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1. Introduction

The Thorn Conjecture asserts that any compact, embedded surface
in CP2 of degree d > 0 must have genus at least as large as the smooth
algebraic curve of the same degree, namely (d — l)(d — 2)/2. More
generally, one can ask whether in any algebraic surface a smooth alge-
braic curve is of minimal genus in its homology class. There was one
significant result in this direction. Using 5?7(2)-Donaldson invariants,
Kronheimer showed in [3] that this result is true for curves of posi-
tive self-intersection in a large class of simply connected surfaces with
&2~ > 1. Unfortunately, for technical reasons, this argument does not
extend to cover the case of CP2 . It is the purpose of this paper to prove
the general result that a smooth holomorphic curve of non-negative self-
intersection in a compact Kahler manifold is genus minimizing.

For any closed, orientable riemann surface C we denote its genus by
g(C).

Theorem 1.1 (Generalized Thorn Conjecture). LetX be a com-
pact Kahler surface and let C <-> X be a smooth holomorphic curve.
Suppose that C C > 0. Let C <-» X be a C°°-embedding of a smooth
riemann surface representing the same homology class as C. Then
g(C)<g(C).
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In fact, there is a generalization of this result to symplectic mani-
folds.

Theorem 1.2. Let X be a compact symplectic four-manifold and
let C <-* X be a smooth symplectic curve with C C > 0. (A symplectic
curve is one for which the restriction of the symplectic form is every-
where non-zero.) Let C1 <-Λ X be a C°° embedding of a riemann surface
representing the same homology class as C. Then g(C) > g(C).

The Thorn Conjecture and very similar generalizations of it have
been established independently by Kronheimer-Mrowka; see [4].

These results are based on the new Seiberg-Witten monopole invari-
ant, [14], flowing from advances in physics [7], [8]. This is a gauge-theory
invariant defined using complex line bundles and Sfpinc-structures on
the four-manifold. According to the conjectures of Witten (or rather
according to the results deduced by Witten using mathematically non-
rigorous physics arguments; see [14]) these invariants should contain
equivalent information to the S'C/(2)-invariants defined by Donaldson at
least in the case where b% > 1 . But from many points of view, these
C/(l) gauge-theory invariants are much simpler to work with. Hence, in
a practical sense, they are more powerful. This result is an example of
that power. It is probably true that overcoming a series of technical dif-
ficulties, one could establish the Generalized Thorn Conjecture and its
symplectic generalization using the Sϊ7(2)-invariants, though this has
not been done.

We deduce the Generalized Thorn Conjecture from a product for-
mula for the Seiberg-Witten monopole invariants. This is not a general
product formula, though it is easy to believe that there is one. Here we
deal only with the simplest case of a product formula - one decomposes
the manifold along a certain three-manifold (5 1 x C) and we arrange to
be in a context in which the 'character variety', i.e., the space of solu-
tions to the corresponding equations on the three-manifold, is a single
smooth point. In this context, the analogue of the Floer homology is
particularly simple and leads to a particularly simple product formula.
The proof of the Generalized Thorn Conjecture and its symplectic gener-
alization for curves of genus g > 1 is a direct application of this product
formula. The case of tori is handled by a different argument using the
Seiberg-Witten invariants but not the product formula.

Here we use the product formula to prove non-vanishing results for
Seiberg-Witten invariants. It is possible in favorable circumstances to
use this product formula together with vanishing results to completely
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calulate Seiberg-Witten invariants of manifolds obtained by gluing to-
gether pieces whose Seiberg-Witten invariants are known. In this paper
we treat the case when the three-manifold is 5 1 x C, where C is a sur-
face of genus p, and the determinant line bundle of the 5pmc-structure
has degreee ±(2# — 2) along C. It is possible to generalize to the case
of line bundles of other degrees.

In some respects the arguments in [4] are of a similar spirit to ours,
relying as they do on the Seiberg-Witten invariants. But instead of
using a product formula as we do here, Kronheimer-Mrowka establish a
vanishing theorem for the Seiberg-Witten invariants in a related context
- a context where there are no solutions to the corresponding equations
on the three-manifold.
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2. Review of the definition of the Seiberg-Witten
monopole invariant

2.1. 5pinc-structures

Recall that Spinc(n) = Spin(n) X{±u U(l) admits a natural map to
SO(n) with kernel the central S1. By a 5pmc-structure on an oriented
riemannian n-manifold X we mean a lifting of the principal SO{n) bun-
dle associated to the tangent bundle to a principal Spmc(n)-bundle.
Given such a lifting P —>> X, there are the associated complex spin bun-
dles. In the case where n = 4, there are two inequivalent spin bundles
S±(P), each of which is a complex two-plane bundle with hermitian
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metric.
Of course, Spinc(n) has a natural homomorphism to U(l) given by

[B, C] •-> C2 Correspondingly, every Spmc-structure P on a riemannian
n-manifold X has an associated complex line bundle C which we call its
determinant line bundle. Of course, c\(C) must be characteristic in the
sense that its mod two reduction is equal to W2{X). Fixing a connection
A on the determinant line bundle C induces Dirac operators

φA: C00{S±{P)) -> C°°(ST{P)).

These operators are first-order, linear, elliptic operators and are for-
mal adjoints of each other.

2.2. The Seiberg-Witten equations

Following Seiberg-Witten (see for example [14]) the Seiberg-Witten
equations associated to a 5piroc-structure P on an oriented, riemannian
four-manifold X with a metric g are a pair of non-linear elliptic equa-
tions for a unitary connection A on the determinant line bundle £ of P
and a plus spinor field ψ, i.e., a section of the plus spin bundle *
The equations are:

ΦA(Φ) = o.

Here, q is a natural quadratic bundle map from S+(P) to Λ+(X;iR),
and ΦA is the usual Dirac operator defined using the Levi-Civita connec-
tion on the frame bundle for X and the connection A; see, for example,
[5]. These non-linear equations are elliptic and, in the case where X
is a closed manifold, the index of the system modulo the action of the
gauge group of automorphisms of P covering the identity on the frame
bundle is, according to the Atiyah-Singer index formula, given by

where χ(X) and σ(X) are respectively the Euler characteristic and the
signature of X. Notice that d(P) depends only on cχ(£). For this reason
we also denote it by d(C). The quotient space of the space of solutions
to these equations modulo the action of the group of gauge transforma-
tions is the Seiberg-Witten moduli space and is denoted M(P,g). This
moduli space is compact. To obtain a smooth moduli space, it may be
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necessary to perturb the equations. We take perturbations of the form:

(1) F+

ΦA(Φ) = 0,

where η+ is a real, self-dual two-form on X. For a generic such 77+, or
even for an η+ generic among self-dual two-forms supported in a small
ball in X, the resulting moduli space M(P,g,η+) is a compact, smooth
manifold of dimension equal to cί(P), [5].

2.3. The definition of the invariant

Fix a closed, oriented, riemannian four-manifold X with metric p,
and choose an orientation for H\(X; R) Θ Hι(X\ R). Let us consider a
Spinc-structure P on X. For a generic η+ the moduli space M(P, g, η+)
is a smooth submanifold of the configuration space, that is to say, of the
space of all pairs (A, φ) modulo the action of the group of gauge trans-
formations. Removing the reducible points consisting of pairs where φ
is identically zero, leaves the space X of irreducible configurations. The
based version X° -> X is a principal circle bundle whose first Chern
class is denoted by μ G H2(X;Z). Provided that the d(P) is even (or
equivalently provided that b\(X) + b^iX) is odd), M(P,g,η+) has a
fundamental cycle which represents a homology class of even degree in
X. The orientation of Hι(X;ΈV) Θ ϋf|(X;R) is necessary in order to
orient the moduli space and hence determine the sign of the homology
class.

The definition of the Seiberg-Witten invariant of the S'pm^structure
in the case where d(P) is even, say 2d, is the value of the integral of μd

over the fundamental class of M(P, g,η+) If d(P) is odd, then by defi-
nition the Seiberg-Witten invariant vanishes. Provided that fcj" (X) > 1
this definition gives a well-defined invariant independent of the choice
of metric g and perturbing self-dual form η+. Thus, for such manifolds
X we define the Seiberg-Witten invariant as a function

SWX: {5pinc-structures} -> Z.

It is often convenient to amalgamate this information into a function

SWX: C(X) ->Z,

where C(X) C H2(Z;Z) is the subset of characteristic classes (those
whose mod two reduction is the second Stiefel-Whitney class). The
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value of S\Vχ on a class k is the sum over the (finite) set of all isomor-
phism classes of 5pinc-structures on X with the given class as the first
Chern class of the determinant line bundle. The invariant takes non-
zero values on only finitely many classes. Changing the orientation on
H1 (X; R) ®H+ (X; R) reverses the sign of this invariant. By convention
this invariant vanishes on any characteristic cohomology class for which
this index is negative.

Now suppose that b^iX) = 1. Then the value on a cohomology
class k G H2(X\7i) of the invariant defined using the moduli space
M{P,g,η+) is denoted by SWχyg9η+(k). This invariant is defined only
when there are no reducible solutions to the perturbed Seiberg-Witten
equations (1); i.e., only when 2πk + η+ has a non-zero L2-projection
onto the space of g-harmonic self-dual two-forms. As we vary (g,7?+)
the value of SWχt9tη+ (k) depends only on the component of the double
cone

{xeH2(X;R)\x-x>0}

containing the self-dual projection of 2πk + r/+; cf. [5]. (In particular,
there are only two possible values for SWχίQ^+ (k) as we vary the pair
(ffί7?*)-) Given a class x G H2(X;R — {0}) of non-negative square we
define the x-negative Seiberg-Witten invariant of X

as follows. Its value on a characteristic class k is equal to ^^η

for any pair (#, η+) for which the image of 2πfc-h7?+ under L2-projection
into the self-dual g-harmonic two-forms has negative cup product pair-
ing with x.

3. The product formula

In this section we state the main technical result of this paper, the
product formula, and deduce a non-vanishing result for certain general-
ized connected sum manifolds.

3.1. The statements

Suppose that X and Y are closed, oriented smooth 4-manifolds. Let
C be a closed, oriented riemann surface with g(C) > 1. Suppose that we
have smooth embeddings C «-» X and C *-* Y representing homology
classes of infinite order. Suppose in addition that each of these classes is
of square zero. (That is to say, the self-intersection of C is zero in both
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X and Y.) Because of this condition there is a regular neighborhood of
C in each of X and Y orientation-preserving diffeomorphic to D2 x C.
Let XQ and YQ be the compact manifolds with boundary obtained from
X and Y by removing the interiors of these regular neighborhoods.
We denote by N the common boundary S1 x C. There is an obvious
orientation-reversing diffeomorphism ΘXQ -> ΘYQ which is the identity
on the C factor and is complex conjugation on the 51-factor. We denote
by M = X#cY the oriented four-manifold that results from gluing Xo
and YQ together via this diffeomorphism. We call it the sum of X and
Y along C. Notice that there is an induced embedding of C into M
well-defined up to isotopy which represents a homology class of infinite
order and of square zero.

Now suppose that k G H2(M;Z) is an integral cohomology class
whose restriction to N = S1 x C is of the form p*(ko) where &o €
H2(C; Z) is a class and p: N -> C is the natural projection. Let kχ0

and kγ0 denote the restrictions of k to Xo and YQ. These classes au-
tomatically extend to integral classes kx and ky over X and Y. Each
of these extensions is well-defined up to adding an integral multiple of
C*, the class Poincare dual to the homology class represented by C. If
k is characteristic, then exactly half the extensions kx of kχ0 will be
characteristic, and similarly for the fcy. (The characteristic extensions
will all differ by even multiples of C*.)

Here is the statement of the product formula.

Theorem 3.1 (Product Formula). Let X,Y,C,M,N be as in
the previous paragraph. Suppose that &2~(X),6^(y) — *• It follows that
6^(M) > 1. Suppose that k G JEΓ2(M;Z) is a characteristic cohomology
class satisfying k\κ = p*ko where ko G H2(C\ Z) satisfies

Consider the set IC(k) of all characteristic classes k' G H2(M;Z) with
the property that k'\χQ = kχQ, k'\γ0 = kγ0 and (k')2 — k2. We define
lCχ(k) to be all ί G H2(X; Z) which are characteristic and satisfy ί\χ0 =
kχ0. The set Kγ{k) is defined analogously. Then for appropriate choices
of orientations of Hι(M))H

ι(X),Hι{Y) and Hi{M\H%{X),H%(Y)
determining the signs of the Seiberg- Witten monopole invariants we have

(1) Σ SWM{k') = (-1) W ) Σ SWχ{ίλ) SWY(*2),

where b(M,N) — bι(Xo,N)b^°(Yo,N), and the sum on the right-hand-
side extends over all pairs (̂ 1,̂ 2) € fcχ(k) x Kγ{k) with the property
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that

(2) ι* + <$ = k2-(8g-S).

It is to be understood in Equation (1) that the Seiberg- Witten invariant
of any manifold with fcj" — 1 is the C*-negative Seiberg-Witten invariant
where C* is the cohomology class Poincare dual to C.

Remark 3.2. As we have already observed Kχ(k) C H2(X;Z) is
a principal homogeneous space for Z(2[C]*), and similarly for Kγ(k).
The set /CM(&) is a principal homogeneous space for the possibly larger
lattice 2Im(ί: Hι(N\Z) -> H2(M;Z)).

In general, the sum on the right-hand-side can have more than one
non-trivial term. But Ίΐd(k) = 0, then there is at most one pair (£χ, ί2) E
ICχ(k) x ICγ(k) which satisfies Equality (2) and for which d(l\) > 0 and
d{ί2) > 0. More generally, one can deduce a non-vanishing result for
M from non-vanishing results for X and Y. Notice that even when the
right-hand-side of the equation has only one non-zero term, it is not
evident (and probably not true in general) that the invariants of the
glued-up manifold are determined by those of the constituent pieces.
The reason is that we have a sum of invariants on the left-hand-side of
the equation. There are some cases however, when vanishing theorems
allow one to restrict the possible support of the Seiberg-Witten function
for the glued-up manifold sufficiently so that one can determine the
Seiberg-Witten invariants of the glued-up manifold from this product
formula.

Corollary 3.3. Let X,Y,C be as in the previous theorem and let
M = X#QY- If there are characteristic classes ί\ £ H2(X\ Z) and ί2 £
H2{Y Z) w%th(iuC) = (*2,C) = 2g-2, SWχ{ίχ) φQ and SWγ(ί2) φ
0, then there is a characteristic class k G iJ2(M;Z) with k\w = p*ko
for k0 G H2(C; Z) satisfying (jbo, [C]) = 2g-2 for which SWM(k) φ 0.
(For any of these manifolds with b£ =• 1 it is understood that the Seiberg-
Witten invariant is the C*-negative Seiberg-Witten invariant.)

Proof Without loss of generality, we can assume that ί\ E H2(X\ Z)
has d(ί\) minimal among all classes satisfying the hypothesis of the
corollary. Similarly, for l2. We set k G H2(M\ Z) equal to any charac-
teristic class which has the property that k\χ0 = i\\χ0 and k\γ0 = ^IYQ
(There are such classes since ii\^ = 2̂|ΛΓ ) NOW adding an appropriate
even multiple of the Poincare dual of [C] to k we arrange that
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For this particular choice of k, the sum on the right-hand-side of the
product formula has only one non-zero term. The reason is that if
(£'v£'2) e Kχ{ίι) x Kγ{ί2) satisfies {ί[)2 + {ί'2)

2 = l\ + t\ and (£[J'2) φ
(£1,^2), then the minimality of ί\ and £2 implies that either SWχ(£[) =
0 or SWγ(£2) = 0. Thus, in this special case, the sum on the right-
hand-side of Equation (1) consists of exactly one non-zero term. Hence,
one of the terms on the right-hand-side is non-zero. This completes the
proof of the corollary.

4. Genus minimizing curves

In this section we show how to deduce the Generalized Thorn Con-
jecture and its symplectic generalization from the Product Formula and
one other result concerning embedded two-spheres in symplectic four-
manifolds.

4.1. The general statements

The main application of this product formula is to prove the genus
minimizing criterion given below. As the reader can see, this result
concerns general four-manifolds not just Kahler surfaces and symplectic
four-manifolds. As we go on to state in this section, its application to
Kahler surfaces yields the Generalized Thorn Conjecture.

Proposition 4.1. Let X be a closed, oriented four-manifold with
b^(X) + 61 (X) odd, and let C C X be a C°° curve of genus g > 1 and
square zero. Suppose that there is a characteristic class k € H2(X]Z)
with the property that (A;, [C]) = 2g — 2 and suppose that the Seiberg-
Witten function SWχ(k) φ 0. (It is understood that ifb^(X) = I, then
this invariant is the C*-negative Seiberg-Witten invariant, with C* the
class Poincare dual to C.) Then any C°°-curve in the same homology
class as C has genus at least as large as that of C.

There is a generalization of this result that covers curves of positive
intersection as well. It is deduced from the previous result by blowing
up and using the blowup formula from [1] or [2].

Proposition 4.2. Let X be as above and suppose that C C X is a
smoothly embedded riemann surface of genus g > 1 and with C C >
0. Suppose that there is a characteristic class k E H2(X]Z) with the
property that (k,[C)) =2g-2-C-C and SWχ{k) φθ. (Ifb%(X) = 1,
then this invariant is interpreted to be the C*-negative Seiberg-Witten
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invariant, with C* the class Poincarέ dual to C.) Then any C°°-curve
in the same homology class as C has genus at least as large as that of
C.

4.2. The case of Kahler surfaces and symplectic
four-manifolds

Applying this to the case of Kahler surfaces and holomorphic curves
yields the following result.

Corollary 4.3. Let X be a compact Kahler surface and let C C X
be a smooth holomorphic curve with C C > 0 and g(C) > 1. Suppose
that C ' c l is a C°° riemann surface homologous to C. Then g(C) <

9{C).

We also have the analogue for symplectic four-manifolds.

Corollary 4.4. Let X be a compact symplectic four-manifold and
let C C X be a smooth symplectic curve with C C > 0 and g{C) > 1.
Suppose that C C X is a C°° riemann surface homologous to C. Then
g(C)<g(C).

While these corollaries do not cover the case of curves of genus one,
this case can be handled by other arguments using Seiberg-Witten in-
variants.

Proposition 4.5. Let X be a compact Kahler surface and let C C
X be a smooth holomorphic curve with g(C) = 1. If C -C >0, then the
homology class of C is not represented by a smoothly embedded sphere.

Proposition 4.6. Let X be a compact symplectic four-manifold and
let C C X be a smooth symplectic curve with g(C) = 1. If C - C > 0,
then the homology class of C is not represented by a smoothly embedded
sphere.

Together of course, these results cover the case of all curves of non-
negative square in compact Kahler surfaces, thus establishing the Gen-
eralized Thorn Conjecture and its symplectic generalization as stated in
the introduction.

In this section we show that the Product Formula implies Propo-
sition 4.1. We also show that Proposition 4.1 implies Proposition 4.2
and that Proposition 4.2 implies Corollary 4.4 which of course implies
Corollary 4.3. Then next five sections are devoted to proving the Prod-
uct Formula. The last section gives a proof of Proposition 4.6 which of
course also implies Proposition 4.5.
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4.3. Proof that the product formula implies Proposition 4.1

Suppose that C C X is a smooth curve of genus g > 1 and suppose
that CO = 0. Suppose that there is a characteristic class k E H2(X\ Z)
with the property that (k, [C]) = 2g - 2 and that SWχ(k) φ 0. (As
usual, if h\(X) — 1 we use the C*-negative Seiberg-Witten invariant.)

There is one case we must treat separately.

Lemma 4.7. //iίi(C Z) ->- H\(X;Z) is injectiυe, then the homol-
ogy class represented by C is not represented by a riemann surface of
smaller genus.

Proof. lΐH\(C\ Z) —)> H\(X\ Z) is injective, then the skew-symmetric
pairing

Hι(X',Z)®Hι(X-,Z) ->Z

given by a ® b h-> (a U b, [C]) is of rank 2g(C). On the other hand, if
[C] is represented as the continuous image of the fundamental class of
a riemann surface of genus gf\ then this pairing has rank at most 2g'.
The result is immediate. q.e.d.

From now on we shall assume that the map H\(C\ Z) —> H\(X\ Z)
has a non-trivial kernel. With this extra hypothesis, we are in a position
to prove Proposition 4.1. Let X and C be as in the statement with
H\{C) -¥ H\(X) having a non-zero kernel. We double X along C. That
is to say, we form M = X#cX- Of course, b^iX) > 1 by hypothesis.
Since we are assuming that ϋΊ(C Z) -> ϋΊ(X Z) has a non-trivial
kernel, it follows easily from the Mayer-Vietoris sequence that b£ (M) >
2. This means that the Seiberg-Witten invariant SWM is independent
of the metric and the perturbing self-dual two-form. According to the
Product Formula and the corollary following it, we see that the Seiberg-
Witten invariant SWM is non-trivial.

On the other hand, if the homology class of C is represented by
a C°° riemann surface of genus less than that of C, then by adding
trivial handles we could arrange that C be as before (of square zero and
genus g) and in the same homology class, but also with at least one
trivial handle. That is to say, in X there is a four-ball meeting C in a
punctured torus, that punctured torus being unknotted in the four-ball.
We claim that this implies that SWM vanishes identically. This will
give a contradiction and will establish Proposition 4.1 as a consequence
of the Product Formula.

There are two different ways to show that SWM vanishes. We have
an embedded S2 of square zero and a dual torus in a manifold M with
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£>2~ (M) > 1. The existence of the dual torus implies that the homol-
ogy class of the sphere is of infinite order in homology. According to
Lemma 10.2 this implies the vanishing of SWM Alternatively, one can
notice that one of the generating circles 7 on the torus bounds an em-
bedded disk D in M which is disjoint from £ 2 , meets the torus only in
its boundary, and for which the normal vector field to 7 in the torus
extends to a nonwhere zero vector field over the disk. We do surgery on
the torus inside of M using this disk. This replaces the torus by a two-
sphere of square zero geometrically dual to the first sphere. A regular
neighborhood of the union of these two dual spheres is diffeomorphic to
S2 x 5 2 — BA. This gives a decomposition of M as a connected sum

M^M'#{S2 x S2).

Since b^(M) > 2, it follows that b^ {M') > 0, and hence by the con-
nected sum theorem [14] or [2] it must be the case that the Seiberg-
Witten invariant of M vanishes.

4.4. Proof of that Proposition 4.1 implies Proposition 4.2

Let C C X and k E C(X) be as in the hypothesis of Proposition 4.2.
Fix a 5pmc-structure P over X whose determinant line bundle has first
Chern class k. Suppose that C C = n > 0. We choose a metric g and
a self-dual two-form 77+ so that:

• The moduli space M{P, g, η+) is smooth of the correct dimension.

• The support of η+ is disjoint from C.

• If 62" {X) = 1, then the projection of 2πk + η+ into the self-dual
g-harmonic two-forms has negative integral over C.

We now blow up at n distinct points along C. That is to say, we
form the manifold

with a metric g\ which is a connected sum of the metric g with a stan-
dard metric on the CP factors, connected by sufficiently long tubes.
We let 77̂  be the form which vanishes on the CP factors and the tubes,
and which agrees with η+ on the rest of X\. Let E\... , En be the ex-
ceptional curves in X\. Let C\ be the connected sum of C and the
exceptional curves E\,... , En. This is a smoothly embedded curve in
Xι with g(Cι) = g(C) and Ci Ci = 0. Let kλ = k + £ ? = 1 E{. This
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is a characteristic class for X\ with (A;i,Ci) = 2g — 2. If b^Xi) = 1,
and the connected sum tubes are sufficiently long, then the projection
of 2πkι + ηf onto the g\ -self-dual harmonic forms will have negative
integral over C\.

There is a unique 5pmc-structure P\ for Xi, which agrees with P
on the complement of the exceptional curves and has determinant line
bundle with first Chern class k\. The blow-up formula [1] tells us that
if the connected sum tubes are sufficiently long, then

when we use compatible orientations on Hι(X) = Hι{X\) and H+(X) =
H\(Xι). Since this is true for all P, it follows that

Consequently, 0 φ SW%* (jfe) = SWχ\ (fci), where if b%{X) = 1, then we
use the C*- and C*-negative Seiberg-Witten invariants of X and X\,
respectively.

Thus, we see that X\,C\,k\ satisfy all the hypotheses of Proposi-
tion 4.1. By that proposition, it follows that C\ is genus minimizing in
its homology class. This implies that the same is true for C.

4.5. Proof of that Proposition 4.2 implies Corollary 4.4

Now we are ready to apply this general analysis to symplectic four-
manifolds and symplectic curves. The first step is to recall the results
of [12] about the value of the Seiberg-Witten function on the canonical
class of a symplectic four-manifold.

Lemma 4.8 (Taubes [12]). Let X be a symplectic four-manifold
with symplectic form ω. Let Kx G H2(X',Z) be the canonical class
of the symplectic structure. If b^{X) > 1, then SWχ(Kχ) = ±1. //
b%{X) = 1 then SW%{k) = ±1.

Let X be a symplectic four-manifold, and C c l a symplectic curve.
Let Kx G H2(X; Z) be the canonical class of the symplectic structure.
By the adjunction formula we have

(Kx,C)+CC = 2g-2.

Thus, Corollary 4.4 is immediate from the previous lemma and Propo-
sition 4.2 in the case where b^(X) > 1.
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Let us suppose that b£(X) = 1. For any symplectic curve C C X
with CO > 0, we have Jc ω > 0. This means that the class C* Poincare
dual to C and the class of ω lie in the same component of the double
cone

{x£H2(X',R-{0})\x x>0}.

Thus, SW% = SWg*, and Corollary 4.4 follows in this case as well from
Lemma 4.8 and Proposition 4.2.

5. The Seiberg-Witten equations for the three-manifold
N = S1 x C

The next five sections of this paper are devoted to the proof of the
product formula. This formula follows from a gluing theorem for moduli
spaces, which compares the product of moduli spaces for two cylindrical-
end manifolds with the moduli space for the glued-up manifold. The
proof of this gluing theorem follows the pattern laid down in the proofs of
the various product formulae in the case of Donaldson 5ί7(2)-invariants.
We begin in this section with the analogue of the Floer homology; that
is to say with the theory of the Seiberg-Witten equations for the three-
manifold N^S1 xC.

Recall that associated to the 5pmc-structure PN on a riemannian
three-manifold N there is an irreducible complex spin bundle S(PN)
unique up to isomorphism. In what follows we shall use the structure of
S{PN) as a module over the entire Clifford algebra Cl(N). There are two
possibilities for this module structure and we choose to work with the
one that factors through the projection to CZ(iV)+. The bundle S(PN)
is a two-dimensional complex bundle with a hermitian inner product. If
we have a hermitian connection A$ on the determinant line bundle CN
of this 5pinc-structure, then there is the associated self-adjoint first-
order elliptic Dirac operator $AQ. AS in the four-dimensional case, the
hermitian metric induces an anti-linear isomorphism

S(PN)->S*(PN).

We denote this map by ψ *->• *ψ*. Also, there is the exact sequence of

vector bundles:

0 -» A2{N) ® C -> S{PN) ® S*{PN) -> C -> 0,

where the first map is the adjoint of Clifford multiplication, and the sec-
ond map is the evaluation pairing (i.e., the trace of the endomorphism).
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These structures allow us to define a quadratic map

) -+Ω2(iV;C)

by associating to φ the element

q(φ) = φ <8> φ* -

This later element is in the kernel of the evaluation mapping and hence
defines an element q(φ) G Ω2(iV;C). As in the four-dimensional case,
this element is purely imaginary, i.e., it lies in Ω2(iV;iR).

The 3-dimensional Seiberg-Witten (or monopole) equations for a
Spinc-structure P/v —> N are equations for a pair (A,-0), where A is a
unitary connection on the determinant line bundle CN of P/v, and φ is
a section of the complex spin bundle S(PN). The equations are:

(SWS) : FA = q{φ),

ΦA(Φ) = 0.

The case of particular interest for us here is the case where N =
Sι x C and the determinant of the 5pmc-structure on N has degree
2<7 — 2 on C. Since the tangent bundle of N is naturally decomposed as
a product of the tangent bundle of C with a trivial real line bundle, a
Spmc-structure on C induces one on N.

Proposition 5.1. Let N = S1 x C. Consider all Spin0-structures
P on N, whose determinant line bundles C have degree 2g — 2 on C.
As we range over all these Spin0-structures there is exactly one solution
(Ao,φo) to the equations SW^ up to gauge automorphisms. The Spin°-
structure for which this solution exists is induced via the projection from
a Spin0-structure on C.

Proof. As in the case of the equations on the four-manifold, there is
a natural involution on the solutions to the three-dimensional equations.
This involution sends the determinant line bundle to its inverse. Thus,
it suffices to consider the case where the degree of the determinant line
bundle of a on C is 2 — 2g.

Let us first consider the case of a Spmc-structure P$ with the prop-
erty that the determinant line bundle CQ is induced from a line bundle
on C. Since ϋΊ(iV Z) has no two-torsion, a Spmc-structure on N is
determined up to isomorphism by its determinant line bundle. This
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means that the Spmc-structure Po is in fact an extension from SO(2)
to 50(3) of a £pmc-structure Pc on C. Let S^S^, be the complex
line bundles over C, which are the plus and minus spinors for PQ. Let
ei, β2 be an orthonormal, oriented basis for TC at a point. By definition
zeiβ2 acts on S^ by ±1, so that eiβ2 acts on SQ by ψi. Given a unitary
connection A on the determinant line bundle Cc -> C there are induced
operators: φ\ from sections of SQ to sections of 5^, and its adjoint φ~A

from sections of S^ to sections of S^. These operators are identified
with

(V2)dA: Ω°(C; (Kc 0 Ccf'2) -» Ω0-1^; (Kc ® Cc)
1/2)

and its adjoint
There are two irreducible representations of C7(R3), factoring through

ClCR?)^, the plus and minus one eigenspaces for — eie2β3. We choose to
work with the one SR3 factoring through (^/(R3)^. Thus, the bundle of
spinors on N for the induced Spinc-structure are simply P*(SQ)®P*(S^)

where p: N —> C is the natural projection. Given a unitary connection
A on p*(£c), the induced Dirac operator is given by

where V^ denotes the covariant derivative with respect to the connection
induced by A on S*1 evaluated on the unit tangent vector to the circle
in the positive direction.

In general, for a Spinc-structure P/v whose determinant line bundle
Cjsr is of degree 2 — 2g on C there is a line bundle C\ of degree 0 on C
such that CN = Co Θ £?. It follows that

® A = (P*(SJ) ® A) θ (p*(5c) ® A)

Writing the unitary connection A on Cjy as the product of a connection
Ao on Co and a connection and A\ on £χ, we see that

Thus, once again, the Dirac operator is given by the two-by-two matrix
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where as before V# denotes the covariant derivative of A in the circle
direction. To simplify the notation we write ΘA for ΘA\C

Now suppose that (A, φ) is a solution to the monopole equations for
a general S/>mc-structure P^. We write φ = (a,β) The Dirac equation
becomes

(Λ\ ~° v V\*^J ~«~ VV *)VA\H) — 0)
1 ; (V2)dA(a)+iVθ(β)= 0.

Applying -J^QA to the first equation yields

(5) ~

Suppose that in local holomorphic coordinates z = x + iy on C we
have FA — FXiydx/\dy + FxβdxΛdθ + Fyβdy/\dθ. Since we are using the
plus spin bundle over C/(JV), the action of FA by Clifford multiplication
is the same as the action of

Fx,ydθ - FXfθdy + Fyfidx

= Fχ,ydθ + 1 (Fyfi - iFXiθ) dZ+^ {Fyfi + iFχf) dZ.

This means that Clifford multiplication by FA is given by the matrix

/ -iFx,y {\(Fyfi-iFxft)di^))*\
\\{Fyft-iFxft)dzh{ ) ιFx,y ) •

It follows that the curvature equation of SW^ reads:

H 1/3|
- ιFχ,y = 2 '

- {Fyfi - iFxfi) dz = aβ.

Now we commute Vg and dA in Equation (5) introducing a curvature
term. Notice that

(8 A oVθ-VθodA)() = {FXte - iFy>θ)dz Λ ( ).

Plugging this in to Equation (5) gives

JL(a) + - ^ (-iFXfi + Fy>θ) dz a + dAd*A(β) = 0.
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Using the second part of Equation (4) we have

a + dAdA(β) = 0.

Now applying the curvature equation yields

- ^ (-iFxfi + Fyfi) dz =

and hence,

\ V2\a\2β + dAd*A(β) = 0.

Since rotation in the circle direction acts by isometries on TV, we have
V# — — V#, and therefore

\v*θVθ{β) + V2\a\2β + dAdA(β) = 0.

Taking the inner product with β then gives

h = °
Hence, aβ = 0. Plugging the fact that one of a or β equals zero into
the curvature equation, we see that

* PI 2 - IHI2

- ί U = p dvol{C).

Since the line bundle CM has negative degree on C, it must be the
case that β = 0. It now follows that a is covariantly constant in the
direction of the circle. In the end we have shown that β = 0, that

) = 0, that <9>ι(α) = 0, and that

(6) / \\a\\2dυol{C) =4π{2g-2).

Jc
Also, we have seen that the curvature FA is a two-form which is at

each point induced from a two-form on C. Since FA is also covariantly

constant in the direction of the circle, FA is the pullback of a two-

form on C under the natural projection N -> C. Lastly, since a is

non-zero on an open dense subset of N and is covariantly constant in

the circle direction, it follows that parallel translation with respect to

the connection A on the plus spin bundle has trivial holonomy around
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the circles. This implies that the holonomy of A on £ is also trivial
around the circles. Thus, up to gauge equivalence, the triple (£, A, α)
is induced from corresponding triple (Cc, AC,OLC) over C. Of course,
OLC must be a harmonic plus spinor for the Spmc-structure on C with
determinant line bundle Cc- Since the degree of Cc is 2 — 2#, the
bundle of plus spinors, (Kc ® Cc)1^2, is of degree zero. That is to
say it is a topologically trivial bundle. The connection Ac induces a
holomorphic structure on Cc a n d & holomorphic structure on (Kc <8>
£c) l y / 2 With respect to this holomorphic structure, OLC is a non-trivial
holomorphic section. This implies that the holomorphic bundle (Kc ®
£c) 1 / / 2 is holomorphically trivial and ac is a constant section. Its norm
is determined by Equation (6). Such a triple (Cc, Ac, OLC) then is clearly
unique up to gauge equivalence.

This proves that there is exactly one solution up to isomorphism
to the monopole equations on N = S1 x C among all Spin0 structures
whose determinant line bundle has degree 2 — 2g on C. Furthermore,
the Spmc-structure for which the solution exists is pulled back from a
Sfpmc-structure on C. By symmetry the result follows when the degree
is 2g — 2. q.e.d.

We need to fit SW3 into a non-linear elliptic context. Let us con-
sider the context of an arbitrary compact, oriented, riemannian three-
manifold N and a 5pmc-structure Pjy over it. We let B*(PN) be the
space of L^-configurations modulo the action of Z^-changes °f g a u g e

We consider the equations SW3 as defining a section ξsw of the In-
version of the tangent bundle of B*(PN). The tangent space to B*(PN)

at x = [A, ψ] is the cokernel of the linear map

L2

2(X ΪR) A L\ ((T*X ® ΪR) Θ S(PNγ) ,

where the map Dx is given by

Dx(if) = (2idf,-if.ψ).

These quotient spaces fit together to give the tangent bundle of B*(PN)>

The L2 version of the tangent bundle is the bundle whose fiber over x
is the cokernel of the map

Dx: L\{X\ iX) -> L2 ((T*X ® tR) Θ

The smooth section of this bundle given by the SW3 equations is
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The first thing to notice is that the zeros of this section are exactly
the gauge equivalence classes of irreducible configurations satisfying the
equations SW3. It is also an easy exercise to show that the differential
of this section is Predholm at every point. Thus, viewed in this way
there is a finite dimensional Kuranishi picture in a neighborhood of
each point of the moduli space of solutions to the equations SW3. The
Zariski tangent space is the kernel of the differential of the section and
the obstruction space is the cokernel of this differential.

Now let us turn to our special case.

Lemma 5.2. Let N and C be as in Proposition 5.1. Then the unique
solution of the equations SW3 in B*(PN) is a smooth point in the sense
that the Zariski tangent space and the obstruction space are trivial.

Proof. What this means is that for a solution x — (Ao,ψo) the
sequence

0 -> L\{X\ %R) - ^ L\ (τ*X ® iK 0 S{PN))

χ 0 R Θ S(PNή /Dx (L?(X; ΪR))

is exact. This is a direct computation along the same lines as the proof
of Proposition 5.1, but simpler.

5.1. Perturbations of the Seiberg-Witten equations on a
3-manifold

Let N = S1 x C and let P/v be a 5pmc-structure on N whose
determinant line bundle C has degree ±(2 — 2g) on C.

Corollary 5.3. Under the hypotheses of the previous lemma, for
any sufficiently small closed real two-form h on N there is a unique
solution to the perturbed Seiberg-Witten equations (SW%):

FA =

ΦA{Φ) = o.

This solution represents a smooth point of the moduli space in the sense
that its Zariski tangent space is trivial.

Remark 5.4. As in the unperturbed case we view the equations
SWyl as defining a smooth section of the Inversion of the tangent bun-
dle of B*(PN) Once again the space of solutions to the equations mod-
ulo gauge equivalence is identified with the zero set of this section, and
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the section is a non-linear Predholm section which is a perturbation of
the section associated to the equations SW3.

Proof. This result is immediate From Lemma 5.2 and the fact that
transversality is an open condition on a section. q.e.d.

Actually, in one special case we can identify the solution.

Corollary 5.5. With N and C as above, let n be a harmonic one-
form on C and let * be the (complex-linear) Hodge star operator for N.
We write n = η + η where η is a holomorphic one-form on C. Then
there is a unique solution (up to gauge) to the perturbed Seiberg- Witten
equations SW*n. This solution is gauge equivalent to one pulled up from
(A, ψ) on C where ψ = (α, β) with a being a constant real section r > 0
of S£ and β being the section of Sς = Λ°'1(Γ*C) given by =jp ; the
constant r is determined by the fact that

Proof. We proceed as in the case of the unperturbed equation. We
find

\\\Vθ(β)\\h + \\d*Aβ\\h + V2(aβ + iη,aβ)L2 = 0.

On the other hand, the fact that η is a closed form on C and that C is
induced from a line bundle on C gives that

0 = / iηΛFΛ = (iη,άβ + iη)L2.
JN

Adding the first equation to \/2 times this one yields

\\\Vθ(β)\\2 + \\d*Aβf + V2\\aβ + iη\\2

L2 = 0.

We conclude that aβ + iη = 0, that β is covariantly constant in the
circle direction, and that d*A(β) — 0. Plugging these back into the Dirac
equation we see that a is covariantly constant in the circle direction and
that 3AOL = 0.

Prom this everything else is a direct computation. q.e.d.

Remark 5.6. A perturbation of this type was introduced by Witten
in [14] in order to study solutions to the Seiberg-Witten equations over
a Kahler surface.
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6. The gradient flow equation for solutions on a cylinder

6.1. The Seiberg-Witten equations on a cylinder I x N

Let us consider a smooth, oriented riemannian four-manifold X
which is orientation-preserving isometric to / x N where N is a closed
oriented three-manifold and / is a (possible infinite) open interval. Our
purpose here is to rewrite the Seiberg-Witten equations on X as gradi-
ent flow equations for a path in the space of configurations on N. Let
π: X —> N be the natural projection. We have a natural isomorphism
of bundles of algebras π* (Cl(N)) —• CIQ(X). This isomorphism sends
αo + OL\ in π* (Cl(N)) to αo + V a\ where V is the unit vector field in
the positive direction along /.

Suppose that P —> X is a 5pmc-structure for X. Let Q -> X be
the [/(l)-bundle which is the determinant of P. There is a [/(l)-bundle
QN —> N and an isomorphism j \ TΓ*QN ~^ Q- The double covering
P -> Pso(A)X χx Q induces a double covering Pjq —> Pso(3)N XN QN
(which is then a Spmc-structure on N) and an embedding π*P/v <-» P
covering the obvious embedding

N QN) °-> PSO{A)X χ x Q

The spinor bundle S(P) is an irreducible module over Cl(X). As a
module over Clo{X) = π* (Cl{N)), it splits as S+{P) Θ S~(P) with
each of S±(P) being an irreducible module over π* (Cl(N)). Thus we
have an isomorphism of ί/(2)-bundles

where p+ carries the action of the bundle of Clifford algebras π* (Cl(N))
to the action of Clo(X). This means that, letting V be the unit vec-
tor field in the positive /-direction, for any section σ G S(P) and any
tangent vector e in the iV-direction we have

It follows that if F is a two-form on N then

so that
p+(ωc(N) σ) = ωc(X)p+(σ) = p+(σ).

Hence ωc{N) acts as the identity on S{PN).
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Claim 6.1. Let φ(t) be a section of π* (S(PN)J and let A(t) be a

one-parameter family of connections on QN> We can view the A(t) as
defining a connection A on Q via the isomorphism TΓ*QN = Q. The re-
sulting connection A is temporal with respect to the given product struc-
ture in the I-direction in the sense that the A-parallel translation in the
I-direction gives the product structure in this direction. Then we have

Proof Let ei,e2,β3 be an orthonormal basis for TN at a point
n £ N. We compute

Clearly, Vβ<(/9+(^(n,t))) = p+(Ve i(^(n,t))). Since A is temporal with
respect to the given product structure in the /-direction, we have

Hence,

3

Σ -
3

= - v Σ
ι = l

3

t = l

^ y q.e.d.
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Claim 6.2. Let F(t) be a one-parameter family of complex-valued
two-forms on N. It determines a two-form F on X. Let ψ(t) be a
section of K*(S(PN)). Then we have

\{F + HF) • p+(φ(t)) = F • p+(φ)(t) = p+(F{t) • φ(t)),

where *4 is the complex-linear Hodge ̂ -operator on the four-manifold
X.

Proof This is immediate from the fact that p+(ψ) is a section of
5+ (P) and that p+ commutes with Clifford multiplication and the em-
bedding Cl(N) = Clo(X) C Cl(X). q.e.d.

Lemma 6.3. With the above isomorphisms, the Seiberg-Witten equa-
tions on X, written in terms of a path (A(t),ψ(t)) in the configuration
space of PN, are

where * is the complex-linear Hodge star operator on N. We can rewrite
these equations as

^ίί> - Fm),

where, once again, * is the complex-linear ^-operator on N.

Proof. We have already seen that the second equation is the Dirac
equation. The curvature equation on X is:

{FA(t) +dtΛ —)+ = p+ o q(ψ(t)) o (p+)-\

where the left-hand-side is interpreted as the automorphism induced by
Clifford multiplication. Equivalently, we can write the equations as an
automorphism of 5(P/v):

(P+Γ 1 o (FA(t) +dtΛ ^ ) + o p+ = q(φ(t)).
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Of course,

, dA.. 1 /„ dA , , dA\
(F«t) +dtA^)+ = 2 [FMt) + *-dJ + d t A *F«*) + dt Λ "at ) '

where * denotes the complex-linear Hodge star operator on N. Accord-
ing to Claim 6.2 then the composition

is simply Clifford multiplication by

* —
v ' ot

Thus, we can rewrite the curvature equation as

dA

q.e.d.

6.2. The gradient flow equation

Now we are ready to show that the Seiberg-Witten equations on X
are equivalent to a gradient flow equation. We choose to work with the
L\-version of the configuration space for P/v Thus, the space C(PN) is
the space of pairs (A, φ) where A is an L^-connection on the determinant
line bundle of P/y, and ψ is an L\-section of the associated spin bundle.
The group of gauge automorphisms is the group of Z^-maps from N to
S1. Notice that every element of the group of gauge automorphisms is
a continuous map. To make the expressions come out on the nose, we
choose a slightly non-standard inner product on the tangent bundle to
C(PN)> The tangent space is identified with the space of Lf-sections
of (T*N <g> iR) ® S+(PN). The inner product we take is the standard
iΛinner product on the first factor and is twice the real part of the
L2-hermitian inner product on the second factor. We denote this inner
product by ( , )'L2 Notice that for tangent vectors α, b G Ω1(X; iR) the
L2 inner product is given by

(α, b)L2 = — / α Λ *6,
JN

where * is the complex-linear Hodge *-operator. The reason for the
change of sign is that the forms are purely imaginary and the positive
definite product is given by the complex anti-linear Hodge *-operator.
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Fix a background C°° connection A$ on £#• Using this choice we
define a function

f:C(PN)-+R

by setting

f(A,φ)= ί FAoΛa+l ί aΛda+ ί (<ψJAψ)dvol,
JN * JN JN

where a = A — AQ. It is easy to see that / is a smooth function in the
Zq-topology, and if we replace A$ by a different background connection
Ai, then we simply change the function / by a constant.

Lemma 6.4. There is a natural homomorphism

c:G{PN)-+H1(N;Z)t

which assigns to each L\-map σ: X —> Sι the pull back under σ of
the fundamental cohomology class for the circle. This map is surjective
and its kernel is the component of the identity GO{PN) of G(PN) If
σ E G{PN), then

f(σ (A,ψ)) = f{A,rl>) + 2π(c(σ)Ucι(£),[N]).

In particular, f: C(PN) -» R descends to a map

f: B(PN) ->R/2πZ.

Proof. This lemma is a direct computation. q.e.d.

In particular, we can use the function / to define a vector field on
B*(PN). Notice that the inner product that we have chosen on the
tangent bundle to C(PN) descends to an inner product on the tangent
bundle to B*(PN).

Definition 6.5. We denote by B*{PN) the quotient of C*(PN) by
GO{PN) This is a normal covering space of B*(PN) with covering group
Hι(N] Z). Notice that / descends to a function

By the gradient Vf(A,ψ) we mean the formal tangent vector to C(PN)
for which the following equation holds for any Lf-tangent vector r to
C{PN) at (A,ψ):

| 5 = 0
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From this description it seems that Vf(A,ψ) is only an L?_x tangent
vector. Actually, as we shall see below, it is an L2-tangent vector. As
such it is a tangent vector to a bigger space of configurations defined by
a weaker norm.

Proposition 6.6. Fix an open interval I. If a configuration
(A(t), ψ(t)) in a temporal gauge for the Spin0-structure I x P/v -> / x N
satisfies the Seiberg-Wίtten equations, then it gives a C°°-path in C(PN)
satisfying the gradient flow equation

Two solutions to the Seiberg-Witten equations are gauge equivalent if
and only if the paths in C(P/v) that they determine in temporal gauges
are gauge equivalent under the action of the group G(PN)-

Remark 6.7. The gradient flow equation makes sense for any C1-
path in C(P/v), where we view the equations as equations of continuous
functions on / with values in the space of L2-sections of
(τ*X®iR®S{PN)y Along any path (A(t),ψ(t)) in C(PN) which
comes from a solution of the Seiberg-Witten equations the gradient of
/ is in fact a smooth section of (T*N ® iR) Θ S(PN), as can be seen
using reasonable standard methods in elliptic regularity theory. In par-
ticular, at such points the gradient of / is an actual tangent vector to
the infinite dimensional Hubert manifold C(P/v)

Proof Let us compute (S7 f(A,ψ),τ)'L2 f°r a tangent vector r =
(77, λ) to C(PN) at {A,ψ). We first consider the case where λ = 0,
i.e., the vector is a tangent vector in the connection direction; i.e., η G
L\ (T*X ® iH). Computing directly from the definition we see that

7P= /
vV JN

FAoΛη+ l{ηΛda + aΛdη) + J [ (ψ,η "ψ)dυol.

Of course, by Stokes' theorem we have

/ a Adη = / η Ada
JN JN

and hence we can rewrite the above expression as

jf - / FAo A η + η A da + \ I (ψ,η φ)dvol
vv JN * JN

= / η A FA + - / (ip, η φ)dvol.
JN Z JN
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The following claim is established by a direct computation in a local
basis.

Claim 6.8. Let μ, v be purely imaginary two-forms on N and let
(μ, v) be the pointwise hermitίan inner product between them. Then

where Cl(x) is the endomorphism of S(PN) which is Clifford multipli-
cation by x.

Claim 6.9. Let μ be the purely imaginary two-form on N such that
Clifford multiplication by μ is the automorphism q(ψ) and let η be a
purely imaginary one-form. Then the pointwise inner product (Ψ, η ψ)
is given by:

{ψ>η"ψ) = -2*(ryΛμ) = 2(*τj,μ),

where * is the complex-linear extension of the Hodge star operator.

Proof. Fix a unitary basis for S(PN) at a point. Then the value of
(ψ,η Ψ) at that point is given by the matrix product

φT-Cl(η)-φ,

where T indicates the transpose. This product is of course simply the

trace of the matrix product

which is the trace of the composition of Clifford multiplication by 77 and

q(ψ) + m~Id. Since 77 is a one-form, the trace of Clifford multiplication

by 77 is zero. Thus, we have that the trace of the composition (77-) o ^ - I d

is zero, and hence

(ψ{x),η{x) ψ(x)) = Tr {(Cl{η) o q{φ(x)) .

Of course, since S(PN) is a module over Cl+(T*N) it follows that
Cl(η) — Cl(*η) where * is the complex linear extension of the Hodge
star-operator. According to the previous claim this trace is equal to
2(μ, *r/). Since μ and 77 are purely imaginary, this last inner product is
equal to —2 * (μ Λ 77) and is also equal to 2(*77, μ). q.e.d.
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It follows immediately from the claim that

[ (φ,ηφ)dvol = -2 I ηΛq{φ),
JN JN

where we view q(φ) as a purely imaginary two-form on N through the
inverse of Clifford multiplication. Thus, we see that

dη JN

where * is the complex anti-linear Hodge *-operator. This means that
at least for the tangent vectors in the connection directions we have that
Vf(A,φ) is given by

*(FA-q(ψ)).

(Let us emphasize once again that here the *-operator is the complex
anti-linear one.)

Now let us compute in the directions tangent to the spinor field. Let
λ be a section of S(PN). We have

dλ jN

Since the Dirac operator is self-adjoint we can rewrite this as

/
N

=2Re((λJA(φ)))L2 = (\9

Thus, the component of V/(A, φ) in the direction of the spinor fields is

Notice that the critical set of /, i.e., the subset of (A,ψ) for which
, φ) = 0, is exactly the set of solutions to the Seiberg-Witten

equations on N.
Furthermore, the equation

reads

^ = *(FMt) - q(φ(t)))

and
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where in the first equation the *-operator is the complex anti-linear
Hodge *-operator, which is minus the complex-linear Hodge *-operator.
Rewriting the first equation with the complex-linear *-operator yields
precisely the Seiberg-Witten equations.

Now let us consider solutions up to gauge equivalence. Since we are
always working in a temporal gauge, the only freedom we have is to vary
a solution (A(£), ψ(t)) by a gauge transformation σ(t) which is constant
in t, that is to say σ(t) = σ G G(PN) for all t. Clearly, such an operation
changes / by a constant and hence leaves the gradient of / invariant.
Hence, it takes gradient flows to gradient flows. This completes the
proof of the proposition. q.e.d.

Since any solution of the Seiberg-Witten equation is gauge equivalent
to a C°° solution, we see that if (A(t),φ(t)) is a solution, then the
function f(A(t),φ(t)) is a C°° function of t.

6.2.1. Estimates related to the function /

We finish this subsection with two lemmas pertaining to the function
/ which will be used later in establishing exponential decay of solutions
on the tubes. Throughout this subsubsection we assume that N =
S1 x C, with C being a curve of genus g > 1, and that the determinant
line bundle of P/v is induced from a line bundle on C which has degree
2-2p.

The first lemma is closely related to the fact that / satisfies Smale's
Condition C. On each tangent space to B*(PN) there is an L\-metric.
We identify the tangent space at the point [A, φ] E B*(PN) with the
slice in C(PN) through (A,τ/>). The square of the Lf-norm is identified
with the restriction to this slice of the sum of the usual Lf-norm on
one-forms and the L^-norm on sections of 5(P/v) computed using the
connection A. It is easy to see that this metric is independent of the
choice of representative (A, φ) for the point in #*(P/v).

Lemma 6.10. For any e > 0 there is λ > 0 such that if x =
(A, φ) e B*(PN) has L^-distance at least e from the critical point [Ao, ^o];
then

λ.

Proof. If this result does not hold for some e > 0, then there is
a sequence X{ = (Ai,φi) in B*(PN) whose Z^-distance from X{ to the
critical point is at least e for which
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asmoo. This means that

and

as i ι-» oo. Thus there is a constant C > 0 such that

\FAi-q(φi)\2 + 2\φAi(φi)\2<C.
N

Using the Weitzenbock formula for <pAio@Ai we can rewrite this inequal-
ity as

By Claim 6.9 and the fact that by construction S(PN) is a module over
Cl(T*N)+, we have

2(FAi,q(ψ)) = (FAiψ,ψ).

Thus, this expression simplifies to

\\FAi\\2

L2 + ̂ ll^lli* +2| |V A i (^)Hi2 <C S l

It follows easily from this inequality that
IIVΛiWOHi,2 a r e a ^ bounded independent of i.

Since the FA{ are bounded in L2, this means after appropriate changes
of gauge, we can arrange that the A{ are uniformly bounded in L\. Thus
the ψi are bounded in L\. We fix a base C°° connection A$ and write
Ai = Ao + α». Then

Since the α; are bounded in L\ and the ψi are bounded in Lf, after
passing to a subsequence, we can assume that α̂  φi converges in L2,
so that φAodΨi) converges in L2. This means that the component of
φi which is L2-orthogonal to the harmonic spinors converges in L\.
The L4-bound on the φi implies that the harmonic projection of the φi
are bounded in every norm. Hence, after replacing the sequence by a
subsequence, we can assume that the φi converge in L\ to a limit ^oo
This implies that the q{φi) converge in L2 to q{φoo), and hence that
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the FA{ converge in L2 to q{ψoo)> It now follows that the Ai converge
in L\ to a limit A^. Of course, the limit {AQQ^OQ) is a solution to the
Seiberg-Witten Equations SW3 for P^. Thus, we have shown that there
is a subsequence of the X{ which converges, to an element x^ G C(PN).

This limiting element is a solution to the Equations SW3 and hence is
irreducible. But its image in B*(PN) has L\-distance at least e > 0 from
the critical point. This is a contradiction. q.e.d.

We also need estimates near the critical point.

Lemma 6.11. There is a constant K > 0 such that if the L\-
distance from [A,φ] to the critical point is sufficiently small, then the L\-
distance from [A,ψ] to the critical point is bounded by
K\\Vf(A(t),ψ(t))\\L2.

Proof. A direct computation shows that V(/(A, ψ)) is ZΛorthogonal
to the tangent space to the gauge orbit through (A, Ψ). Thus,
||V/(-A,^)||L2 is equal to the L2-norm of the value at [A, ψ] of the sec-
tion ξsw> Since ξsw is smooth and is transverse to zero at the critical
point of /, the lemma is immediate. q.e.d.

6.3. Preliminary estimates on tubes

Let us begin with an elementary estimate for any tube T = [α, b] x N.

Claim 6.12. Let ^y(t) = (A(t),ψ(t)) be a solution to the Seiberg-
Witten equation on the tube [α, b] x TV. Let ί — b — a be the length of
the tube, and let

E2 = f \Wf{Ί{t))\\h{Nt)dt = \\λfLHτ) + \\φ\\l2{τ)
Ja

be the square of the energy of the solution. Finally, let —so be a lower
bound for the scalar curvature of N, with SQ > 0. Then

\\<ψ\\2

L4{τ) <

Proof. We have

rb

E > f \\
Expanding the the right-hand-side of this expression using the Bockner-
Weitzenbock formula and Claim 6.9 we see that

W\\h(Nt) - s-f\\Φ\\h(Nt))
 dt>
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and hence that

By Cauchy-Schwartz we have

Putting this together proves the claim.

Corollary 6.13. Under the hypothesis and notation of the previous
lemma we have

Proof. Since (A, ψ) is a solution to the Seiberg-Witten equations we
have Fj[ = q{ψ) and hence \F%\ = \q(ψ)\ = ^\φ\2. q.e.d.

The next result is a standard type of bootstrapping result in the
elliptic context.

Lemma 6.14. There are constants Eo,K > 0 depending only on
N such that for any T > 1 and for η(t) = (A(t),ψ(t)) any solution
to the Seiberg-Witten equation in a temporal gauge on [— 1,T + 1] x N
satisfying

/

Γ+l

we have
rT rT+1

/ l|V/(7(*))l|2

L2(iV) < K /
J 0 J — 1

Proof. Let T be a four-manifold of the form [α, b] x N and let j(t) =
(A(ί), ψ(t)) be a solution to the Seiberg-Witten equations in a temporal
gauge on T for the 5pmc-structure P = [α,6] x P/v We denote by
l — b — a the length of the tube T. Let us denote by the square of the
energy

E2 = / \Vf(Ί(t))\2dvo\Ndt
JT

+ \fA(Φ)\2) dvolNdt
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Let B( , •) be the bilinear form on the space of sections of S+(P)
with values in Ω+(T;iR) which is associated to the quadratic form q.
Differentiating the Seiberg-Witten equations gives

P+d(A)-B(ψ,ψ)=0,

The fact that V/ is ZΛorthogonal to the gauge orbit at each point
implies that

d*NA + Im(V>, Ψ) = 0 .

Since A and hence A have no dt-component we can rewrite this last
equation as

A ) = 0 ,

where d* is the adjoint of d on the four-manifold T.
We fix a C°°-function ξ: T —> [0,1] which is identically one on the

middle third T' of T and identically zero near the ends of Γ. We do
this so that \dξ\ is at most M/£ for some universal constant M. We set
V — ξA and λ = ξψ. Let us consider the operator

E(V, λ) = (p+d(V) - B(λ, V), 9A(X) + \v -ψ, d*V 4- Im(λ,

Since E(A, ψ) = 0, it is easy to see that there is a universal constant Co
such that

(?) \\E(v,x)\\2

L2{τ) < Q ( | | i | | | 2 ( Γ ) + WΦWhm

On the other hand, direct computation shows that

(8) >\ (\\P+d(V)\\lHτ) + WΛW\\1HT) + \\d*(V)\\lHτ))

- 2 (||2?(λ,φ)\\\2{τ) + i||V |

For the moment, let us assume that i<\. By the Sobolev multipli-
cation theorem we see that there is a constant Cι depending only on N
such that
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By Lemma 6.14 and the Sobolev embedding theorem, this implies that
there are constants C2, C3 depending only on N such that

\\B(\,ψ)\\h{τ) < (c2Vi + c3E) \\\\\li{T).

Similarly, choosing 62,63 appropriately we can also arrange that

and
||Im(λ,V)||2L2(τ) < [c2St + CzE) | |λ| |2

2 ( Γ ).

Putting all this together we have constants C4, C5 independent of i
such that

\\B(KΦ)\\h{T) + \\\V • Ψ\\h[T) + | | I m ( λ , |

(9) < (C^l + C5E) (\\V\\lί{τ)

Lastly, from the Weitzenbock-Bockner formula for the Dirac opera-
tor it follows that

\\?A(mh > I|VA(A)||2L2(T) - j | | λ | | 2

2 ( τ ) + \

where —5o is a non-positive lower bound for the scalar curvature of N.
Thus, we see that there is a constant CQ such that, again replacing
62, Cs by larger constants if necessary, we have

C3E) | |λ | | 2

2 ( r ) .

From this and Equations (7), (8), and (9) we conclude that given
any δ > 0, there are constants 0 < έo < 1 and Eo > 0 such that if
0 < ί < £0 a n d 0 < E < EQ then there is a constant C depending only
on N such that

\ (||P+ d{V)\\lHτ) + ||VΛ(λ)||22(τ) + |K(F)||2

2 ( T ))

<J2 (\\M\b(T) + WWh(T)) - δ (\W\\lnτ) + \\M\lϊ(τ)) •

Standard elliptic estimates for the operator (P+d, d*) show that,
provided that δ > 0 is sufficiently small, this inequality implies that
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there is a constant Ko depending only on N such that if E < EQ and
the length of the tube T is equal to ίo, then

Since V\τ' = A\τ> and λ\τ' = Ψ\TΊ this yields that for any tube T
of length Z$ and any solution (A(t),ψ(t)) on T whose energy is at most
En we have

+ < f r (\\Mbm + WΦWΪHT)) •

Now let us drop the assumption that the length of T is IQ. By adding
up over a sequence of middle third tubes of length ô? we establish the
statement of the proposition easily from this inequality. The constants
are Eo and K = 3K0/£Q. q.e.d.

6.4. Exponential decay in tubes

In this subsection we restrict to the Case when N = S1 x C where
C is a closed riemann surface of genus g > 1 and where P/v is induced
from a Spmc-structure on C whose determinant line bundle has degree
±(2 — 2g) on C. According to Proposition 5.1 and Lemma 5.2, the
character variety of solutions to the Seiberg-Witten equations is one
point, this point being a non-degenerate solution. It is the purpose
of this section to use this non-degeneracy to establish two fundamental
exponential decay results. But before we get to these results we establish
some elementary estimates for solutions in the tube.

Our first exponential decay result is a fairly standard one. It con-
cerns flow lines which are near the critical point. It is a consequence
of the fact that the critical points are non-degenerate, see, for example
[10] or [6], for similar estimates for the SU(2) anti-self-dual equations.

Lemma 6.15. With N = 5 1 x C and PN a Spin0-structure whose
determinant line bundle C has degree =t(2 — 2g) on C, there are positive
constants e,δ > 0 such that for any T > 1 if (A(t),ψ(t)) is a solution
to the Seiberg- Witten equations on [0, T]x N in a temporal gauge and if
for each t, 0 <t <T, the equivalence class of (A(t),ψ(t)) is within e in
the L\-topology on B*(PN) of the solution [Ao,ψo] of the Seiberg-Witten
equations on N, then the distance from [A(t),ψ(t)] to [Ao,ψo] in the
L\-topology is at most

doexp(-δt) + dτexp(-<5(T - ί)),
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where do (resp. dr) is the L\-distance from [A(0),^(0)] to [Ao,V>o]
(resp., the L\-distance from [A(T),ψ(T)] to [AQ,ΨQ]).

The other exponential decay result is more delicate. This is a special
case of the 'small energy implies small length' results established by
Simon in [9], see [6] or [10], for similar results in the SU (2)-context.
They apply without the assumption that the critical point is isolated and
non-degenerate. Here, the results are stronger than the general results
and can be established fairly directly using the previous exponential
decay.

Proposition 6.16. There is a constant δ > 0, and given any λ > 0
there is EQ > 0 such that for any solution (A(t),ψ(t)) in temporal gauge
to the Seiberg-Witten equations on [— 1,Γ + 1] x N, with T > 1, the
following holds. Let 7: [— 1,Γ + 1] -» C(P/v) be the associated path to
the solutions. If f{j{T + 1)) - /(7(-l)) < Eg, then forO<t<T, the
L\-distance from [A(t),ψ(t)] to the static solution [Ao,^o] is α* 'most

λ(exp(-ίt) + exp(-<S(T - ί))).

Proof First notice that

/(7(T + 1)) - /(7(-l)) = j \\Vf(Ί(t))\\hdt.

We fix 0 < €χ << 62 with €2 being less than the constant e > 0 given
in the statement of Lemma 6.15. It follows from Lemma 6.10 that, if
EQ is sufficiently small, then the total length of the open subset of
t e [-1,Γ + 1] for which [A(t),ψ(t)] has L?-distance at least eλ > 0
from the critical point is less than 1/2, and in particular, there must be
$1 G [0,T] such that the Lf-distance from [A(tι),φ(tι)] to the critical
point is at most e\. Suppose that there is £2 € [0,T] so that the L\-
distance from [A(t2),ψ{t2)] to the critical point is > €2. By symmetry
we can assume that t\ < £2- We can then choose the first such £2, so
that 7([ίi,<2]) is contained in the closed L\-neighborhood of diameter
€2 of the critical point and the distance from [-A(t2),̂ (*2)] to the critical
point is exactly 62. By Lemma 6.15 we have that for any t E [*i, ̂ 2]?
L\ distance from [A(t),ψ(t)) to the critical point is at most

We consider a u 6 [£1^2] for which the Z^-distance from [A(u),ψ(u)] to
the critical point is exactly 62/2. For this u we have
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Since t\ « 62, we must have

or equivalently
ί(*2-ti)<log(3).

We conclude that

Since the Lf-distance from [i4(<2)ĵ (*2)] to the critical point is 62, we
know that the I^-distance from [A(u),ψ(u)] to [Afa)^^)} is at least
€2/2, and consequently,

/ '
Ju

Of course, since the volume of the tube [u,^] x N is bounded, the
Cauchy-Schwartz inequality tells us that there is a positive constant 63
depending only on N such that

I
By Lemma 6.14, this implies that there is a positive constant €4 such
that

But
/ :

\\Vf(l(t))\\h{N)dt < /

Provided that Eo is sufficiently small, this is a contradiction.
It follows from this contradiction that given €2 > 0, with 62 < 6,

if JE?O > 0 is sufficiently small then for all t € [0,T] the point j(t) is
contained in the Z^-neighborhood of diameter €2 centered at the critical
point. Hence, if EQ > 0 is sufficiently small, by Lemma 6.15 for all
t e [0,T], the L?-distance from [A(t),ψ(t)] is at most

doe-S(t) + dτe-*(τ-t) ^

where do (resp. dr) is L\-distance from [A(0),^(0)] (respectively
[A(T),ψ(T)]) to the critical point. Of course, since the whole path is
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contained in the 62-neighborhood of the critical point, we have do,dτ <
€2- The result now follows by taking €2 < λ. q.e.d.

Of course, the ellipticity allows us to bootstrap these Lf-estimates
into C°° estimates.

Corollary 6.17. There is a constant δ > 0, and given any λ > 0
there is EQ > 0 such that for any solution (A(t),ψ{t)) in temporal gauge
to the Seiberg-Witten equations on [— 1,Γ + 1] x N, with T > 1, the
following holds. Let 7: [— 1,T + 1] -> C(PN) be the associated path. If
f{j(T + 1)) - /(τ(-l)) < El, then for 0 < t < T, the C°°-distance
from [A(t),φ(t)] to the static solution [AQ,ΨQ] is at most

X(exp{-δt) + exp(-ί(T - t))).

6.5. The space of all solutions on the cylinder

In this section we shall describe the space of all finite energy solutions
to the Seiberg-Witten equations on R x N in the context of the previous
section: N = Sι x C with C being a riemann surface of genus g > 1
and C having degree 2g — 2 on C.

Lemma 6.18. There is a constant K depending only on the rie-
mannian 3-manifold N = Sι x C such that the following holds. Let
R x P/v onΈl x N be a Spin0-structure for which the degree of the de-
terminant line bundle of PN on C is (2 — 2g). Let (A,ψ) be a solution to
the Seiberg-Witten equations for R x N. Write (A,ip) = (A(t),ψ(t)) in
a temporal gauge and let 7: R -> C(PN) be the path determined by this
solution. Suppose that the function /(7(ί)) has finite limits as t H-> ±00.
Then for every x E R x N we have

\φ{x)\<K.

Remark 6.19. This corollary holds for any closed three-manifold
and any 5pmc-structure on it. The proof uses the weaker energy-length
results alluded to before.

Proof. In an appropriate gauge any finite energy solution is C°°.
An immediate application of Corollary 6.17 to longer and longer finite
tubes shows that the solution (A(t),ψ(t)) decays exponentially in the
C°°-topology to the static solution [Ao^o] as ί ^ ±00. Since there is
clearly K\ with the property that |^o(^)| ^ K\ for every x G iV, either
|^(x)| < K\ for every x G R x N or |^(^) | achieves its maximum at
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some XQ G R X N. At a local maximum XQ an easy maximum principle
argument (see [4], for example) shows that

\φ{xo)\ < -Φo),

where n is the scalar curvature. Since the scalar curvature of R x N is
bounded, the lemma follows. q.e.d.

Lemma 6.20. Suppose that (A,φ) is a solution to the Seiberg-Wit-
ten equations for RxPjγ onllxN and that the degree of the determinant
line bundle of PN on C is (2 - 2g). Write {A,φ) = (A(t),φ(t)) in a
temporal gauge and let 7: R -» C(PN) be the path determined by this
solution. Suppose that the function /(7(ί)) has finite limits as t ^ ±00.
Then A is a holomorphic connection with respect to the natural complex
structure on X = RxN = ( R x S 1 ) x C = C*xC, andφ = (α,0) where
a is a holomorphic section of (C^Kx)1/2. Furthermore, if the solution
is not a static solution, then the formal dimension of the moduli space
at this solution is negative.

Proof. As before, the condition on the function f(j(t)) implies that
as t H ±00 the configuration (A(t),φ(t)) decays exponentially in the
C°°-topology to a static solution. Writing the spinor field φ as (α, β)
as before and applying &A to the Dirac equation give

dAdA(a)+ dAd*A(β) = 0.

Invoking the curvature equation we get

Because the determinant line bundle has negative degree on C, it
follows that for the static solution β = 0. Thus, the field β is decaying in
L\ to the trivial field, and since A is decaying in L\ to a fixed connection
pulled back from C, we see that we can take the pointwise inner product
with /?, integrate by parts over X — R x N and conclude that

dvol = 0.
II I I ' I I J~~l. \ ' / % /

X

Thus, as before, we have that one of a and β is zero. In fact, it must
be β that is zero because of the nature of the limits as t i-> ±00. This
implies that A determines a holomorphic structure on C with respect
to which α becomes a holomorphic section of CQ.
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At this point we have shown that any solution must be holomorphic.
Lastly, let us consider the dimension of the moduli space at the solution.
The formula for the dimension is the same as in the closed case. Namely,
the dimension is

FA))=(l-g)± I FA.RXS1 / / ^π JKxSi

(Since A is decaying exponentially to a connection pulled back from C
at each end, the restriction of A to R x Sι decays exponentially to a
product connection at each end. Thus,

9*r / F A

Zπ JKxS1

is well-defined and finite and in fact is an integer.) Since the metric is
the standard flat metric in the R x S 1 direction, this means that the
connection AQ on £Q = \JC® Kx induced by A and the holomorphic
metric connection on Kx decays exponentially to a product connection
at each end, and

FA = 2 FAo.
KxS1 JKxS1

It follows that the formal dimension of the moduli space is

2(1 -g) £- I FAo.
2 π JKxS1

But a is a holomorphic section of CQ which converges exponentially fast
at each end to a constant non-zero section. Hence, we can extend the
connection AQ\HXSI to a holomorphic connection on a line bundle over
5 2 , and extend α to a holomorphic section which does not vanish at
either of the points added at the ends. This means that ^ JKxSi FAo is
equal to the number of zeros (counted with multiplicity) of the holomor-
phic section α. In particular, this integral is non-negative, and is zero
if and only if a is a constant section. Thus, the formal dimension of the
moduli space is non-positive and is zero only when α is constant along
each R x 5 1, and hence constant on X. This means that our solution
is the static solution. q.e.d.

Remark 6.21. Notice that in the course of this proof we have
shown that for any finite energy solution to the Seiberg-Witten equa-
tions on the infinite cylinder R x N then the spinor field is identified
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with a holomorphic section a of CQ

— / FA = 2(# zeros of a),
ϊπ JKxS1

Definition 6.22. We call (i/2π) / R χ 5 l FA the degree of A along
R x S 1 , and similarly we define the degree of AQ along R x S1.

Let 7: R ->• B*(PN) be a path with limί(_>_oo(7(ί)) = lim ί^oo(7(ί))
being the solution for P/v of the three-dimensional Seiberg-Witten equa-
tions for Pjq. Say η(t) = (A(t),ψ(t)). Denote by A the connection on
R x ί - ^ R x J V determined by the path A(t) on connections on C.
Lift 7 to a path 7 in B*(PN) This path has endpoints which differ by
a lattice point in i/1(iV;Z). Let 5(7) be this difference. Then for any
one-cycle W in TV we have:

KxW

L e m m a 6.23. For any solution 7(t), —00 < t < 00, to the gradient
flow equation with the property that limί(_^_00/(7(ί)) and limί l_^oo/(7(t))
are both finite, the difference element £(7) is a non-negative integral
multiple of the Poincare dual of [C] in Hι(N; Z).

Proof. The condition on the limits of /(7(t)) as t *-> ±00 implies
that the gauge equivalence classes of \imt^-ooj(t) and limί(_>oo7(ί) are
equal to the solution to the three-dimensional Seiberg-Witten equations
on P/v, so that the difference element $(7) is defined. For any x E C
the value of £(7) on [Sι x {x}] is equal to the integral of iFA/2π over
R x S1. Since the metric is flat on this factor, this integral is equal to
twice the degree of CQ over R x S1 x {x} which is equal to the number
of zeros of the section a on this factor. Since a is a holomorphic section,
its number of zeros is non-negative.

To complete the proof we need to see that (£(7), {#o} x W) — 0 if
W is a one-cycle in C and ΘQ E Sι. Consider the restriction of AQ to
any slice {t} x θ x C. This is a connection on a complex line bundle of
degree zero. It, of course, determines a holomorphic structure for this
line bundle. The restriction of the section α to this slice is then a holo-
morphic section with respect to this holomorphic structure. Provided
that α is not identically zero on the given slice, this means that the
holomorphic structure determined by AQ over this slice is trivial. Under
the same proviso it follows that the holomorphic structure determined
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by A over this slice is isomorphic to the canonical holomorphic struc-
ture on Kg1. Now a vanishes identically on only finitely many slices.
Hence, for all by finitely many points in x £ R x S1 the holomorphic
structure determined by A over this slice is in fact isomorphic to the
canonical holomorphic structure on Kg1. Since the holomorphic struc-
ture determined by A over the slice {x} x C varies continuously with
x, it follows that over all slices {x} x C the connection A determines
the canonical holomorphic structure on KQ1 . But this means that the
gauge equivalence class of the restriction of A over the slices {x} x C
is independent of x. Of course the connection varies continuously as we
vary the point y E R x S1. Thus the restrictions of A to the various
slices {y} x C are in fact gauge equivalent by a gauge transformation in
the component of the identity. Consequently, for each y e R x S1

I A

J{y}xW

is independent of {y}. But

, {0o} xW)= limt->oo / A - limt^-oo /
J{t}x{θo}xW J{
/ / A.
{t}x{θo}xW J{t}x{θo}xW

Since these integrals are independent of t, it follows that the difference
is zero. q.e.d.

6.6. Perturbation of the equations

In this subsection we shall consider the same topological set-up: N —
S1 xC with C being a curve of genus g > 1 and C having degree 2 - 2g
on C. All the structure established in the last two subsections holds for
a sufficiently small perturbation of the Seiberg-Witten equations. Fix a
harmonic one-form n G Ω^C; R). We write n = η + η with η being a
holomorphic one-form on C.

We consider the equations on R x TV denoted (SWh) '

F+ = q(φ) + i(*ra + dt Λ n),

9A(Φ) = o,

where * is the complex-linear Hodge *-operator on AT, and we have set
h = *n + dt Λ n.



THE GENERALIZED THOM CONJECTURE 749

Claim 6.24. The associated equations on N are (SW?n) :

$A(t)(Ψ(t)) = 0

in the sense that the static solutions to the Equations SWh are simply
the solutions to SW+n. Furthermore, the associated function on C(PN)
is

fn{A,ψ)= I FA^a + \ ί aΛda- f i{*n)Λa+ f (φ,β
JN Z JN JN JN

(where as before a = A — A$) in the sense that solutions to the Equa-
tions (SWh) written in a temporal gauge yield C°°-paths in C(PN) which
satisfy the gradient flow equations for fn. Lastly, the analogues of
Lemma 6.15, Corollary 6.17 and Lemma 6.18 hold for solutions to the
perturbed equations.

Remark 6.25. The gradient flow equation for fn is interpreted ex-
actly as in Remark 6.7.

Proof. All of this follows from the same computations given in the
unperturbed case. q.e.d.

We have already seen above that for all n sufficiently small there is
a unique solution to the Equations (SW*n). It is non-degenerate, and
we have explicitly identified the solution. As before the set of solutions
to SW*n in β*(Pjv) is a lattice associated to Hι(N;Z) and for any
two solutions there is a difference element δ in this lattice. Given any
smooth path 7: R —> B*(PN) with Iim^oo7(£) a n ( i limί ->.-oo7(£) both
equal to the solution to SW*n, the difference element £(7) E Hι(N; Z)
is defined. As before, if j(t) = (j4(t),^(t)), and A is the connection on
R x £ - ) R x i V determined by the path A(t) of connections on £, then
for any one-cycle W in N we have

KxW

Notice that if 7(4), —00 < t < 00, is a solution to the gradient

flow equation for fn with fn{l{t)) having finite limits at ±00, then the

difference element #(7) is defined.

Proposition 6.26. If n ^ 0 is a sufficiently small harmonic one-

form on C, then the only solutions (A(t),ψ(t)) = j(t) to the perturbed
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Seiberg- Witten equations SWh (where h = *n + dt Λ n) on R x N which
satisfy:

• the limits as t ^ ±00 o//n(7(t)) are both finite, and

• the difference element δ(η) is a multiple of the Poincare dual of
[C] i

are holomorphic in the sense that the connection A defines a holomor-
phic structure on C and hence on Co and φ = (α, β) with a being a
holomorphic section of Co and with β being a holomorphic two-form
with values in Co-

Remark 6.27. In fact, this result holds for any non-zero holo-
morphic one-form, and the proof in the general case is similar to
the one given here.

• Notice that the same argument as in the unperturbed case shows
that if A is a holomorphic connection then the difference element
is indeed a non-negative multiple of the Poincare dual of [C]. This
means that the second condition in the statement is necessary.

Proof. The condition on the limits of fn(t) as t H> ±00 and the
analogue of Corollary 6.17 imply that at the two ends the solution decays
exponentially in the C°°-topology to the static solution. As before we
write φ = (a,β) with a E Ω°(X;£0) and β <E Ω0 '2(X;£0). Then the
equations are:

dA(a)+δrA(β) = 0

and
F+ =q{a,β) +i(*n + dtΛn).

Arguing as before with the Dirac equation and the curvature equa-
tion we have

F°/-a + dAd*A(β)=0.

Now we take L2-inner product with β and integrate. The result is

Of course, from the curvature equation it follows that

F° 2 = aβ + i{*n + dt A n) 0 ' 2 .
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Claim 6.28. The second condition in the statement of the proposi-
tion implies that

(F°'2,i(*n + eftΛn)°'2)L2 = 0 .

Proof. By hypothesis FA decays exponentially to the same constant
closed two-form at the two ends of X, a closed two-form pulled up from
a form on C, whose (0,2)-component is zero. This means that the L2-
inner product is finite. Since *n + dt Λ n is self-dual and annihilates the
Kahler form we have

(F°'2,ί(*n + dtΛ n))°'2)L2 = ^(FA,i(*n + dt Λ n)))L2.

Now let us subtract from FA the pullback of the form on C which is
the limit of FA at each end. This does not change the inner product
since this form is pointwise orthogonal to both *n and dt An. Let the
difference form be Δ. Then Δ exponentially decays to zero at each
end of X, and hence represents a relative cohomology class. The inner
product

-(FΛ,i(*n + dtΛn))L2

is then the cohomological product

~2
- / ΔΛ (*n + dtΛn).

Jx

The second term vanishes since d(tn) = dt Λ n and Δ is a relative class.
The first term is equal to

^ FA = -π(δ(Ί),W),
KxW ι JKxW

where W C C is the real cycle Poincare dual in N to *n. By hypothesis
£(7) is Poincare dual to [C] in Hι(N;Z) and hence vanishes on any
one-cycle W in C. This completes the proof of the claim. q.e.d.

Thus, adding (F^2',i(*n + cίMn))L2 = 0 to Equation (10) we obtain

π 0

It then follows that F^ = 0 and hence that A is a holomorphic
connection. It also follows that a is a holomorphic section and that β
is a holomorphic two-form. Lastly, we have

aβ + z(*n + dt Λ n) 0 ' 2 = 0
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or
α/3=-2i(*n) 0 ' 2 .

This completes the proof of the proposition. q.e.d.

Now we come to the crucial lemma which deals with the difference
element.

Lemma 6.29. Fix a constant K > 0. For any harmonic one-form
n onC which is sufficiently small the following holds. Set h — *n+dtΛn.
Then for any solution y(t), —oo < t < oo, to the Equations SW^ which
has finite limits as t ^ ±oo for fn(Ί{t)) and for which the difference of
these limits is at most K, the difference element δ(j) in Hι(N\ Z) is a
multiple of the Poincare dual of [C].

This lemma will be proved in the next subsection.

Lastly, we have our result:

Proposition 6.30. Fix a constant K > 0. For any non-zero har-
monic one-form n on C which is sufficiently small the following holds.
Set h = *n + dt Λ n. Then any solution 7(t), —00 < t < 00, to the
Equations SW^ for which the limits for fnilit)) as t \-ϊ ±00 are finite
and the difference of these limits is at most K is a static solution.

Proof. Putting together Proposition 6.26 and the previous lemma,
we conclude that, for any n sufficiently small, any solution (̂ 4, (α, β))
to SWh has the following properties:

• A is a holomorphic connection for £,

• α is a holomorphic section of Co = VX ® Kx,

• β is a holomorphic two-form with values in £o>

• aβ is equal to the (0,2)-component of —2i(*n).

The line bundle £ 0 is trivial on each slice {t} x {θ} x C, and hence the
section a is constant along each of these slices. Notice that the (0,2)-
component of *n is invariant under the natural action of S1 and R, and
that it does not vanish identically on any slice {ί} x {θ} x C. This implies
that a is never zero, and thus, the bundle CQ is holomorphically trivial
on each R x S 1 with a being a constant section. Since the product aβ
is also constant on each R x S^-slice, it follows also that β is constant
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on each R x ί 1 . Thus, the solution is invariant under the translation
action of R and hence is a static solution. q.e.d.

6.7. Limits

Now we turn to the proof of Lemma 6.29. The fact that the critical
points of / in B*(PN) are non-degenerate and form a discrete subset
easily yields the following.

Lemma 6.31. There are constants K\,δ > 0 depending only on N
such that the following holds. For e > 0 sufficiently small there is a con-
tractible open neighborhood v of the critical point for f in B*{PN) with
contractible closure, such that the following hold: Let 7(£),
0 < t < T be a Cι-path in C(PN) which solves the gradient flow equa-
tions for f.

• If the image of 7 in B*(PN) is a path with endpoints in different
components of the preimage ofVd B*(PN) then

• If the image 0/7 to B*(PN) has endpoints in the same component
of the preimage ofV, then the L\-distance from j(t) to the critical
point XQ of f is at most

doexp(-δt) + dτexp{-δ(T - ί)),

where do,dχ are respectively the L\-distances o/7(0),7(T) from

• If a,b E β*(jP/v) are in the same component of the preimage ofv7

then \f{b)-f{a)\ < e.

• For any harmonic one-form n G Ω^C R) which is sufficiently
small these results hold for the function fn replacing f.

Now we need a related, but slightly more delicate estimate.

Corollary 6.32. Fix a neighborhood v as in Lemma 6.31. Then for
any e > 0 the following holds for any harmonic one-form n G ΩX(C; R)
sufficiently small. If x = (A,ψ) G C(PN) is in the complement of the
preimage of v, then
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Proof. According to Lemma 6.10 there is λ > 0 depending on v such
that for x as in the statement ||V/(a;)||I/2 > λ. We simply require n to
be sufficiently small such that ||n||^2 < eλ. Since V/ — V/n = *in, the
result follows immediately. q.e.d.

Proposition 6.33. Fix a constant K > 0. For any sufficiently
small harmonic one-form n on C the following holds. If
—oo < t < oo, is a solution to the gradient flow equation for fn with

then the difference element £(7) is a multiple of the Poincare dual of

[C].

Proof. Fix e > 0 with e « K\, the constant given in Lemma 6.31.
Construct the neighborhood v C B*(PN) of the critical point for /
for e as in Lemma 6.31. Let v be the preimage of v in B*(PN). NOW

fix 0 < e << 1. Lastly, fix a harmonic one-form n on C, sufficiently
small so that the last item in Lemma 6.31 holds for it and such that
Corollary 6.32 holds for v and e and this n.

Now consider an open interval /, a closed subinterval [A, B] C /,
and a flow line 7: / ι-» β*(P/v)? to the gradient flow equation for fn.

Claim 6.34. If A < a <.c < b < B, if 7(0) and 7(6) are in the
same component, say I>Q of v, and j(c) is in the closure of u} then η{c)
is in the closure of the component v$.

Proof. The function fn(l(t)) is an increasing function of t. Accord-
ing to Lemma 6.31 the fact that j(a) and j(b) are in the closure of the
same component of v means that 0 < fn{Ί{b)) — fn{l(°)) ^ e If j(c)
is in the closure of a different component of />, then the same lemma
implies that

|/n(7(c))-/n(7(α))l>tfi

This is impossible given the first inequality and the fact that
fn{l{t)) is a monotone increasing function of t and that e << K\.

q.e.d.

Now we consider the maximal intervals 61,... , bt in [A, B] with the
property that the endpoints of each bi map into the same component of
dv. According to the previous lemma, these intervals are disjoint. We
number them from left to right. Let αo,... ,αj be the complementary
set of intervals in [A, £?], also numbered from left to right. We call the
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a,i spanning intervals and the bj local intervals. We allow the possibility
that αo and/or at is empty, but when either of these is non-empty we
call it an extremal spanning interval. The other spanning intervals are
called regular spanning intervals.

For any subarc μ C [A,B] we define δf(μ) (resp. δfn(μ)) to be the
value of / (resp. fn) at the final point of μ minus the value of / (resp.
fn) and the initial point of μ.

Claim 6.35. Fix e > 0 and small. Then there exists an open neigh-
borhood v of the critical point for f such that when n is sufficiently
small and for any Cι-path 7: / —> C(P/v) which solves the gradient flow
equation for the function fn and any closed subinterυal [A, B] C /, the
following hold:

. δf([A,B])>-e.

. Ifmax(δf([A,B]),δfn{[A,B])) >KU then

Proof. Let K\ be the constant given in Lemma 6.31, and fix a
neighborhood v so that Lemma 6.31 holds with e replaced by e/6. Fix
a positive e « e and require n to be sufficiently small so that Corol-
lary 6.32 holds for the given neighborhood v and the given constant e.
Then for any spanning interval oC [A, B] we have

\δf(a)-δfn(a)\<—δfn(a),

and hence,

In particular, for any spanning interval a C [A,B] we have δf(a) > 0.
Furthermore, if a is a regular spanning interval, then we have
min(ί/(α), δfn(a)) > K\. Of course, by the third condition in Lemma 6.31,
if b C [A,B] is a local interval, then δf(b) > -e/6. Since the spanning
intervals and local intervals alternate and since e << ΛΓi, it follows eas-
ily that the only way that δf([A,B]) can be negative is for there to be
no regular spanning interval in [A, B]. If this is the case, then there is at
most one local interval in [A, B] and -e is a lower bound for δf([A, B]).
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Now let us consider the second statement. It follows immediately
from Inequality (11) that

Also, for any local interval bj we have

Using the fact that the α* and the b{ alternate and that for each regular
spanning interval aι we have mm(δf(ai),δfn(ai)) > K\, it is easy to
see, provided that

mΆχ(δf([A,B]),δfn([A,B]))>Ku

we have

and
" " fn(bi)>0.

Thus,

< δfn([A,B])

(at) ~ δf([A,B])

and therefore

- δf([A,B}) ~ \ -

Since e << K\ and e << e, this yields

U e)~ δf([A,B}) - ^ + €>-

This completes the proof of the claim. q.e.d.

Now let us return to the proof of the proposition. We let

7: (-00,00) ^C*(PN)

be the flow line corresponding to a solution of the perturbed Seiberg-
Witten equations satisfying the hypothesis of the proposition. It follows
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from the previous claim that there is a constant K1 depending only on
K such that

- 6 K'.

As shown in Lemma 6.10 there is a positive lower bound to || V/(7(t))||£,2
for any t for which ^(t) is not contained in the preimage of v. This bound
is independent of 7 and n. This and the previous inequality yield that
there is an a priori bound to the total length of the domains of all the
spanning intervals for 7. Also, since the change of / along each spanning
interval is at least K\, this implies that there is an a priori bound to
the number of spanning intervals in 7.

Now suppose that we have a sequence of solutions j^(t) for the
gradient flow equations for /n J where the nJ; ι-» 0 as j \-> 00. By passing
to a subsequence we can suppose that the number of spanning intervals
for each of the paths 7^ is constant, say equal to k. We denote the
spanning intervals for 7^ by α j , . . . , a .̂ We can also assume that for
each i < k the lengths i\ of a\ converge to a finite limit ί{ as j »-»> 00.
Let 6Q, ... , \?k be the local intervals for ηK We also arrange that for each
z, the lengths m\ of the b? converge as j »-» 00. Some of the limiting
lengths may be finite and others may be infinite. For each j we form
a new set of intervals by taking the components of the subset of R
which is the union of all the {a\} with the union of the set of {&£} for
which lim^oqra^ < 00. In this way for each j we construct a finite set
of intervals 5], . . . ,s^ in R whose lengths converge to finite limits as

j ι-» 00 and which contain all the spanning intervals. Let ΓQ, ... , ri be

the complementary set to the {s?}. The r\ have lengths going to 00 as

j »-> 00. (Notice that each τ\ is a local interval and that rJ

0 and ri are

semi-infinite intervals but that all the other r\ are finite intervals.)
The endpoints of each fj are mapped into the same component of the

preimage of V. We denote the difference element in Hι(N; Z) between
the component of the preimage of v containing the limit at —00 and the
component of V containing the endpoints of f\ by δj. Notice that δ3

0 = 0
for all j and that δi = δ(^) for all j .

We pass to a subsequence of the η* such that, for each i < /, the
geometric limit of j^{t) centered at a midpoint of s\ exists. (This means
that for each i, up to gauge equivalence, for every Γ > 0, the following
sequence of configurations on [—T,T] x iV, indexed by j > 1, converges:
For each j let t\ be the midpoint of s\. Translate the restriction of
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>yj to [-Γ + t?i,t?i+T\ to the left by t{ to form a path on [-T,Γ], or
equivalently a configuration (£•?, λ 7) on [—T,T] x iV.) Clearly, for each
i, this geometric limit is a solution on R x N to the Seiberg-Witten
equations and hence in a temporal gauge gives a C°°-path which solves
the gradient flow equation for /. Furthermore, the limits at both ±00
of this path is the critical point of /. Thus, for all i sufficiently large,
the difference element of this solution is equal to the element measur-
ing the difference of the components of the preimage of V containing
the endpoints of s\. This element is of course equal to δ{ — δ\_v By
Lemma 6.23 we see that this limiting difference element is a multiple of
the Poincare dual of [C]. It then follows for all j sufficiently large that
we have δj — ̂ _ x is a multiple of the Poincare dual of [C]. Hence, by
induction on i, for all j sufficiently large, we see that the δ\ is a multiple
of the Poincare dual of [C] for all i. In particular for all j sufficiently
large we have δJj = δ(ηi) is a multiple of the Poincare dual of [C].

This completes the proof of the proposition.

7. Boundedness of the gradient flow line as we stretch out
the neck

7.1. The case of the unperturbed equation

Let us formulate the context precisely. Let N be a closed oriented,
riemannian three-manifold. Let M be a smooth four-manifold and sup-
pose that N C M is a smoothly embedded three-manifold dividing M
into two pieces Y and X. We fix an orientation on M and we take the
orientation on N induced by requiring that the orientation on N pre-
ceded by the unit normal vector to N pointing into Y gives the orienta-
tion of M. Let v be a product neighborhood [—1,1] x N. We consider
a family of metrics {gs} on M, parametrized by s in the interval [1,00)
which are all the same on M — v but stretch out the product neighbor-
hood of N. That is to say, we suppose that gs\v = Xs(t)2dt2 + dθ2 + dσ2

where dt2 is the usual metric on [—1,1], dθ2 is the usual metric on length
2π on 5 1, dσ2 is a fixed (say, constant curvature) metric on C, and λs(t)
is a positive smooth function on [—1,1] which is identically equal to one
on [-1, -1/2] U [1/2,1] and satisfies

/Ί/2

/ \8(t)dt = 3.
7-1/2
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We denote by Ms the riemannian manifold (M,55), by iV_ and N+ the
submanifolds {-1/2} x JV, {+1/2} x N inside M s, and by Ts C Ms the
cylinder that they bound.

Fix a 5pmc-structure P on M. Let P/v be the restriction of P to N.
If (A, τ/>) is a solution to the Seiberg-Witten equations for P over M s,
then the restriction (A, V)lτ gives a C°°-flow line for the gradient flow
equation

7 ' ( ί) = V/(7(<))

in the space of configurations C*(PN) defined on an interval of length
s. We have an isometry from [0, s] x N with Ts. Let N+,N- be the
boundary components {s} x JV, {0} x iV, and denote by S the differ-
ence Ms — Ts. This is a riemannian manifold with boundary which is
independent of 5. The next two lemmas are of crucial importance.

Lemma 7.1. There is a constant E depending only on M such that
for any s > 1 and any solution {A,ψ) to the Seiberg-Witten equations
for Ps over Ms and any x G Ms we have

\φ{x)\ < E.

Proof. Since there is a uniform bound to the scalar curvatures of
the Ms for all s > 1, the result is an easy application of the maximum
principle; cf. [4]. q.e.d.

Lemma 7.2. There is a constant K > 0 depending only on M and
the isomorphism class of the Spin0-structure P such that the following
holds for any s > 1. // (A,ψ) is a solution to the Seiberg-Witten equa-
tions for Ps over Ms, and 7: [0,5] —>• C(P/v) is the gradient flow line
associated to the solution, then

Proof. According to the previous lemma there is a uniform pointwise
bound for \ψ\ and hence for | F ^ | independent of s and the solution
(A, ψ). Of course, we have

This means that

(12)
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The right-hand-side of this equation is determined by P. Of course,
the pointwise bound on Ff implies that there is a constant K' > 0
depending only on S and P\s such that

(13) \\FXWh(S) < K.

Claim 7.3. There is a constant K" > 0 depending only on M and
P such that

Γ FAΛFA>-K".ί
Jτs

Proof. By Stokes' theorem we have

(14) = [ FAΛFA+ ί (ψ,Q
JTS JN+

- f (ψ,QA{Ψ)).
JN-

Since 7 is a flow line from the gradient flow equation

we see that

Thus, to complete the proof, we need only show that there is a bound
depending only on M and P to both

and

JN-

But these bounds are immediate from the a priori pointwise bound on
1̂ 1 and the L2-bound on V^ q.e.d.

As an immediate consequence of this claim we have that

(15) / iFA Λ iFA < K".
Jτs
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It follows from Equation (12) and Inequalities (13) and (15) that

\\F~\\2

L2ίS\ is bounded above by a constant depending only on M and

P. But once we know that both HF^H^ &re bounded by a constant

depending only on M and P, the same is true for

L iFA Λ iFA

τs

Invoking Stokes' theorem once again we see that f(y(s)) — /(7(0))
is bounded by a constant depending only on M and P. q.e.d.

7.2. The case of the perturbed equation when N = Sι x C
and C has degree ±(2 — 2g) on C

Now let us suppose that N = S1 x C, with C being a riemann
surface of genus g > 1. Suppose that P —> M is a Spinc-structure whose
determinant line bundle C has degree 2 — 2g on C. Let Ms = (M,gθ)
be the family of riemannian manifolds discussed in the last section. Let
φs: Ms —^ [0,1] be a C°° function which is identically 1 on Ts and whose
support is contained in [-1,1] x N C M. We choose the ψs so that they
are all the same on Ms — Ts under the obvious identification of these
spaces. As before, we let N- and iV+ be the copies of N which make
up dTs. Fix a real harmonic one-form n on C. For each s let hs be the
self-dual two-form φs(*n + dt Λ n) where * is the Hodge *-operator for
N. We consider the perturbed Seiberg-Witten equations (SWhs) :

9A(Φ) = 0.

The restriction to the tube Ts of a solution to the perturbed Seiberg-

Witten equations SWha gives a C°°-path 7 which solves the gradient

flow equation:

defined on an interval of length s. We denote by t± the values of the

parameter corresponding to N±.

L e m m a 7.4. There are constants E, K2 depending only on M and

P such that for any s > 1 and any sufficiently small harmonic one-

form n G ΩX(C;R) the following hold. If (A,ip) is a solution to SWhs,

and 7: [0,5] -» C(PN) is the gradient flow line for fn associated to this

solution, then

0 < /n(7(s)) - /n(7(0)) < K2,
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and for every x G Ms

\φ(x)\<E.

Proof. The pointwise bound E for the spinor field φ follows just as
in the unperturbed case. Also, Claim 6.35 shows that if n is sufficiently
small, then there is a universal lower bound (—e) to f(j(s)) — /(τ(0)).
Consequently, the arguments given in the unperturbed case show that
there is a constant KQ depending only on M and P such that for any
5 > 1 and any solution (A, φ) to the perturbed equations SWhs we have

L <ϋΓo-
τs

It follows that for the functional / associated with the unperturbed
equations we have

for some constant C\ depending only on M and P.
By Claim 6.35, provided that n is sufficiently small, we see that

/n(7(*))-/n(7(0))

is bounded from above by a constant K<ι depending only on M and P.
It is positive since 7(ί) is a gradient flow line for fn. q.e.d.

Corollary 7.5. There is a constant K > 0 depending only on M
and P such that for any harmonic one-form n φ 0 in Ω1(C;R) suffi-
ciently small and for any s>\ and any solution (A, φ) to the perturbed
Seiberg-Witten equations SWhs on MSy the restriction of (A,φ) satis-
fies the following. For any t G [0,5], we have that the L\ distance from
(A(t),φ(t)) to a static solution is at most

where δ is the constant in Lemma 6.15 and where d(t) = min(t,s — t).

Proof. This is immediate from Lemma 7.4 and Proposition 6.30 and
standard limit arguments.



THE GENERALIZED THOM CONJECTURE 763

8. Definition of the moduli spaces for cylindrical-end
manifolds

The gluing theorem will describe all solutions to the monopole equa-
tions on M whose determinant line bundle has degree ±(2 — 2g) on C
in terms of solutions on the two sides. First, we need to define and
study the moduli spaces of solutions to the monopole equations on non-
compact 4-manifolds with ends isometric to [0, oo) x N. Of course, the
same equations make sense over a non-compact four-manifold. We con-
sider only solutions to the equations which are of finite energy on the
cylindrical end, as we make precise below.

Now we are ready to define the moduli space for a cylindrical end
four-manifold. For the moment fix an arbitrary, closed, oriented, rie-
mannian 3-manifold N and an complete riemannian 4-manifold X whose
end is orientation-preserving isometric to [—l,oo) x N.

Let /: C*(P/v) -> R be the function introduced in Subsection 6.2.

Definition 8.1. Fix a 5pmc-structure P on X whose restriction to
N is denoted by P^. For any C°° solution (A,ψ) to the Seiberg-Witten
equations with respect to this Spmc-structure there is a temporal gauge
for P restricted to the cylindrical end so that the flow line 7: [0,00) -»
C*{PN) determined by the solution satisfies the gradient flow equation.
Such a temporal gauge is unique up to an automorphism of PN. A
finite energy solution to the Seiberg-Witten equations is a C°°-solution
for which an associated flow line 7: [0,00) —> C*(PN) satisfies

(Notice that this condition is independent of the choice of temporal
gauge.)

Actually, we are mainly interested here in the case where N = S1xC.
In this case it will be convenient to work with solutions to a perturbed
equation with the same finite energy condition.

Definition 8.2. Let N = Sι x C, and let n £ Ω^C R) be a har-
monic form. Fix a C°° function φ: [—1,00) -> [0,1] which is identically
zero near - 1 and identically 1 on [0,00). We can view φ as a function
from X to R by defining it on the end by projecting onto to [—l,oo)
factor and extending it to be identically zero on the rest of X. Consider
the modified Seiberg-Witten equations for a pair (A, ψ)

(16) FX = q(ψ) + iφ(*n + dt Λ n),

ΦA(Φ) = 0.



764 JOHN W. MORGAN, ZOLTAN SZABO & CLIFFORD HENRY TAUBES

Here *n represents the dual of n in the three-manifold N = S1 x C.

Analogously to what we did in the unperturbed case, we consider

only C°°-solutions to these equations which satisfy

limth->oo/n(7(<)) - Λι(7(0)) < oo,

where fn is the function introduced in Subsection 6.6, and 7: [0,00) —»
C*(PN) is the gradient flow line for fn determined by the restriction of
the solution to the cylindrical end of X in a temporal gauge. As before,
we call such solutions finite energy solutions to the perturbed equations.

The first result to establish is that any finite energy solution to the
Seiberg-Witten equations or the perturbed Seiberg-Witten equations in
fact has exponential decay to a static solution in an appropriate gauge.

The following is an immediate consequence of Lemma 6.15, Claim 6.24
and the argument given in the proof of Corollary 6.18.

Theorem 8.3. Let N = Sι x C, and let X be a complete rieman-
nian manifold with cylindrical-end isomorphic to [—1, 00) x N. Let P be
a Spinc-structure whose restriction to N is isomorphic to the pullback
from C of a Spin0-structure whose determinant line bundle has degree
±(2 — 2g). Then the following holds for any sufficiently small harmonic
one-form n G Ω 1 (C;R). Let (A,φ) be an finite energy solution to the
perturbed Seiberg-Witten equations (16) associated to P. Then there is
a C°°-product structure for -P|[o,oo)xN such that in this product structure
(A, φ) converges exponentially fast to a static solution. The exponent of
the decay δ depends only on the riemannian metric on N. Furthermore,
there is a constant E\ depending only on X such that if (A, φ) is a finite
energy solution to the above equations, then 1̂ 0*01 < Eι for all x £ X.

Remark 8.4. Notice that since in an appropriate gauge A decays

exponentially fast to a static solution and for the static solution B we

have Fβ Λ Fβ = 0, we see that Jχ FA Λ FA is finite. We call

-4 / FAAFA
4τr2 Jx

the Chern integral of the solution and denote it by c(A,φ).

Let M(P) be the set of all finite energy solutions to the Seiberg-

Witten equations SW. We give M (P) a topology as follows. Let (A, φ)

be a finite energy solution. Then a basis for the open neighborhoods of

{A,φ) are determined by choosing T G [0,00), e > 0, and k G Z + such
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that, letting 7 be the flow line associated to (A, φ) in a temporal gauge,
we have

We then define £/(T, e) to be the subset of all finite energy solutions
(A\ψf) to the equations such that

({A,<ψ)\χτ,{A',ψf)χτ)

and

where XT is the complement of the cylinder (T, 00) x N in X, and 7'
is the flow line associated to (A^ψ') in a temporal gauge. The group of
gauge transformations G(P) is simply the group of all C°°-changes of
gauge. It clearly acts continuously on Λ4(P). We denote the quotient
by M{P). As with the case of 5C/(2)-ASD connection, the moduli space
Ai(P) is given by the zeros of a map with Predholm differential modulo
the action of the group of changes of gauge (c.f., [10], [6]). The index of
the Fredholm complex is

For a generic compactly supported, real, self-dual two-form 7?+ the per-
turbed Seiberg-Witten equations, where the curvature equation is re-
placed by

F+=q(ψ)+iη+,

determine a moduli space M(P,η+) which is a smooth manifold whose
dimension at any point (A,ψ) is given by Equation (17).

It is clear from the definition of the topology that the Chern integral
is a continuous function on M(P) and M{P,η+). On the other hand,
the values taken by the Chern integral form a discrete set. Hence, the
Chern integral gives a locally constant function on ΛΊ (P). We denote by
λic(P) the union of components where the value of the Chern integral
is c. Similarly, we define Mc{P^r}^).

The same topology and group action in the case of the perturbed
equation leads to a moduli space M(P,ή) and the subspaces Mc{P,n)
of a given Chern integral. As before, these subspaces are each a union of
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components. The same formula gives the formal dimension of this mod-
uli space for the perturbed equations. As before, a further perturbation
of the equations leads to:

+ iφ(*n + dt Λ ή) + iη+.

for a generic compactly supported, self-dual real two-form η leads to
moduli spaces MC{P, n, 77+) for all c which are smooth and of the correct
dimension.

Notice that for a generic compactly supported purely imaginary self-
dual two-form iη+ the moduli space .MC(P, n, 77) is empty if c < 2χ(X) +
3σ(X).

Compactness results. Here is the basic compactness result in our
context.

Proposition 8.5. Let X be a complete riemannian four-manifold
with cylindrical end isometric to [—l,oo) x N, with N = Sι x C for
a curve C of genus g > 1. Let P be a Spin0-structure on X with
determinant line bundle C whose restriction to the end is isomorphic
to the pullback from C of a bundle of degree ±(2 — 2g). Fix CQ. Then
for all sufficiently small harmonic one-form n Φ 0 on C the following
holds for every c < c$: Let ΛAc(P,n) be the moduli space of gauge
equivalence classes of finite energy solutions to the perturbed Seiberg-
Witten equations SW^ (16), which also satisfy

(18) ^λ [ FAΛFA = c.
4π Jx

(We take h = φ(*n+dt/\n).) Then this space is compact. A further per-
turbation of the first equation by adding a generic compactly supported
self-dual, purely imaginary, two-form iη+ on X to the right-hand-side
leads to a compact moduli space λΛ^P^n^η^) which is smooth of the
correct dimension at each solution.

Proof. The usual maximum principle arguments as in the compact
case [2] show that for any solution (A,ψ) to the perturbed Seiberg-
Witten equations SW^ there is a bound to the pointwise norm of φ
and F%. These bounds are independent of n and 77+, provided only
that these forms are sufficiently small. Let us consider the gradient flow
path 7: [0,00) -> C(PN) for fn associated to a solution of the perturbed
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equations. Arguing as in Section 7 we see that this implies that there
is an upper bound K(X,P,CQ) to

which depends only on X and P and the upper bound CQ for the Chern
integral.

Now we require that n φ 0 to be sufficiently small so that Propo-
sition 6.30 holds for ή with the constant K of that proposition being
K(X,P,co).

Now suppose that we have a sequence {(A, φi)} of solutions to SWh
of Chern integral c < co Using the bounds described in the previous
paragraph and a standard diagonalization argument, after passing to a
subsequence we can suppose that there is a configuration (A,ψ) such
that, up to gauge, the sequence converges C°° on each compact subset
of X to (A, φ). Of course, (A, φ) is a solution to the perturbed Seiberg-
Witten equations SWh It will be the limit of the sequence in the
topology of the moduli space if and only if its Chern integral is equal to
c. If its Chern integral is not c, then this means that there is a sequence
of Ti »->• oo and e > 0 such that

Γ > €.

Because of the exponential decay result in fact this means that there is
a sequence Ti ι-» oo and e > 0 such that

rTi+i

FAAFA

Now we take a geometric limit of the configurations on [—3*, T{] x N
given by translating the solution (A;, ψi)\[ofiTi]xN by — T{ in the first fac-
tor. The result is a solution to the perturbed Seiberg-Witten equations
on R x N. The curvature equation on R x N is

F+ = q(φ) + i(*n + dt Λ n).

Clearly, this limiting solution satisfies:

Jo
> € .
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This contradicts Proposition 6.30 which says that all solutions to the
perturbed equations satisfying the first condition must be static.

The last statement about the compactly supported perturbation to
achieve smoothness goes just as in the compact case. q.e.d.

This compactness result does not hold for MC{P) and Mc(P,η+)
The reason is that there are non-static finite solutions to the Seiberg-
Witten equations on the cylinder R x N. This is in fact the reason that
we were led to consider the perturbation of the equations by adding a
term in the cylindrical end.

As an immediate corollary of the compactness result we have the
following uniformity result.

Corollary 8.6. Let N = Sι x C, and let X be a complete rieman-
nian manifold with cylindrical-end isomorphic to [—l,oo) x N. Let P
be a Spin0-structure whose restriction to N is isomorphic to the pull-
back from C of a Spin0-structure whose determinant line bundle has
degree ±(2 — 2g). Then for any CQ the following holds for any suffi-
ciently small harmonic one-form n / O G ΩX(C;R) and every c < CQ:
There is a constant T > 1 such that if (A, ψ) is a finite energy solution
to the equations SWh with Chern integral c, then for every t > T the
restriction (A(t),ψ(t)) is within exp(—z(t — T)) in the L\-topology of a
solution to the equations SW*n on N, where the constant z depends only
on N. The same result holds when the curvature equation is replaced by

F+ = q(φ) +ih + iη+

for any sufficiently small, compactly supported, self-dual two-form η+

onX.

9. The Gluing Theorem

Now we come to the gluing theorem in our context. Let M be a
closed oriented four-manifold, and let N = SλxC. Suppose that N c M
is a smooth embedding with M — N = X Y[Y. Fix complete metrics
on X and Y which have cylindrical ends with orientation-preserving
isometries to [—l,oo) x N. For any s > 1 we denote by Xs and Ys

the compact manifolds with boundary obtained by truncating X and
Y at {s} x N. For any s > 1 let Ms be the closed riemannian four-
manifold obtained by identifying Xs and Ys along their boundaries by
the identification which is the identity on C and is complex conjugation
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on Sι. Fix 5pmc-structures Px and Py whose determinant line bundles
restricted to N are both isomorphic to the pullback from C of a line
bundle of degree (2 — 2g) on C. Also fix an integer e. Let co(X) =
e - 2χ(Y) - 3σ{Y) and let co{Y) = e - 2χ{X) - 3σ(X). We choose
small perturbations of the monopole equations for X and Y so that the
equations on X are SWh + +:

FA = 9 WO + iψx{*rι + dtΛn)+ iη%,

MΦ) = o,
where n is a harmonic one-form on C, fiχ = *n + dt Λ n, r/J is a
compactly supported self-dual two-form, and ψx is a C°° function which
is identically 1 on [0, oc) x N and vanishes off of [—l,oo) x N. For
any c(X) let Λ4c(χ)(Pχ,n,τ7^) be the moduli space of finite energy
solutions to the perturbed equations with Chern integral c(X). In a
completely analogous fashion we fix φγ and define the moduli space
Mc(y)(Pγ,n,ηγ) of finite energy solutions to SWh _. + with Chern

integral c(Y). By choosing the η~χ and ήy generically, we arrange that
these are smooth, compact moduli spaces for all c(X) < co(X) and
c(Y)<co(Y).

Let S be the set of isomorphism classes of Spinc structures P on M
with the property that P\χ ^ Px and P\Y ^ PY. We denote by Se the
subset of those 5pmc-structures in S whose determinant line bundle
C satisfies c\{C)2 = e. Let P represent an element of Se. For each
s > 0 we have the corresponding Spmc-structure Ps over Ms. For any
s sufficiently large we denote by η+ the self-dual form on Ms which is
Vx + VY - (Notice that if 5 is sufficiently large the support of η^ and ήy
are contained in Ms and are disjoint in Ms.) We define M{Ps-lhs^ηJt')
the moduli space of solutions to the perturbed Seiberg-Witten equations

A + i(Ps{*n + dt An) + iη+,

ΦA{Φ) = o

for Ps. Here, φa: Ms -> [0,1] is the function which agrees with φx on
Xs C M5, and with φy on y5 C M 5, and /ι5 = (/?5(*n + dt Λ n).

Theorem 9.1. The Gluing Theorem. WWi ί/ie notation and
assumptions above, suppose that n is sufficiently small and generic, and
that η~χ and ηy are generic. Then for all s sufficiently large and for
each P G Se, the moduli space M{Ps^n^ηJt) is a smooth manifold of
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the correct dimension. Furthermore, gluing together configurations on
X and Y and deforming slightly so as to solve the perturbed Seiberg-
Witten equations determine a diffeomorphism

ci+c2=e

In addition, there is a constant T > 0 depending only on X and Y,
and for given an integer k > 0, there are constants K, δ > 0 such that
the following holds for all s sufficiently large: If [A,φ\ E M(Ps,n,η+)
corresponds to the pair

([Aχ,ψχ],[Aγ,ψγ]) e MCι(Pχ,n,η+) x MC2{Pγ,n,η+)

under the gluing isomorphism, then up to change of gauge, the restric-
tions to Xs-ι of [A,ψ] and [Aχ,ψχ] are within a distance Ke~δs in
the C°°-topology on Xs-ι> There is the analogous statement for the re-
strictions to Ys-ι- Lastly, with appropriate conventions on orienting the
moduli spaces for X and Y and for M, then the diffeomorphism acts by
(_lγι(X,xHo(γ>N) o n the orientations, where, blo{Y,N) is the dimen-
sion of any maximal positive semi-definite subspace for the intersection
pairing on H2(Y,N;Έl).

Notice that ,MCl(Pλ:,n, 77+) is empty if c\ < 2χ(X) + 3σ(X), and
similarly for C2. It then follows that c\ < c(X) and C2 < c(Y), so that
the disjoint union of the products of moduli spaces for X and Y is finite
and that the compactness results of the previous section hold for all the
moduli spaces of X and Y that appear in this union of products.

The fact that the gluing map induces diίfeomorphism follows by the,
by now standard, gluing arguments and limiting arguments (see [2], [11])
from the following facts:

• The moduli space of solutions over the three-manifold consists of
a single point, that point being smooth (Corollary 5.3.).

• The fact that the moduli spaces of the cylindrical-end four-manifolds
which appear in the disjoint union of products are smooth and
compact (Proposition 8.5) and have the uniform decay as de-
scribed in Corollary 8.6.

• The decay result in the center of the tube Ts for solutions over the
manifold M5, results which are uniform in s (Corollary 7.5.).
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The next paragraph discusses the orientations and proves the state-
ment concerning orientations.

9.1. Orientations

Let us compute the elliptic complex associated with the Seiberg-
Witten monopole equations on a four-manifold Z with cylindrical end.
As we have seen, we can work in the context where the connections
and changes of gauge are exponentially decaying with a given exponent
of decay δ > 0. Thus, the tangent space at the identity to the group
of changes of gauge is Ω§(Z;iR), the tangent space to the space of
connections at any point is Ωj(Z iR), and tangent space to the affine
space where the curvature lies is Ω^_tf(Z;iR). Similarly, we can view

the sections of S+(Pz) as differing from a fixed section which is in
the kernel of the Dirac operator at least in the cylindrical end by a
(̂ -decaying section. Thus, the elliptic complex associated to a solution
(A, Ψ) of the Seiberg-Witten equations on a cylindrical-end manifold is

0 ( ; ) ( ; )

> Ω ^ ( Z ; i R ) θ C ~ ( 5 - ( P z ) ) > 0

where mψ(f) is the section —ifφ of S+(Pz), and the last map is given
by the matrix

' Re(<

Here <, > is the bilinear form associated to the quadratic form q, and
cψ is Clifford multiplication against ψ.

It follows easily that orienting the determinant line bundle of this
operator is equivalent to orienting the vector space

An easy computation shows that iϊJ(Z R) = 0, that iJj(Z R) =
Hι(Z,T;R) and that H\fi(Z\ΈL) = fl"|0(Z,T;R) where Γ is a cylin-
drical neighborhood of infinity in Z, and iί>0(Z,Γ) is the maximal
subspace of exponentially decaying harmonic forms of which the inter-
section pairing is positive semi-definite.

Corollary 9.2. To orient the moduli space of finite energy solu-
tions to Seiberg-Witten equations on a cylindrical-end manifold Z, it
suffices to orient Hι(Z,T\B) Θ #£ 0 (Z,T;R) where T is a cylindrical
neighborhood of infinity in Z.
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Now let us see how the orientations compare when we glue. Let
M — N = X ] j y . We can ignore the spinor fields since the spaces of
these fields are complex linear vector spaces and hence have canonical
orientations. It becomes a question of comparing the sum of the δ
complexes of forms for X and Y with the usual complex of forms for M.
We can replace the <5-complex for X and Y with the complexes of forms
which vanish in cylindrical ends T± without changing the cohomology.
Let Γ c M b e the image of the union of T+ and T_ glued up manifold
M. We have an exact sequence of operators:

0 0

I I
Ω2

+{M,T)®Ω°{M,T)

1
θ

I

0 0.

Let us denote these operators by DM,T,DM,DT,8T respectively.
Clearly, in light of the above exact sequence, there is a natural iso-
morphism detZ^M = det£>M,τ ® detD^&r- Of course, Hι(T,dT) =
W-^N^H^I,dl). Thus, H°(T,dT) = 0 andHι(T,ΘT) = Hι(I,dl).
Orienting I so that it points toward the Y-side orients this last group.
It also gives an orientation for N. Since C is oriented, it follows that
the circle direction receives an orientation. The orientation on C in-
duces one on Hι{C)\ that together with the orientation on the circle
gives an orientation to Hι{N), and hence to H>0(T,dT) ~ Hλ(N).
Thus, we see that with these conventions, there is a natural isomor-
phism detDM,T Ξ detZ?M

Lastly, we need to compare the orientation of detUM,τ with the
tensor product detZ)y^+ ® detDx^ The comparison of these deter-
minants involves switching the order of Hι(X, T_) and ϋ>0(Y, T+) and

hence introduces a sign which is (_
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9.2. Relative invariants

Definition 9.3. Let X be an oriented, complete, riemannian four-
manifold with a cylindrical end T isometric to [0, oo) x S1 x C where C
is a riemann surface of genus g > 1. Let Px be a S'pmc-structure whose
restriction to the end of X is isomorphic to the pullback of a Spinc-
structure on C with determinant line bundle of degree ±(2 — 2g). We
choose a sufficiently small generic harmonic one-form n G ΩX(C; R) and
a generic compactly supported self-dual two-form η+. We then form
the moduli space M.c(Pχ,n,η+) where the Chern integral is equal to
c. As we have seen this is a compact, smooth moduli space. We choose
an orientation for Hι(X,T',K) Θ i2>0(X,T;R). This determines an
orientation for the above moduli spaces. If the dimension of the moduli
space is even, say equal to 2d, then we define the relative Seiberg-Witten
invariant SWc(Pχ) by integrating the (Ith power of the first Chern class
of the universal circle bundle over this moduli space.

The construction of the moduli spaces can be made over the param-
eter space of all n and η. The result is a smooth infinite dimensional
moduli space with a smooth map with Predholm differential to the pa-
rameter space. Furthermore, all the fibers over n φ 0 are compact. It
follows easily that the relative invariant as defined above is independent
of the choice of generic forms n and η+.

If the dimension of the moduli space is odd, then we define the
relative Seiberg-Witten invariant to be zero.

Though this is not a direction that we will pursue much further in
this paper, we wish to point out that in this case the relative invariants
satisfy the analogue of Seiberg-Witten simple type.

Proposition 9.4. Let X be α cylindrical-end four manifold with
end isometric to [0, oo) x S1 xC where C is a riemann surface of genus
g > 1. Let Px —> X be a Spin0-structure whose determinant line bun-
dle has degree 2g — 2 along C. Then for any c, if the dimension of
Mc{Pχ,n,η+) — 2d > 0, then the value of the relative Seiberg-Witten
invariant SWc(Pχ) is zero.

Proof. The moduli space is compact and every point [A, φ] in the
moduli space is aysmptotic at infinity to the same irreducible configura-
tion [J4O,^O]

 o n N. It follows immediately that the base point fibration
M°c{Pχ,n,η+) -> .Mc(P*:,n,7/+) is trivial. Prom this the proposition
is immediate. q.e.d.
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Let us compute the possible values for c. Let X be the compact
four-manifold

X = XU(D2 xC),

where X and D2 x C are glued together along (0, oo) x 5 1 x C via the
identification

sending (t, θ) ι-» exp(—t + iθ). The condition on Px —> X implies that it
has an extension to a Spinc-structure over X. The possible determinant
line bundles t of such extensions all differ by even multiples of the
Poincare dual of [{0} x C] G H2(X\ Z). The possible values for c so that
the relative invariant SWc(Pχ) are defined are simply

(cι(C)2,[X}),

as t ranges over the determinant line bundles of the extensions of Px.
These numbers differ by integral multiples of (8 — 8g).

9.3. A first product formula

From the Gluing Theorem and the definition of the relative invari-
ants we have the following result.

Theorem 9.5. Let M,N,X,Y,Pχ,Pγ be as above in this section.
Let Sc be the set of equivalence classes of Spin0 structures on M whose
restrictions to X and Y agree up to isomorphism with Px and Py and
whose determinant line bundles C satisfy C\(C)2 = c. Choose orienta-
tions for H1 (X, T; R) θ # | 0 (X, T; R) and H1 (y, Γ; R) θ ϋ | 0 (y, T; R).
This determines the sign of the relative Seiberg- Witten invariants for X
and Y. It also determines an orientation for i ϊ ^ M R) 0 f/+(M;R)
and hence a sign for the Sieberg-Witten invariants of M. With these
choices of orientations we have the following product formula:

ci+c2=c

Notice that because all the relative invariants are of simple type,
the sum on the right-hand-side of the equation in the theorem is in
fact at most one term, the term when c\ and c<ι are such that that the
dimension of the cylindrical-end moduli spaces for X and Y are zero
dimensional.
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9.4. Computation of the Invariants for D2 x C

To complete the proof of the Product Formula we need to identify the
relative invariants of a cylindrical-end manifold X with the invariants
of the closed manifold

X = XUD2 xC.

This identification is achieved using the product formula for relative
invariants and an evaluation of the relative invariants of D2 x C. It is
the purpose of this subsection to evaluate these latter relative invariants.

We give D2 x C a product metric - the metric on the C-factor is
any metric (but for definiteness let us assume the metric is of constant
curvature). The metric on the disk is a complete metric with cylindrical
end.

Suppose that (A, φ) is a finite energy solution to the Seiberg-Witten
equations on D2 x C (with as usual φ = (α,/3)) whose determinant line
bundle C has degree 2 — 2g on C. Then the analogue of Remark 6.21 is
the following: The section β is zero and the section a is a holomorphic
section of Co and we have

FA = l + 2(# zeros of α).
D2

The reason for the extra one in this formula as compared to the formula
in Remark 6.21 is that A = Aχ+2Ao where Ax is the natural connection
on the canonical bundle. Because of our choice of metric on Z)2, it is
easy to see that

i *
The Chern integral c(A, φ) is given by

[ FAΛFA = 4(l-g)£- I FA.
D*XC 2 π JD*

The formal dimension of the moduli space M(P) of finite energy solu-

tions at [A, φ] is

\c{A,φ) + (g-l)= 2(1 - g){# zeros of a).

Since a is a holomorphic section, it follows that the formal dimension

of M(P) at any point is < 0. The only solution (A,φ) at which the

dimension is zero is when c(A, φ) = 4 — 4g, which is the case when a is
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a constant section. This solution is induced from a configuration on C
and is unique up to gauge equivalence.

Thus, we have proved the following lemma.

Lemma 9.6. Let P -» D2 x C be a Spin0-structure whose deter-
minant line bundle has degree 2 — 2g on C. If MC{P) is non-empty,
then c < 4 — 4g and the formal dimension of MC(P) is non-positive. If
the formal dimension of the moduli space is zero, then c = 4 — Ag and
Aic{P) is a single point, that point being a smooth point of the moduli
space. The orientation on Λίc(P) induced from the complex structure
on D2 x C makes this point a plus point.

Remark 9.7. Notice that for any i > 0, the moduli space MC(P)
for c = 4(1 -g) (2ί +1) is a smooth manifold of dimension 21, and in fact
this moduli space is diffeomorphic to the ̂ -fold symmetric product of
D2. Nevertheless, the formal dimension of MC{P) at each of its points
is2t{l-g).

Now we consider the perturbed equations on D2 x C. We fix an
isometric parameterization [— l,oo) x S1 c-> D2, and we fix a function
φ: D2 -> [0,1] whose support is contained in [—1, oo) x S 1 and which is
identically one on [0, oo) x S1.

For any harmonic one-form n E Ω X (C;R), we set h — φ(*n + dt/\n)
and let M(P,n) be the moduli space of gauge equivalence classes of
finite energy solutions to the perturbed equations SWh- As before, the
formal dimension of this moduli space at [A, ψ] is given by

and the Chern integral is

c = 4( l-0)^- / FA.
2π JD2

Lemma 9.8. For any sufficiently small non-zero harmonic one-
form n G Ω 1 (C;R) let Mc(P,ή) denote the moduli space of gauge equiv-
alence classes of finite energy solutions to the equations

F
 =

which have Chern integral c. Then Mc{P,n) is empty unless c < 4 — \g.

For c = 4 — 4g the moduli space consists of one point, that point being a
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smooth point and (with the orientation on the moduli space determined
by the complex structure on D2 x C) is a plus point. Finally, for c <
4 — 4g the formal dimension of the moduli space is negative. Thus, for
a further deformation by a generic compactly supported, self-dual, two-
form η+ the moduli space .M c (P,n, 77+) is empty unless c = 4 — Ag in
which case the moduli space is a single smooth point.

Proof. Let K\ be the constant as in Lemma ?? Fix e > 0 sufficiently
small and v as in Lemma ?? Let {rij} be a sequence of harmonic one-
forms on C tending to 0 as j H-» OO. Let hj = φ(*rij + dt Λ rij). Fix c
and suppose that (Ai,ψi) are finite energy solutions to the perturbed
equations SWhά with Chern integral c. Of course,

= 1L f
2τr JD2

Let jJ': [0,oo) -» C(PN) be the path associated to (Ai,ψi). It is a

gradient flow line for fnj. Using the notation and terminology from

Subsection 6.7 we find the spanning intervals α{,... , α̂ .. and the local

intervals fr?,... , \Pk. for 7 J and v. As before the total iΛlength

kj

is bounded independent of j. Since each regular spanning interval has
L2-length which is at least K\, this implies that the number, fcj, of span-
ning intervals is bounded independent of j. Passing to a subsequence
we can suppose that all the kj are equal, say equal to A;, and that for
each i < k we have that

converges to a finite limit ί{. In a similar manner we can assume that

for each i < k

oo.

For each j , we adjoin to LLαi the union of the {tf.} for which

mt < oo. This union is a finite disjoint union of closed intervals

s{,... ,sΐ with the property that limj^oo^L2(5i) exists and is finite.

The complementary set of intervals r{ ... , rJ

u in [0, oo) have the property
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that for each i the limit limjH+oo^L2(r ) = oo. (For each j the number
of τ\ is either the same as the number of s\ or is one more.) Passing
to a further subsequence, we can suppose that either 0 € s\ for all j or
0 φ s\ for all j . If the first case prevails, we simply delete s{ from the
set of s-intervals and renumber the others. (We make no change to the
τ\. In this way we arrive at a situation in which r\ lies to the left of s\
and for each j the number of r\ is one more than the number of s\. By
construction each rj is a local interval for ηi and limjM.ooί//2(r^) = oo.)

Now passing to a further subsequence we can arrange that for each
1 there is a geometric limit for (A^φ^) based at the center point of
s? and that there is a geometric limit for (Ai,ψi) based at {0} x C.
We call these limits (Ai,ψi) and (Ao,ψo) respectively. For each i, 0 <
i < *» {AiiΨi) is a non-static, finite energy solution to the unperturbed
Seiberg-Witten equations on R x S1 x C, and (Ao, ̂ o) is a finite energy
solution to the Seiberg-Witten equations on D2 x C. Clearly,

n(Aj

By Lemma 9.8 we have that n(Ao,ψo) > 0. By Lemma 6.20 we
have n(Ai,ψi) > 0. Since we are assuming that the formal dimension
of λΛc(P,ni) i s non-negative, it follows that c > 4 — Ag and hence
that n(A^φ^) < 1. This implies that t = 0 and that Π(AQ^ΦQ) = 1.
This proves that the only c for which Mc(P^n^) is non-empty and of
non-negative formal dimension is c = 4 — 4g. This moduli space is
of formal dimension 0, and we see that for all j sufficiently large the
solution (Ai,ψi) is arbitrarily close on a fixed compact subset to the
static solution of the unperturbed equations.

The last thing to establish is that for all j sufficiently large
M4-4g(P,ni) consists of a single point, a smooth point which with
the orientation induced by the complex structure on D2 x C is a plus
point. This follows from the fact that these statements are true for
the unperturbed equations, and the fact that the moduli spaces vary
smoothly with the parameters n and ry+.

Now for a generic compactly supported self-dual two form 77"1", the
moduli spaces Λ/ίc(P,n,?7"f) which are of formal negative dimension
will be empty. If 77+ is sufficiently small, then it will still be true that
Λ/ίc(P,n,77+) will be empty for c > 4 — Ag and will consist of a single
smooth point for c = 4 — 4g. q.e.d.
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Corollary 9.9. Let X be an oriented riemannian four-manifold with
a cylindrical end isometric [0, oo) x S1 x C. Let X be the closed four-
manifold obtained by filling in X with D2 x C. Then for Spin0-structure
P —> X which has the property that the determinant line bundle C of P
has degree (2 — 2g) on {0} x C we have

SW(P) = SWC(P\X),

where

Proof This is immediate from the Product Formula, Theorem 9.5
and the computation in the previous lemma. q.e.d.

Notice that for X and P as in the previous corollary, it follows that
if SW(P) is non-zero, then the formal dimension d(P) is zero.

Corollary 9.10. Let M,N,X,Y be as in Theorem ?? Let Px -> X
and Py —> Y be Spinc-structures whose determinant line bundles have
degree (2 — 2g) on C. Let X,Y be the compactifications of X and Y
obtained by filling in D2 x C. Fix c G Z. We set Sc equal to the set of
isomorphism classes of pairs (Pχ,Pγ) of Spin0-structures on X andY
extending Px and Pγ with the property that

c1(Cχ)2 + c1(CY)
2=c+(8g-g).

Similarly, set Vc equal to the set of isomorphism classes of Spinc-
structures on M which restrict to X and Y to give Px and Py, up
to isomorphism and with the property that c\(C)2 = c. Fix orientations
for Hι(X,N),Hι(Y,N),Hl0{X,N), and Hlo{Y,N) inducing orienta-
tions on the moduli spaces for X Y and M and hence signs for the
Seiberg-Witten invariants. Then we have

SW{P) = (_i)M-M0*|o(^) Σ SW{Px)SW{Pγ).

Proof This is immediate from Theorem 9.5 and the previous corol-
lary, q.e.d.

It follows from Proposition 9.4 that unless c = 2χ(M) + 3σ(M)
all terms in the summation on the right-hand-side of this equation are
zero. In the case where c = 2χ(M) + 3σ(M) there is at most one
non-zero term on the right-hand-side. In fact, one can also show that
if c φ 2χ(M) + 3σ(M), then all the terms in the summation on the
left-hand-side of the equation also vanish.
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10. Proof of Proposition 4.6

In this section we complete the proof of the two main theorems of
the Introduction by showing that a symplectic torus T of non-negative
square in symplectic four-manifold X is genus minimizing in its homol-
ogy class. Of course, this simply means that the homology class of T is
not represented by a smoothly embedded sphere. Were there a sphere
S C X representing the same homology class as T then that class would
be of infinite order. By the adjunction formula and the fact that T and
5 are homologous we also have that

where Kx is the canonical class of the symplectic structure of X. Thus,

Proposition 4.6 follows from the main result of this section.

Proposition 10.1. Let X be a closed symplectic four-manifold.

Then there is no smoothly embedded sphere 5 C X with the following

properties:

• 5 5 > 0

• The homology class represented by S is of infinite order in

H2(X;Z).

• If b^iX) = 1, then, letting Kx be the canonical class of the sym-

plectic structure of X, we have (Kx, 5) + S 5 = 0.

10.1. First reductions in the proof of Proposition 10.1

Blowing up X at points along 5, shows that in order to prove Propo-
sition 10.1 it suffices to consider the case when 5 - 5 = 0.

We fix a compact manifold X and a smoothly embedded sphere
5 C X of square zero. We write

X = χ0 u ([0,1] x 5 1 x 5) U D2 x 5,

and we fix a one-parameter family of metrics gt, 1 < t on X satisfying:

• The family is constant on X$.

• The family is constant on D2 x 5 and this metric is the product
of a constant positive curvature metric on the sphere with a non-
negative curvature metric on D2.
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• The metric gt on [0,1] x 5 1 x 5 is isometric to a product of an
interval of length t2 with the standard product metric on Sι x S.

Eventually, we shall work with the riemannian manifold (X,gR) for
some sufficiently large R.

Here is the basic lemma.

Lemma 10.2. Let X be a closed, oriented four-manifold, and sup-
pose that S C X is a smoothly embedded sphere of square zero represent-
ing a homology class of infinite order in H2(X',Z). Ifb^iX) > 1, then
the Seiberg-Witten invariant SWx vanishes identically. Ifb^(X) = 1,
letting 5* denote the cohomology class Poincare dual to S, we have that
the S*-negative Seiberg-Witten invariant S\Vχ* vanishes on any char-
acteristic class k with the property that (Λ;, S) = 0.

Remark 10.3. In the case where b%{X) = 1, the symmetry of this
result under replacing S by —S implies that the change in SWχ(k) as
we cross the wall of reducibles must be zero. One can check directly that
under the given topological conditions that the skew-symmetric form

given by (α,6) H-> (α U 6 U fc, [X]) is degenerate. This implies directly
that the wall-crossing formula for SWχ(k) is trivial.

Let us show that this lemma implies Proposition 10.1. Suppose that
X is symplectic with symplectic form ω. In the case where b^(X) = 1,
at the expense of reversing the orientation on 5, we can assume that
the 5*-negative Seiberg-Witten invariant is the same as the ω-negative
Seiberg-Witten invariant. Thus, in both cases we can apply Taubes
non-vanishing result for the value of the Seiberg-Witten invariant on
the canonical class of a symplectic manifold (Lemma 4.8) to establish
Proposition 10.1 from this lemma. The rest of this section is devoted
to the proof of this lemma.

The argument is divided into two cases depending on whether
fcj" (X) > 1 or not. First we consider the easier case where b^iX) > 1.

10.2. The case b${X) > 1

Let {Z,gz) be the complete riemannian four-manifold isometric to

X0u([0,oo) xSι xS).

Since the end of Z has postive scalar curvature, given any constant E
there are constants K,δ > 0 such that for any finite energy solution



782 JOHN W. MORGAN, ZOLTAN SZABO & CLIFFORD HENRY TAUBES

(A, Ψ) to the Seiberg-Witten equations on Z with

^ [ FAΛFA<E,
4π Jz

after modifying by a gauge transformation, we can assume that for any
(£, x) G [0, oo) x (S1 x S) we have the following pointwise C°°-bounds:

• \ψ(t,x)\c<*> < Ke~δt.

• There is a flat connection Ao on S1 x S such that
\A(t,x)-A0(x)\c°o <Ke~δt.

It follows that for any 5pmc-structure and any e the moduli space
Me{P,gz) is compact.

For any finite energy solution (A, ψ) to the Seiberg-Witten equations
for a 5pmc-structure over Z the connection A decays exponentially in
a temporal gauge to a flat connection at infinity. The space of gauge
equivalence classes of flat connections on S1 x S is S1. Thus, for any
Spmc-structure P —>> Z and any constant e, there is a well-defined
boundary map, a smooth map

which assigns to each solution the limiting flat connection at infinity.
Adding a generic compactly supported self-dual form 7?+ we can arrange
that Me{P,gz,η+) is smooth as well as compact. The exponential
decay results still hold for the configurations representing points of this
moduli space so that there is a boundary map d: ΛAe(P,gz,η+) —> Sι.
For generic 77"1" this map is transverse to — 1 E Sι.

Now fix a 5pmc-structure Px -> X. Let C be its determinant line
bundle and set

e= ί Cl(C)2.

Let P be the restriction of Px to Z. Choose a generic, compact sup-
ported 77+ so that Λ4e(P,gz-,^) is smooth and so that d is transverse to
— IES1. For all R » 0, the form η+ induces a self-dual two-form 77̂
on (X, gn). Under these conditions, for all R » 0, the gluing theorem
identifies M(Pf,gR,ηχ) with the codimension-one submanifold
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The fundamental class of the codimension-one subset d~ι{—1) is
Poincare dual to μ(S1) G lϊ1(.Mβ(jP,gz,77+);Z). Thus, supposing that
the dimension of M(Pχ^gR^η^) is 2d we have

(19) /
J
/
M(PXi9R)η+)

So far we have not used the fact that the homology class of S is
of infinite order. The relevance of this condition is that it implies that
the class represented by Sι in H\(Z; Z) is of finite order. (Its order is
given by the minimal positive intersection number of a class in H2(X; Z)
with the class of 5.) But if 5 1 is of finite order in H\(Z; Z), it follows
that μ{Sι) G Hι(Me(P,gz,V+)\ Z) is also of finite order and hence the
integral on the right-hand-side of Equation 19 is zero.

This completes the proof that the Seiberg-Witten invariant for Px
vanishes. Since Px was an arbitrary 5pmc-structure on X, this com-
pletes the proof of Lemma 10.2 in the case where b^iX) > 1.

10.3. The case when b£(X) = 1

For any R > 1, let ω^ be the g#-self-dual form on X of norm one
with positive integral over S.

Claim 10.4. As R *-+ oo the forms CJJ converge to zero on

(x0UD2χS) ex.

Proof. First let us show that the forms ωj are pointwise universally
bounded on A = XQ ]J D2 X S. Take a point x G A and let B be a
small ball containing x. The L2-norm of the forms U~R\B &re universally
bounded, and hence we have pointwise bounds on any smaller ball to
the C°°-norm of ω^. Given these pointwise bounds, it is possible to
extract a subsequence of the ω J which converges to a harmonic form on
the cylindrical-end manifold Z JJ T where T is diffeomorphic to D2 x S
and has a cylindrical end isometric to [0, oo) x Sι x S. This limit form
is self-dual and its L2-norm is at most one. But k>~(Z]jT) = 0 so
there are no non-zero self-dual iΛforms. This means that the limit is
the trivial form, proving that the ω^ must go to zero pointwise on any
compact subset of Xo]jD2 x S. q.e.d.

Corollary 10.5. If \ is any closed form supported on X$, then

/
Jx
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Now let us consider the nature of ω^ in the tube [0, R2] x 5 1 x S.

This form exponentially decays to a constant self-dual harmonic-form,

i.e., it decays exponentially fast to a multiple of the dtΛdθ + dvols. The

exponent is universal depending only on X not on R. Since

LIX

since the length of the tube is R2 and since the integral of ω^ Λ ω# is
going to zero on the complement of the tube, it follows that the multiple
is of the form C/R+o(l/R) where C~2 is twice the product of the length
of the circle and the area of S.

In particular, there are constants L, C > 0 such that for all R » 0
and any L <t < R2 — L and any x G S1 x S, measuring the norms with
respect to ##, we have

(20) \ω+(t,x)\<C'/R.

In light of this and Claim 10.4 we also have that for R » 0 and all

p E l , measuring norms with respect to ##, we have

Fix a Spmc-structure P —>• X and consider the following perturbed

Seiberg-Witten equations for P and gR\

(22) F+=q(ψ)-irω+,

9A(Ψ) = 0

for some r > 0.

Since Jsω^ > 0, for all r >> 0 (how large may depend on JR), the
moduli space of solutions for these equations computes the 5*-negative
Seiberg-Witten invariant of P. We shall show that for R » 0 and
r >> i?, if the degree of the determinant line bundle C of P on S
is zero, then there are no solutions to these equations, implying that
the SWχ* (P) = 0. This will establish Lemma 10.2 in the case where
b+(X) = 1.

We fix R » 0 so that Inequalities (20) and (21) hold. Since ω^ is
a harmonic form, it vanishes only on a set of measure zero. We denote
the function \ω^\ by UR. Then we have

UR<1

C'/R <uR(t, x) for all L < t < R2 - L
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On the open dense subset where ω^ φ 0, we can decompose the
spin bundle S+(P) into two complex line bundles, L " 0 i + , where the
action of Clifford multiplication by ω^ on a section of L^ is given by
multiplication by ±2URΪ. Using this decomposition we write any spinor
field φ = (α,/3) with a being the component in L~ and β being the
component in L+ .

Let (A, φ) be a solution to the Equations (22) for a Spmc-structure
P —> X whose determinant line bundle C has degree zero along S. The
Bochner-Weitzenbock formula tells us that

where s is the scalar curvature of (X, QR). Using the curvature equation,
decomposing φ = (α, β) and taking the L2-inner product with φ we get

Q Π ^ | 2 _L I /Q|2Λ2
O i O _ i O v

4

+ ruR(\β\2 -\a\2)dυol{gR).

In particular,

S(\\2 + \β\2)0 > / S-(\a\2 + \β\2) + ( | α | Ί l / 3 | ) + ruR(\β\2 - \a\2)dvol(gR).
Jx4 4

We can rewrite the integrand in this expression as

2 \2 sΫ \a\2\β\2 s2

+

— 4r uR + \a\

Removing first four terms, each of which is obviously non-negative, we

conclude that

f -s2 ί\θi\2 \
0 > / - — + ruRs + AVUR

 ]—^ ruR dvol(gR).
Jx o V 4 /

A fortiori, we have

(23)

ί -s2 ί\θί\2 - \β\2 \
0 > / - — + ruRs + AruR ' - ruR dυol{gR).

Jx o \ 4 J
Let us estimate each of the terms in this inequality.
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Clearly since s is bounded independent of R, and the volume of
(X, gR) is equal to Co + C\R2 for some constants independent of iϊ, we
conclude that for all R » 0

ί ~s2 o
(24) / dvol9R > —C2R

Jx 8

for some C2 > 0 independent of R. Prom the Inequalities (20) and (21)
and the fact that s is constant and positive on [0, R2] x 5 1 x 5, it follows
that for all R » 0

(25) / ruRS
Jx

for some constants C3, C4 > 0 independent of i?.
Finally, using the curvature equation once again, it is easy to see

that

/ ±ruR ί ' α | ~ l / 3 ' - ruRJ dvol(gR) =r I - 4 i

=r / -8τrci(£)Λωΐ.
Jx

By hypothesis we have (cχ(C),S) — 0. Thus, the class c\(C) is repre-
sented by a closed 2-form λ on X with support contained in XQ. It then
Corollary 10.5 yields that

lim^oo / ci(£) Λu4 = 0.
Jx

Consequently, there is a constant C5 > 0 independent of R such that
for all R » 0,

(26) <c5.
Prom Equations (24), (25), and (26) it follows immediately that for

R » 0 we have

/ - £ - + ruRs + 4ruR ' - ruR dυol(gR)
Jx 8 V 4 /

> C3rR - C4r - C5r - C2R
2.

Clearly, if R » 0 and r » /?, then the right-hand-side of this expres-
sion is positive. This contradicts Inequality (23) and establishes that
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there are no solutions to Equations (22) for the given Spmc-structure
and r >> R » 0.

This proves that SW^ (k) — 0 for any characteristic class with the
property that (&, S) — 0, and thus establishes the lemma in the case
that 6+pO = 1.
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