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GAUSSIAN UPPER BOUNDS FOR THE HEAT 
KERNEL ON ARBITRARY MANIFOLDS 

ALEXANDER GRIGOR'YAN 

1. Introduct ion 

In this paper, we develop a universal way of obtaining Gaussian 
upper bounds of the heat kernel on Riemannian manifolds. By the 
word "Gaussian" we mean those estimates which contain a Gaussian 
exponential factor similar to one which enters the explicit formula for 
the heat kernel of the conventional Laplace operator in R n : 

p(x,y,t) 
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The history of the heat kernel Gaussian estimates started with the 
works of Nash [25] and Aronson [2] where the double-sided Gaussian 
estimates were obtained for the heat kernel of a uniformly parabolic 
equation in R 1 in a divergence form (see also [15] for the improvement 
of the original Nash's argument and [26] for a consistent account of 
the Aronson's results and related topics). In particular, the Aronson's 
upper bound for the case of time-independent coefficients which is of 
interest for us reads as follows: 

const 
p{x,y,t) < -nrexp 

where C is a large enough constant. 
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In a series of works of Gushin [22], [21] he extended the Gaussian 
upper bounds to parabolic equations in unbounded domains in R n with 
the Neumann boundary condition. 

As far as Riemannian manifolds are concerned, the heat kernel Gaus­
sian upper bound first appeared in the work of Cheng, Li and Yau [7] 
for the case of complete manifolds of a bounded sectional curvature, 
and was extended soon by a different method in [6] to manifolds with 
bounded geometry. The most advanced and sharp results under the 
curvature assumptions were obtained by Li and Yau [24] by using their 
famous gradient estimates. 

Given a Riemannian manifold M, one considers the associated Laplace 
operator A, its (minimal) heat kernel p(x,y,t), and expects to have a 
Gaussian upper bound as follows 

2 

[1-1) p{x,y,t) < - ^ e x p - C t 
const 

where r = dist(x, y) is a geodesic distance between x, y, and f(t) is some 
increasing function. In the works, cited above, such estimate was shown 
to be true on certain manifolds subject to curvature restrictions, with 
the constant C arbitrarily close to the ideal value 4. 

The next crucial step was done by B. Davies who developed in a 
series of his works [11], [12], [9], [10] a powerful abstract method which 
enabled him to deduce the heat kernel Gaussian upper bounds from 
the log-Sobolev inequality. This method is robust in contrast to those 
based on Riemannian curvature. For example, it is invariant under a 
quasi-isometric transformation of the metric. 

An alternative robust method based on a Faber-Krahn type inequal­
ities was introduced by the author in [18] (see also [19], [20]). In par­
ticular, it was shown in [18] that any complete manifolds admits the 
estimate 

r2 

p(x, y, t) < Lp{x, t)<p(y, t) exp - — 

(where the function (p(x,t) is expressed in geometric terms) which sug­
gests that the Gaussian exponential factor has a non-geometric nature. 

The common achievement of the cited above works is understand­
ing that the Gaussian upper bound (1.1) is virtually equivalent to a 
(logically) weaker on-diagonal bound 

const 
(1-2) p(x,y,t)<fty, 
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which does not take into account the distance between x,y. Indeed, 
first let f(t) = t ni2, where n = dim M. Then the fact that (1.2) is true 
for all x,y G M, and for all t > 0 is equivalent to each of the following 
functional inequalities: 

1° a proper Sobolev inequality as proved by Varopoulos [28]; 

2° a Nash type inequality by Carlen, Kusuoka, Stroock [3]; 

3° a log-Sobolev inequality by Davies [11]; 

4° a Faber-Krahn type inequality by [18] and by Carron [4]. 

On the other hand, each of these functional inequalities implies also the 
Gaussian upper bound (1.1) with the same function f(t). See [5] for 
a more geometric approach based on modified isoperimetric constants. 
See [23], [13] for the setting of graphs, [8], [29], [30] for Lie groups, and 
[1] for symmetric spaces. 

The fact that an on-diagonal upper bound implies a Gaussian one 
was extended to more general class of functions f(t) (including those of 
superpolynomial growth) by Davies [10] and by the author [18], again 
by using a bridging functional inequality. 

At the same time, there is a direct way of deducing a Gaussian 
upper bound from an on-diagonal one which appeared first in the work 
of Ushakov [27] for the case of a polynomial function f(t) and for the 
parabolic equation in the Euclidean space. This method was adapted 
later for manifolds in [16] but still within a polynomial setting. 

The main purpose of the present paper is to extend this method to 
a wider class of the functions f(t) including sub- and superpolynomially 
growing functions. The main result is the following theorem. 

T h e o r e m 1.1. Let x,y be two points on an arbitrary smooth con­
nected Riemannian manifold M, and let us have for all t £ (0, T) (where 
T may be equal to oo or be a positive number) 

(1.3) p(x, x, t) < 

and 

1 
;i-4) p(y,y,t)< 

g(ty 
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where f, g are functions regular in some sense (see Section 2 below for 
the definition^. Then for any C > 4, for some S = 5(C) > 0, and all 
te(o,T), 

const r2 

(1-5) px'yt-pmmexprCti' 
where r = dist(x, y). 

Let us emphasize the fact that unlike the functional-theoretic meth­
ods cited above, this theorem assumes the on-diagonal upper bounds 
only at two points x,y rather than at any point. The regularity con­
dition is wide enough to include such functions as log a t, t , expt c and 
their combinations. 

Needless to say that Theorem 1.1 recovers all Gaussian upper bounds 
obtained previously, and provides a simple way to produce such bounds 
automatically whenever one has proved a (much simpler) on-diagonal 
estimate. 

2. Integral e s t imates of solut ions 

Let M denote any smooth connected Riemannian manifold (not nec­
essarily complete), and let fi be a pre-compact region on M with a 
smooth boundary. We allow M to have a boundary. If this is the case, 
then part of the boundary of fi may be located on dM. In fact, fi will 
be treated as a compact manifold with a boundary. 

We consider a function u(x,t) defined on O X (0, +oo) which is 
smooth enough and satisfies the following conditions: 

u(u t — Au) < 0, 

u uI < n 

u\x<£K,t=0 = 0' 

where v is the outward normal vector field on the boundary d£l, K is 
a compact in Q (the initial condition is understood in the sense that 
u(x, t) —> 0 as t —> 0+ locally uniformly in x G £1 n K). 

For example, u may be a solution to the Dirichlet or Neumann prob­
lem for the heat equation in fix (0, +oo) (with an initial condition having 
a support on K) or a positive subsolution, or a negative supersolution. 

(2.1) 
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We will consider two integrals of u : 

I(t) = Z u (x, t)dx, 

E D(t) = Z u 2 ( x , t ) e x p — dx, 

where D is a positive number. Of course, we have always 

I{t) < E D(t). 

The main result to be proved here is that to some extend there is a 
reverse inequality. But before we are able to state that , we have to 
introduce a technical regularity hypothesis on a function of a single 
variable. 

Definit ion. We say that a function f(t) defined for t G (0, co) is 
regular if: 

1° it is positive; 

2° it is monotonically increasing; 

3° there are numbers A > 1 and y > 1 such that for all 0 < t\ < ti 
the following inequality holds: 

( ) fU - fW 
E x a m p l e s . 1. Let the function f(t) be of at most polynomial 

growth in the sense that for all t > 0 and some y > 1, 

(2.3) f(jt)<Af(t). 

Then (2.2) is obviously true. Indeed, we have 

because f(7t2) ^ f ( t ) - Examples of the functions satisfying (2.3) are: 
f(t) = t n, f(t) = log n( l + t ) (where n > 0) etc. 

2. Let f(t) be of at least polynomial growth in the sense that for 
some 7 > 1 the quotient 

(2 5) fM 
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is increasing in t. Then (2.2) holds again at this time with A = 1 because 
by monotonicity of (2.5) 

(2.6) f̂ 4- < f M 

f(t) - f t ) 

Examples of such functions are: f(t) = t n, f(t) = e t etc. 
3. Let us combine the two situations above: suppose that there is 

some T > 0 such that for all t < T the inequality (2.3) holds while for 
t > T the ratio (2.5) is increasing. Then f(t) is regular again. Indeed, 
in order to check (2.2), let us consider two cases: t\ < T and t\ > T. In 
the first case, we have again (2.4), while in the second case we repeat 
(2-6). 

An example of a function which fits this case is: 

yc2e , t>T, 

where n > 0, m > 0, and the constants c\^ are chosen to ensure conti­
nuity (and, therefore, also monotonicity) o f f ( t ) . 

Now we can state our main technical result. 

T h e o r e m 2 .1 . Let us suppose that u(x,t) satisfies (2.1), and for 
any t > 0 we have 

(2.7) I ( t ) < l 

fit) 
where the function f(t) is regular as above. Then for any D > 2 and 

allt > 0 

where 8 = S(D, j) > 0. 

Proof of the theorem. The proof will consist of three steps. In the 
first step, we will estimate the integral 

I R(t) = Z u2(x,t)dx, 
JQ\K R 

where K R is the open R—neighbourhood of the set K. In the second 
step, we will estimate E D(t) for large D applying the upper bounds 
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for I R(t), and, finally, in the third step, we will finish the proof for all 
D>2. 

STEP 1. Let us prove the following key lemma. The statement 
of this kind seems to have appeared for the first time in the paper 
of Ushakov [27] for the case of a polynomial function f(t) and in the 
Euclidean space. We modified his approach and made it work for a 
more general function f(t). 

L e m m a 2.2 . Under the hypotheses of Theorem 2.1, there exists 

DQ = D ( T ) > 2 such that 

, , 2A R2 

I R{t) < exp f ( t / 7 ) " I Dot 

for all R > 0 and t > 0, where the constants A, y are those from the 
regularity hypothesis (2.2). 

Proof of Lemma 2.2. The idea of the proof is to compare the 
quantities I R(t) and IP(T) for p < R, T < t in the following way: 

(2.8) I B ( t ) < I , ( r ) + f ^ e x p ( - ^ ) . 

After we have shown (2.8),we will arrange sequences fR k g, ft k g (where 
k = 0,1, 2,...) which start with R and t respectively and are decreasing 
so that R k —T- R/2 and t k —> 0 as k —> oo. Applying (2.8) to the 
consecutive pairs (R k,t k) and (R k+i , t k+i) and summing up all those 
inequalities, we obtain an upper bound for I R(t) in terms of a series 
which can be dealt with by taking specific sequences R k,t k-

We will finish this argument later but first we turn to the proof 
of (2.8). We apply the integral maximum principle, which states the 
following. 

Propos i t ion 2 .3 . If u(x,t) is smooth enough in Ci X (0,T) and 
satisfies the conditions 

(2.9) 

then the integral 

u(u t — A u ) < 0, 

u u I 
du \xedtt,te(0,T) 

(2.10) / u2(x,t)ei{x't dx 
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is a decreasing function of t G (0,T) provided the function £(x,t) is 
Lipschitz in Ci X (0,T) and satisfies the inequality 

(2.11) t + ^ | V Ç | 2 < 0 . 

This property of solutions to the heat equation is well known and 
goes back to the famous Aronson's paper [2]. Thereafter, it was proved 
for different settings in various works; see, for example, [7], [26], [19]. 
The actual proof is very simple and consists of taking the time derivative 
of the integral (2.10) and of applying integration by parts: 

— Z u e = Z £t u e + Z 2uu t ei 

dt JQ Z Z Q 

< / t u e + 2uAue ^ 
Jn n 

< Z Z u e + Z 2u u e - - 2 Z (V(uet),Vu) 
çi dQ, UZ çi 

< - \ |VÇ|2 u2e ^ -2 \ u(VÇ, Vu)e ^ -2 Z \Vu\2 e ̂  
Jo. JQ. 

/ (uVÇ + 2Vu)e < 0. 
Jo. 

q.e.d. 

Let us note that we have used here at full strength the hypotheses 
(2.9) and (2.11) on the functions u and £ respectively. Moreover, this is 
the only place where we need (2.9) and (2.11). In the proof of Theorem 
2.1 which follows, we will apply the two first conditions from (2.1) ("the 
equation" and "the boundary condition") only via Proposition 2.3. On 
the contrary, we will use the initial condition of (2.1) explicitly. 

We will be applying (2.11) with different functions £. Let us note 
that any function of the form 

_, , dix) 
£(x,t) = / ' N 
^v ' ; D(t-s) 

fits (2.11) provided d(x) is a distance function to some subset of M, D > 
2, and the point s does not belong to (0,T) (to ensure no singularities). 

In order to prove (2.8), we choose some s,T such that s > T > t, 
and put d(x) to be the distance to the exterior of the set K , i.e., 

iR- distfx, K), x e K R, 
dix) = < 

V ' I 0 , x £ K R. 
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By the integral maximum principle, we have 

2, s d(x? Z 2. x d(x)2 

Z u (xt)expr^^yJ -Lu {x>T)exp-w^)\ • 
Now we replace the left-hand side integral by a less value I R(t) because 
d(x) vanishes off the set K R. Then, we split the right-hand side integral 
into two parts: over the interior of Kp and over its exterior. In the first 
part, the exponential weight is bounded from above by 

exp 
(R-P)2 

2 ( s - r ) 

since the distance from any point of Kp to the exterior of K is at least 
R — p. In the second part, we replace the exponential weight simply by 
the larger 1, obtaining, thus, IP(T). Therefore, we have 

I R(t) < e x p [ - R ~ ^ 1 Z u2(x,T)dx + Ip(T). 
( 2{s- T) ) Kp 

Finally, we apply the hypothesis (2.7) in the form 

u (x, r)dx < , 
KP f(r) 

and let s —> t-\- whence (2.8) follows. 
Given R and t, we consider the sequences fR k g and ft k g, k = 

0 ,1 , 2 , . . . such that : 

1° fR k g and ft k g are decreasing in k; 

2° R0 = R and R k —» \R as k —> oo; 

3° to = t and t k —> 0 as k —> oo. 

Applying (2.8) for the consecutive pairs (R k , k ) and (R k_|_i, t k-\-\] we 
obtain 

I R k(t k) < I R k+1(t k+i) 

(2.12) | l expf (R k - R + i ) 2 ] . 
f{t k+i) { 2{t k - t k+i) ) 

Let us note that I R k(t k) —> 0 as k —> oo. Indeed, 

lim I R k(t k) = Z u2(x,0)dx = 0, 
k ^ O ° ÜnK2R 
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because of the initial condition (2.1) for the function u. 
Hence, we can sum up the inequalities (2.12) over all k = 0 , 1 , 2, 

and obtain 

Let us specify the sequences R k,t k in the following way: we take 

and 

t k = t/jk. 

Since 

R k - R k+1 > 
(k + 3)5 

and 

t k - t k+i - ^k+1 , 

we can expand (2.13) as follows 

k+1 R2 

f exp 
k=0 

Let us estimate f ( t k+i) as follows. According to the property of the 
function f(•) to be regular, we have the following sequence of inequali­
ties: 

f(t k+i)- f t y 

f t - i ) A f ( t ) 
f(t k) - f(ti) 

f ( t ) A f t ) 
f t ) - f t ) 

Multiplying all them we derive 

f(to) k+ 1 

fit k+i)- f(t) 
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whence we get 

R t) 

(2.14) 

f(t0) 7k+* R2 

wSexp < — - exp (k + 1) log A-
f{t)fQ V f t ) (k + 3 )4 ( 7 - l ) 2 t J 

The main idea of the proof is that the numerator jk+1 grows in k much 
faster than the denominator (k + 3)4 whenever 7 > 1. In particular, 
there exists a positive number m = m(j) such that 

for any k > 0. We can just take 

m = inf 
k>o (k + 3)4(k + 2 ) (7 - 1) 

f ( t i ) 
Let us denote for simplicity L = log A S t l and rewrite the inequality 

(2.14) as follows 

1 °° R2 

I R(t)<f^Y,exp[(k + 1)L-m(k+2^\ 

We have either 

or 

R2 

m L > log 2 
2t -

R2 

m L < log 2. 
2t 

In the former case, we obtain obviously 

2 00 

I < t < j e x p - m R ^ « ) 

(2.16) k=0 

f t ) e x p - m R ' 
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while in the latter case we estimate I R(t) in a different way: 

I R(t) < Iit) < l 

fit) 
1 R2 

- f t expL + l og 2 _ m^ 
2 A fit) R 

2A v2 

R 

f i t / l ) ~ m ^ ' 
•exp 

Combining this together with (2.f6) yields finally for both cases: 

p R 
~mlît 

2A 

fWi) 
q.e.d. 

STEP 2. The purpose of this part of the proof is to show that for 
D > D\ = 5D and all t > 0 we have 

(2.17) E D(t) < A - y 

To that end, we split the integral 

E D(t)= Z u2ix,t)exp r x - dx 

(where r(x) = dist(x, K)) into a series 

E D(t)= Z u2ix,t)exp\ r-^-\ dx 
{r(x)<R} K D t ) 

(2.18) + è Z u 2 ( x t ) e x p ( ^ dx, 
k T 0 { 2 k R<r(x)<2k+1R} \ D t ) 

where R > 0 is an arbitrary number. 
The first integral on the right-hand side (2.18) is bounded from above 

by 

(2.19) exp R Z ^ 2 ( x t ) d x < - ^ y e x p R . 
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The k-th term in the sum (2.18) is estimated from above by using 
Lemma 2.2 as 

4 k + 1 R 2 Z 2 , . 
< exp u (x,t)dx 

\ Dt ) o,nK2k R 
2A 4k+1R2 4k R2 

(2.20) s ^ ^ e x p - D t - — 

fWr) 
4k R2 

where we have used Do < D/5. 
Combining (2.19) and (2.20), we obtain 

(2.21) 

E . . 1 R2 2A ^ 4k R2 

^ ( ^ f t expiDtJ+f(^)£expi-DtJ' 
We can choose R here arbitrarily. Let us define R to satisfy the identity 
R2/Dt = log 2 and deduce from (2.21): 

CO 
, s 2 ÏA ^ àk 2 + 2A 

E D(t,sf(tï + f07ïï£2 - W 
whence (2.17) follows since A > 1. 

Remark . By taking another (more optimal) value for R, namely, 

R2 = Dtlog(l + p 2 A ) , 

we could replace the coefficient 2 + 2 A in the formula above by a better 
value 1 + 2 p 2 A 

STEP 3. Now we will finish the proof of Theorem 2.1. In view of 
the previous step, it suffices to consider the case 2 < D < D\. The 
integral maximum principle (Proposition 2.3) implies that for any s > 0 
the integral 

2 r2(x) u (x,t)ex\ — dx 
a { ' p \ 2 { t + s)) 

is decreasing in t G (0,oo), where r(x) = dist(x,K). Therefore, for any 

re (0, t ) , 

(2.22) 

Z 2/ ^ r2(x) Z 2 / , r2(x) 
u x , t exp —- dx < u ( x , r ) e x p — dx. 
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Given t > 0 and D, 2 < D < D i , let us find suitable values of s, T so 
that the left-hand side of (2.22) is equal to E D(t) while the right-hand 
side is to be equal to E D 1 (T) . To that end, we solve simultaneously the 
equations 

j 2(t + s)=Dt, 

\ 2(T + s)=D1T, 

and obtain s = Dj^-t and r = D ~_^2t < t. Therefore, for this value of r, 
we have 

E D(t) <E DI(T), 

and applying the inequality 

E Dl(r)< 
f(r/l) 

known from the previous step of the proof, we get finally 

E D(t) < 4A 
f(D t/7) 

Thus, we have proved Theorem 2.1 with 

D 2 
5 = 5{D,1) = 1-

lminl,—-

q.e.d. 

3. Po intwise e s t imates of the heat kernel 

On any smooth connected Riemannian manifold M, we define the 
heat kernel p(x, y, t) as the smallest positive fundamental solution to the 
heat equation. It exists, is unique, and can be constructed as follows. 
Let us take an increasing sequence of pre-compact regions Çik C M, k = 
1, 2, 3 , . . . which exhausts M, and in each Çik construct the Green function 
p k(x,y,t) to the Dirichlet problem for the heat equation. Then, on one 
hand, we have by the maximum principle 

while on the other hand 

0 < p k < p k+i, 

p k(x,y,t)dx < 1. 
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These two properties ensure that there is a limit 

p(x,y,t) = lim p k(x,y,t), 
k—>oo 

which is, by definition, the (minimal) heat kernel (see [14] for detailed 
justification of this construction). 

If the manifold M has a boundary, then the exhausting regions Qk 
will necessarily have for large k a part of their boundary on dM, so one 
can put a boundary condition (normally Dirichlet or Neumann one) on 
dM to be satisfied by all p k and, therefore, by p(x, y, t). 

Our main result is the following theorem. 

Teorem 3 .1 . Let x,y be two points on an arbitrary manifold M, 
and let us have for all t > 0 

(3.1) p(x,x,t) < —— 

and 

1 
(3-2) p(y,y,t)< ( V 

g\t) 

where f, g are regular functions in the sense of the previous section. 

Then for any C > A and all t > 0 
. , . . AA r2(x,y) 
(3-3) p ( x ' y ' t ) - p f (* tg(*t e x p ~ ~ C t ' 

where r(x,y) = dis t (x ,y) , S = S(C,j), and A, y are the constants from 
(2.2). 

Remark . The theorem is applicable also if the inequalities (3.1) 
and (3.2) hold only on a bounded time interval (0, T) as stated in Theo­
rem 1.1 in the Introduction (with an obvious modification of the notion 
of regularity for a bounded interval). Indeed, the on-diagonal heat kernel 
p(x, x,t) is known to a decreasing function of t. Therefore, if we extend 
the functions f(t) and g(t) beyond the point T as constants, then (1.3) 
and (3.2) will be valid for all t > 0. Moreover, it is evident that the ex­
tended functions will preserve regularity, so that we can apply Theorem 
3.1 and obtain (3.3), in particular, for all t G (0 ,T) . 

Proof of Theorem 3.1. Let us apply the following universal inequal­
ity which is true always: 

(3.4) 

p (x ,y , t ) < p E D(x,t/2),E D(y,t/2)exp-Dtà , 
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where D is a positive constant and 

E D(z,t) = M p 2 ( z C , t ) e x p [ D t j d(. 

This inequality was proved in [18] but the proof is very short so that 
we can reproduce it here for the sake of completeness. Indeed, by the 
semigroup property of the heat kernel and by the triangle inequality 
r2(x, y) < 2(r2(x, z) + r2(y, z)) we have: 

p{x, y,t)= Z p{x, z, t/2)p(z, y, t/2)dz 
M 

< M p ( x , z , t / 2 ) e x p ( D t Ü j 

x p z , y , t / 2 ) e x p ( D t > ) e x p ( - r x y l ) d z 

= exp~r~Dt E D[x-tß)E D{y,tl2)i , 

what was to be proved. 
The rest of the proof of Theorem 3.1 follows from 

T h e o r e m 3.2 . Let x be a point on an arbitrary manifold M, and 
let us have for all t > 0 

(3.5) p(x, x, t) < 
fit) 

where f(t) is a regular function. Then for any D > 2 and all t > 0 

AA 
(3-6) E D{x,t)<fWy 

where 8 = S(D,j), and A, y are the constants from (2.2). 

To finish the proof of Theorem 3.1 we are left to notice that (3.1) 
and (3.2) imply (3.6) and a similar inequality for the point y, which 
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together with (3.4) yield (3.3) (we have to replace in the final result 2D 

b y C ) . 

Proof of Theorem 3.2. Let us consider one of the sets Qk containing 
the point x. Since p k < p, the inequality (3.5) is valid for p k, too. It is 
sufficient to show that (3.6) holds for the integral 

Z 2 r2(x, z) 
E D}k(x,t)= p k(x,z,t)exp Dt dz, 

since thereafter we could pass to the limit as k —> oo and establish the 
same upper bound for E D(x , t ) . 

Let us apply Theorem 2.1 to estimate E D tk(x,t). Indeed, the func­
tion u(z,t) = p k(x,z,t) satisfies the conditions (2.1) with the single-
point compact K = Z x}, and for this function we have 

I(t) = u (z,t)dz = Z p k(x,z,t)p k(z,x,t)dz 
Jo. JQ. 

1 
= p k(x,x,2t) < ——. 

Therefore, by Theorem 2.1 we obtain for any D > 2 

n Dt f(26ty 

what was to be proved. q.e.d. 

r (x z) 
E Dtk(x,t)= u2(z1t)exp—-Dt— dz < 

Theorem 3.2 may have other applications. For example, in conjunc­
tion with the result of [17] it can give upper bounds of derivatives of the 
heat kernel. Indeed, as proved in [17], any upper bound for E D(x,t) 

E D(x,t) < 
h{ty 

which is supposed to be true for some x and all t > 0, implies 

EWf t\ _ Z ivy i2/ tN r2(x,z) const D 

and 

E D \ x , t ) = M A z p\2(x,z,t)exp r-Dt- dz 

(3.7) const D 

- h2){t) ' 
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where 

hW(t) = Z h(s)ds, 
Jo 

h 2 \ t ) = Z h{1\s)ds1 
O 

and D>2. 
Another result of [17] is an inequality similar to (3.4) 

(3.8) 

dp 

dt 
(x,y,t) < ^E D \ x , t / 2 ) , E D(y,t/2)exp-r-!Dt-

Combinig together the inequalities (3.8), (3.7) and (3.6), we obtain 
the following statement. 

Corollary 3 .3 . Under hypotheses of Theorem 3.1 we have in addi­
tion to (1.5) also 

dp 

dt 
(x,y,t) < 

const^c-,7 r2{x,y) 

provided C > 4. 

Similar estimates can be proved also for the higher order time deriva­
tives of the heat kernel. 
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