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EIGENFUNCTION LOCALIZATION IN THE
QUANTIZED RIGID BODY

JOHN A. TOTH

1. Introduction

It has long been known [5],[10],[12],[16],[17] that given a stable,
closed, elliptic geodesic 7, one can associate with this curve a se-
quence of quasimodes φn for the corresponding Laplace operator
—Δ, in the sense that the φn have microsupport in a tube of width
Ό{n~χl2) about 7 and decay exponentially outside this tube. On the
other hand, in the unstable, hyperbolic case, it is known [13] that un-
der suitable hypotheses, one can associate complex resonances with
hyperbolic orbits. However, analogous general results are not known
for eigenvalues and eigenfunctions (see, however [4],[6],[7]. In this pa-
per we focus on a specific paradigm; namely, that of the asymmetric
rigid body reduced at an S1 Noether symmetry. The corresponding
quantum system on S2 is integrable with the classical Lame harmon-
ics as joint eigenfunctions [20]. The classical system inherits a natural
hyperbolic geodesic Γ corresponding to the unstable rotation about
the middle-length inertial axis. Given the quantum Hamiltonian 7/,
we show that there is a sequence of L2-normalized eigenfunctions, φni

with L°° norm concentrated along Γ. More precisely, let Γ(n - 1) de-
note a tube of width (^(n"1) about Γ, and let Vj\j = 1,2,3,4 denote
arbitrarily small (but fixed) disconnected neighbourhoods about the
four umbilic points on Γ. Our main results are:
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and HVVilU00 = 0(1/logή) outside an arbitrarily small (but fixed)
neighbourhood of Γ. Thus we encounter eigenfunction accumulation
along the hyperbolic geodesic Γ, with additional intensity near the
umbilic points. This corresponds to a focusing effect for geodesic flow
at the classical level (see Proposition 2). Our analysis is based on a
fundamental construction of Helffer and Sjδstrand [14] (see Theorem
1) and subsequent work of Marz [15] on the behaviour of the Floquet
spectrum of a one-dimensional Schrόdinger operator (with periodic,
real-analytic potential) near the potential maximum.

I wish to thank Dmitry Yacobson, Steve Zelditch, and Maciej
Zworski for helpful comments, and, in particular, for calling my at-
tention to the paper [6] of Colin de Verdiere and Parisse.

2. Some classical mechanics

In this section, we show that the aforementioned geodesic is in-
deed hyperbolic and has four umbilic points. Let H' denote the
left-invariant Hamiltonian on T*SΌ(3) associated with a rigid body
with distinct moments of inertia a^1 > a^1 > OLΪ1 > 0. If we re-
duce this system with respect to the component of spatial angular
momentum corresponding to rotation about a fixed reference axis,
we obtain an induced Hamiltonian system on S2 [20]. The reduced
Hamiltonian H and the reduced integral in involution P are given
by the formulas [20],[21]:

(1) H =

(2) P = {xxξ2 - ξlX2)
2 + (x2ξ3 - ξ2x3)

2 + (x3ξι -

Here, we identify T*S2 with the set of points {(#,£) E iϊ6; \x\ =
l,x - ξ = 0}. As we show in [20], H = σ(Ή), where Ή is a second-
order, elliptic differential operator (essentially, the radial part of a
left-invariant Laplacian on 50(3)), and P = σ(—Δo), where —Δo is
the standard Laplacian on S2. Both operators are self-adjoint with
respect to the constant curvature metric on S2.

Proposition 1. The two geodesies Γ* = {{x,ξ) G S*(S2);x2 =
£2 = 0} are hyperbolic. Moreover, ifπ : T*(S2) —>> S2 denotes the
standard projection map, then the four points:
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standard projection map, then the four points:

are umbilics for the Riemann metric induced on S2 by H.
Proof. Since H is invariant under reflection in the coordinate

planes, it follows that Γ is a geodesic. To show that Γ is hyperbolic,
we use symplectic reduction. Reducing the above system at unit mo-
mentum with respect to the symplectic S1 action given by standard
geodesic flow on T^S^i.e., the flow of the Hamilton vector field Xp),
we get the following reduced system on S2:

(3)

(4)

Let r : T*S2 -> S2 denote the reduction map. Then, we have r^Γ*) =
p = (0, ±1,0) where dh(p) = 0 and d2h has a saddle point at p.
Let Σ be the initial Poincare cross-section to Γ at p0? Φt be the
flow for XH and U be a small open neighbourhood of Γ. Then, r
maps U Π φt(Σ) diffeomorphically onto a neighbourhood of p and
H \φt(Σ) has a saddle-point at φt{po) for any t. Therefore, Γ^1 must
be hyperbolic. Henceforth, without loss of generality, we put Γ = Γ+.

To prove that there are four umbilic points lying on τr(Γ), it is
best to compare the Riemann metric g induced on T*S2 by H, with
the standard metric g (induced from R3) on the triaxial ellipsoid
E2 = {(xi,x2,X3) € R?\X\/OLI +xl/a2 +xl/a3 = 1}, pulled back to
S2 via the homothety (^1,^2,^3) -> ((αi)1 / 2Xi, {OL2)

1/2X2, ( α 3 ) 1 / 2 x 3 ) .
A simple calculation in elliptic-spherical coordinates (see below, [20])
gives:

g = aγa2a3 ( X l Xry Xr»

9 9 ' 9

a{ OL\ a\By elementary surface theory, we know that lines of curvature are
invariant under non-negative conformal scaling of the metric, and so
in particular, the umbilic points of g and g coincide. In the latter
case, these points are well-known [1]. q.e.d.

We shall now show that there is a focusing effect at these umbilic
points on Γ; that is, all geodesies on the separatrix Λ intersect Γ
at these points. Moreover, the geodesies π(j(t)) are forwards and
backwards asymptotic to Γ. As we shall see later, in the quantum
setting there is a corresponding accumulation of L°° norm for the
eigenfunctions %j)n.
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We now restrict our attention to the flow, φu on the separatrix:

Λ := {(χ,ζ) e T*S2;H(x,ξ) - a2 P(χ,ξ) = 0}.

Proposition 2. Let τr(j(t)) be the base projection of a solution
curve j(t) of XH on Λ. Then, 7r(j(t)) intersects Γ at an umbilic
point po — π(7(0)), and there exists T with π(j(T)) = -p0, where
—po is the diametrically opposite umbilic on (S2,g). Moreover,

mf\\π(Ί(t))-p\\ = O(e-cM),

as \t\ -* oo. Here, C > 0 is a constant, and inf || || denotes distance
in the metric g.

Proof. Introduce elliptic-spherical coordinates (uι,u2) on S'2,
defined by

k
x2 =i—cn()9(txi); k)cn(u2, fc),

x3 =~dn(β(u1); k)dn(u2; k),

where cn{x\ fc), sn[x\ k),dn{x\ k) are the basic Jacobian elliptic func-
tions [22], 0 < k < 1 is the elliptic modulus, and k' is the complemen-
tary modulus given by the equation k2 + k/2 = 1. Moreover, —K; <
uι < K',0 < u2 < 4K, β(ux) := K + i(K'-Ui), and {xux2,x3) € 52,
the modular vectors K and K' being defined by the elliptic integrals
/^{(l - t2)(l - k2t2)}-ι/2dt and /^{(l - t2){l - kl2t2)}-ι'2dt respec-
tively. Applying Hamilton- Jacobi theory, one finds that the defining
equations for ττ(j(t)) are:

(5)
dβ{uλ) = [ ( α 1 -a2)Hsn2(u2;k) -a,)} • (1 - sn'jβju^ k))*

dt sn2{u2 k) - sn2{β(uλ)]k)

( , d^ J(ai - α2)*(an209(tii);fc) - αi)] • (1 - sn2(u2;k))h
[ } dt sn^βiu^k)- sn2(u2;k)

From equations (5) and (6), we get the integrated Clairault relation:

W?(ui(t)) ru2(t)

(7) / ω{x)dx + / ω{x)dx = 0,
Jβ(ui(0)) Λi2(0)

where, ω(x) = [(aλ - a2)^(sn2(x;k) - aλ)] (1 - sn2(x;k))~%. On
π(Γ) we have either β(ux) G {K,K + 2iK'} and u2 variable, or
u2 E {K,3K} and β{uι) variable. The umbilic points are given
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by (j9(tii),u2) e {(/f,K),(K,3K),(K
We can, without loss of generality, assume that u2 = K (the other
cases are handled in the same way). So, if u2(t) -> K as t —> T, it
follows from equation (7) that:

Jβ
= Clog |ix2(ί) - K| + 0(1).

Since (ω o β){uχ) is in L]oc away from /?(ui) = K,K + 2iK', this
forces /3(wi(ί)) -> K, or K + 2zK' as t -> T. Since /5(î i) and ύ2 have
opposite sign, it follows that π(7(ί)) passes through diametrically
opposite umbilics. To prove the last assertion, we write down another
integrated conservation law:

/ η(x)dx + / η(x)dx = {(αx - a2)(a1 - a3)}* t,
Jβ(ui(0)) Ju2(0)

where, η(x) = (1 — sn2(x; k))~* = |nc(a;; fc)|. This identity, together
with the well-known [3] formula, f£ nc(x; k)dx — fc'~1[log(dn(a;; k) +
kfsn(x; k)) — log(cn(α;; k))]^ gives,

[dn(u2(t);k) + k1 sn(u2(t); fc)][dn(/?(ιzi(ί)); fc) + k'sniβiu^t)); k)]

= C'exp(Cί),

where, C = ^'{(α!—α2)(α!—α3)}2 5 and C ; is an integration constant.
If t > 0 and π(7(t)) is a point not on Γ, it follows that:

\cn(u2(t);k)-cn(β(Ul(t));k)\=O(e-ct),

and thus,

(8) minίlcn̂ W ^Ucn^^W);^!}-^-^).

So, for any t > 0, either u2(ί) = K, or 3K + (9(e~Cί) or /3(tii(t)) = K,
or K + 2zK' + O(e~ct). Given our characterization of Γ in terms of
the coordinates u2 and uu we are done. In the case t < 0, replace
cn(x k) by dn(x k) + k'sn(x k) in (8), and argue in precisely the
same way. q.e.d.

One can prove analogous statements for geodesic flow on the ellip-
soid and elliptic billiards in the same way. For the latter two systems,
this sort of behaviour is, at least qualitatively, well-known [1].
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3. L°° estimates for generic eigenfunctions

In this section, we use classical WKB theory, and the following
modular identity for the Jacobian sine function sn(z]k) [22],[20]:

(9) sn2(K + ί(K' - z) k) = k~2 (1 - kl2sn2(z; k'))

to study eigenfunctions. Using the modular relation (9), one can
show [20],[8] that the joint eigenfunctions of the operators Ή. and
—Δo are given by the collection of harmonics φi(uχ) ψ2(u2) where
ψι, ψ2 satisfy the following Floquet boundary value problems on the
real line:

(10) { ~ ^

(11)

Here, (uι,u2) denote Jacobian uniformizing variables on S2 (see [20]
and Section 2), h = {n(n + I)}"1/2; n = 1,2,... and for h sufficiently
small, we restrict X(h) to the range 0 < X(h) < 1. By generic
eigenfunctions, we mean those that are associated with arbitrary
energy levels, E (i.e., 1 - λ(h) -» E), with max{k'2sn2(x; k')} =
kt2>E>0 = min{k'2sn2(x; k1)}.

Suppose 1 — X(h) —> E in this range. Then, it is well known that
a given ψι(uι\h) with HVΊIIL2 — 1 will have L°° norm concentrated
at the caustics (i.e., the turning points). More precisely [9], if x0 is
a turning point, then, to the right of x0:

(12) ^(tn Λ) = h-^Wiu^-^Aii-h-^φiu,)) + O(l)

where, 2/3(φ(x))3'2 = f*0[kf2sn2(t) - E]^2dt, with similar formulas
for x < XQ. Using well-known [9] asymptotic expansions for the Airy
function Ai(x), it follows that,

(13) \\ψ(ui; K)\\L~=C{E)h-ι'« + (9(1)

Notice that since 1 — \(ti) < k'2, then λ(ft) > k2. So, in the comple-
mentary variable u2, we pass over the potential barrier k2sn2(u2; k),
and thus the function ^2(^2; Λ) has an asymptotic expansion:

(14) ψ2(u2 ft) = eiκ^ha(u2] ft) + O(e-C'h).
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Here, κ(x) — f* ksn(t)dt, and a(x;h) ~ ao(x) + aι(x)h+... is a clas-
sical analytic symbol [18] of order zero. Exactly the same argument
works in the case k2 < E < 1 with the roles of Uι and u2 reversed.
For 1 — X(h) G [0, Ch] (i.e., ground state), the expansion (12) for
ψi(uι]h) is replaced by:

(15) φi(uύh) = fi-i/4e-Φi)/ftα(Ui;fi) + O(e-c/h).

Again, one can reverse the roles of uλ and u2 to get asymptotic
formulas corresponding to eigenvalues 1 — λ(h) G [1 — Ch, 1 + Ch].
Summing up, we have proved:

Proposition 3. The L2-normalized Lame harmonics ψ(uι,u2; h)
:= ipi(uim,h)-ip2{'U'2\ ft) with eigenvalues X(h) —ϊ E where E G [0, k2)U
(A;2,1] satisfy:

whereas, for λ(h) e [0, Ch] and X(h) e[l-Ch,l + Ch]:

4. Microlocal analysis near the potential maximum

We now address the more interesting question of estimating eigen-
functions pointwise near the top of the potential k2sn2(x\ k). As we
shall see, these eigenfunctions have an accumulation of L°° norm in
an O(h) neighbourhood of Γ, with additional accumulation near the
umbilic points.

To begin, put E = k2 in equation (10). Since this is a singu-
lar energy level for the potential k2sn2(x\k), the standard ansatz
of geometric asymptotics [11] breaks down, and we must use other
methods. The fundamental construction is the following (see [6] for
the C°° analogue):

Theorem 1. (Helffer-Sjόstrand [14]) Let P(x,hDx\h) be a for-
mal classical analytic pseudodifferential operator of order 0, formally
self-adjoint, with symbol defined in a neighbourhood of (x,ξ) = (0,0).
Letp be the principal symbol, and assume thatp has a non-degenerate
saddle point at (0,0) with critical value 0. Then there is a real-valued
analytic symbol; F(t,h) ~ ^^° jrj(t)hj, defined for t in a neighbour-
hood of 0, and a formal unitary analytic Fourier integral operator U,
whose associated canonical transformation (in the classical sense) is
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defined in a neighbourhood of (0,0), and maps this point onto itself,
such that microlocally,

U*F{P,h)U = \{xKDx + hDxx).

The first step in the proof of Theorem 1 is to construct a real-analytic
canonical transformation on a sufficiently small open set Ω G (0,0)
with K : Ω —> Ω and κ(0,0) = (0,0). This is done in two stages.
First, one constructs

tti : Ω -* Ω,

such that,
P'KX(x,ξ) = a{x,ξ)xξ.

By applying a suitable function / to p, we may assume that α(0,0) =
1. In the case of a Schrόdinger operator P(h) = —h2dl + V(x) with
V(x) real-analytic, ^'(0) = 0 and V"(0) < 0, it is easy to show that:

where κQ denotes the rotation by θ in (x, ξ) space. The second step
is more difficult, and consists of constructing:

κ2 Ω -> Ω,

/ca(0,0) = (0,0),

with the property that,

with

One then associates with K := Λ:I /ί2 a (formal) unitary analytic
Fourier integral operator Uκ of order zero. To finish the proof, one
constructs a (formal) analytic pseudodifferential operator R of order
zero, solving the equation:

R P= -{xhDx + HDxx) R.
Δ

So U = RUK and since d/ί(0,0) = κπ/4, it follows that for sufficiently
small x and y, the generating function φ(x, y) satisfies:

where,
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Let x E C£° with support in a sufficiently small neighbourhood Y of
y = 0 and identically 1 near 0. If φ G V'(Y) then,

(16) Uφ(χ ft) - Cft"1/2 j eiφ^hσ(x, y; h)χ(y)φ(y)dy.

Here, x E X, a sufficiently small neighbourhood of x = 0, and
σ(rr, y\ ft) is an elliptic, classical analytic symbol of order zero. Since
all distributional solutions of the eigenvalue equation (l/2)(xhDx +
HDxx)u = η' 'U are linear combinations of u°+(x) = H(x)\x\~1^2+iη'^h

and u°_(x) = H(—x)\x\~ι/2+iιη'/h, the natural approximate eigenfunc-
tions (defined for x E X) of P(/i) solving the equation (P — η)u = 0
are just ?/+(x;/i) := C/^(α;) and u_(x;h) := Uu°_(x). These func-
tions will be our basic building blocks. Without loss of generality,
we will henceforth work with u+{x\K). To study this function near
x — 0, we must estimate the integral:

(17) u+(z;h) = /Γ1/2 f ^
Jo

where, η' = F{η\ ft), and 5wpp(χ) C {y; |y| < ε}.
Lemma 1. There exists η E [—Cft, Cft], such that for \x\ < Ch,

\u+(x',h)\ has the uniform asymptotic expansion:

where C is a suitable constant.
Proof. To eliminate the x variable, write:

φ(x,y) =

where

It follows that:

eiφ^hσ(x, y; h) = σ(0, y; A) + O(y) σ(0, y; A) +

We can thus write the integral in (17) as:

C ft"1/2 Γ eWo iΉ*' loe ri/Λ

σ(0, y; h)χ(y)y-^2dy
Jo

+ Cft-1/2 Γ βW.ri+'ί ' toίylM^σ'^y; h)y-1/2dy + (9(ft1/2),
Jo
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where σ'(0,j/;ft) = O(y) σ(O,j/;Λ). Using the fact that φ{O,y) =
—y2 + O(y3), we rescale the second term by introducing the variable
w — h~ι/2y, and do one integration by parts to get:

= C7Γ 1 ' 2 /
Jo

= C7Γ1 / 2 Γ ei

Jo
since, by the unitarity of U it follows that [15] σ(0,0) = 1. Making a
change of variables w2 = — 0(0, y), and rescaling the above integral
by z = /Γ"1/2w, yields

(18)

u+{x',K)

/
Jo

We now recall a result of Marz [15] on the structure of the Flo-
quet spectrum in an energy band of size O(ti) about the poten-
tial maximum, and then compute the last integral, using a well-
known asymptotic expansion for the indefinite Gamma function,
Γ(z a) := $*e-Ha-ιdt. In [15], Marz shows that if \η\ < Ch and
η1 := F(η\ K) = η + O(h2) is contained in a gap, then the length of
this gap is,

If η' is contained in a band, one replaces arccos by arcsin. So, we
choose an eigenvalue 77, with:

Putting r = z2, we must evaluate the integral,

re"h-1

(20) / e~ir-r-ϊ+^dr.
Jo

Using the asymptotic expansion [3]:

Γ(s; α) - Γ(α) - e~zza~ι ίl + ^ - ^ + ...1

valid as z —>• 00 in | arg2:| < 3π/2, the lemma follows. q.e.d.

Let us now suppose that we are in the Floquet case, and so, in
particular, the potential, V(x), satisfies V(x + 2π) — V(x). Then,
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for e > 0 sufficiently small, one can extend (see [15]) u+ and u_
to functions defined on (—e, 2π + e), by applying analytic stationary
phase outside an arbitrarily small (but fixed) neighbourhood of x =
0, and get u±(x) = Σ±eiφ±{x)/ha±(x;h) + O(e~c/h). Here, ± denote
various microlocal contributions from {(x,ξ)',ξ2 + V(x) = E,ξ > 0},
and {(#,£);£2 + V(x) = E,ξ < 0} respectively. Furthermore, u± can
be constructed so as to satisfy,

pointwise, on such an interval. In [15], Marz derives a formula for
the approximate translation matrix, T(η; h) corresponding to the
basis, u±(x] ft), which, as it turns out, is within O(e~c^h) of the exact
translation matrix, T(η\h). Applying the Floquet condition,

Trace f(η\ ft) = ±2

one readily verifies that, for \η\ < Ch, the eigenfunctions (up to
rescaling) of T(η\ h) must be of the form:

u+(χ h) ±u-{χ h) + O{e-c/h).

If we require the symmetry condition, V(x) = V(—x), then, it is
well-known that Floquet eigenfunctions fall into four categories: that
is, each eigenfunction solves one of four distinct Sturm-Liouville
boundary-value problems. By Lemma 1, the functions of interest to
us are u+ (x; K) +u_ (x; h). To show that there are true eigenfunctions
close to these functions, we argue as follows. Since, V(—x) = V(x), it
is not difficult to show that the canonical transformation K : Ω —> Ω
is odd, and thus, φ(—x, —y) = φ(x,y). It follows that,

(21) u+(0;/0=u_(0;ft).

Furthermore, if u{x\ h) is a solution of the Schrόdinger equation on
(—π — e, 3π + e), we have the well-known pointwise estimate (see, for
example, [15, Lemma 7.1] ):

(22) (\hdxu(x)\2 + \Φ)\Ύ/2 < C^l\\hdyu{y)\2 + \u(y)\ψ\

Here, y E [—π,3π], and x G [j/,3π], and e > 0 is arbitrary. Com-
bining (21), (22), together with the characterization of the Floquet
eigenfunctions as solutions of Sturm-Liouville boundary-value prob-
lems, yields that there exist eigenfunctions u{x; h) corresponding to
eigenvalues η = O(h/\ logft|), with,

(23) | | n - ( n + + u_)| |LoO=0(e- c/ / ί).
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We shall now address the question of ZΛnormalization (see also [6,
Proposition 14] ). Since, u± have standard WKB expansions outside
a fixed neighbourhood, {x; \x\ < e}, it follows that,

(24)
Jπ-e>\x\>e

To compute the ZΛnorm inside {x; \x\ < e}, it is useful to note that U
is a microlocally, unitary Fourier integral operator on a sufficiently
small open neighbourhood, Ω, containing (0,0). Furthermore, the
microsupport of u±(x; K) is contained in Ω for x sufficiently small. It
therefore follows, modulo terms that are O(e~c/n), that:

/ Ui^(τ h)\2dτ — Chr1 I df\ I p~x(χ^-^lo6χ)vCrW~2/7τ|
2

J\x\<e Jθ Jθ

Estimating this last integral, leads to that, for \η\ < Ch/\ logfi|,

/ \u±(x;h)\2dx = Clog (I) +O(1)
J\x\<e \β/

and,

J\x\
u+{x;h)u_(x;h)dx = O{\).

Summing up, we have proved:
Proposition 4. Suppose, V(—x) = V(x), and η is a Floquet

eigenvalue with \η\ < Ch \logh\. Then, there exists a subsequence

of η's, such that, for \x\ < Ch, the corresponding L2-normalized
eigenfunctions satisfy,

5. Eigenfunction localization along Γ

We are now ready to prove our main result:
Theorem 2. Let Γ ί n " 1 ) ; ^ = 1,2,3,.. denote a tube of width

O{n~ι) about Y, and let Vf,j = 1,2,3,4 denote arbitrarily small
(but fixed) disconnected neighbourhoods about the four umbilic points.
Then, there exists a sequence of Lame harmonics ψ{uι,u2;n) :=
Φi(uι]n) ^2(^2; n)\n = 1,2,..., such that:

ni/4 / ni/4

(25) ll^lU C [
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(26)

noindent and ||^||i,« = 0(1/log n) outside an arbitrarily small (but
fixed) neighbourhood ofΓ. Here, C > 0 is a constant.

Proof. Let h = [n(n + l)]~ι/2\n = 1,2,... and ψ\(uι\K) be an
eigenfunction of (11) with eigenvalue

G [k12 - Ch/\ logft|,k12 + Ch/\ \ogh\).

The corresponding eigenvalue X(h) of ̂ 2(^2; Λ) also lies in the interval
[A;2 — Ch/\ log/ϊ|, k2 + Ch/\ logh\]. So we are working at the top of
the potential in both Floquet problems. If we denote X := {Γ(n~1) —

u U viY'then

(27)

XC{(uuu2)eS2; -K' + l ,

K-eh<u2<K + eh}.

Here, e > 0 is sufficiently small, and c denotes the connected compo-
nent with z > 0 (the other cases are handled in the same fashion).
Since k2sn2(u2\k) has a non-degenerate maximum at u2 = K, from
Proposition 4 it follows that for (ui,u2) € X,

XC{(uuu2)eS2; -K' + €<Ul<K'

K-eh<u

and moreover,

The first part of Theorem 2 then follows, since ^(^1,^2;^)
= ψι(uι;n) - ̂ 2(^2; ̂ ) To prove the second part of the theorem,
note that both Floquet potentials k2sn2(μι\k) and k'2sn2{u2\k') at-
tain their maxima at the umbilic points Uι = ±K',^ 2 = ϋΓ, 3K, and
apply Proposition 4. q.e.d.

Remark. Suppose,

1
«2 - ^ I

In this case, we have

- α3
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It is well-known [8],[20] that the Lame Schrόdinger operator P(h) =
—h2dl + \sn2{x) has \ as an eigenvalue (i.e., an eigenvalue precisely
at the potential maximum, independent of /i), provided we restrict
h to the subsequence {[2n(2n + l)]~1/2;n = 0,1,2,...}. Shifting the
potential down by | in order to adhere to our convention, we put:

η' = F(0;h) ~ f2(0)h2 + fs(0)h3 + ...

since /o(0) = /i(0) = 0. Thus, by the asymptotic expansion for the
indefinite Gamma function (see above), we obtain that:

/
Jo

O{h3/4).

This implies, by the estimates in Lemma 1, and Proposition 4, that
the error in (25) is improved to O(n~1/4/logn), whereas the error in
(26) is 0(1/logn).

Remark. In [19], Seeger and Sogge show that for a given self-
adjoint, elliptic pseudodiίferential operator P E ^™0(M), with strict-
ly convex principal symbol p(rr,ξ), there is a universal upper bound
for the L2-normalized eigenfunctions, given by:

where, φ\ is an eigenfunction corresponding to the eigenvalue λ, and
n = dimM. In our case, it is plausible that the upper bound is
attained by the eigenfunctions associated with Γ at the four umbilic
points (±po5 ip i ) This would imply that the the actual upper bound
is, ever so slightly, better than the universal Seeger-Sogge prediction.
However, there are gaps in the asymptotics of u± which must be
worked out if one is to prove this rigorously.
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