

N - I ( A ' , A)- N'1 

= riA + Id<g>g®r2 

(8-5) - g L ® c l 2 ( — ) ® r 2 

1 x 
+B[1] + -dt— + Id ®B[2] ® r 2 , 

where g + B[i] + B[2] is the boundary Bismut superconnection of the 
original structure with respect to the Clifford action 

dx 
c l 9 ( 0 = i c l ( - ) c l ( 0 . 

The boundary Bismut superconnection on (L <g> EQ) © (L <g> Eo), 

B = ( g r 2 - g L®cl2(f)r2) + B[1] 

(8.6) 1 9 
+ - d t - + B[2]r2, i dt 

is a Cl( l) superconnection with respect to the Clifford action (6.2) with 
square given by 

(B')2 = B2 + (g L)2 - —dticlide) ® cl2(—)r2) . 
iir x 
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9. Odd e ta forms 

In this section, to show how the computation of the odd eta forms 
proceeds, we shall at first assume that the boundary family g is invert­
ible. The eta form associated to the boundary superconnection 

B' = (g0r2 - g L ® cl2(—)r2) + B{1] + -dt^- + B [ 2 ] r 2 
x L ' i at L ' 

is 

oo oo 

(9.1) rj = [v(u)du= / p = STrcid) l ^ ' u ' ) du. 
/7T y ' du 

0 0 

Recall here that s train)(A + BY2) = t r (B) for each endomorphism A + 
BY2 of the bundle ( L ® E ® C 2 ) and that the rescaled superconnection 
is 

/ -1 O 

B u = u ^ ( g 0 r 2 - g L®cl2(-dx)r2) + B[1] + u-* ( _ d t — + B[2]rv 

Proposition 9 is needed here to ensure convergence at infinity. 

To relate rj to the odd eta form as described in the Introduction we 
need to compute the normalized integral over S t : 

(9.2) i S p STr ^ e du 
L e m m a 5. Assuming that the boundary family g , acting on sec­

tions of Eo, is invertible, the form in (9.2) is equal to the eta form of 
(7) in the introduction, where 

(9.3) B u=ug + B [ 1 ] + u - B [ 2 ] 

is the rescaled boundary superconnection. 

Notice that , according to the discussion in §1, 

str9M(-) = tr(cl( — )•). 
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Proof. Consider in detail the u-dependence of the suspended eta 
form (where we suppress all the obvious tensor products involved): 

p ^ ( u ) = STr Cl(1) ( ^ e-(*) 

u 2 d x u 2 

— ( g r 2 - g L ® cl2(—)r2) - — B [ 2 ] r 2 

X e x p ( - B 2 - u(g L)2 + —dticlide) ® c l 2 ( — ) r 2 ) ) . 

Applying Duhamel's principle to the exponential and noting the idem-
potence of dt shows that 

exp ( - B 2 - u(g Lf + —dticlide) ® c l 2 (—)r 2 
iTT x 

= exp ( - B 2 - u(g L)2) 

} u dx 
(9.4) + / e x p ( - s ( B 2 + u(g L)2))(—dt{cl{dO) ® c l 2 ( — ) r 2 ) 

iir x 
o 

X e x p ( - ( l - s)(B2 + u(g L)2)))ds. 

This allows pnrj^u) to be written as the sum of two terms: 

(9.5) 

and 

STr Cl(i) ( u ( g r 2 - g L ® c l 2 ( — ) r 2 ) 

_ u B [ 2 ] r 2 ) e x p ( - B 2 - u ( g L)2) 

_ i _3 
u 2 d x u 2 

STr Cl(i) ( ( — ( g r 2 - g L ® cl2(—)r2) - — B [ 2 ] r 2 ) 

(9.6) X (u dt(cl1(d0)®cl(x)r2))exp(-B2u-u(g L)2)). 

The first of these, (9.5), does not involve dt and so makes no contribution 
to the S t-integral. Hence we only need to examine (9.6). 

Carrying out the decomposition 

e x p ( - B 2 - u(g L)2) 

= (exp(-B2 - u(g L)2))even+ (exp(-B2 - u(g L)2))oddr2 
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allows us to rewrite the second contribution as 

( 9 7 ) Tr ( ( u ( g " g L O c w d x n - u l B W 

x ( — dticliid) ®cl2( — )))(exp(-B u - u(3L)2))odd), 
i7T x 

which is an even differential form on S 1 X B as it should be. Consider, 
for a fixed u in this interval, the normalized SMntegral of (9.7). This is 
the sum of the two terms 

(9.8) 

_ 1 _ 3 . I 

^ Z T r ( ( ^ - g - ^ - B [ 2 ] ) ( — dt(cll(dö)®cl2( —))) 

st1 

2 L 2 x ( e x p ( - B ̂ - u ( g L)^))odd 

and 

— Z T r ( — d t c l i ( d 0 ) g L(exp( 2 L ^ 
2TT S 2 ^ 

(9.9) _ Tr d t c l 1 ( ^ ) g L(exp(-B2 - u(g L)2))odd 

The fibres of the suspended fibration are simply the products of the 
original fibres with circles, L is a line bundle over the circles, and the 
actions of the operators B u and g L are in these respective factors. The 
heat kernel in (9.9) therefore splits into the tensor product of the heat 
kernels. Similarly the other factors split as products so (9.8) reduces to 

T r c l ( d x ) d B e-B2u)odd 

(9.10) 

The first of these two factors is just 

STrgM 

cli(d0)e-u(g L)2 dt 

du 

Notice that dB u/du is odd with respect to the grading of EQ induced by 
the involution cl(dx/x). Since it is composed with exp(—B ̂ )odd, which 
is also odd with respect to this Z2-grading, this is an even family of 
smoothing operators with odd-degree differential form coefficients. Ap­
plying the supertrace gives an odd differential form on the base B as it 
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should. The second factor in (9.10) is equal to 

— Z Tr odd e-ug L + i dtê)2 

2?ri 
st 

by Duhamel's principle; using the results of Bismut-Freed on the odd-
family index theorem this is precisely the spectral flow of the family 
(5.8) on the torus fibration. By construction it is equal to one. 

Next consider the term in (9.9). This can be rewritten as 

(9.11) -Tr (exp( -B2)odd) • ( i Z Tr(i cl, (d0)g L e~u^2 dt) ) 

and hence seen to vanish, as the trace of an odd-term with respect to 
the Z2-grading of EQ considered above. 

Thus we have shown that 

i Z bu = p= STr E ( (9.12) - b{u) = p STr E du e"(B)u 

Since the integral in u defining the eta form b is absolutely convergent, 
we can interchange the SMntegral and the u-integral on the right-hand 
side of (9.2). Together with (9.12) this proves the Lemma. 

10. Index t h e o r e m in the invertible case 

Although the odd family index theorem is derived in full generality 
in the next section, we pause to show how the results in §3 and §9 
combine to give the odd family index theorem in case the boundary 
family is invertible. The formula we give was conjectured by Bismut 
and Cheeger in [12]. 

Thus let g , z be invertible for each z G B. Proposition 6 shows that 

Ind(g F) = j (Sus ( Ind(g ) ) ) in e ^ S 1 x B). 

Thus, from the definition (3.4) of the odd Chern character, we obtain 

Ch(Ind(g)) = — Ch(Ind(9F)) . 
2vr S 
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By Proposition 9, g is a Z2-graded family of Dirac operators with 
invertible boundary family. Applying the results of [10], [24] yields 

(10.1) Ch(Ind(g F)) = ( 2 ™ ) " ^ Z A{M'/B')Ch'{F)--rj 

M'/B' 

in H*(S1 X B). Here n is the dimension of M z, and rj is the eta form 
(9.1). Consider the first term in (10.1). Since the Riemannian fibration 
(5.10) splits as a product over S* and B, we conclude that 

A(M'/B') = A(M/B). 

Similarly, using the multiplicative properties of the Chern character and 
suppressing obvious pull-backs 

Ch ' (F) = Ch(L) A Ch'(E) = (l--(dtA d6)) A Ch ' (E ) . 
7T 

Since S = R / 2 T T Z and §t = R/TTZ, it follows that 

(2«)- sf i Z A(M'/B')Ch'(F)\dt 

M'/B' A 

(10.2) = ( 2 ^ ) - ^ Z A(M/B)Ch'(E), 

M/B 

which is precisely the first term in formula (6) in the introduction when 
we consider a general Clifford module E instead of the spinor bundle S. 
By applying Lemma 5 we finally obtain the odd family index formula 
in the invertible case: 

Ch(Ind(g)) = ( 2 ^ ) - ^ Z A(M/B) Ch'(E) - ^odd. 

M/B 

11 . Index t h e o r e m in the general case 

Let g be a family of Dirac operators on odd dimensional manifolds 
with boundary as in the Introduction. By Corollary 1 the boundary 
family g admits a spectral section P, and we can thus associate to g 
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and P an index class Ind (g ,P ) G Kl(B) as in §4. From Proposition 7 
we know that 

(11.1) Ch( Ind(g ,P) ) = — Z Ch(Ind(g F'e)) 
2vr S 

with 

g F,£ 
0 F, 

{t,z) g ) - i Q t ® ( A P)z 

g z) + iQ't®(A Piz 

0 

and A P and Qe defined respectively by (4.1) and (5.17). 

To compute Ch( Ind(b ? ) ) we consider the (perturbed suspended 
rescaled) Bismut superconnection 

A ̂ (e)= u^(Id®g®r2 + g L®Id®r1 

(11.2) +x(u)Qe®A P®T2) 

+A[1] + -dt— + u " I d ®A[2] <g> r 2 

with x G C°°(R), x(u) = 0 for u < 1 and x(u) = 1 for u > 2. Suppressing 
obvious tensor products, the boundary superconnection is then equal to 

B u(e) = u è ( g r 2 - g L®cl2(^)r2 

(11.3) +x(u)Qe®A P x2) + B[1] 
1 f) 

+-dt— + u-B[2]r2 
i at L ' 

with square equal to 

(B'u (e))2 = ( B u r 2 + u X { u ) Q e ® A PY2)
2 

uz dx 
11.4) +u{g Ly - — dt{cl{dO) ® cl2{—)r 

iTÏ 
2 

u2 fi 
+ —dtx{u){—Qt) ® A PT2. 

Finally consider the following superconnection on the original boundary 
fibration 

(11.5) B u =u(g + x(u)A P) + B[1]+u-Bl2]. 
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Applying the main result of [24] we obtain the following expression 
for the Chern character of the suspended family 

Ch(Ind(g b e ) ) = ( 2 T T i ) - 2 A(M'/B')Ch(F) 

^11.6) M'/B' 
1 
g b J 

in H*(Sx B) with 

rP(e) = rP(e,u)du 

o 
oo 

0 

Let ?7odd,P be the differential form on B given by 

(11.8) 7/odd.P = p = Z STr Eo ( e e-(eA du. 

o 

Slight modification to the proof given in [24], along the lines of Lemma 6 
below, shows that , up to an exact form on B, iodd,P depends only on 
P and not on the particular choice of the deformation A P . 

The main step remaining in the proof of the odd family index theo­
rem is 

L e m m a 6. Up to an exact form on B the normalized S1-integral of 
the suspended eta form (11.7) is equal to the eta form (11.8). 

Proof. Fix eo > 0. We wish to show that 

o o 
R' 

i l STr dB u e - u M ) 2 d u r Cl(i) 
Zir p Ï S du 

0 

is equal to ?7odd,P plus an exact form da(eo), with a(eo) G C00(B,A*B). 
Consider the derivative with respect to e of rP(e,u). By Proposi­

tion 14 in [24] this is given by 

d P ( ^ u ) = d f p S T r C l ( 1 ) ( r 2 X u - d ( Q e ® A ) e - u W ) 2 ) ^ 
de du p n y ' de 

+d BxSa(u,e) 
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with 

1 i 

a(u ,e ) = - S T r Cl(1) ( p e " " u ^ T 2 X d Qe ® A P 
(11.9) ^ 7r d6 

x e - ( i - ) ( u ( 0 ) 2 ^ u(!ldvy 

Thus if 0 < e < e0 we have ([24]) : 

(11.10) 

2vr S 27T Si 

Z 0 Z o 

d B— 0i{u,8)dud8. 

e 0 

The lemma will be proved by taking the limit as e J, 0 in formula (11.10). 
Using Duhamel's principle and the idempotence of dt we obtain for 
p^^rP(e,u) the analogues of (9.5) and (9.6). Thus pTrrP(e,u) is equal 
to a differential form, not involving dt, plus the following expression 

T r ( ( ^ - u g ^ c l 2 ( d x ) ) 
du 2 x 

l 

x( Z e s(uM2+u(g L)2) 

o 

X ( — dtdclide) ® c l 2 ( — ) ) - TTX — Qe ® A°P 
iir % x % dt 

r i i . i i ) 

with 

x e _ ( 1 _ s ) ( B u e ) 2 + u ( L ) 2 ) d s 
odd 

Id^B u + u x u Q e ® A P -

The new technical problem in computing the normalized SMntegral 
of this expression comes from the mixed terms of the type Qe <S) A P 
appearing in the heat kernel. These terms prevent us from directly 
expressing the trace on the product manifold as the product of the 
traces as we did in the proof of Lemma 5, when we passed from (9.8) 
and (9.9) to (9.10) and (9.11) respectively. To get around this point 
we consider the usual orthonormal basis fe k(t)g of eigenfunctions of g , 
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with eigenvalues {\k(t)}, and the decomposition 

L ^ S 1 t ) xdM z;L®E0®C2) 

( 1 L 1 2 ) = 0 {Ce k(t) ® L\dM z- E0) ® C2) . 

With respect to (11.12), we can express the trace appearing in (11.11) 
as the following absolutely convergent series : 

_ _L i 

^ T r ( ( dB^k _ u i A k ( t ) cl2(—))( Z e-0u k 2 + u k t)2) 

u2^ d x 
x ( — d t ( ( c l ( d 0 ) ® c l 2 (—)) - X # ( k t ) A P ) ) 

where B u(k,e) = B u + u2x(u)ç!>e(Ak(t))A P. We rewrite this expression 
as 

(11.13) 
i 

_ dx d B k e ) „ u ( k 2 ) o d d ) ( u Ì c l 1(d0)e-uXk2)dt 
^—' x du i i 

-^Tr((e-^k^)odd)(i\k(t)cl1(de)e-u^2)dt 
2K 

plus a remainder given by 

(11.14) 
l 

E Tr ((dB k _ u \ k ( t ) c l 2 ( - ) ) ( e-sßu(k,er+uXkm 
keï du 2 x 

o 
x ( u d t ( x ^ ( A k ( t ) ) A ) ) e - ( 1 - ) ( u ( k 2 + u ( L ) 2 ) d s ) o d d ) _ 

iir 

The last term, involving the derivative of cj)e, vanishes in the limit as 
e ^ 0. 

As far as the right-hand side of (11.10) is concerned we apply the 
same steps as above, namely Duhamel's principle, the idempotence of 
dt and the expansion (11.12) to express it as the sum of six terms: 

Zo 

(11.15) ^JsJe BXg { ' 
V ' 0 

= (I + I I + I I I ) + ( I ' + I I ' + I I I ' ) 
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with 

I= B i S 7 E (u cl<d>e 
S eo k & 

u\k(t)2 

0 
1 _ 1 

x T r ( / c l 2 ( — ) ^ M p e - v ( u ( k 2 ) 
x du p ^ 

b 

CO 

II = ' B < è S £ E ( i A k ( t ) c l l ( d W e 

p 7 r do 
o _ 

xe-(1-vHB u(k<e)2dv)dud8dt), 

u\k(t) 2 \ 

1 e / u2 

B2mSJeo ^ p ï 
u\k(t)2 

i i _ _ j _ 
Tr , / f ,dB u(k,e) u 2 ,dxNN 

o o 
u2 

p 7T 

Xe-v(i-s)(B4k2)xd^ (Ak t)Ao 
dÄ P 

X e - ( l - v ) ( B u ( k ) ^ d u d d t | 

and where I', II' and III' are the corresponding terms coming from 
Duhamel's expansion, in powers of dt, of the second heat kernel in (11.9). 

We now take the limit as e J, 0 in formula (11.10). We first concen­
t ra te on 

l 

(11.16) l i m — rP(e1u)du. 
4 0 2 7 T S 

0 

Using (11.13) (11.14) and the absolute convergence of the u-integral and 
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of the series we can write (11.16) as 

-i V l i m p T r ( c l 2 d x d B k ' e V l i m p T r ( c l 2 ( d x ) d B k ( e - B u ( k j o d d 

0 keZ 

u 2 
X {—cUd0)e-uXk t 2 )d tdu 

; i l . l7) iT 
CO 

i S Ep-rTr((e_fu(k2)odd) 
2TT if-t l i m p ^ 

0 keZ 

x (—Ak(t)cli(d0)e-uAk t )dtdu 
27T 

plus 

;n.i8) 
00 

- l i m p y T r ( ( d B k ' 6 ) - u X k ( t ) c l - ) ) 
2TT SI 40 ft *-" du 2 w v x " 

g kGZ 
1 

x( Z e-s u(k,e)2+uXk(t)2) 

0 

x ( u dt( x^(Ak(t))A°P))e-(1-s)(u(k)2+u(g L)2)ds 
i7T odd 

To compute the limit of each individual term we use Duhamel's principle 
to express the heat kernel 

e-(B u)2-u?x(u)M>>k(t))[A0P B u]-(u?x(u)M>>k(t))A0P)2 

on the fibres of dM as 

(11.19) e-(B02
 + ^I 

n>0 

where 

I n(u,e) = (-u)n / e-^u(u2X^(\k(t))[A°P,B u] 

+ (uxMk t))A°P)2)e-u ...e-°n B u da, 

n\ui eJ) 
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and the series converges rapidly in each C norm. Thus we can again 
bring the limit as e \. 0 under the sum in (11.19). Bearing in mind that 
4>t approaches 1 as e J. 0 we can finally compute (11.17) as 

oo 

p-K x du 
0 

• Z V — cUdO)e 
S ^—' iTT 

i u2 -uXk{t)^ 

oo 

; i l .20) - Z ^ p T r ( e - e ) o d d ) d u 71" 
o 

i c l i d A k t e - k t 2 d t ) ) , 
2 7 T S 27T 

which in turn is equal to 

oo e 

Z p T r ( c l ( - ) ( ^ ( e - e 2 u ) o d d ) ) d u - ( - Z Tr odd e-(ug L + dt d)2 

lr x du 2m S 

with the second factor equal to the spectral flow of g , which is equal 
to one. Here, and in (11.20), definition (11.5) has been used. Notice 
that in (11.20) we have again used Duhamel's principle in order to sum 
up the series of the limits of the traces resulting from (11.19). Since (f>'e 

approaches 0 as e J, 0, it is straightforward to check, using again (11.19) 
(11.20), tha t the limit as e J, 0 of the remainder (11.18) is equal to 0. 

Thus we have shown that 

1 oo 

l i m — rP(e,u)du= p STr Cl(1) (—•—e B u)du = i]odd}P. 
4 0 ZlT S p7T V ' du 

0 0 

On the other hand, direct inspection of formula (11.15) shows that 

d B x S a ( u ) S)dudS lim — 
4 0 27T S 

£o 

e 

Z o 

exists and is equal to an exact form on B. The lemma is therefore proved. 
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By applying (11.1), (11.6), Lemma 6 and (10.2) we obtain the main 
result of this paper 

T h e o r e m . Let g be a family of generalized Dirac operators on odd 
dimensional manifolds with boundary as in §i, and let P be a Cl(l) 
spectral section for the boundary family g - IfInd(g,P) G Kl(B) is the 
index class associated to g and P as in §^, then the following formula 
holds 

Ch(Ind(g ,P) ) = ( 2 ^ ) - ^ Z A(M/B)Ch'(E)-^Vodd :P in H odd(B), 

M/B 

where ?7odd,P is the eta form defined in (11.8). 
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