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LEVEL SET APPROACH TO MEAN CURVATURE
FLOW IN ARBITRARY CODIMENSION

LUIGI AMBROSIO k HALIL METE SONER

Abstract

We develop a level set theory for the mean curvature evolution of surfaces
with arbitrary co-dimension, thus generalizing the previous work [8, 15]
on hypersurfaces. The main idea is to surround the evolving surface of
codimension-/c in R d by a family of hypersurfaces (the level sets of a func-
tion) evolving with normal velocity equal to the sum of the (d — k) smallest
principal curvatures. The existence and the uniqueness of a weak (level-set)
solution is easily established by using mainly the results of [8] and the theory
of viscosity solutions for second order nonlinear parabolic equations. The
level set solutions coincide with the classical solutions whenever the latter
exist. The proof of this connection uses a careful analysis of the squared dis-
tance from the surfaces. It is also shown that varifold solutions constructed
by Brakke [7] are included in the level-set solutions. The idea of surrounding
the evolving surface by a family of hypersurfaces with a certain property
is related to the barriers of De Giorgi. An introduction to the theory of
barriers and its connection to the level set solutions is also provided.

1. Introduction

Recently, Evans & Spruck [15] and, independently, Chen, Giga &
Goto [8] developed a level set approach for hypersurfaces evolving by
their mean curvature. We extend this approach to surfaces with arbi-
trary co-dimension.

In the classical setup, mean curvature flow is a geometric initial value
problem. Starting from a smooth initial surface Γo in Rd, the solution
Γt evolves in time so that at each point its normal velocity vector is
equal to its mean curvature vector. By parametric methods of differen-
tial geometry much has been obtained for convex or graph-like initial
surfaces or for planar curves. See for instance Altschuler & Grayson [3],
Ecker h Huisken [13], Gage & Hamilton [21], Grayson [23], and Huisken
[25]. However for d > 3, initially smooth surfaces may develop geomet-
ric singularities. For example the dumbbell region in R3 splits into two
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pieces in finite time (c.f. [2], [24]) or a "fat" enough torus closes its
interior hole in finite time (c.f. [39]). Also it is easily seen that smooth
curves in R 3 may self intersect in finite time.

Several weak solutions have been proposed. In his pioneering work,
Brakke [7] uses geometric measure theory to construct a (generally
nonunique) varifold solution with arbitrary co-dimension. Ilmanen's
monograph [26] provides an excellent account of this theory including
the connections between different approaches and a partial regularity
result. Also see Almgren, Taylor & Wang [1] for a related variational
approach and the survey of Taylor, Cahn & Handwerker [40].

For codimension-one surfaces, a completely different approach, ini-
tially suggested in the physics literature by Ohta, Jasnaw & Kawasaki
[34], for numerical calculations by Sethian [35] and Osher & Sethian [33],
represents the evolving surfaces as the level set of an auxiliary function
solving an appropriate nonlinear differential equation. This "level-set"
approach has been extensively developed by Chen, Giga & Goto [8] and,
independently, by Evans & Spruck [15]. Their approach is this. Given
an initial hypersurface Γo, select a function u0 : Rd —> R so that

(1.1) Γo = {x G Rd : uo(x) = 0}.

Consider then the Cauchy problem

(1.2) ut = IVu| V ( jy^i) , in Rd x (0, oo),

with initial data

(1.3) u(x,0) = uo(x), Vx G Rd,

for the unknown scalar function u(x, t). In the regions where u is smooth
and Vu does not vanish,

are, respectively, the normal velocity and the scalar mean curvature of
the level set of u. Hence (1.2) implies that each level set of u evolves
according to its mean curvature, at least in the regions where u is smooth
and Vn does not vanish. So it is reasonable to define

Tt = {x G Rd : u(x,t) = 0}.

Observe that (1.2) is degenerate, and it is not well defined when Vu is
zero. Evans & Spruck and Chen, Giga & Goto overcame these difficulties
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by using the theory of viscosity solutions ([11, 9, 10, 20]). In particular,
in [8, 15] it is proved that under very general hypotheses, there is a
unique viscosity solution u of (1.2),(1.3), and that Tt depends only on
the geometric initial data Γo, but not on the auxiliary function u0 and
whence Γt is a well defined evolution of Γo. Other interesting properties
of Γί? including Hausdorff dimension estimates and local time existence
of classical solutions, are obtained in a series of papers [16, 17, 18]. Also
[8] demonstrates that the level set approach for hypersurfaces is robust
enough to treat equations more general than the mean curvature flow.

More intrinsic definitions related to the level-set solutions have also
been introduced. [37] recasts the definitions, constructions and unique-
ness criteria into a different form using the (signed) distance function to
the surface (also see [4]). In [27], Ilmanen uses smooth classical solutions
as test functions to define set-theoretic subsolutions. These subsolutions
were then used in [26] to prove a connection between the varifold solu-
tions of Brakke and the level-set solutions. In [29], Ishii & Souganidis
analyze general equations with arbitrary growth in the curvature term.

In [12], De Giorgi introduces the notion of barriers for very gen-
eral equations, including the mean curvature flow with arbitrary co-
dimension. For codimension-one surfaces, barriers are related to the
level-set solutions of [8, 15] (see [5], [6]), and in higher co-dimensions
De Giorgi's definition is the starting point of this paper. A discussion
of the barriers and their connection to level-set solutions is given in §6
below. Finally, the singular limit of a reaction-diffusion equation with
a cubic nonlinearity also provides an approximation and a possibly dif-
ferent definition for hypersurfaces moving by their curvature. However,
this approach is shown to coincide with the previous definitions; see [19],
[38] and the references therein. Katsoulakis h Souganidis [31] proves
the convergence of a particle system to mean curvature flow.

Smooth surfaces with codimension-A; can be represented as the inter-
section of the level sets of k scalar functions with nonvanishing gradi-
ents on the surface. Then proceeding as in codimension-one case, we
can obtain a system of partial differential equations generalizing (1.2).
However, since this generalization is a degenerate system of equations,
we can no longer employ (as was done in [15, 8]) the theory of viscosity
solutions or any other existing theory to analyze the resulting equations.
Therefore it is desirable to obtain an alternate approach using only one
scalar function. We achieve this representation following the lectures of
De Giorgi [12].

To explain the main idea, let Γ C Rd be a smooth surface with co-
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dimension k > 1, υ : R d —> [0, oo) be an auxiliary function

Γ = {xeΈLd : φ ) = 0}.

Assume that υ is smooth near Γ and its spatial gradient does not vanish
outside Γ. The key step is to express the curvature properties of Γ in
terms of the derivatives of this auxiliary function v. To accomplish this,
we consider the e-level set, Γe, of v for small e > 0. For x $ Γ but near
Γ, let J(x) be the symmetric, d x d matrix

J(χ) = 2

where for a nonzero vector p G Rd,

(1 4) P -I
(1.4) Fp - 1 - w

Further let

λ 1 ( J ) < λ 2 ( J ) < < λ d _ 1 ( J )

be the eigenvalues of J(x) corresponding to eigenvectors orthogonal to
Wυ(x) (note that J(x)Vv(x) = 0). These eigenvalues are equal to the
principal curvatures of the codimension-one surface Γe, oriented by Vυ
(see Remark 2.7).

Since Γ has codimension-λ;, for small enough e, we expect Γc to have
very large k — 1 principal curvatures and the remaining d — k principal
curvatures of Γe to be related to the geometry of Γ. Indeed, approaching
to Γ from a normal direction p G Sd~x, their sum converges to —H p,
where H is the mean curvature vector of Γ (see Remark 3.3).

Preceding computations together with [8, 15] suggest the following
level-set definition for the codimension-A; mean curvature flow. For a
symmetric, d x d matrix A, and p G R d with p φ 0, set X = PPAPP,
and let

be the eigenvalues of X corresponding to eigenvectors orthogonal to p
(observe that 0 is an eigenvalue of X corresponding to p) and define

(1.5) F{p,A) = Σλ*(x)

Given an initial data Γo, choose a scalar function u0 : R d -> [0, oo)
satisfying (1.1). Then consider the equation

(1.6) ut = F(Vtx, V2n), in Rd x (0, oo),
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with initial data (1.3), for the unknown scalar function u{x,t). In §2,
below we will show that (1.6) is degenerate parabolic and that the ex-
tension of the viscosity theory developed in [8] applies to (1.6). In par-
ticular, for a given uniformly continuous u0, there is a unique viscosity
solution u satisfying (1.6) and (1.3). Moreover

(1.7) Γt = {xeRd:u(x,t)=0}

depends only on Γo, but not on u0. Hence Γt is a well-defined evolution
ofΓ0.

Clearly every weak theory has to be consistent with the classical
solutions whenever the latter exist. In §3, we prove that if there is
a classical solution Γ't of the geometric initial value problem, then it
coincides with the level-set solution I\. This is done by analyzing the
properties of the distance function δ(x,t) to Γ't and the square distance
function η = δ2/2. We first show that Γ't is a classical solution of the
mean curvature flow if and only if η is smooth in a neighborhood of Γ't
and satisfies

Vηt = ΔVry, on ΓJ;

see Lemma 3.7 below for the precise statement. Using this identity, we
prove that δ solves a parabolic equation in a tubular neighborhood of
Γ[. Then it follows that for sufficiently large K, e~κtδ is a subsolution
of (1.6) in a tubular neighborhood of T't. Thus by comparing δ to a
solution of (1.6) in this tubular region, we conclude that T't includes
IV The reverse inclusion is proved after showing that δ is a viscosity
supersolution of (1.6).

This final property also suggests an intrinsic definition using the dis-
tance function as in [37]. Briefly, we say that Γt is a distance solution if
its distance function δ(x, t) is a viscosity supersolution of (1.6). Then as
in codimension-one case, the zero level-set of u is the maximal distance
solution; see Theorem 4.4 below.

In §5, we study the varifold solutions of Brakke. Following Ilmanen's
computations for hypersurfaces [26, §10], we show that the distance
function to any Brakke solution is a viscosity supersolution of (1.6).
Hence every Brakke solution is a distance solution. Since the level-set
solution is the maximal distance solution, it includes the Brakke solu-
tions. However, in general the level-set solution or a distance solution
need not be a Brakke solution.

As mentioned at the beginning of this introduction, the starting point
of our analysis is the notion of barriers defined by De Giorgi [12]. In §6,
we give a brief introduction to De Giorgi's barriers. Then we discuss
the connection between the level set solutions and the barriers, in the
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same spirit of the work of Bellettini & Paolini [6] in the codimension-1
case.

2. Level set solutions

We start with a brief review of several standard notation, definitions
and results from the theory of viscosity solutions. An excellent intro-
duction to this theory is the User's Guide [10].

For any function w, the upper semicontinuous envelope w* ofw is the
smallest upper semicontinuous function that is greater than or equal to
w. Similarly, the lower semicontinuous envelope w* of w is the largest
lower semicontinuous function that is less than or equal to w. Let F
be as in (1.5). Then F*(p,A) = F*(p,A) = F(p,A) o n p ^ O , and for

Fm(0,A) = min{F(v,A) : |i/| = 1}.

We continue with the definition of viscosity solutions. Although the
unique viscosity solution of (1.6) is continuous, discontinuous sub- and
supersolutions are often useful tools. So in the following definition we
do not assume the continuity of u.

Let Sdxd be the set of all symmetric, d x d matrices.
Definition 2.1 (Viscosity solutions). Let Ω C Hd be an open set,

let u : Ω x [0,T) -» R be a locally bounded function and let G :
R x (Rd \ {0}) x Sdxd -> R.

a) We say that u is a viscosity subsolution of

(2.1) ut = G(

in Ω x (0,T) if for any φ G C2(Ω x (0,T))

Φt{y,t) < G*(u*(y,t),u{Vφ{y,t),V2φ(y,t))

at any local maximizer (y, t) E Ω x (0,T) of the difference (u* — φ). (If
for a given φ there are no local maximizers of the difference (u* — φ),
then there is nothing to check!)

b) Similarly, we say that u is a viscosity supersolution of (2.1) in
Ω x (0,T) if for any φ e C2(Ω x (0,T))

at any local minimizer (y,t) G Ω x (0,Γ) of the difference (u* — φ).
(Again if for a given φ there are no local minimizers of the difference
(u* — φ), then there is nothing to check!)
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c) Finally, u is a viscosity solution of (2.1) in Ω x (0,T) if it is both a
viscosity subsolution and a viscosity supersolution of (2.1) in Ω x (0,T).

We now state a comparison result which follows from Theorem 2.1 of
[22].

Theorem 2.2 (Comparison). Let u, v be respectively a viscosity
subsolution and a viscosity supersolution of (1.6) in Rd x (0, T). Suppose
that u*( ,0) or v*( ,0) is uniformly continuous, and that there exists a
constant K satisfying,

\x\).

Then

(u* - υ.){x,t) < sup{(u* - υ.)(y,0) : V 6 Rd}, V(a,t) E Rrf x [0,T].

Note that if u and υ are uniformly continuous, then the assumption
on the growth of u and υ is automatically satisfied.

Proof. This theorem follows directly from Theorem 2.1 of [22]. In
the following steps, we will show that F satisfies the hypotheses of [22,
Theorem 2.1].

1. It is clear from the explicit forms of F* and F* that

F (0,O)=F.(0,O)=0.

Moreover, for every p > 0, F is uniformly continuous on {|p| > p} x Sdxd

and F(p, A) grows linearly in A.
2. Let H be a (d — l)-dimensional space, let X be a symmetric

bilinear form on H and let

be the eigenvalues of X. We claim that

(2.2) λi(X) = maxίmin "'" : E C # , codim(£) < i - 1}.

The above identity is proved in [30, Theorem 6.44] and shows that λi(X)
depend monotonically on X. For completeness, we give its elementary
proof in the next step. Now the above formula and the definition of F
imply that F is degenerate elliptic, i.e.,

F(p, A) > F(p, 5), Vp ^ 0, A > B e Sdxd,

because A > B implies PPAPP > PPBPP on the hyperplane H orthog-
onal to p. Hence F satisfies all the hypotheses of Theorem 2.1 of [22].
Set

V = υ* + sup{(u* - υ,)(y,0) : V € Rd}
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Then V is a supersolution and u*(x,0) < V(x,0) for all x. Hence, by
Theorem 2.1 of [22], u* < V in Rrf x [0,Γ].

3. In this step, we prove (2.2). Let L denote the right-hand side
in (2.2). The inequality Xi{X) < L easily follows by choosing E to
be the vector space generated by the eigenvectors corresponding to
λΐ,... ,λ d_i. To prove the reverse inequality, let E be any subspace
with codimension at most (i — 1) and let E' be the vector space gener-
ated by the eigenvectors corresponding to λ i(X), . . . , λi(X). Since

dim(E) + dim(E') > (d - i) + i > d - 1,

there exists a unit vector ιs0 G E Π E1. We thus have

min

The final inequality follows from the fact that u0 belongs to E1 and that
E' is spanned by the first i eigenvectors.

Since F is geometric, i.e.,

(2.3) F(λp, XX + σp ® p) - λF(p, X) Vλ > 0, σ G R,

equation (1.6) is invariant under the relabelling of the level sets:
Theorem 2.3. (Invariance). Let θ : R —> R be a continuous nonde-

creasing function and let u be a viscosity subsolution {supersolution) of
(1.6) in Ω x (0,Γ). Then θ(u) is still a viscosity subsolution (superso-
lution) of (1.6) in Ω x (0,T).

The above theorem follows from (2.3) and Theorem 5.6 in [8]. A
formal proof can also be obtained by a direct computation.

The following existence theorem is an immediate corollary of [8, The-
orem 6.8]

Theorem 2.4 (Existence). For any uniformly continuous function
u0 there exists a unique, uniformly continuous viscosity solution u of
(1.6) and (1.3).

Proof. Since u0 is uniformly continuous, there is a constant K* > 1
satisfying

\uo(x)\<K*[l + \x\}.

1. For R > 0, let

u*(x) = min{uo{x) + h(\x\ - R), i?},

where for r < 0, h(r) = 0 and for r > 0,

h(r) = 2 U Γ * [ Λ / Γ Ϊ T Ϊ - 1 ] .

Since h(\x\ — R) grows faster than | M O ( # ) | as \x\ -¥ oo, uζ is equal to R
outside a large ball. Hence Theorem 6.8 of [8] implies that there exists
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a uniformly continuous viscosity solution uR of (1.6) satifying the initial
condition uR(x, 0) = uR(x). In the next several steps, we will show that
uR is equicontinuous in R and then we will let R —> oo.

2. Since u0 is uniformly continuous and h is Lipschitz continuous,
there is a modulus ra, independent of i?, satisfying

Wo(x) ~ uR(y)\ < m{\x - y\), x, y G R d ,

where a modulus m is a nondecreasing, continuous function on [0, oo),
with ra(0) = 0. Since (1.6) is translation invariant in space, the com-
parison result, Theorem 2.2, implies that

\uR(x,t) - uR(y,t)\ < m(\x - y|), Vz,ι/ E ΈLd,t > 0.

3. Fix x0 6 Rd . It is easy to verify that the function φ(x,t) =
\x — xo\

2 + 2(d — k)t is a solution of (1.6). Now let

b(x,t) = ̂ o(xo) + ̂ ( \ / l x ~ χo\2

By Theorem 2.3, b is a viscosity solution of (1.6). Since by construction,
uR(x) < 6(x,0), Theorem 2.2 implies that uR < b. In particular,

uR(x0, t) - uR(x0) < m(2{d - k)t), Vt > 0.

An entirely similar argument using b = u0 — m( ) yields the opposite
inequality. Then, for any t > 0 we have,

\uR(xo,t)-uR(xQ)\ <m{2(d-k)t).

Hence the translation invariance in time of the equation implies that

\uR(x0,t) -uR(x0,s)\ <m(2(d-k)\t-s\).

4. Previous steps show that the sequence uR is equicontinuous. Also
as R —> oo, uR converges to u0 locally uniformly. Then the well known
stability properties of the viscosity solutions (c.f. [8, Proposition 2.4])
together with the Ascoli-Arzela Theorem enable us to let R —> oo and
construct a uniformly continuous solution u = limuΛ, satisfying the
initial data (1.3).

Next result yields that the zero level set of any viscosity solution at
time t > 0, depends only on the zero level set of the initial data but not
on the other level sets of the initial data. Similar results were already
proved in [8, 15].

Theorem 2.5. Assume that Γo is a closed subset ofRd. Let u0 be
any nonnegative, uniformly continuous function satisfying (1.1) and let



702 LUIGI AMBROSIO & HALIL METE SONER

u be the viscosity solution o/(1.6) satisfying the initial data (1.3). Then
the zero level sets

Γt = {xeΈld:u(x,t) =0}

are independent of the choice ofu0.
Proof Let u'(x,t) be the unique uniformly continuous, viscosity

solution of (1.6) satisyfing

u'0(x) := u'(x,0) = dist(α;,Γo).

We will prove that the sets

Γ* := {x E ΈLd : u(x,t) = 0}, Γ't := {x E Rd : u'{x,t) = 0},

coincide for all £ > 0.
1. Set

ω(t) := sup< uo(x) : dist(x,r0) < t >.

Since u0 is uniformly continuous, ω is nondecreasing and uniformly con-
tinuous. Moreover,

0 < uo(x) < α;(dist(x, Γo)), Vx G Rd.

By Theorem 2.3, u(x,t) and cj(^'(a;,ί)) are solutions of (1.6), and by
Theorem 2.2 we conclude that

0 < u(x,t) < ω(u'{x,t)), Mx e Rd, t E [0,+oo).

Hence ΓJ C Γt for any t > 0.
2. Let χ(x, t) be the indicator of the zero level set of u and w = 1 — χ,

i.e., w(ί,α;) = 0 if u(x,t) = 0 and otherwise w(x,t) = 1. Observe that

w(x,t)= liminf /i£(u(y,s)), i E R d , ί > 0 ,
e-^0, (t/,s)-Kz,ί)

where

/ie(r) = 0, for r < 0, Λc(r) = 1, for r > e, /ι€(r) = - , for 0 < r < e.

Then by Theorem 2.3 and the stability theorem [8, Proposition 2.4], w is
a viscosity supersolution of (1.6). Since u is continuous and u0 = n( , 0)
satisfies (1.1), we have

u'0(x) Λ 1 = dist(rr,Γ0) Λ 1 < w(x,0).

Hence by the comparison result, Theorem 2.2, we conclude that

0 < u'(x,t) Al <w(x,t).

Consequently, Γt is included in ΓJ.
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Definition 2.6. For a given closed set Γo, let u be as in the
statement of the previous theorem. Then the zero level sets {Γt}t>0 of
u{-, t) are called the (d — k)-leυel set flow of Γo.

Using Theorem 2.5 and the same argument of [15], it is easy to see
that the (d — k)-level set flow has the semigroup property, i.e., Γt+S coin-
cides with the evolution at time s of Γt. When dealing with unbounded
sets, the restriction to uniformly continuous functions is necessary in
view of a counterexample constructed by Ilmanen in [28].

Remark 2.7. Let us assume that u is a classical solution of (1.6) in
Ω x (0, T), i.e., u is C2 and its spatial gradient does not vanish. For a
real number r, consider the sets

Et := {xeΈld :u(x,t) = τ)

with the orientation induced by v := Vw/|Vn|. Let

B(ξ,η):=-(ξ-d*v)u

be the second fundamental form of Et (see [32, p.13]). Then the prin-
cipal curvatures of Et are equal to the eigenvalues, κu ... , Kd-i, of the
symmetric bilinear form

on the tangent space to Et. With this sign convention (opposite to the
one adopted in [32, p.30-32]), the mean curvature vector of Et is given
by

H — ~(κι + . . . + κd_ι)v

and the convex sets have nonnegative principal curvatures when oriented
by the outer normal. A simple computation shows that B coincides with
PvV

2uPu/\Vu\ in the tangent space to Eu hence

F{Vu{x,t),V2u(x,t))

|Vu(M)|

represents the sum of the smallest (d — k) principal curvatures of Et.
Arguing as in [15] we obtain that each level set of u flows in the

direction — v with velocity equal to the sum of the smallest (d — k)
principal curvatures.

3. Agreement with smooth flows

In this section, we will show that the level set solutions and the
classical solutions agree whenever the latter exist. Our analysis is based
on the properties of the distance and the square distance functions. We
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start by proving several elementary properties of these functions. Let Γ
be a compact subset of R d and define

δ(x):=dist(x,T), η(x):=±P(x),

7P(Γ) := {x € Rd : δ(x) < p}.

Theorem 3.1. Let Γ be a smooth embedded manifold of codimension-
k without boundary. Then there is σ > 0 such that η is smooth in Iσ (Γ).
Moreover for any a GΓ, the matrix V2η(x) represents the orthogonal
projection on the normal space to Γ at x and

(3.1) δ(x+p) = \p\,

for any p orthogonal to Γ at x and \p\ < σ.
Proof. Fix x0 G Γ. By the smoothness of Γ, there is a constant

s > 0 and a smooth orthonormal vector field

(i/1,... ,vk):Bs{x0)nΓ-+Έldk

spanning the normal space to Γ. Set

k

Φ(x,a) = x + Y^ajUj(x), xeBs(x0)ΠΓ, aeΈLk.

Using local coordinates, we compute that the Jacobian JΦ(x0,0) is equal
to the identity matrix. Hence by the implicit function theorem, there is
r G (0, s) satisfying,

(1) In (£?r(:ro)nΓ) xi^(0), Φ is one to one and its Jacobian is nowhere
singular;

(2) V = Φ((Br(x0) Π Γ) x Bk(0)) is an open set containing x0.
For y E V, let

Φ(y) = (x(y)Mv)) e (Br(xo)ΠΓ) x Bk

r(0)

be the smooth inverse of Φ. Choose σ G (0, r/2) such that Bσ(x0) c V.
We wish to relate the functions x(y), a(y) to the distance function.
So for y G Bσ(x0), let x G Γ be the minimizer of the distance, i.e.,
δ(y) = \x—y\. Then it is clear that the minimizer x belongs to Br(x0)ΠΓ
and is equal to x(y). Moreover, δ(y) = \a(y)\ and consequently

2Λy), V € Bσ{x0).
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Hence η is smooth and (3.1) holds by construction. Since Γ is compact,
we use a covering argument to extend these properties to a tubular
neighborhood /σ(Γ).

Finally, let N = (Λ^ ) be the orthogonal projection on the normal
space to Γ at x0. Then for z G Rd,

\Nz\2 1

Φo + z) = LIL + o(\z\2) = ±Nz.z + o(\z\2),
where as usual o(r) is any function satisfying \o(r)\/r -> 0 as r I 0. By
differentiating twice with respect to z and evaluating at z = 0, we find

Next, we will show that the eigenvalues and the eigenvectors of V2η
propagate along the characteristics of the distance function, and k eigen-
values of V27/ are exactly equal to 1 as long as η is smooth. Then using
the properties of the eigenvalues of V2τ/, we will establish a relation
between the mean curvature of Γ and V3?7.

Let x0 G Γ and p be a unit vector orthogonal to Γ at x0. Let Ω be
the maximal open set on which η is smooth, and define

t* := t*(x0) = sup{r >O:xo + tpeΩ, V< E [0, r]} .

Then t* > σ, where σ is as in the previuos theorem. For t £ [0, £*), let

B{t):=V2η{x0+tp),

and
λ i ( t ) < λ 2 ( t ) < . - . < λ d ( t )

be the eigenvalues of B(t).
Theorem 3.2. For t E [0, t*), the eigenvectors of B(t) are indepen-

dent oft, B(t) has exactly k eigenvalues equal to one and the remaining
(d — k) eigenvalues are strictly less than one. Moreover, for any σ sat-
isfying /σ(Γ) C Ω, there is a constant C = C(σ), independent of x0 and
p, such that

(3.2) \λi(t)\ <Cδ(xo + tp) = Ct, Vie [0,σ], i = l , . . . , d - f c .

Finally, the map

tp), Ψδ{x0 + tp))

is nonincreasing in (0,ί*).
Proof. 1. Since δ is smooth in Ω \ Γ, \Vδ\ = 1 on this set. Then,

using the summation convention, we compute that,

(3.3) δjδj = 1, δijδj = 0, δijkδj + δiόδjk = 0,
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in Ω \ Γ, and in Ω,

(3.4) ηάηά = 2η, ηiόηά = ηu ηijkηά + ηiάηjk = ηik,

where a subscript denotes differentiation with respect to that variable.
2. Since δ(x0 + tp)=t and Vη(x0 + tp) = pδ, by the third identity

in (3.4),

(3.5) ±Biά{t) = ηijk(x0 + tp)pk = ηijk(x0 + tp) ^

= ^(t) ~ Bιk(t)BkΛt)

Let ^x,... , 2d be any basis such that B(σ) is diagonal, and for i —
1,..., d, let μi(t) be the unique solution of

M 0 _ ( e ( M κ

satisfying /ij(σ) = λj(σ). Recall that λj(σ)'s are the eigenvalues of B(σ).
Then the matrices

d

i=\

solve the differential equation (3.5) and satisfy B(σ) = B(σ). By the
uniqueness we have B = B. Therefore the eigenvectors of B(t) are equal
to 2i5 and the eigenvalues λt(ί)'s solve

(3.6) ±κ(t) = ; \ .e(a,o.

3. In view of Theorem 3.1, B(0) is the orthogonal projection on the
normal space to Γ at x0. Hence k eigenvalues of B(0) are equal to one
and the remaining (d — k) of them are equal to zero. By the differential
equation (3.6), we conclude that if for some i we have Af(0) = 1, then
λi(t) = 1 for all t G [0,Γ). Moreover if λ^O) = 0 for some i, then
Xi(t) < 1 for all t e [0,Γ). Hence for any t E [0,Γ), Biά{t) has exactly
k eigenvalues equal to 1, and its restriction to the normal space of Γ at
x0 is equal to the identity. The remaining eigenvalues are less than one,
and the corresponding eigenvectors span the tangent space of Γ at a;0

Moreover, the differential equation (3.6) yields
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Therefore if λ^σ) < 0, then λ<(<) < 0 for all t and

If, however, λi(σ) G (0,1), then Xi(t) G [0,1) for all t. Moreover,

In summary, for all t G (0, σ] and % = 1,. . . , d — fc, we have,

I 1 < C := max< —r-—JT—ΓTT : λ < 1 eigenvalue of V η(x), δ(x) = σ >.

4. To prove the final statement of the theorem, we differentiate the
identity r\i — δδi to obtain

Since Vδ(x0 + tp) = p, for all t G (0, t*),

Therefore V2J(n;o + *p) has (fc — 1) eigenvalues equal to l/5(rr0 +£p)> one
eigenvalue (corresponding to p) equal to 0, and the remaining (d — k)
eigenvalues less than l/δ(x0 + tp). Let /3i(t) < β2(t)... < βd-k{t) be
these eigenvalues. Since # ( t ) = λ<(t)/t,by (3.6), &(£)' = -)9?(t). Hence
/Si's are nonincreasing and therefore

2F(V<5(y + tp), V2δ(y + tp)) =

is also nonincreasing.
Remark 3.3. Since &(«)' = -/??(*), for i = 1,... ,cf - fc, the eigen-

values βι(t) of V2^(x0 + tp), converge, as ί | 0, to real numbers β{,
depending on p. Clearly these numbers are related to the geometry of
Γ. We conjecture the following: let (c./. [32, p. 13])

be the second fundamental form of Γ, where TXo(Γ), NXo(T) are, respec-
tively, the tangent and the normal spaces of Γ at x0. Then β^s are equal
to the eigenvalues of the symmetric bilinear form,

h(v,w) := -B{υ,w) p, v,w G TXQ{Y).
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Since the above conjecture is only tangentially related to this paper,
its analysis will be pursued elsewhere. However the proof of Theorem 3.5
can be used to prove that the sum of βι is equal to —H p\ see (3.16)
below for the stationary flow.

Remark 34. For A G Sdxd and p E R d , j 9 ^ 0 , let Pp and X = PPAPP

as in (1.4). Let

X1(X)<λ2(X)<...<~Xd(X)
be the eigenvalues of X and define

d-k+\

F(p,A):= £ λ PO
2 = 1

Recall that in the definition of F, we only used the eigenvalues of X
that are orthogonal to p. Therefore, it is easy to check that F < F, and
they are equal if and only if at least k eigenvalues of X are nonnegative.
In particular, F coincides with F in the codimension-1 case (in this case
F also coincides with the function F(p, A) = trace (PpA) considered in
[15], [8]). Moreover, step 4 of Theorem 3.2 shows that

(3.7)

in the region where δ is smooth.
We are now ready to express the mean curvature vector in terms of

V
Theorem 3.5 Let H(x) be the mean curvature vector ofY at x. Then

(3.8) H(x) = -ΔVr/(x), x G Γ.

Proof. The mean curvature vector H of Γ is characterized by the
property

(3.9) / divΓφdUd-k = - [ H
Jv JT

where, using the summation convention, divΓ φ = d^φi is the tangencial
divergence of φ, and for a scalar function φ

denote the tangencial gradient of φ, i.e., the projection of Vψ on the
tangent space to Γ. The integration by parts formula, (3.9), is also
related to the first variation of area (see [36]), and motivates the study
of flow by the mean curvature.
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We claim that H = -ΔV77 satisfies (3.9). Indeed, by the divergence
formula on manifolds (see [36]),

I
for any tangent vectorfield X. Given a smooth vector field 0, let X be
the tangencial component of φ, and P^ be the projection on the tangent
space. The divergence formula yields

0 = / divΓ X dUd~k = ί £ {Pjiφi) dUd-k

ί Γ Γ d-k ί Γ Γ

Jr υ J J 3l Jv ι 3 Jl
d-kφj dU

Hence, Hi = d^Pji. Since by Theorem 3.1, V2r/ is the projection onto
the normal space, P = I — V2η and therefore,

= -Vjji +

where as before, a subscript of η denotes differentiation with respect to
that variable, and all derivatives of η are evaluated on the surface Γ.
We now claim that % % * is equal to zero. Indeed,

where λ i , . . . , λ^ are the eigenvalues of V2η. By the previous theorem,
the sum of the squares of the eigenvalues is equal to k 4- o(δ) near Γ, and
therefore it has zero derivative on Γ. Hence % % i = 0 and Hi = —ηjji

Next we give a definition of classical solutions.
Definition 3.6. Let (Γt)t€[o,r) be a family of smooth embedded

(d — fc)-submanifolds of Rd without boundary. We say that (Γ£)ίG[0,τ]
is a smooth (d — k)-dimensionalj mean curvature flow if there exists a
smooth deformation map

φ:Γ0 x [0,T] - > R d

satisfying the following:
(1) for every t < T, φ{ ,t) is one to one, and on Γo the tangential

Jacobian of (/>(•, t) has full rank (d — k)\
(2) 0(ΓO, t) = Tt , for any t <E [0, T];
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(3) φ(x, 0) = x and

φt{x,t) = H(φ{x,t),t), \/x e r o , t e [o,τ] ,

where H(φ(x,t),t) is the mean curvature vector of Γt at φ(x,t).
For future use we make one more definition. We say that (Γ£)ίG[0,τ]

is a smooth flow if there is a deformation map φ satisfying the first
two conditions in Definition 3.6 and that for every x G Γo, φt(x,t) is
orthogonal to Γt at φ(x, t). Note that since the mean curvature vector is
orthogonal to the surface (see for instance [36]), smooth mean curvature
flow is also a smooth flow.

The following characterization of the mean curvature flow in terms
of the square distance function η (c.f. (3.11) below) was first stated in
[12].

Lemma 3.7. Let (Γt)tφiT] be a smooth flow. Then, there exists
σ > 0 such that the function

is smooth in {(x,t) G Rrf x [0,T] : η < σ}. Moreover, the displacement
of the flow is given by

(3.10) φt(x,t) = -Vηt{φ(x,t),t) Vί e [0,T], x e Γo.

In particular, (Γt)ίG[0>τ] is a smooth mean curvature flow if and only if

(3.11) Vτ/t = ΔV7/, onTt.

Proof. Since the Jacobian of </>(•, t) has full rank on Γo, the smooth-
ness of η can be proved as in Theorem 3.1.

1. Fix y0 G Γ ί ? and let x0 G Γo be the unique point satisfying

Vo = Φ{xo,t).

Since φ(x0, t + h) G Γ t + Λ ,

We differentiate the above identity with respect to h twice, and then
evaluate it at h — 0. Since φ(xo, t) — y0 and Vr/(yθ51) = 0, we have

Vtt(yo,t) + V2η(y0,t)φt(x0,t) 'φt(xo,t) +2Vηt(yQ,t) - φt{x0,t) = 0 .

2. By the definition of a smooth flow, φt(xo, t) is orthogonal to Γt at
y0 and, by (3.1),

η{φ(x0,t + h)- hφt{x0,t + h),t + h) = - h2\φt{x0,t + h)\2

Δ
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for h small enough. Observe that

\φ(xo,t + h) -hφt(x0,t + h) -yo\ < Ch2,

for some constant C. Since V77 vanishes at (yo,t),

Therefore

3. Combine the two previuos steps. The result is:

\Φt{xo,t)\2 + V2η{y0,t)φt{x0,t) φt{xo,t) + 2Vηt(y0,t) φt{x0,t) = 0.

Since φt(x0,t) is orthogonal to Γt at y0 and V2η(x0,t) is the orthogonal
projection on the normal space of Γt at y0,

x0,t) > φt(x0,t) = \φt(x0,t)\2,

and

2\φt(x0,t)\2 + 2Vty(iA>,ί) * ^(^o,<) = 0.

4. Let e > 0 and y G Rd. Then, if φ(z,t) E Γt is the point of least
distance of y0 + y from Γί5 then we can find p > 0 so small that |y| < p
implies |̂ r — rz;01 < e. For any ?/ G ̂ p(0) we have

% o + y, * + r) < |y0 + y - ^(2:, t)| + τ\φt{z, t)\ + o{τ)

hence

% o + y,t + τ)< δ{y0 + y,t) + τ\φt(z, t)\ + o{r)

and

< η{y0 + y,ί) + rδ{y0 + y,t)\φt{z,t)\

Let r J, 0 and use our choice of p\

+ y,t) < \y\ sup \φt{z,t)\,

so that
|Vr/t(y0,t)|< sup \φt(z,t)\.

zeBe{x0)

By letting e 4- 0, we conclude that \Vηt(yo,t)\ < \φt(x0,t)\ and, by Step
3, φt(xo,t) = -Vηt(y0,t).

The smooth mean curvature flow is a system of partial differential
equations in η. But quite surprisingly, it turns out to be equivalent to
a differential inequality in δ. This observation was first made in [37] for
codimension-one flows.
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Theorem 3.8. Let (Γ t) t €[O ϊτ] be a smooth flow and let Ω C R d x (0, T)
be the maximal open set on which η is smooth. Then Tt is a smooth
(d — k) dimensional mean curvature flow if and only if

(3.12) δt(x, t) > F(Vδ(x, t), Ψδ(x, t)), V(z,ί) G Ω, z <£ Γt.

Proof. 1. Suppose that Γ t is a smooth mean curvature flow and let

We compute that on Ω',

and

(3.13) δtfH = δt + δδitδi = δt + -δ(δiδi)t = δt.

Similarly, using (3.3) we get

and therefore,

(3.14) δiAηi — Aδ + δδiAδ^

in Ω'. Set α< = r/it - Aη{. Then (3.13) and (3.14) imply

(Xiδi = δ — Aδ — δδiAδi.

By means of the last identity in (3.3), we conclude that,

(3.15) aiδi = δt-Δδ-

where || || denotes the Euclidean norm in R d . Since V2δ is a symmetric
matrix, | |V25||2 is equal to the sum of the squares of the eigenvalues.
Hence,

d d

i=l 2=1

where βλ < . . . < βd are the eigenvalues of V2δ. By step 4 of Theo-
rem 3.2, the last k — 1 eigenvalues are equal to ί"1, and by (3.2) the
remaining (d — k 4-1) of them are bounded in a tubular neighborhood

Iσ = {(x,t) G Rd x [0,T] : δ(x,t) < σ}.
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Therefore, using (3.7) we obtain

d-k+l d-k+1 d

aiδi=δt- £ βi + δ Σ βi+δ ΣΣ
(3.16)

=δt - F{Vδ, V2δ) + δC(x, t), in Iσ n Ω',

for some bounded function C(x, t). Since Γt is a smooth mean curvature
flow for each i, α* = 0 on Γ t. So we have

(3.17) lim δt(x, t)-F(Vδ(x, t), V2δ(x, t)) = 0,
X—ϊXo

2. Now, fix x e Ω' and t e [0,Γ]. Let x0 e Tt be the unique point
satisfying δ(x, t) = |x0 — ̂ | Then with p = (x — Xo)/\x — XQ\ we have

-r{δt(xo + sp,t)) = Vδt(x0 + sp,t) p
as

— Vδt{xo + sp, t) Vδ(x0 + sp, t)

= ~

for any s G (0, δ(x,t)). In view of Theorem 3.2 and the above calcula-
tion, the map

s •-> δt(x0 + sp, t) - F(Vδ(x0 + sp, ί), V2δ(x0 + sp, t))

is nondecreasing in (0, δ(x, t)]. Now we obtain (3.12) from (3.17), by
letting s 4 0.

3. Conversely, suppose that (3.12) holds in Ω'. Let

(3.18) 7(x, ί) = Vηt{x, t) - AVη{x, t).

By continuity, we need only to show that ^(y,t) = 0 for any t € (0,T),
y G Tt. Since (Γt)tG[o,τ] ι s a smooth flow, by Theorem 3.7, Vηt(y,t) is
orthogonal to Γ̂  at y. Also the mean curvature vector H = —VAη(y, t)
is normal to the surface Γt at y, (see for example [36]). Therefore, it
suffices to show that p 7(2/, £) > 0 for any unit vector p normal to Γt at

y
Let σ > 0 be as in Theorem 3.1 (with Γ = Γt), and for 5 G (0, σ] let

xs = y + sp. By Theorem 3.1 and Theorem 3.2, we have δ(xs,t) = s



714 LUIGI AMBROSIO & HALIL METE SONER

and Vδ(xs,t) = p for any s G (0, σ]. Multiply (3.18) by p and proceed
as in step one to obtain

= ί t(xβ, ί) - F{Vδ(xs, ί), V2ί(a:θ, <)) + O(ί(a;β, t)).

Since by hypothesis δ is a classical supersolution of (1.6) in Ω', we let
5 I 0 to obtain p 7(2/, t) > 0.

Corollary 3.9. Let (Γt)te[o,τ\ be a smooth (d — k)-dimensional mean
curvature flow and let u(x,t) be the unique viscosity solution of (1.6)
with initial data u(x,0) = dist(a;,Γo). Then

Γt = {xeRd :u(t,x) =0}

for any t G [0,T]. Moreover, δ(x,t) := dist(x,Γt) is a viscosity superso-
lution of (1.6) in Rd x (0,T).

Proof
1. Choose σ > 0 so that η is smooth on

Qσ := {(x,ί) : 0 < t < T, δ(x,t) < σ}.

Fix (x,t) G Qσ, a; ^ Γt and choose y E Tt such that δ(x,t) = \y — x\.
For 5 G [0,ί(t,a:)], set

and let

be the eigenvalues of V2δ(xs,t). The following are proved in Theo-
rem 3.2:

(this condition is empty for k — 1), and for i — 1,..., d — k + 1,

(3.19) £ A(β) = -(A(*)) 2 =• A(*) - ^ - ^ a e (0,σ],

for suitable real constants /?<. Moreover in view of (3.2), \βi\'s are uni-
formly bounded by some constant (7, independent of x and t G [0,T].
By step 2 of Theorem 3.8, ίt(a:β,t) is constant and by (3.17),

t(rr,, ί) - F(V5(J; S , t), V2δ(xs, t)) = 0.



LEVEL SET APPROACH TO MEAN CURVATURE FLOW 715

Reducing σ, if necessary, we may assume that σC < 1/2 (recall that C
is an upper bound for β^s in (3.19) ). For 0 < s' < s < σ, we use (3.7)
to compute F. The result is:

δt(xs,t)-F(Vδ(xs,t),V2δ(xs,t))

=δt(x,,t) - F(Vδ(xs,,t),Ψδ(xs,,t))

+ [F(Vδ(xs,, t), V2δ(xs,, t)) - F(Vδ(xs, t), V2δ(xs, t))]

=o{s)+

Let s' I 0. Then

,t),V2(xs,t)) < (d-k
1 — so

< 2C2(d-k + l)δ(xs,t).

Set C* := 2C2(d — k + 1) . We have proved that δ is a subsolution of

(3.20) δt<F(Vδ,V2δ) + C*δ

in

Q'σ := {{x,t) e Kd x (0,Γ) : 0 < δ{x,t) < σ).

2. Set W := e~c*t{δ Λ σ/2). We claim that W is a viscosity subso-
lution of (1.6) in R d x (0,T). Indeed, let

w := Hσ{δ), Hσ(r) := r Λ σ/2, r > 0.

We only need to show that w is a viscosity subsolution of (3.20) in
R d x (0, T). Suppose that for some test function φ1 w — φ attains its
maximum at (x0, t0) G R d x (0, T). Since Γ* is smooth we conclude that

3. Suppose that δ(xQ,to) > σ/2 (the opposite case will be considered
in the next step). Then δ > σ/2 near (x0) ô) and H = σ/2 near (zo> ̂ o)
So, at (xo,to), φt = 0,Vφ = 0, V2ψ > 0. Hence

(3.21) 0 = ψt{x0,t0) < F*(S/φ(xo,to)^2ίΦ{xo,to)) +C*δ{xo,to)

4. Suppose that δ(xQ,t0) < σ/2. Recall that x0 0 Γto. So (xo,to) E
Q'σ, and the first step yields

+C*δ(xo,to).

Now the smoothness of δ near (xo,to) implies that φ satisfies (3.21).
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5. By Theorem 2.2, 0 < W < u in Rd x [0,Γ]. Therefore the zero
set of u is contained in the zero set of W for all t G [0, T]. Observe that
the zero level set of W is equal to IV

6. To prove the opposite inclusion, set V = Hσ(δ), where Hσ is as
in the second step. Using Theorem 3.8 and Theorem 2.3, it is easy to
show that V is a classical supersolution of (1.6) in Q'σ and a viscosity
supersolution of (1.6) in {(x,t) G Rd x (0,T) : V(x,t) > 0}. Therefore
Lemma 3.11 below implies that V is a supersolution in all of R d x (0, Γ).
By the comparison result, Theorem 2.2, we have

0 <uΛ ^ < V = δ A ^ .

Hence Tt is included in the zero level set of u.
7. In this step, we show that δ is a viscosity supersolution in R d x

(0,T). Let φ be a smooth function, and (xo,to) G R d x (0, T) be a
minimizer of (δ — φ). Choose y0 G Γto satisfying δ(xo,to) — \x0 — yo\^
and set

φ{y,t) = φ(y + x0 -yo,<).

Then by the subadditivity of J, it is easy to show that (ychM is a

minimizer of (δ — φ). Let V be as in the previuos step. Since y0 G Γ ί o,
{yo, ̂ o) is also a minimizer of (V—φ). Since V is a viscosity supersolution
of (1.6), we have

at (yo,to). Hence φ satisfies the above inequality at (α;0,t0), and there-
fore δ is a viscosity supersolution of (1.6) in R d x (0, oo).

Remark 3.10. Let F be the function defined in Remark 3.4. It is
easy to check that the results of §2 apply to F as well. In particular,
given a uniformly continuous viscosity solution of

ut = F(Vu,W2u), {u(.,0) = 0 } = Γ o ,

the sets Γ(t) := {u( \ t) = 0} are well defined and depend only on Γo

Moreover, by (3.7), Theorem 3.8 trivially holds with F in place of F.
Also Theorem 3.9 holds with F in place of F, hence the weak solution
Γt is consistent with the classical solution. However, the inequality
F < F and Theorem 2.2 easily imply that Γ t C Γ t in general. By
an explicit computation it can be seen that the inclusion is strict if
Γo = {x G R d : 1 < \x\ < 2}.

We continue with the proof of the lemma already used in step 6.
For future reference, we will prove a slightly more general version than
needed in that step.

L e m m a 3.11 Let w : Kd x [0,T] -+ [0, oo) be a lower semicontinuous
function satisfying the following conditions:
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(i) for every (x,ί)GRdx (0,Γ) with w(x, t) = 0, there is a sequence
(xn,tn) —> (x,t) such that w(xn,tn) = 0 and tn < t;

(ii) w is a viscosity supersolution of (1.6) on {(x,t) : w(x,t) > 0, t G

(in) \w(t,x) — w(t,y)\ < L\x — y\ for some suitable constant L.

Then w is a viscosity supersolution of (1.6) in R d x (0, Γ).
Proof For e > 0, let h€{r) = (r - e)+. We claim that he(w)

is a viscosity supersolution of (1.6) in Έtd x (0,T). Suppose that for
some test function function Φ, he(w) — Φ has a minimum at (#o>£o) £
R d x (0, T). Adding a fourth order perturbation to Φ, we may assume
that the minimum is strict.

1. Suppose that w(xo,to) > 0, the opposite case will be discussed in
the next step. Choose a sequence of strictly increasing functions {fn}
uniformly converging to he on R. Since (xO5^o) is & strict minimum it
is easy to see that there are local minimizers (xn ,in) of /n(^) ~~ Φ con-
verging to (xOl t0). By the lower semicontinuity of w, w(xn, tn) > 0 for n
large enough. Since by Theorem 2.3, fn(w) is a viscosity supersolution
in {w > 0}, we have

Φ f {xn, tn) > F*(VΦ(in, ί n ), V 2Φ(x n, tn)).

By send n -» H-oo we obtain the above inequality at (xO5^o)-
2. Suppose that w(xo,to) — 0. By (i) there is a sequence (rrn,tn) —>

(#05£o) with w(xn,tn) = 0 and t n < t o Recall that by hypothesis, w is
Lipschitz continuous in the x variable. Therefore for sufficiently large
n, he(w(x0,tn)) = 0. Since tn ΐ ί, Φ t(xθ5^o) > 0. Also h€(w(x,t0)) = 0
for all x near a?0. Hence VΦ(#o5^o) = 0, V 2 Φ(t 0 ,x 0 ) < 0, and at (ίo^o)
we have Φ t = 0 > F^VΦ, V 2Φ). Let e | 0, and use the stability
property of viscosity supersolutions (see for instance [8], Proposition
2.4) to conclude that it; is a viscosity supersolution in R d x (0, T).

4. Distance solutions

In the previous section, it is shown that the distance function of a
smooth mean curvature flow is a viscosity supersolution of (1.6) in all
of Rrf x (0, oo). This suggests the following definition of a weak solution
of the mean curvature motion.

Definition 4.1. We say that {Γt}ίG(0,τ) is a distance solution of
the (d — fc)-dimensional mean curvature flow, if the distance function

δ(x, t) = dist(z, Γ t), x G R d , t E (0,T),

is a viscosity supersolution of (1.6) in Hd x (0,T).
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For codimension-one flow, a similar definition was first given in [37].
The above is an intrinsic definition using the distance function to the
surface instead of an auxiliary function u(x, t) used to the define the
level set solutions. However, as opposed to the level-set solutions, for a
given Γo, there may be more than one distance solution. Nonuniqueness
of distance solutions is related to the "fattenning" of the unique level set
solution. We will show in Theorem 4.4 below, that distance solutions
and the level set solutions are very closely related.

We study the properties of distance solutions satifying an initial con-
dition. However, as set valued maps we do not expect continuity at time
zero. For instance, consider the planar mean curvature flow with initial
data

Γo = {(xuX2) e R2 : (*i)2 + (x2)
2 = 1} U {(0,z2) G R2 : x2 E [1,2]}.

Then at time t, the only solution (level set, distance, etc) with the above
initial data is the circle with radius y/1 — 2t. Hence the line segment
{(0,x2) £ R2 : χ2 £ [1,2]} disappears instantaneously. So we need to
make precise how the initial data is achieved.

Definition 4.2. For a given closed set Γ*, we say that {I\}ί€(0,τ)
satisfies the the initial inclusion

(4.1) Γ 0 C Γ ,

if

δ,(x,0) := liminf δ(x,t) > distfoΓ*).

Geometrically the above condition is equivalent to

(4.2) liminfΓt:= f| (J Γ s c Γ .
t€(o,τ) se(o,t)

Note that for level set solutions, the geometric initial data is imposed
by requiring (1.1) and the continuity of the viscosity solution u.

In this section, we will show that the level set solution is the maximal
distance solution satisfying the initial inclusion (4.2). We start our
analysis by proving an equivalent formulation for the distance solutions.
Let χr(x,t) be the indicator of the set Γt evaluated at x.

Lemma 4.3 V^t}te[o,τ] is α distance solution of the (d—k)-dimensional
mean curvature flow if and only if 1 — χΓ is a viscosity supersolution of
(1.6) i n R d x (0,T).
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Proof. Let {Γt}t€[0,η be a distance solution, and h€ be as in the
second step of Theorem 2.5, i.e.,

he(r) = 0, forr < 0, he{r) = 1, forr > e, h€(r) = - , for 0 < r < e.

Then by the stability of viscosity solutions (c.f. [8, Proposition 2.4]),

w{x,t) = liminf he(δ(y,s)), x G Rd,t G [0,T],
e->0, (y,s)-ϊ(x,t)

is a viscosity supersolution of (1.6). Also it is easy to check that w is
the lower semicontinuous envelope of 1 — χr Hence 1 — χΓ is a viscosity
supersolution of (1.6) in Rd x (0,Γ).

To prove the sufficiency, suppose that 1 - χΓ is a viscosity superso-
lution of (1.6) in Rd x (0,T). For K > 0, set

υκ(x,t) = inf{lf(1 - χΓ)(y,ί) + k ~ v\ V € Rd}

Then it is easy to prove that vκ is a viscosity supersolution of (1.6); see
for instance [20, Section V.7]. Note that

υκ{x,t) =δ{x,t) Λinΐ{K + \x-y\ :y<£Γt}.

Now let K —>> Co. Then we conclude that δ — \YΏ\VK is a viscosity
supersolution.

Let Γ* be a closed set and let u be the unique, uniformly continuous
viscosity solution of (1.6) satisfying u(x,0) = dist(x,Γ*). Recall that
the level set solution is the zero level set:

Γt = {xeRd :u(x,t) =0}.

Theorem 4.4. The level set solution Γ't is the maximal distance
solution satisfying (4.1).

Proof. Let h€ be as in the previous proof. Set

w(x,t) = liminf h€(u(y,s)), x G Rd,t G [0,oo).
e-)Ό, (y,s)-+(x,t)

Then w is a viscosity supersolution of (1.6), and w is equal to the lower
semicontinuous envelope of 1 — χΓ>.

By the previous lemma, {ΓJ}ί>0 is a distance solution. Also the con-
tinuity of u and the initial data u(x, 0) = dist(rr, Γ*) imply that {Γ[}ί>0

satisfies (4.1) in the sense of Definition 4.2.
Let {Γt}£G(0,τ) be another distance solution satisfying (4.1), and let δ

be its distance function. Then by definition, δ is a viscosity supersolu-
tion of (1.6). Moreover, (4.1) yields that

z,Γ*) =u(x,0), x G Rd.
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Hence by Theorem 2.2, we have

δ > ί* >u, inR d x [0,Γ].

Therefore, Γ't contains any other distance solution satisfying (4.1).

5. Varifold solutions of Brakke

In this section, we compare the varifold solutions of Brakke [7] with
level set solutions defined in §2. The definition given by Brakke involves
varifolds. Here we use the formulation of Ilmanen [26], using the Radon
measures on Rd. We will show that the support of these Radon measures
is a distance solution in the sense defined in the previous section. Hence
by Theorem 4.4, they are included in the level set solution. We start
by recalling Ilmanen's definition, which implies the Brakke's original
definition [26, §6].

Let (μt)t>o be a family of Radon measures on RA Following [26,
§6], we call (μt)t>o & Brakke,motion provided that for all t > 0 and all
0GC c

2 (R d ^[O,oo)),

Dtμt(Φ) < B(μt,φ), μt(φ) = / φdμt,

where for any real valued function /, Dtf(t) is the upper derivative,

S — t

and for any Radon measure μ, #(μ, φ) is defined as follows. Suppose
the following:

(i) μ[{φ > 0} is a (d — k) rectifiable Radon measure,
(ii) 1^1 [{^ > 0} is a Radon measure, where V is the varifold cor-

responding to the rectifiable measure μ[{φ > 0}, and δV is its
first variation (see for example [36], or [26, §1]),

(iii) \δV\ [{φ > 0} is absolutely continuous with respect to μ[{φ > 0},
with a Radon-Nikodym derivative

H e L2(Rd ^Rd,dμ[{φ > 0}).

Then

B{μ, φ)= ί -φ\H\2 +Vφ-S±- Hdμ,

where S(x) is the projection onto the tangent space Txμ. If however, μ
and φ do not satisfy any one of the above conditions (i),(ii),(iii), then
we set i?(μ, φ) — — oo.
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For a Brakke motion (μt)t>o, dμ := dμtdt is a Radon measure on
R d x [0, oo) (see (5.2) below). Let Γ be the support of μ, and for t > 0
let Γt be the support of μt.

L e m m a 5.1. Let (μt)t>o be a Brakke motion. Then

(5.1) Γ = U f t x {*}.
t>o

Moreover, for any (xo,to) G Γ with t0 > 0, there exists a sequence

(xmtn) converging to {xo,to) such that xn G ftn and tn < t0. Finally,

if (x,0) G T, then x G f0.
Proof. Let

C := U f1* x {t}-
t>0

1. The inclusion Γ C C is immediate. Suppose that t0 > 0 and
(^(b^o) ^ Γ. Then there is 0 < e < t0 and a smooth function £ : R d —»
J?+ with compact support such that ζ(xo) > 0 and

rto+erto+
/

Hence for almost every t G (t0 — e, t0 + e), we have μ*(£) = 0. According
to [26, 7.2(ii)], the following limits exist and satisfy

(5-2) limμt(ξ)>μto(ξ)>hmμt(ξ).

In particular μto(£) = 0 and x0 $. Γto. So we have proved that

CCTCC.

Since Γ is closed, (5.1) follows.

2. Suppose that x0 G fto for some ί0 > 0. For any e > 0, choose a
smooth cut-off function ξ : R d -> [0,1] which is equal to one on # e(#o)
and zero on R d \ B2e(xo) By the first inequality in (5.2), we have

0 > μto(ξ) > 0.

Since e > 0 is arbitrary, we can now easily create the desired sequence

3. Now suppose that (xo,to) G Γ. In view of the previuos step, we
may assume that x0 £ tto. Then there is p > 0 such that μto(Bp(xo)) =
0. By Brakke's clearing out lemma, [7, p. 164], there is r > ί0 satisfying,

μt(Bp/2(xo))=0, Vt€[to,τ].
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Hence Bp/2(xo) and Γt are disjoint for all t G [to,τ]. Since (xo,to) G Γ,
(5.1) implies that

(*o,*o) e U ttχ{t}.
0<t<t0

We now use this inclusion and the previous step in a diagonal argument
to construct the desired sequence.

4. If x £ Γo, there is p > 0 satisfying μo(Bp(x)) — 0. Then by
Brakke's clearing out lemma, there is r > 0 such that μt(Bp/2(x)) = 0
for any t E [0, r]. Hence (#,0) is not in Γ.

Lemma 5.2. Let X E Sdxd and Xu = 0 for some unit vector u.
Then

F(u,X)<X:S+\\X\\\Su\2,

for any (d — k)-plane S. Here S is identified with its projection matrix,
X : S is the scalar product of the matrices X and S, and \\X\\ is the
operator norm of X.

Proof. Since the statement is rotationally invariant, we assume that
u = βd and X is diagonal, i.e., X^ = Xiδij. Then the equation Xu = 0
implies that Xd = 0. We may also assume that

so that

Moreover X = PUXPU and therefore
Since u = ed and S is a projection matrix, Sdd — Su u = |<ίm|

erefore

So it suffices to prove that

d-k d-\

an inequality which is equivalent to

d-k d-1

\ (Λ Q ^ <^ \ ^ \ Q

i=d-k+l
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Since 0 < Si3 < 1, and the trace of S is equal to (d — &), we have

d-l

^ — Σ λiSu + \\d-k\Sdd-
i=d-k+l i=d-k+l

Proposition 5.3. Let (μt)t>o be a Brakke motion. Set

δ{x,t) := dist(z,{y : (y,t) G Γ}).

Then δ is a viscosity supersolution of δt > ̂ (Vί, V2J) in Rd x (0,00).
Proof. Suppose that for some test function φ the function δ — φ

attains a local minimum at (xo^to) £ Γ with t0 > 0. We wish to show
that at (xo,to) we have φt > Ft{Vφ^V2φ). We argue by contradiction.
So we assume that

β := -[ψt(xo,to) - F*{Vφ{xo,to),V2φ{xo,to))] > 0,

and then obtain a contradiction in several steps.
Without loss of generality we may assume that φ{xo,to) = δ(xo,to),

φ is globally Lipschitz continuous, and the infimum of δ — φ is stricly
positive on the complement of any ball containing (x0, t0).

1. Since δ(xo,to) > 0 and any distance function is semi-concave on
its positive set, we conclude that δ is differentiable with respect to x at
(xo,to). Therefore |V^(^o5*o)| = |Vί(xOJ*o)| = 15 and

F. {Vφixo, t0), VV(xo, *o)) = F{Vφ{x0, ίo),V 2ψ(xo, ί0))

Choose 0 < e < t0 such that for all \t — to\ <2e and |rr — x o | ̂  2e,

(5.3) φt{x, t) - F{Vφ{x, ί), Ψφ(x, <)) < -β/2,

and

(5.4) 2 > |V^(x,ί)| > 1/2.

2. Set

α0 := J(^o5^o) + i n f { ( ί - φ){t,x) : \x - xo\ > e or | t - ί o | > e or both}.

By our assumptions on φ and ί, α0 > (5(xθ5 0̂) > 0. Choose y0 G Rrf so
that

a := J(^o, *o) = ko - 2/o|, (̂ o, *o) 6 Γ,
and define

Ω(t) := { x G R d : ψ ( i + ^ - ! / o , ί ) < α}
Note that y0 e dΩ(t0).
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3. We claim that

{x e Kd : (x,t) e Γ} C Ω(ί), V< > 0.

Indeed, suppose that δ(x, t) — 0. Then

(5.5) ψ{x + x0- y0, ί) < *(ίc + ^o - 2/o, ί)

< 5(a;,ί) + |x0 ~ Vo\ = &•

4. In this step, we will show that, for any \t — ίo| > e,

{x : dist(a;,aΩ(t)) < ^ ^ , ί(x,ί) = 0} = 0.

Suppose that dist(x,9Ω(t)) < (α0—α)/2. Since |<—to| > e, the definition
of α 0 yields

^(y, ί) < <%, <) + α - α 0 , Vy E R d .

Choose y G 5Ω(t) satisfying

Since ψ(y + x0 - yo, *) = α,

> δ(y + x0- yo, *) ~ \x ~ y\ - \xo - J/ol

xo ~ yo, ί) - (α - α 0) ^

5. Finally we claim that for any ί > 0,

{x e Rd: dist(x,aΩ(ί)) < a β i ^ i i ^ + i ] ' ^ ^ = 0 } c

Let x be an element of the set on the left. In view of step 4, we may
assume that \t — to\ < e. Choose y G <9Ω(ί) such that

| l/-x|=dist(a;,aΩ(t))< ^ °
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Since φ{y + x0 - y0, <) = α,

(δ - φ)(x + x0- s/o, t) < δ(x, t)+a-ψ(y + x0- y0, t)

+ \\Vφ\\oo\x-y\

α0 - a
IIV^Hc

< a0 - a.

Since \t — to\ < e, by the definition of α 0 , x + x0 — y0 G Be(x0) and
therefore, x G Be(y0).

6. Choose 7 G (0, e/2) such that

(5.6) 7 <

and the signed distance r(x,t) to Ω(£),

in K

is smooth in the region

{(a;,ί) : | ί - t o | <€, xGB£(i/o), dist(a;,9Ω(ί)) < 27}.

Observe that the above choice of 7 is possible, because of (5.4) and the
smoothness of φ.

7. Let h(s) := ([7 - |s|]+)P with p > 2 to be chosen later. Set

Φ(M) := h(r(x,t) - | ) , /(ί) := μt(Φ).

Since ?/0 G 9Ω(to)? Φ(?/o?̂ o) > 0. Moreover, (ί/o5̂ o) G Γ. Therefore by
(5.1), / is not identically equal to zero in (t0 — e,£0 + e). On the other
hand, step 4 implies that for \t — to\ > e, we have \r\ > (α0 — ̂ )/2 > 27
on Γ. Hence / is identically equal to zero for \t — to\ > e. We will
obtain a contradiction by showing that for suitably chosen p, we have
Dtf(t) < 0 for any t > 0.

By steps 3, 4, 5 and 6, Γ Π spt Φ C [/, where

(5.7) U:={(x,t):\t-to\<e, xeB€(y0), ~ Ί < r(x,t) < 0}.

Hence our choice of 7 in step 6 implies that Φ is twice differentiate on
Γ.
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8. By the previous step, Φ is a time varying admissible function in
Brakke's definition. Hence we conclude that for any t > 0, either we
have Dtf(t) = — oo, or spt μt Π {x : (x, t) E spt Φ} is (d — fc)-rectifiable,
and at such a time point £, we follow [26, p.60, step 3]. The result is:

Dtf(t) <

= ί[-Φ\H\

where S = S(x) is the projection matrix onto Txμt, SVΦ is the tangen-
cial gradient of Φ, and we have used the first variation formula (3.9) in
the third step. Proceeding as in [26, p.60], we compute the derivatives
of Φ in terms of the derivatives of h evaluated at r — ̂ :

Dtf(t) < / [ ( ^ " h")\SVr\2 + ti(-S : V2r + rt)] dμt.

By Lemma 5.2.,

F(Vr, V2r) < S : V2r + ||V2r|||SrVr|2.

In view of (5.7), h'(r - 7/2) > 0 on Γ Π spt Φ. Therefore,

Dtf(t) <

jh'{rt-F{Vr,V2r))dμu

where Λ is a constant satisfying ||V2r|| < Λ on U. Now choose p = p(A)
in the definition of h so that the first integral in the above expression is
nonpositive. Hence

(5.8) Dtf(t) <fh! [rt - F(Vr, V2r)] dμt.

9. By (5.4) we obtain \Vψ(x,t)\ > 1/2 for any \t - ίo| < 2e, x €
B2e(xo). Also note that Vr and V^ induce the same orientation of
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dΩ(t). Therefore for any t e [t0 - e, t0 + e] and any x e B2e(y0) Π dΩ(t),
we have rt = ψt/l^Ψl and

W) =

where all derivatives of ψ are evaluated at (x + x0 — yo,t). Prom (5.3)
and (5.4) it follows that

rf(y,t)-F(Vr(y,t),VMϊ/,<)) < -0/4,

(5.9) V|t-ίo | < e,yeB2e(y0)ΠdΩ{t).

Let (rr, t) G ΓΠspt Φ. Since 2j < e, by (5.7) and the smoothness of r (c.f.
step 6), there is a unique y G dΩ(t)Γ)B2e(y0) satisfying r(x, t) = — |y—x\.
Since the eigenvalues of V2£ decrease moving away from dΩ(t) along
characteristics of the distance (see step 4 of Theorem 3.2), by (5.9),

rΛ(τ i\ — T?(X7r(τ f\ \72r(τ f}) < rΛii i\ — V(\!r(iι i\ \72r(iι f}\

which together with (5.8) shows that Dtf(t) < 0 for all t > 0. This,
however, contradicts with the fact that f(t) = 0 for all \t — to\ > e and
f{t)>0 for some \t — to\ < e. Hence 5 is a viscosity supersolution of
(1.6) in {δ > 0}.

10. In view of the previous step and Lemma 5.1, all hypotheses of
Lemma 3.11 are satisfied. Hence δ is a viscosity supersolution of (1.6)
i n R d x (0,oo).

Theorem 5.4. Let (μt)t>o be a Brakke motion and let u be a non-
negative, uniformly continuous, viscosity solution of (1.6) satisfying

spt/io C {xeΈLd : u(x,0) = 0}.

Then for all t > 0,

sptμt C {x e R d : u(x,t) = 0}.

Proof. Since {^(-,0) = 0} contains sptμo> Lemma 5.1 implies that
{u( ,0) = 0} contains {δ(-,0) = 0}. Then, arguing exactly as in The-
orem 2.5 we construct a nondecreasing uniformly continuous function
ω(t) such that ω(0) =0 and

0 < tι(z,0) < ω(δ(x,0)), Vx 6 RA

By Theorem 2.2, 0 < u < ω(δ) on R d x (0, +00) and this gives the
desired inclusion, because {δ(-,t) = 0} contains sptμ*.
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Remark 5.5. Since Ilmanen's solutions of the mean curvature flow,
obtained by elliptic regularization in [26], satisfy Brakke's condition,
our result applies also to them. Theorem 5.4 can be used, in some
situations, to show the occurrence of the fattening phenomenon, i.e.,
7ίd~k+1(Tt) > 0 for some t > 0 even though the initial set Γo has
dimension (d — k). It suffices to find a family {μι

t}iej of Brakke varifolds
such that μj are supported in Γo and

for some t > 0.

6. Geometric supersolutions of De Giorgi

In this section, we compare the level set approach with a purely geo-
metric approach based on the notion of barriers, recently introduced by
De Giorgi in [12]. In addition to the general definition of barriers, [12]
also contains the characterization of the smooth mean curvature flow as
a system of equations for η (c.f. (3.10) ) and the idea to evolve hyper-
surfaces by the sum of the smallest (d — k) principal curvatures. Both
of these observations were crucial in the development of this paper.

We start with De Giorgi's general definition of barriers.
Definition 6.1 (De Giorgi). Let (*?,<) be a partially ordered set

and let T be a class of functions defined on intervals [α, b] C [0,+oo),
with values in S. We say that φ : [0, +oo) —> S is a barrier relative to
T, and we write φ E Barr(J"), provided that the following implication
holds for any / E T ,

/ : [α, b] -+ 5, /(α) < φ(α) => f(t) < φ(t), Mt E [α, b].

If S is a complete lattice, then the infimum any family of barriers is
still a barrier. For any s E S, this suggests the following definition of
the least barrier, barr(JΓ, 5), that is greater than 5 at time 0,

barr(J=*,5)(t) := mίlφ(t) : φ E Barr(^), s < φ(0)\.

Heuristically, we think of T as the set of all classical solutions and
Barr^) as the set of all supersolutions. Then in analogy with the
Perron's method, barr^, s) is a weak solution with initial data s.

In this section, we apply the above definition of barriers to the codimen-
sion-A; mean curvature flow, assuming k > 1 (the codimension-1 case is
studied in [6]). Following [12], we take S to be the collection of all
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subsets of R d , ordered by inclusion. Then there are two choices for T.
First one, denoted by T, is the class of smooth codimension-A: mean
curvature flows {Γt}ίG[α)6], given in Definition 3.6 up to a translation in
time. The second choice J7* is the collection of all maps with values in
compact sets {Ωt}te[a,b] such that {dΩt}te[atb] 1S a smooth codimension-1
flow (see Definition 3.6) and the signed distance, r(x,t) from dΩ f,

r(x,t) :=dist(a;,Ω t) - dist(z,R d \ Ω t),

satisfies

^ > F ( V r , V 2 r ) on {(x,t) G R d x [a,b] : r(x,t) = 0}.

Given a compact set Γo, in [12] De Giorgi uses the choice T to define a
weak solution of the codimension-& mean curvature flow starting from
Γo. His definition is,

(6.1) A t : =
p>0

where NP(ΓO) is the open p-neighbourhood of Γo. Using J7* instead of
T one obtains the following definition

(6.2) Γf:=flbarr(^,iVp(Γo))(ί).
p>0

We will show in Theorem 6.4 below, that the latter definition is the
same as the level set flow. In the codimension-1 case, the connections
between the level set approach and the barrier approach are investigated
by Bellettini and Paolini in [5], [6].

Conjecture [De Giorgi]. For any open set A C R d and t > 0, we
have

(6.3) barrp^ΛX*) - barr(JF*, A){t).

If the above conjecture holds, then Tt and At defined above agree and
both are equal to the level set solution defined in §#.

Remark 6.2. The inclusion C in (6.3) is not very hard to prove. Let

φ(t) be the family of sets on the right-hand side. We will prove that

φ G Barr(JΓ). Let {f t}te[a,b] be any function in T satisfying Γα C φ{a).

Choose σ > 0 such that η{x,t) = dist2(x,Tt) is smooth on

Q := {(x,t) :a<t<b, η(x,t) < 4σ2}.

For t e [α,6], set Ωt = {η( , t) < σ2}. Then using Theorem 3.8, we
can show that the family {Ωf}ίG[α)6] belongs to J7*. Indeed, the signed
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distance r(x,t) from Ω* is equal to dist(α;, Γt) — σ near dΩt and outside
Ω*.

By Lemma 6.3, the sets φ(t) are open for any t. Reducing σ, if
necessary, we may assume that Ωα C φ(a). Since φ is a barrier relative
to JF*, Qt c φ(t) and therefore

Γt C Ω, C φ(t)

for any t £ [α,6]. Since </> G Barr(JΓ), the inclusion C in (6.3) follows.
In the following lemma we prove some elementary topological prop-

erties of least barriers.
Lemma 6.3. Let A C Rd be an open set and let φ(t) = barr(^**, A)(t),

K(t) = R d \ φ(t). Then φ(t) is open for any t, and the map t »->• K(t)
is upper semicontinuous from the left, i.e., (xh^th) —> {% >t)i %h ^ K(th)
and th < t implies x E K(t).

Proof. The translation invariance of the class T* easily implies that
the interior of a barrier is still a barrier. Hence the minimality of φ
forces φ(t) to coincide with its interior for any t.

To check the upper semicontinuity property we define

K(t):= Π U K(s)i K(0)=K(0),
0<τ<tse(t-τ,t]

and verify that K(t) = K(t) for any t. Since K(t) contains K(t) and
φ(t) is the least barrier, we will prove that φ(t) := ΈLd\K(t) is a barrier.

Let {Ωt}te[a,b] ^ T* such that Ω(α) C φ(a). For r small enogh we
can assume that y + Ωα+e C φ(a) for any e (Ξ [0, r) and any y such that
\y\ < r. The barrier property implies

Nτ(Ωt)cφ(s), Vβ6(t-τ,ΐ]

for any t > a. Hence,

ΩtC Interiorί f] φ(s)Y
\ f- (Λ. _ ±\ /se(t-τ,t]

In particular, since the set on the right is contained in φ(t), we obtain
Ω, C φ(t).

The proof of the inclusion of the level set flow in the sets Γt defined in
(6.2) crucially depends on the following approximation property. Similar
properties for codimension-1 ^-flows have been proved in [16], [25], [27].

Approximation property. Assume that U is a bounded open set
with C1 '1 boundary Σ. Let r(x,t) be the unique viscosity solution of
(1.6) with the initial condition r( ,0) equal to the signed distance from
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Σ. Then, there exist T > 0, an open set A containing Σ, and a family
of functions r€ such that with D = Ax[0,T] we have the following:

(1) re G C°°{D), |Vr€| > 0 on D, and r€ are supersolutions of (1.6)
in ,4 x (0,T);

(2) re uniformly converges to r on β.
We remark that in the approximation property there is no hope in

general to look for smooth solutions of (1.6) because of the lack of
smoothness of F(p,X) on (Rd \ {0}) x Sdxd. This is also the main
motivation for the definition of T*. We can now prove the following
equivalence result.

Theorem 6.4. Assume that the approximation property holds. Let
{Γt}tG[o)+00) be as in (6.2). Then, Γt is equal to the level set solution
defined in §#.

Proof. Let u(x,t) be the unique viscosity solution of (1.6) with the
initial condition u(x,0) = dist(rc,Γ0), and set Γ't := {u( ,ί) = 0}.

1. To prove the inclusion Γ't D Γt, it suffices to show that φp{t) :=
{u( ,t) < p} is a barrier relative to T*, for any p > 0. Because if φp is
a barrier, then

b*ττ(f\Np(Γ))(t)cφp(t), Vp > 0,

and we obtain the inclusion Γ't D Tt by letting p I 0. The fact that φp

is a barrier follows from Theorem 2.2.
Indeed, let {Ωt}te[a,b] be a function in J7*, such that Ωα C φp(o). Set

δ(x,t) := dist(a;,Ω(t)). Arguing as in Corollary 3.9, we can prove that
δ is a supersolution of (1.6) in Rd x (α,6). On the other hand, since
Ωα C φp{a), there exists a nondecreasing uniformly continuous function
ω(t) such that ω(0) < 0 and ω(J( , a)) > u( , α) — p (see Theorem 2.5 for
the construction of ω). By Theorem 2.2, Theorem 2.3 and the continuity
of u, 5, we get ω(δ(-,t)) > u( ,t) — p for t G [α, 6], Hence

x eΩt, => δ(x,t) = 0, => u(x,t) < p, => x e φp(t)

for any t G [α, 6]. This shows that φp is a barrier.
2. To prove the opposite inclusion C, we define K(t) := Rd \ φ(t)

and show that the function f(t) := dist(Γt,UΓ(ί)) is nondecreasing. It
is easy to see that the monotonicity of / follows by the following two
properties:

(6.4) liminf f(s) > f(t), Vί > 0,

and

(6.5) Vί > 0 s.t. /(*) > 0 3T > t s.t. f(s) > /(ί), Vs G [t,T].
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Inequality (6.4) follows by the upper semicontinuity of the map t »-> K(t)
(see Lemma 6.3): if (xh,yh, Sh) is a sequence converging to (rr, y, t) such
that sh < t, xh G ΓSh, yh G K{sh) and

lim \xh -yh\= l iminf / ( s ) ,
/1-++00 sΐt

we have x G I\, y G if (£) and the inequality follows.
3. In this step we begin the proof of (6.5). By the C 1 ' 1 interpolation

lemma of Ilmanen [27] there exists a bounded open set U containing Γt

whose boundary Σ is C 1 ' 1 and satisfies

(6.6) dist(Γ,,Σ) + dist(Σ,#(t)) = dist(Γu K{t)).

Let rt be the signed distance function from Σ, and let r(x, s) be the
unique viscosity solution of 1.6 with the initial condition r( ,ί) = rt.
By setting Us := {r( ,s) < 0}, Theorem 2.2 yields the inclusion

y + TscUs Vs>t

for any y G R d such that \y\ < dist(Γ ί5 Ut). In particular

(6.7) dist(Γ s, dUa) > dist(Γ t, ΘUt).

Taking into account that

dist(Γs,d?7s) +dist(dUa,K(s)) < dist(Γa,K(s)), Vs>0

and (6.6), (6.7), in order to prove (6.5) we need only to prove in the
next step the existence of T > t such that

(6.8) dist{ΘUs,K(s)) > dist(0C/t,#(<)), Vs G [t,T].

4. Let A, T > t, re be given by the approximation property up to a
translation in time. Possibly reducing Γ we can assume that {re( , s) =
δ} C A for any s G [t,Γ], any e G (0, e0), and δ G (0, <J0).

Since re are supersolutions of (1.6) and smooth, the sets Ue

s'
δ :—

{re( ,5) < δ} belong to J7* (the functions re need not be the distance
functions). Since φ(t) is a barrier, we get

(6.9) dist{dU€/, K(s)) > dist{dUt>\ K(t))

for any s G [ί,T], e G (0, e0), £ G (0,50) Now, it is easy so see that the
uniform convergence of r e to r implies

liminf d i s t ^ ' * , K ( ί ) ) > dist({r( ,t) =

and
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lf(s)) < dist(dUs,K(s)).

This yields

dist(dUs,K(s)) > dist({r( ,*) = δ},K(t))

for any s G [ί,T], Letting δ I 0 we obtain (6.8).

7. Extensions and examples

As we have already seen several important properties of the codimen-
sion-one flow generalize to flows with arbitrary codimension. However,
there are differences. The level set solution Tt of the arbitrary codimen-
sion flow is the zero level set of a nonnegative auxiliary function u(-,t).
Alternatively, Γt is the set of minimizers of u(-,t). On the other hand,
in the codimension-one case, any level set can be used to define the
level set flow. This simple observation implies that certain properties
of the codimension-one flow cannot be generalized. Most importantly,
consider the codimension-one flow of two disjoint, compact subsets C/o,
Vo of RA It is easy to construct a Lipshitz continuous u0 : Rd -» R
such that,

Uo = {x : uo(x) = 0}, Vo = {x : uo(x) = 1}.

Let u(x,t) be the unique viscosity solution of (1.2) with initial data u0.
Then the codimension-one flows

Ut = {x: u(x, t) = 0}, Vt = {x: u{x, t) = 1},

are disjoint for all time t > 0. In fact, since the Lipshitz constant
of u(-,t) is nonincreasing in time, the distance between Ut and Vt is
nondecreasing in time. This proof uses the flexibility, in codimension-
one, to use any level set of u to define the level set flow, and therefore
it can not be generalized to an arbitrary codimension. Indeed, this
"disjointness" property is false in higher codimensions. Consider the
codimension-two flow in R3 with initial sets,

UQ = {(x,y,z) :x2 + y2 = 4, z = 0 } ,

Then the level set solutions are given by

Ut = {(x,y,z) :x2 + y2 = A-2t,

Vt = {(x,y,z):(x-2)2+z2 = 4-
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Observe that the distance between two solutions is decreasing, and at
t = 1.5 they have a nonempty intersection at (1,0,0). Interestingly, the
level set flow Γt of the initial data Γo = Uo U Vo should become "fat" for
t> 1.5.

Alternatively, we summarize the above observation as follows. Let
C/t, Vt be the level set flows of two disjoint compact sets Uo and Vo, re-
spectively. Then, in the codimension-one case the level set flow starting
from Uo U VO is equal to the union of Ut and Vu but this property is
not true for higher codimension flows. However, the ellipticity of the
function F(p, A) in (1.5) shows that there is an inclusion principle for
hypersurfaces flowing by the sum of the smallest (d—Λ;)-principal curva-
tures, hence the level set approach can be used to describe this motion.
Moreover, Corollary 3.9 shows that these hypersurfaces are "barriers"
against codimension-A; surfaces flowing by the mean curvature, giving a
connection between the two flows.

Extensions. Consider the geometric equation

(7.1) V = H + πg(x,t),

where g(x, t) € Rd is a given Lipschitz vector field, π is the projection
onto the normal space while, as before, V and H are, respectively, the
normal velocity and the mean curvature vectors. Then the theory devel-
oped in the previous sections extends to the above equation with only
minor modifications. For example, Γt is a classical solution of (7.1) if
and only if

Vηt = VAη-Ψηg, on Γt,

where 2η = ί2, and δ is the distance function to Γ*. Moreover, the above
equation holds if and only if there are positive constants C, σ satisfying

-Cδ <δt- F(Vί, V2δ) + Vδ g<Cδ,

on {δ < σ}. These observations lead to a result, analogous to Corol-
lary 3.9; namely, whenever a classical solution of (7.1) exists, then it is
equal to the zero level set of the unique viscosity solution u of

ut = F(Vtx, V2u) -Vu-g.
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