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COMPACT RIEMANNIAN 7-MANIFOLDS
WITH HOLONOMY G2. I

DOMINIC D. JOYCE

1. Introduction

The list of possible holonomy groups of Riemannian manifolds given
by Berger [3] includes three intriguing special cases, the holonomy
groups G2, Spin(7) and Spin(9) in dimensions 7, 8 and 16 respectively.
Subsequently [1] it was shown that Spin(9) does not occur as a non-
symmetric holonomy group, but Bryant [5] showed that both G2 and
Spin(7) do occur as non-symmetric holonomy groups. Bryant's proof
is a local one, in that it proves the existence of many metrics of holon-
omy G2 and Spin(7) on small balls in R7 and R8 respectively. He also
gives some explicit examples of such metrics. In a subsequent paper
[6], Bryant and Salamon construct complete metrics of holonomy G2.

This is the first of two papers in which we shall construct examples
of compact riemannian 7-manifolds with holonomy G2. These are, to
our knowledge, the first such examples known. We believe that they
are the first nontrivial examples of odd-dimensional, compact, Ricci-
flat riemannian manifolds. The author has also used similar methods
to construct compact 8-manifolds with holonomy Spin(7), [12].

The goal of this first paper is to study a single example in depth. We
shall describe a certain simply-connected, compact 7-manifold M, and
construct a family of metrics on it with holonomy G2. The 7-manifold
M was chosen because it is the simplest example that we know of. The
content of the paper is mostly introductory material, and proofs using a
lot of analysis. The second paper will describe many different compact
7-manifolds admitting metrics of holonomy G2, and will have a more
topological emphasis. It will also contain much more discussion of the
results, and some interesting questions.
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The method we shall use to construct riemannian 7-manifolds with
holonomy G2 is modelled on the Kummer construction for K3 surfaces
(described in §1.3), which is a way of approximating some of the family
of metrics of holonomy SU(2) on the K3 surface, that exist by Yau's
proof of the Calabi conjecture [19]. We begin with a flat riemannian
7-torus T7, divide by the action of a finite group Γ, and then resolve
the resulting singularities in a certain special way to get a compact,
nonsingular 7-manifold M. The finite group preserves a flat G2- struc-
ture on T7, and a family of metrics are defined on M modelled on the
flat G2- structure on T7/Γ, that are close to having holonomy G2 in a
suitable sense. It is then shown using analysis that these metrics can
be deformed to metrics that do have holonomy G2.

The paper is divided into three chapters. This first chapter contains
introductory sections §1.1 on the geometry of the holonomy group G2,
§1.2 on the analytic tools and results that will be needed later, and §1.3
on hyperkahler 4-manifolds and K3 surfaces. Chapter 2 defines a com-
pact 7-manifold M and a family of G2- structures φt on M depending
on a parameter t. The main results of the paper are then stated in §2.3.
They are divided into three theorems, Theorems A-C, from which we
deduce that M has a smooth family of metrics of holonomy <22, and
this is the goal of the paper. The third chapter is then devoted wholly
to the proofs of Theorems A-C of §2.3.

Now a G2- structure on a 7-manifold M defines a metric g and hence
a Levi-Civita connection V. There is a geometric invariant of the G2-
structure called the torsion, which measures how far the G2- structure
is from being preserved by V. The G2- structure comes from a metric
g with holonomy contained in G2 if and only if the torsion is zero, and
the G2- structure is then called torsion-free. Theorem A of §2.3 shows
that under certain conditions, a G2- structure φ with small torsion on a
compact 7-manifold M may be deformed to a torsion-free G2- structure
φ. Theorem B shows that the conditions of Theorem A apply to the
G2- structures φt on M of §2.2, for small enough t. Theorem C shows
that a torsion-free G2- structure on a compact 7-manifold is part of a
smooth family of diffeomorphism classes of torsion-free G2- structures,
with dimension 63(M).

The most important issue behind the proofs of Theorems A and
B is the following. The G2- structures of Chapter 2 are defined by
smoothing off a singular metric (from the singular manifold T7/Γ) to
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make it nonsingular, and they depend on a parameter ί, which we may
think of as the degree of smoothing. The torsion of the G2- structures
is the error introduced by the smoothing process, so that the torsion
is small when t is small. But when t is small, the metric is quite close
to being singular in some sense, and this means that the curvature is
large and the injectivity radius is small.

Our aim is to prove that a small deformation to a torsion-free G2-
structure exists. One would hope to prove a theorem stating that if
the torsion is smaller than some a priori bound, then such a deforma-
tion exists. However, one would expect this a priori bound to depend
on geometric information such as the curvature and the injectivity ra-
dius. Therefore there is a problem in proving that the G2- structures of
Chapter 2 can be deformed to zero torsion, because although one can
get the torsion of the initial structure very small by choosing t very
small, the a priori bound that the torsion must satisfy is also small
when t is small.

Thus it is not clear that the a priori bound on the torsion will be
satisfied for any t. The way this is solved is by writing inequalities on
the torsion, curvature, and so on explicitly in terms of functions of ί,
and then proving that the powers of t come out in such a way that
when t is small, the necessary conditions hold and the deformation to
a torsion-free G2- structure exists. Heuristically speaking, Theorems A
and B show that if the torsion is O(t4), the curvature is O(t~2), and
the injectivity radius is at least O(ί), then for t sufficiently small one
may deform to a G2- structure with zero torsion.

1.1. The holonomy group G2. We begin with some necessary facts
about the structure group G2, which can be found in [16, Chapter 11].
Let R7 be equipped with an orientation and its standard metric g, and
let i/i,..., 2/7 be an oriented orthonormal basis of (R7)*. Define a 3-form
ψ on R7 by

ψ =Vi A y2 Λ y7 + 2/1 Λ y3 Λ y6 + yx Λ y4 A y5 + y2 Λ y3 Λ y5

(1) - y2 Λ 2/4 Λ y6 + y3 Λ y4 Λ y7 + y5 Λ y6 Λ y7.

Let GL+(7, R) be the subgroup of GL(7, R) preserving the orientation

of R7. The subgroup of GL+(7,R) preserving ψ is the exceptional Lie

group G2, which is a compact, semisimple, 14-dimensional Lie group.

It is a subgroup of 50(7), so that g can be reconstructed from φ.
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Applying the Hodge star * of g we get the 4-form

*¥> = 2/i Λ 2/2 Λ y3 Λ y4 + yx A y2 Λ y5 Λ y6 - Vi Λ y3 Λ y5 Λ y7

(2) +yχ Λ y4 Λ y6 Λ y7

+Ϊ/2 Λ y3 Λ y6 Λ j/7 + y2 Λ y4 Λ j/5 Λ j/7

+y3Λy 4 Λy 5 Λy 6 .

The subgroup of GL+(7, R) preserving *</? is also G 2 .
Let M be an oriented 7-manifold, and define A+M,A+M to be re-

spectively the subsets of A3T*M and A4T*M of forms admitting ori-
ented isomorphisms with the forms φ and *φ defined by (1) and (2).
Then Λ+M and A+M are both canonically isomorphic to the bundle
of oriented G2~ structures on M, and so have fibre GL+(7, R)/G2. Let
θ : Λ^.M ^ Λ | M be the (nonlinear) natural identification. A dimen-
sion count reveals that Λ+M and Λ+M are open subbundles of A3T*M
and A4T*M respectively.

Let φ be a smooth section of A\M. Then φ is a smooth 3-form
on M, and defines a G2- structure on M. By abuse of notation, we
will usually identify a G2- structure on M with its 3-form φ. A G2-
structure φ induces a metric g on M from the inclusion G 2 C SO(7).
With the Hodge star * of g we may define the 4-form *φ, which by the
definition of Θ is equal to Θ(φ). Now the most basic invariant of a G-
structure on a manifold is called the torsion of the G- structure, and is
the obstruction to finding a torsion-free connection V on M preserving
the G- structure. The condition for ψ to be the G2- structure of a
metric with holonomy contained in G2 is that the torsion of φ should
be zero. Let V be the Levi-Civita connection of g. Then the condition
for φ to have zero torsion is that Vφ = 0. By [16, Lemma 11.5], this
is equivalent to the condition dψ — d * ψ = 0.

When a metric g on M has holonomy group if, the Levi-Civita
connection V ofg must preserve an H- structure on M, and this in
turn implies that the Riemann curvature R of g lies in a bundle with
fibre S2\), where f) is the Lie algebra of H. Therefore a holonomy
reduction imposes a linear restriction on the Riemann curvature. For
the case of holonomy G2, [16, Lemma 11.8] shows that metrics with
holonomy contained in G2 are Ricci-flat, which is one reason to study
them.

The action of G2 on R7 gives an action of G2 on Λfc(R7)*, which splits
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Λfc(R7)* into an orthogonal direct sum of irreducible representations of
G2. Suppose that M is an oriented 7-manifold with a G2- structure,
so that M has a 3-form φ and a metric g as above. Then in the same
way, AkT*M splits into an orthogonal direct sum of subbundles with
irreducible representations of G2 as fibres. In this section we shall
describe these splittings, and some results associated with them. We
shall use the notation Λf for an irreducible representation of dimension
I lying in AkT*M.

Proposition 1.1.1. Let M be an oriented 1-manifold with G2-
structure, giving a 3-form ψ and a metric g on M. Then AkT*M splits
orthogonally into components as follows, where Λf is an irreducible
representation of G2 of dimension I:

(i) A1T*M = A1

7, (ii) A2T*M = A2

7®A\±,

(in) A3T*M = Af ® A? Θ A3

27, (iv) A4T*M = ΛJ Θ Λ* ® A\7,

(v) Λ5T*M = Λ*ΘΛ*4, (vi) A6T*M = A6

7.
The Hodge star * gives an isometry between Λf and Aj~k. The spaces
Λf can be described as follows:

(a) A7 is the contraction of φ with TM,
(b) A\A is the kernel of the map ξ H-» ξ Λ *φ.

It is canonically isomorphic to Q2.

(c) A\ = (φ), (d) At = (*V>,
(e) A* = ψ Λ T*M, (f) Λ* = *φ Λ T*M.
Proof. Part (i) holds as G2 acts irreducibly on M7, and parts (ii) and

(in) are given in [16, Lemma 11.4]. Applying the Hodge star we deduce
the splittings (iυ),(v) and (υi). Parts (a) — (f) are then elementary,
q.e.d.

Let the orthogonal projection from AkT*M to Λf be denoted π/.
Then, for instance, if ξ G C°°(A2T*M), then ξ = π7(ξ) + πu(ξ). This
notation will be used throughout the paper.

L e m m a 1.1.2. There exists a 1-form μ on M such that π7(dφ) =
3μ Λ φ and π7(d * φ) = 4μ Λ *φ. Thus, if dφ = 0 then π7(d * ψ) — 0.

Proof. This can be calculated from the identity (*dφ) Λ φ + (*d *
φ) Λ *φ = 0 of Bryant [5, p. 553], using parts (e) and (/) of Proposi-
tion 1.1.1. q.e.d.

L e m m a 1.1.3. Suppose M is a compact, simply-connected 7-mani-
fold, and φ a torsion-free G2- structure on M. Let g be the metric
associated to φ. Then the holonomy of g is G2.
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Proof. This follows immediately from [5, Lemma 1, p. 563]. It is true
because if the holonomy group of g is not G2 , then it must be contained
in 5ί7(3), but this forces bι(M) = 1, contradicting the assumption that
M is simply-connected, q.e.d.

1.2. Holder spaces and elliptic regularity. Let M be a Rie-
mannian manifold with metric #, and V a vector bundle on M with
metrics on the fibres and a connection V preserving these metrics. In
problems in analysis it is often useful to consider infinite-dimensional
vector spaces of sections of V over M, and to equip these vector spaces
with norms, making them into Banach spaces. In this paper we will
meet three different types of Banach spaces of this sort, written L2(V),
Ck(V) and Ck>a{V), and they are defined below.

Define the Lesbesgue space L2(V) to be the set of locally integrable
1 /2

sections υ of V for which the norm \\v\\2 = (JM \v\2dμ) is finite. Here
dμ is the volume form of the metric g. In fact L2(V) is a Hubert
space with inner product (vι,v2) = $M(vι,v2)dμ, where (, ) is the
inner product in V. When M is compact, this L2- inner product has
the useful property of integration by parts, so that for instance we have
(dχ,ξ) — (x,d*ξ) when χ is a k- form and ξ a (A +l)- form on M. For
integers k > 0, define the space Ck(V) to be the space of continuous,
bounded sections v of V that have k continuous, bounded derivatives,
and define the norm |M|cfc by |H|c fc = ΣjLosupM|V*v|.

The third class of vector spaces are the Holder spaces Ck'a(V) for
k > 0 an integer and a € (0,1). We begin by defining C°'α(M), where R
is regarded as a trivial vector bundle over M. Suppose M is connected,
and define the distance d(x, y) between z, y G M to be the infimum of
the lengths of paths 7 connecting x and y. Let a G (0,1). Then a
function / on M is said to be Holder continuous with exponent a if

is finite. Any Holder continuous function / is continuous. The vec-
tor space C0)Qί(lI£) is the set of continuous, bounded functions on M
which are Holder continuous with exponent α, and the norm on C°'α(IR)

is ll/llσo-= Il/Hco + [/]«•
In the same way, we would like to define Holder norms on spaces of

sections v of a vector bundle V over M. The trouble with doing this is
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that in (3) the term \f(x) - f(y)\ should be replaced by \υ(x) - υ(y)\,
but υ(x) and v(y) lie in different vector spaces, the fibres of V over x
and y. To get round this, we shall identify the fibres of V over x and y
by parallel translation using V along a path between x and y. Thus we
arrive at the following definition of [υ]a, by analogy with (3). Define

(4) G = {smooth maps 7 : [0,1] -> M

such that Im(7) is a geodesic in M},

and for each 7 G G define 1(7) to be the length of the geodesic Im(7).
Let v be a section of V over M, and define [υ]α by

KΎ(0)) ~ " ( Ύ ( 1 ) ) I

whenever the supremum exists. Here the term \v(7(0)) — i>(7(l))| is
defined by identifying the fibres of V over 7(0) and 7(1) by parallel
translation along 7 using V. Since V preserves the metrics in the
fibres, the metric on this identified vector space is well-defined.

Define Ck'a(V) to be the set of v in Ck(V) for which the supremum
[Vfcv]α defined by (5) exists, working in the vector bundle ®kT*M ®V
with its natural metric and connection. The Holder norm on Ck*a(V) is
Hvllcfc.α = ||v||σ* + [V*v]α. With this norm, Ck'a{V) is a Banach space.
The condition of Holder continuity is analogous to a sort of fractional
differentiability. To see this, observe that if υ G C^V), then by the
mean value theorem [υ]a exists, and

(6) [υ]a < ^ H c o Γ Ί V ^ I S o .

Thus [υ]Q is a sort of interpolation between the C°- and C1- norms of
v. It can be helpful to think of Ck>a(V) as the space of sections of V
that are (fc+α)- times differentiate.

Now Holder spaces are useful tools for problems involving elliptic
partial differential operators, because they have a property known as
elliptic regularity. Suppose that V and W are vector bundles of the
same dimension over M, and that P : C°°(V) -> C°°(W) is a linear
elliptic operator of order /. If P(v) = w, where υ G Cι(V) and w G
Ck>a(W), then it is in general true that υ G Ck+ι>a{V). In other words,
v has the maximum number of (fractional) derivatives that the problem
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allows. However, it is not in general true that υ must be in Ck+ι(M) if

w G Ck(M). This is why we work with Holder spaces rather than the

simpler spaces Ck(V). Here are two elliptic regularity results for elliptic

operators on Holder spaces. The first is deduced from [4] (Theorems 27,

31, p. 463-4).

Proposition 1.2.1. Suppose M is a compact Riemannian man-

ifold, V, W are vector bundles over M of the same dimension, and

P : C°°(V) -> C°°(W) is a smooth, linear, elliptic differential operator

of order I. Let a G (0,1) and k > 0 be an integer. Then P extends

to P : Ck+ι'a{V) -> Ck'a(W), and in each of these spaces KeτP is a

finite-dimensional subspace of C°°(V).

Suppose that P(v) = w holds weakly, with v G L2(V) and w G

L2(W). If w G C°°(W), then υ G C°°(V). If w G Ck>a{W), then

v G Ck+ι>a{V), and

(7) IMIσ»+«.- < σ(H|c*.- + IMW

for some constant C independent of v,w. Moreover, if v is L2- or-
thogonal to KerP, then the term C\\υ\\2 may be omitted from (7) by
increasing the constant C.

Here is a similar statement for P Holder continuous rather than
smooth, that is deduced from [2, Theorem 3.55].

Proposition 1.2.2. Let M be a compact Riemannian manifold, and
V,W vector bundles over M of the same dimension. Let a G (0,1),
k > 0 be an integer, and P : C2(V) -> C°(W) be a linear, ellip-
tic differential operator of order 2 with coefficients in Ck'a. Suppose
that P(v) — w holds almost everywhere, where v G C2(V) and w G
Ck>«(W). ThenveCk+2>a{V).

1.3. Hyperkahler 4-manifolds and K3 surfaces. A metric on an
oriented 4-manifold with holonomy contained in SU(2) is called a hy-
perkahler structure [16, p. 114]. A hyperkahler 4-manifold is Ricci-flat
and self-dual, and its metric is Kahler w.r.t. each of three anticom-
muting complex structures. Equivalently, we may define a hyperkahler
structure on an oriented 4-manifold X to be a triple (ωι,ω2,ω3) of
smooth, closed 2-forms on X, that can at each point x be written as

ωi = Vi A y4 + 2/2 Λ ?/3, ω2 = yiΛy3-y2Λ y4,

(8)
^ 3 = V\ Λj/2 + 2/3 Λ 2/4,
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where (yu . . . , y4) is an oriented basis of T*X. Hyperkahler 4-manifolds
have received a lot of attention, and much is known about different
compact and noncompact examples.

Perhaps the simplest nontrivial example of a hyperkahler 4-manifold
is the Eguchi-Hanson space [9], which is a complete hyperkahler metric
on the noncompact 4-manifold T*CF1. We will give this metric ex-
plicitly in coordinates. Consider C2 with complex coordinates (21, z2),
acted upon by the involution —1 : (zχ,z2) H-> (—Zi, — z2). Let X be the
blow-up of O/{±1} at the singular point. Then X is biholomorphic
to T'CP1, and has πx(X) = {1} and H2(X,R) = R The closed, holo-
morphic 2-form dzλ Λdz2 on C2 descends to <C?/{±1}, and thus lifts to
X. Define closed 2-forms ω2,ω3 on X by ω2 + iω3 = dzx Λ dz2. The
function u = \zx\

2 + \z2\
2 on C2 descends to <C?/{±1} and so lifts to X.

Let t > 0 be a positive constant, and define a function / on X by

(9) / = \/u2 + t4 + t2 log u - t2 log (yju2 + t4 + t2) .

This is the Kahler potential for ω1? and is taken from [13, p. 593].
Define the 2-form ωλ on X by ωλ = \iddf. Then ωλ is a closed 2-form,
and it can be shown that the triple (ω\,ω2,ωz) may be written in the
form (8), and thus form a hyperkahler structure on X.

The transformation (zι,z2) *-> (czι,cz2) for some positive constant c
induces an endomorphism of X, which takes u)i(t) to c~2ωi(ct) for i =
1,2,3. Thus the hyperkahler metrics on X induced by different positive
values of t are all equivalent modulo diffeomorphisms and homotheties.
Putting t = 0 gives / = u in (9), and then ω\ is the Kahler form of
the Euclidean metric on <C?/{±1}, so that in the limiting case t = 0
the metric becomes degenerate along the exceptional curve, and away
from this is equal to the flat hyperkahler metric on C?/{±1}. This
indicates that the Eguchi-Hanson metric is asymptotic to the flat metric
onC2/{±l} at infinity.

The only compact hyperkahler 4-manifolds are flat tori and K3 sur-
faces. K3 surfaces are compact complex surfaces with b\ = cλ — 0.
They are all diffeomorphic, and are very interesting from a number of
different points of view. By Yau's proof of the Calabi conjecture [19],
the K3 surface possesses a 58-parameter family of metrics of holon-
omy 5(7(2). An approximate description of some of these hyperkahler
metrics was given by Page [15], which employs an idea known as the
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Kummer construction. Let T 4 be the 4-torus with a fiat Riemannian
metric, and let σ : T 4 —> T4 be an isometric involution that reverses
directions on T4. Then σ has 16 fixed points, so T4/σ has 16 singular
points modelled on the origin in M4/{±1}.

Page observed that gluing 16 small copies of the Eguchi-Hanson
space in place of small neighbourhoods of the singular points yields
a metric on K3 that is close to being hyperkahler, in the sense that the
errors introduced by the gluing are small when the Eguchi-Hanson met-
rics are small. Later, Topiwala [17] and LeBrun and Singer [14] gave
proofs that the K3 surface admits hyperkahler metrics using Page's
idea. These proofs use ideas from twistor theory and the deformation
theory of singular complex manifolds.

2. A 'Kummer construction' for a compact 7-manifold

Perhaps the best known and most studied nontrivial example of a
compact manifold admitting metrics of special holonomy is the K3
surface of §1.3, which is a compact 4-manifold possessing a family of
metrics with holonomy SU(2). This moduli space of metrics is a man-
ifold parametrized by the cohomology classes of 3 constant 2-forms
on the K3 surface. The metrics are not known explicitly, and not very
much is known about what the general K3 metric 'looks like'. However,
orbifolds of the torus T4 appear naturally as limits at the boundary of
the moduli space, and therefore one can get a fairly good grasp of what
the metrics in the moduli space close to these orbifolds are like, as they
arise from desingularizing the flat, singular manifold T4/Γ in a certain
way, where Γ is a finite group. This construction was described in §1.3,
and is known as the Kummer construction for the K3 surface.

The situation for metrics on holonomy G2 on the 7-manifold M we
shall describe shares many features with the K3 surface. There is a
family of metrics of special holonomy which we cannot write down ex-
plicitly, but which is parametrized (at least locally) by the cohomology
classes of constant 3- and 4- forms φ, *φ. Orbifolds of the torus T 7

appear in a certain way as limits at the boundary of the moduli space,
and we can give a good approximate description of the metrics in the
moduli space close to these limits. Thus K3 surfaces furnish a good
analogy, and are useful as a mental picture and in deciding what to
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aim for - since, for instance, noone has yet succeeded in writing down
a K3 metric explicitly, we are unlikely to be able to give an explicit
metric of holonomy G2 on M in the forseeable future, as this is surely
a more difficult problem.

However, the K3 picture also has features which the G2 picture
probably does not share. For underlying the metric of holonomy SU(2)
is a complex structure - a family of complex structures, in fact - and
so the rhythms of complex and even algebraic geometry run through
the study of metrics on K3. Complex geometry, with its local triviality
and lack of metrics, and algebraic geometry, with the possibility of
complete description of the objects of study and their moduli, seem
very different to riemannian geometry. Since we know of no underlying
structure in the G2 case comparable to complex geometry, it seems
likely that the extraordinarily good behaviour of the moduli space of
K3 metrics may not extend to the G2 case. For instance, metrics in
the moduli space may develop singularities in a disorderly way, and the
set of cohomology classes [φ] realized by torsion-free G2- structures on
M may well contain ragged holes rather than being defined by pleasing
linear constraints. But this is only speculation.

In §2.1 a finite group Γ = Z 3 of automorphisms of T 7 is defined.
This group preserves a flat G2- structure on T 7. The singularities of
the quotient T7/Γ are determined and described. Now Γ has been
chosen very carefully so that the singular set of T7/Γ is particularly
simple and well-behaved. It consists of 12 disjoint copies of T3, and
each component T 3 of the singular set has a neighbourhood in T7/Γ of
the form T 3 x (B4/{±1}), where B4 is the open unit ball in R4.

Therefore, to desingularize T7/Γ it is enough to be able to desingu-
larize B4/{±1}. In §2.2 a compact 7-manifold M is defined by desin-
gularizing T7/Γ, and the method used to desingularize B4/{±1} is
exactly that used in the Kummer construction of the K3 surface. Also
in §2.2 a family of G2- structures φt on M depending on a parameter t
is defined. These satisfy dφt = 0 and d * φt = 0{t4). Then in §2.3 the
main results of the paper are given, which lead to the existence of a
family of metrics of holonomy G2 on M, stated in Theorem 2.3.1. The
proofs of the results are deferred to Chapter 3.

2.1. A finite group action on T 7 . Let (xu... ,x7) be coordinates
on T 7 = M7/Z7, where x{ G R/Z. Define a section φ of K\T7 by
equation (1) of §1.1, where y{ is replaced by dxi. Let α,/3 and 7 be the
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involutions of T7 defined by

(10) a((xu . . . , x7)) = {-xu ~χ2, -z 3 , -^4, α5, x6i X7),

(11) β((xu...,x7)) = (—a i, | - x

(12) j((xu...,x7)) = ( | -xλ,x2,\ -

By inspection, α, β and 7 preserve <£, because of the careful choice of
exactly which signs to change. Also, a2 — β2 = η2 — 1, and a,β and
7 commute. Thus they generate a group (α, /?, 7) = Z?, of isometries of
T 7 preserving the flat G2~ structure φ.

In the next two Lemmas, we shall describe the singular set S of T 7 /Γ.
L e m m a 2.1.1. ΓΛe elements βj, ja7 aβ and aβη of Γ have no

fixed points on T7. The fixed points of a in T7 are 16 copies of T 3 ,
and the group (/?, 7) acts freely on the set of 16 3-tori fixed by a.
Similarly, the fixed points of β, 7 in T7 are each 16 copies of T3, and
the groups (#,7) and (a,β) act freely on the sets of 16 3-tori fixed by
/?, 7 respectively.

Proof The element βη acts on the coordinate xλ by xλ \-+ xλ + \.
Therefore βj can have no fixed point x, because the xx- coordinates
of x and βj(x) are different. Similarly, ηa. changes coordinates Xι and
x3, aβ changes coordinate rc2, and aβj changes coordinate x3. Thus
none of these elements have fixed points.

By inspection, the fixed points of a are Xι, x2, £3, £4 G {0, | } , which
clearly divide into 16 disjoint copies of T 3 . The action of β on these 16
copies of T 3 fixes £1,2:3 and x4, and takes x2 to x2 + | . The action of
7 on the 16 copies of Γ 3 fixes x2 and x4 and takes xλ ϊo xλ + \ and x3

to £ 3 + | . Therefore the group (/3,7) does act freely on the set of 16
fixed 3-tori of a. The rest of the Lemma uses the same argument, and
is left to the reader, q.e.d.

L e m m a 2.1.2. The singular set S of T7/Y is a disjoint union of
12 copies of T3. There is an open subset T of T 7 /Γ containing S,
such that each of the 12 connected components of T is isometric to
T3 x (JB^/{±1}), where B* is the open ball of radius ζ in M4 for some
positive constant ζ(ζ = 1/9 will do).

Proof. The singular set S is exactly the image in T 7 /Γ of the set S'
of points in T7 that are fixed by some nonidentity element of Γ. By
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Lemma 2.1.1, the only nonidentity elements of Γ with fixed points are
α, β and 7, and for each of these the fixed point set in T 7 is 16 copies
of Γ3. This gives 48 copies of T 3 in T7. Now these 48 3-tori are all
disjoint. It is clear that distinct 3-tori fixed by the same element a,β
or 7 are disjoint. Suppose that two 3-tori fixed by different elements,
say a and /?, intersect. Then the intersection point is fixed by both a
and /?, so it is a fixed point of α/?, which contradicts Lemma 2.1.1.

Thus S" is the disjoint union of 48 copies of T 3 in T 7, and S =
S"/Γ. Now each T3- component of S' is defined by setting four of the
coordinates xu ... ,z 7 to some values from {0, j , | , f}. Therefore the
distance between distinct T3- components of S' is at least 1/4. Let
T" be the set of points in T 7 a distance less than ζ = 1/9 from S".
Because 1/9 + 1/9 < 1/4, T" splits into 48 components, each isometric
to T 3 x B*. Define T C T7/Γ by T = T'/Γ. Then Γ is a 'tubular
neighbourhood' of S.

Since the group (β, 7) acts freely on the 16 3-tori fixed by α, it follows
that the 3-tori fixed by a contribute 4 copies of T 3 to S. Similarly,
the fixed 3-tori of β and 7 each contribute 4 3-tori to S. Therefore
S consists of 12 disjoint copies of T3, so that T has 12 components.
Examining the action of α, β and 7 near their fixed 3-tori, it is clear that
the component of T containing each T3- component of S is isometric
to T 3 x (JB*/{±1}). This completes the Lemma, q.e.d.

2.2. A compact 7-manifold, and a family of G2- structures.
Let Γ, S and T be as in §2.1. We shall define a compact 7-manifold M
using T 7 /Γ, and a family of closed G2- structures {φt :te (0, θ]} on M.
Using the decomposition T = S x (U£/{±1}), the flat G2- structure φ
on Γ 7 /Γ and its dual *φ may be written as

(13) φ = ώi Λ δι + ώ2 A δ2 + ώ 3 Λ δ3 + 5χ Λ δ2 A 5 3,

(14)
*φ = ώj Λ δ2 A 63 + ώ2 Λ $3 Λ δι + ώ3 Λ δι A δ2 + |ώχ Λ ώi,

where δι,δ2 and ί3 are constant orthonormal 1-forms on 5, and
ώi,ώ2,ώ3 are constant 2-forms on B*/{±1} that can be written in the
form (8) given in §1.3.

In order to desingularize T7/Γ, we shall replace each factor B*/{±1}
in the decomposition of T by a nonsingular 4-manifold U that agrees
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with B*/{±1} in a neighbourhood of its boundary. To define a G2-
structure ψt upon the resulting 7-manifold M, U will be given a triple
ωi(t),ω2(t),ω3(t) of 2-forms that agree with ώj near the boundary. Our
construction of U will follow that of the Eguchi-Hanson space in §1.3.
Regard B* as a subset of C2 with complex coordinates (zi,22), and let
U be the blow-up of B*/{±1} at its singular point. Define real, closed
2-forms ω2(t),ω3(t) on U as in §1.3 by ω2(t) + iω3(t) = dzγ A dz2. Let
u be the function \zχ\2 + \z2\

2 on U.

Let r : [0, ζ2] -> [0,1] be a fixed, smooth, nonincreasing function
with τ(r) = 1 for r < C2/4 and τ(r) = 0 for r > ζ2/2. For £ > 0 define
a function /^ on U by

(15) / t =Ju2 + τ2(u)*4 + τ(n)ί2 logu

- τ{u)t2 log Uu2 + τ2(u)t* + τ(u)A ,

as in (9). Define the 2-form ωλ(t) on U by α i(ί) = \iddft. Then
α i(ί) is closed. Where u < ζ2/A this triple {ωj(£)} is the hyperkahler
structure of the Eguchi-Hanson space of §1.3, and where u > ζ2/2 it is
the flat triple {ώj}. Thus the triple {ωj(t)} interpolates between the
hyperkahler structure of the Eguchi-Hanson space and the Euclidean
structure on JB^/{±1}.

Define M to be the compact, nonsingular 7-manifold without bound-
ary that is obtained by replacing each factor B*/{±1} by U in the de-
composition of T, in the obvious way. Define a 3-form ψt and a 4-form
υt on M by φt = φ and υt = *φ on (T7/Γ) \ T, and

(16) ψt = ωλ(t) Aδx+ ω2(t) Aδ2+ ω3(t) Λ δ3 + δx Λ δ2 Λ δ3

υt =cύι(t) Λ ί 2 Λ 53 + ω2(t) Λ δ3 Λ δx

(17) + ω3(t) Λ δx A δ2 + \ωλ(t) A ωx(t),

on T. Since by definition the 2-forms ujj(t) agree with ώj near the
boundary of Ϊ7, ψt and υ t are smooth, and as tt^(i), ίj are closed, (/?t

and υ t are closed.

Now the 2-forms ωj of the Eguchi-Hanson space of §1.3 are in the
form (8), so comparing the definitions (9), (15) we see that the 2-forms
ωj(t) are in the form (8) on U except where τ(u) has nonzero first or
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second derivatives, which is on the open annulus u G (C2/4, ζ2/2). Let
A C M be the subset where u G (C2/4, C2/2) Then A is an open subset
of T, the product of S and an annulus in J34. On M \ A, φt is a section
of Λ+ and υt = Θ(φt). But on A the 2-forms u)j(t) are not in the form
(8), so ψt need not even be a section of Λ+. However, when t is small,
the 2-forms uJj{t) are close to satisfying (8), and thus φt is a section of
Λ+ because Λ+ is an open subbundle of A3T*M. For the same reason,
when t is small, υt is close to Θ(ψt) on A.

The terms in ωι(t) due to the derivatives of r(u) may be seen to be
O(t4). Since these are the terms that cause the triple ωj(t) to deviate
from the form (8), it follows that υt — Θ(φt) and all its derivatives are
O(t4) for small t. Therefore there exist positive constants #, D1 such
that when 0 < t < 0, φt is a section of Λ+, and the 3-form φt on M
defined by *φt = &{ψt) ~ vt is smooth and satisfies \\φt\\2 < Dχt4 and
ll^tllc2 < Dλt

A, where the metrics and Hodge star are those induced
by the G2- structure ψt. This 3-form φt satisfies d * φt = dθ(</?t), as
dυt — 0, and this is equivalent to d*φt = d*φt, since θ ( ^ ) = *φt.

What the definitions above mean is as follows. The compact 7-
manifold M is divided into three regions. The first region, the subset
of T on which u < C2/4, is the product of 5, and a closed subset U of
the Eguchi-Hanson space X of §1.3. On this region the G2- structure
ψt is torsion-free, because it is the product of the flat structure on S
and the torsion-free SU(2)- structure on the Eguchi-Hanson space. The
Eguchi-Hanson space metric has parameter t, which is proportional to
the diameter of the exceptional curve in X. Therefore t measures the
diameter of the exceptional set introduced to desingularize T7/Γ. The
second region is a subset of T7/Γ, and on it φt is equal to the flat G2-
structure φ of T7/Γ.

The third region, A, is a collar between the first two regions. On A
the G2- structure ψt has to interpolate smoothly between its values on
the first and second regions, and it achieves this using a partition of
unity function τ(u). On ̂ 4, φt is not torsion-free because the derivatives
of τ(u) introduce torsion terms. This means that although dφt = 0,
dθ(φt) is not identically zero on A, but is O(t4). For later convenience
we introduce a 3-form φt which is also O(t4), such that d*φt = dθ(φt).
It is important that the region A is independent of t, and does not
become small when t is small, because this way the 'error term' dθ(φt)
is spread thinly over a large volume instead of being concentrated in
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a small one. Thus we make the error term as small as possible, which
will be crucial to the proof.

Now let us consider the topology of M. It is made by putting patches
of the form T 3 x U on the singularities of T7/Γ. It is easy to show
that both both U and T7/Γ are simply-connected, so it follows that
M is simply-connected. Thus the first betti number bx(M) is zero.
The other betti numbers may be calculated too. It can be shown that
62(T7/Γ) = 0 and 63(Γ7/Γ) = 7, and there are 12 patches of the form
T 3 xU each of which add 1 to b2 and 3 to b3. Therefore b2(M) = 12
and bs(M) = 43.

2.3. The main results. We are now ready to state the results of
the paper. They hinge upon the following three theorems, which will
be proved in Chapter 3.

Theorem A. Let J5χ,..., E5 be positive constants. Then there exist
positive constants κ,K depending only on JE?i,... ,E5, such that when-
ever 0 < t < K, the following is true.

Let M be a compact 7-manifold, and φ a smooth, closed section of

Λ+M on M. Suppose that φ is a smooth 3-form on M with d*ψ — d*φ,

and that the following four conditions hold:

(i) \\φ\\2 < Ext
4 and IMIci.1/2 < Eλt\

(ii) if χ G C1 '1/2(Λ3T*M) and dX = 0, then

\\χ\\co < E2{t\\Vχ\\co +t-V2\\χ\\2), and

IIVXIICO +* 1 / 2 [Vχ] 1 / 2 < E3(\\d*χ\\co + ί1 / 2[d χ] i / 2 + * - 9 / 2 | | χ | | 2 ) ,

(in) 1 < £ 4 v o l ( M ) , and

(iv) if f is a smooth, real function and JMfdμ — 0, then | | / | | 2 <

Then there exists η G C°°(A2T*M) with \\dη\\co < Ktλl2, such that
φ = φ + dη is a smooth, torsion-free G2- structure.

Theorem B. Let J 9 l 5 . . . , D5 be positive constants. Then there exist
positive constants Et,..., E5 and λ depending only on Dx,... ,D5, such
that for every t E (0, λ], the following is true.

Let M be a compact 7-manifold, and φ a smooth, closed section of
Λ+M on M. Let g be the metric associated to φ. Suppose that φ is
a smooth 3-form on M with d*φ = d*φ, and that the following five
conditions hold:

(i) \\φ\\2 < D,t4 and WφWc* < D,t\

(ii) the injectivity radius δ(g) satisfies δ(g) > D2t,
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(Hi) the Riemann curvature R(g) of g satisfies ||i?(<7)||c0 < D3t~
2,

(iυ) the volume vol(M) satisfies vol(M) > D4, and

(v) the diameter diam(M) satisfies diam(M) < D5.
Then conditions (i)-(iv) of Theorem A hold for (M,φ).

Theorem C. Let M be a compact 7-manifoldj let X be the set of
torsion-free G2- structures on M, and let Diffo(M) be the group of
diffeomorphisms of M isotopic to the identity. Define a map Ξ : X -»
H3(M,R) by Ξ(φ) = [φ]. Then Ξ is invariant under the action of
Diffo(M) on X. Moreover, if φ £ X, then there exists an open subset
Y C X which contains ψ and is invariant under Diffo(M), such that
Ξ induces an isomorphism between Y/ΌΊS0(M) and an open ball about
[φ] in H3(M,R).

We note that the result of Theorem C was first announced by Bryant
and Harvey [5, p.561], and they have a proof of it, which pre-dates the
proof given in §3.3 by a number of years, but that this proof has not
yet been published. Using Theorems A-C we may prove the existence
of metrics of holonomy G2 on M, which is the main result of the paper.

Theorem 2.3.1. The compact, simply-connected Ί-manifold M of
§2.2 admits a J^3-dimensional family of metrics of holonomy G2.

Proof. We will show that for small t, the hypotheses of Theorem B
hold with ψ = ψt and Ψ = ψt, where φt, ψt are as defined in §2.2. Prom
§2.2 we have | | ^ | | 2 < Dλt

4 and H^llc^ < Dλt
4 when t<θ,so part (i)

of Theorem B holds with the constant Dλ of §2.2. Now the metric gt

induced by φt is defined in §2.2 by gluing ends of the form T 3 xU into
T 7 /Γ, where T 3 and T 7 /Γ carry fixed, flat metrics, and U is a subset of
the Eguchi-Hanson space shrunk by a homothety multiplying distances
by t. It is therefore clear that parts (ii)-(v) of Theorem B hold for the
metric gt on M when t < 0, for some constants J92, , D$ independent
of t.

So parts (i)-{v) of Theorem B hold for (M, φt) for t < 0, and by
Theorem B there exist positive constants £?χ,..., JS5 and λ depending
o n D i , . . . , β 5 , such that parts (i)-{iv) of Theorem A hold for (M, φt)
when t < min(0, λ). By Theorem A there is a constant K > 0, such that
for t < min(0, λ, K), the G2- structure φt on M may be deformed to a
torsion-free G2- structure φt on M. Thus M admits torsion-free G2-
structures. By Theorem C, the family of torsion-free G2- structures on
M is a manifold locally isomorphic to H3(M, R). But 63(M) = 43 from
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§2.2, so the dimension of the family is 43. Since M is simply-connected,
the holonomy group of the associated metrics is G2, by Lemma 1.1.3.
Therefore there is a 43-dimensional family of metrics of holonomy G2

on M. q.e.d.

3. The existence of torsion-free G2- structures on M

This chapter contains the proofs of Theorems A-C of §2.3. Theo-
rem A will be proved in §3.1, Theorem B in §3.2, and Theorem C in
§3.3. I have found several different proofs of the existence of metrics of
holonomy G2 on the 7-manifold M of §2.2, and the current formulation
as Theorems A and B is the shortest and the one I like best. The point
about the hypotheses of Theorem B is that they actually use very little
information about the 7-manifold M and the G2- structures φ. Con-
ditions {ii)-{v) of Theorem B do not depend on the G2- structure </9,
but only on the metric g on M it induces, and they do not use global
information about the manifold in any significant way.

Previous versions of the proof used geometric quantities that are
global in nature, such as the first nonzero eigenvalue of a Laplacian
operator, and constants estimating the norm of various Sobolev em-
beddings. The trouble with these proofs was that it takes rather more
work to estimate a geometric quantity that does not depend on purely
local information, so the proofs were lengthy, and are also not as gen-
eral as the current proofs. As the price of proving a result from minimal
information, the proof of Theorem A is slightly devious, and uses the
special geometry of G2 a lot, which may make it difficult to use the
same method of proof for similar geometric problems.

Here are the general considerations that motivate the design of the
proof of Theorem A in §3.1. Our goal is to start with a G2- structure
φ with small torsion, and deform it to a 3-form φ with zero torsion.
Prom §1.1, this means that ψ must satisfy the two equations dφ = 0
and dθ(φ) = 0. We may satisfy the first equation automatically by
starting with dφ = 0, and choosing φ = φ + dη. Thus we seek a 2-form
η satisfying the equation dθ(φ + dη) = 0.

Now this is not a good equation to try and solve, because its lin-
earization in η is not elliptic. It fails to be elliptic for two reasons. The
first reason is that adding a closed 2-form to η does not change φ, so
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that the solution space acquires an infinite-dimensional factor from the
closed 2-forms. To eliminate this we shall require that d*η = 0. The
second reason is that since the problem is diffeomorphism-invariant, if
φ is a solution, then so is the image of φ under any diffeomorphism, so
that there is an infinite-dimensional space of solutions.

The method we use is to construct a 2-form 77 and a real number e
satisfying a certain nonlinear equation with elliptic linearization. Hav-
ing constructed these solutions, we will use some special geometric facts
about G2 to show that a solution to this nonlinear equation satisfies
dθ(φ + dη) = 0. It also turns out to satisfy π7(r/) = 0, and this can
be interpreted as the 'gauge-fixing' condition for the diffeomorphism
group: in order to pick out a unique representative in each orbit of the
diffeomorphism group on C°°(Λ+) we expect to impose some restriction
on the data 77, and πτ(77) = 0 is the natural condition.

Having chosen the nonlinear, elliptic equation, we attempt to find
a solution to it by defining a sequence { ĵ}jL0 °f 2-forms that are
successive approximations to a solution, and then showing that the
sequence converges. One must ensure that the terms ηj remain small,
and do not diverge to infinity. The art in proofs of this sort is to choose
the right norms - Lesbesgue norms, Holder norms, Sobolev norms - to
control the terms η{ of the sequence. It turns out that because of an
integration by parts formula, the L2- norm of dηj is very well controlled;
in fact for small 7̂ , Hdr̂ +ilk < C\ + C^ll^ilbll^illc0 f°r constants
C15C25 where CΊ = O(t4). This makes the norm Hdr/j ||2 a good choice
to work with.

However, we cannot work with this norm alone because the esti-
mate involves ||d77j||c0 as well. The sequence element τ/J+i is defined
by setting P(ryJ+i) = Q(τ/j, Vr/j, V 2^), where P is a second-order, lin-
ear, elliptic operator, and Q is a nonlinear function. Naϊve attempts
to estimate some norm of 77̂+1 always seem to involve some stronger
norm of η^ just as the C°- norm is a stronger norm than the L2- norm.
The way to break this cycle is to use elliptic regularity results, anal-
ogous to Propositions 1.2.1 and 1.2.2. If ηj is controlled in C f c + 2 'α,
then Q(r/j , Vf/j, V2fjj) is controlled in C*'α, and therefore by elliptic
regularity, ηj+1 is controlled in Cffc+2'Q:.

Thus elliptic regularity allows us to estimate a Holder norm of ηj+ι in
terms of the same Holder norm of ηj. Without this property our proof
would never get off the ground. In the proof of Theorem A, we shall
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use the norms ||c/7/7||2 and ||d7/j||ci,i/2 to control the sequence
and we will be able to show that the sequence exists, is bounded in
these norms, and is convergent in the associated topologies. This is the
thinking behind Theorem A.

3.1. An existence result for metrics of holonomy G2 In this
section we prove the core result of the paper, Theorem A, which states
that a G2- structure ponacompact 7-manifoldM withdφ = 0 and d*φ
small in a suitable sense can, under suitable conditions, be deformed to
a G2- structure ψ with zero torsion. We begin with a result estimating
the function Θ of §1.1.

Lemma 3.1.1. There exist real, positive, universal constants
βι,..., e± such that whenever M is a 7-manifold and ψ is a closed sec-
tion of Λ+, the following is true.

Suppose that χ G C°{A3T*M) and \\χ\\co < eλ. Then φ + χ G
C°(k\M) and Θ{φ + χ) is given by

(18) Θ(φ + x) = *φ + f * πχ(χ) + *π7(χ) - *π27(χ) - F(χ),

where F is a smooth function from the closed ball of radius eλ in
Λ3Γ*M into A4T*M with F(0) = 0. Suppose that
χ , ί G C^'2{A?TM) and | |χ | | co, U\\co < eλ. Then F(χ) - F(ζ) sat-
isfies the inequalities

(19) \F(χ)-F(ξ)\<e2\χ-ξ\(\χ\ + \ξ\),

\d(F(χ) - F(ξ))\ <e3{\χ- ίKM + \ξ\)\d*φ\

(20) +|V(χ -

[d(F(χ)-F(ξ))]1/2 < e4{[ χ -

(21)
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Proof. As K\M is an open subset of A3T*M, we may choose e1 > 0
independent of (M, (/?), such that the closed ball of radius ex about φ in
A3T*M is contained in K\M. Let the function F be defined by (18).
Then (18) holds, and F is a smooth function of ξ. Now by calculating
in coordinates (using Schur's Lemma) one can write Θ(φ + χ) as an
explicit function of χ up to the first order in x, and the answer is the
first four terms of the right-hand side of (18). So the function F(χ) has
zero first derivative in χ.

Thus the principal part of the function F(χ) is quadratic in χ. It
follows that inequality (19) holds for some constant e2, and as this
is a calculation at a point, e2 is a universal constant, independent of
M and ψ. By the chain rule, the derivative dF(χ) can be written as
dF(χ) = Fι(χ,Vφ) + -F2(χ, Vχ), where Fλ and F2 are linear in their
second arguments, and are universal functions in the sense that their
definition at m G M depends only on the value of φ at the point m.

Since dφ = 0 by assumption, Vφ is determined pointwise by d*φ.
Using this and estimates on i*\, F2 it is easy to show that dF satisfies an
estimate of the form (20) for some e3 > 0. But because of the universal
property of Fλ and F 2, this e3 is independent of M and φ, as we want.
In a similar way, we can estimate the Holder norm [d(F(χ) — F(ξ))]1/2

using 'universal functions', and it is easy to see that (21) holds for some
universal constant e4. This completes the proof, q.e.d.

Now we shall prove Theorem A of §2.3.
Theorem A. Let l? i , . . . ,E 5 be positive constants. Then there

exist positive constants κ,K depending only on £?i,...,£J 5, such that
whenever 0 < t < K, the following is true.

Let M be a compact 7-manifold, and φ a smooth, closed section of
Λ+M on M. Suppose that ψ is a smooth 3-form on M with d*ψ = d*φ,
and that the following four conditions hold:

(i) \\<ψ\\2 < Ett
4 and \\tβ\\ciΛ/2 < Eλt\

(ii) if x G ClΛ/2(A3T*M) and dX = 0, then
| | χ | |co<£; 2 (t | |Vχ | |co+r 7 /2 | |χ | | 2 ), and

IIVXIICO +*1/2[Vχ]1/2 < E3(\\d*χ\\co +t1'*[d>χ\i/2 + *-9/2 |lxl|2),

(Hi) 1 < J54vol(M), and

(iv) if f is a smooth, real function and JMfdμ = 0, then | |/ | | 2 <

E5\\dfh.
Then there exists η G C°°(λ2T*M) with \\dη\\Co < Kt1'2, such that
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ψ = φ + dη is a smooth, torsion-free G2- structure.
Proof. The idea of the proof is to construct solutions

η E C°°(Λ2T*M), e E E to the equations d*η = 0 and

( 2 2 ) e

(23) dθ(φ + dη) = |d(*^(rfi/)) + 2d(*π7(dη)) -ed*φ,

and then to show that η satisfies the requirements of the Theorem.
Suppose that η E C2'1/2(Λ2T*M) and \\dη\\co < eλ. Then by Lem-
ma 3.1.1, we have φ + dη G C°(k\M) and

dθ(φ + dη)=d*φ- dF(dη) - d(*dη)

(24) +

so that (23) is equivalent to the equation d(*dη) = (l + e)d*φ — dF(dη),
which gives

(25) d*dη = (1 + e)d*ψ + *dF{dη),

as *d* = — d* acting on A3T*M, and d*ψ = d*φ.
The rest of the Theorem is an immediate consequence of the following

three Propositions:
Proposition 3.1.2. Suppose t is sufficiently small. Then there exist

convergent sequences {ηj}f=0 in C2'1/2(Λ2T*M) and {eά}^LQ in R with
Vo = eo — 0, satisfying the equations d*ηj = 0 and

(26) €j = \ [ dVj A
3vol(M) JM

(27) dTdηj = (1 + ej^Xφ +

for each j > 0, and the inequalities
(a) \\dηj\\2<2E1t

4, (b) lejl <E6t
s, (c) \\dVj\\co <

(d) WVdηjWco^Ert-1'2, (e) [VdVj}1/2 < E7t~
ι

(A) \\dVj - dVj.! \\2 < 2Eι2-H\ (B) \ej - e^ \ < E62~HS,

(C) \\dηj-dηj_1\\co<K2-H^2,

(D) \\V(dηj - d»7i-i)||σo < EΊ2-H~χl\

(E)



COMPACT RIEMANNIAN 7-MANIFOLDS. I 313

where £76, Eγ and K are positive constants depending only on Eγ,..., E$.
Let η be the limit of the sequence {ηj}f=0 in C2'1/2(Λ2T*M) and e be
the limit of the sequence {e^j^o in K. Then η,e satisfy d*η = 0, (22)
and (23) and the estimate \\dη\\Co < Kt1/2 < ex.

Proposition 3.1.3. Let M, φ, η and e be as in Proposition 3.1.2.
Then η is smooth.

Proposition 3.1.4. Let M, φ, η and e be as in Proposition 3.1.2,
and suppose t is sufficiently small. Then dθ(φ + dη) = 0, so that
φ = φ + dη is a torsion-free G2- structure.

The proofs of the Propositions will be given in order. At a number
of points in the proofs we shall need t to be smaller than some positive
constant defined in terms of βi,. . ., e4 and £q,. . . , E5. As a shorthand
we shall simply say that this holds since t < ft, and suppose without
remark that ft has been chosen such that the relevant restriction holds.
Since e l 5 . . . ,e4 are universal constants, the restriction really depends
only on Eι,..., E§. The reader may if she wishes go through the proof
collecting the restrictions on the constant ft, and hence obtain an ex-
plicit expression for ft for which the Theorem holds.

Proof of Proposition 3.1.2. The operator d*d+dd* : C°°(A2T*M) ->
C°°(Λ2T*M) is elliptic and self-adjoint and has kernel W ^ H2(M, E),
the vector space of Hodge representatives for H2(M, R). Let W1- be the
subspace of L2(A2T*M) that is L2- orthogonal to W. Since d*d + dd*
is self-adjoint, its image is the orthogonal complement of its kernel,
so W± = lm(d*d + dd*). Let ξ G W±. Then ξ G Im(d*d + dd*), so
there exists a unique χ G WL with (d*d + dd*)χ = ξ. Moreover, by
Proposition 1.2.1 there exists some constant C(φ) independent of χ and
ξ such that ||χ||C2.i/2 < C(^)||ξ||Co,i/2 whenever ξ G C^'2{K2T*M).
The constant is written C(φ) to indicate that it depends on φ.

The Proposition will be proved by induction on j . The first step
holds trivially because η0 — e0 = 0. For the inductive step, suppose
that r/0,...,% and eo,...,€fc exist and satisfy the conditions of the
Proposition for j < k. Then ||A7Λ||c° < Kt1'2 <euast<κ. So F(dηk)
is well-defined. Now (1 + ek)d*ψ + *dF(dηk) lies in W x by integration
by parts, since dw = 0 for each w G W. Therefore from above there
exists a unique ηk+i G WL such that (d*d + dd*)ηk+ϊ = (1 + £k)d*ψ +
*dF(dηk). Moreover, since ηk G Cf2'1/2(Λ2T*M), d*ψ + *dF(dηk) G

and \\ηk+1\\C2.i,2 <
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Because Imd and Imd* are L2- orthogonal, and (d*d + dd*)ηk+ι G
Imd*, it follows that dd*ηk+1 = 0. Taking the inner product with
77̂ +1 and integrating by parts show that d*ηk+ι — 0, and so d*dηk+1 =
(1 + ck)d*ψ + *dF(dηk). Therefore the element ηk+1 we have defined
satisfies d*ηk+ι = 0 and equation (27), as we have to prove. Define ek+ι
by (26) for j = k + 1. To complete the induction it remains to show
that parts (a)-(e) and (A)-(E) hold for j = k + 1. The proof will be
split into two cases, the case k = 0 and the case k > 0.

For the first case we must show that parts (a)-(e) and (A)-(E) hold
for j — 1. Since 770 = 0, parts (A)-(E) imply parts (α)-(e), so it is
sufficient to prove parts (A)-(E). As 770 = e0 = 0 and F(0) = 0, (27)
gives d*dηι = d*ψ. Taking the inner product with r/i and integrating
by parts gives ||dr/i||2 < llΛzilhll^lta by Holder's inequality, so can-
celling ||GJ?7I||2 from each side and using condition (i) of Theorem A
gives ||d77i | |2 < Eχt4, which proves part (A) for j = 1. By (26) and
condition (Hi) of Theorem A we have |eχ| < |-B4||dr/i||2||^||2i s o condi-
tion (i) of Theorem A and part (A) for j = 1 give part (B) for j = 1,
with E6 = 2E4E

2/3. Also, as d*dηx = d*ψ, ||d*dτ/i||co,i/2 < Ext
A by

condition (i) of Theorem A, and thus condition (ii) with χ = dηλ yields

(28) ||VώfrHco + t1 / 2[Vdfh]i/ 2 < E3(E1t
4 + Γ^E.t4),

so that parts (D) and (E) hold for j = 1 with E7 = 3EXE3 since t < /ς,
and again by part (ii) we have

(29) \\drnWco < E^tErΓ1'2 +

so that part (C) holds for j = 1 with UΓ = 2 £ 2 ( £ 7 + JS?i). So parts
(α)-(e) and (A)-(£J) hold for j = 1, as we have to prove.

To finish the induction we must show that parts (α)-(e) and (A)-(E)
hold for j — k + 1 for k > 0, when the conditions of the Proposition
hold for j < k. Since 770 = 0, parts (a)-(e) for j = k + 1 follow from
parts (A)-(E) for j = 1,. . . , k +1 by induction on j . Thus it suffices to
prove parts (A)-(E) for j = k +1. The difference of (27) for j = k,k + l
gives

(30) <rdfafc+1 - ηk) = (ek - ek^)d*φ + *d(F(dηk) -

Taking the inner product of (30) with ηk+1 —ηk and integrating by parts,

we deduce that \\dηk+1-dηk\\2 < !€»-€*_!I



COMPACT RIEMANNIAN 7-MANIFOLDS. I 315

Applying inequality (19) of Lemma 3.1.1 leads to

(31) \\dVk+1-dVk\\2<\ek-€k^\'

+e2\\dηk -

By parts (Λ), (B) for j = fc, part (c) for j = k — 1,Λ, condition (z) of
Theorem A and as t < κ;, we obtain that part (J4) holds for j = fc + 1.
Part (£) for j = fc + 1 then follows from part (A) for j = fc + 1, equation
(26) and conditions (i), (iϋ) of Theorem A.

Applying inequality (20) of Lemma 3.1.1 to (30) gives

+ e3{\\dηk -

(32)
+ \\Vdηk -

+ \\dηk - rf

By parts (JB), (C) and (i?) for j = fc, parts (c) and (d) for j = fc — 1, k
and condition (i) of Theorem A we deduce from (32) that \\d*d(ηk+1 —

Vk)\\co = 0{2~k), so that (D) holds for j = k + 1, as t < n.

Applying inequality (21) of Lemma 3.1.1 to (30) we obtain an in-
equality for [d*d(ηk+ι ~ % ) ] 1 / 2 ) which is similar to (32), but will not be
given as it has many terms. The only problem terms in this inequality
involve terms like [dηk]ι/2. This can be estimated using ||Λ7fc||c° a n d
HVdffcllco, as [χ)\/2 < 2| |χ| |co| |Vχ| |σo from (6). Using this trick and
parts (B)-(E) for j — A;, parts (c)-(e) for j = k — l,fc, condition (i) of
Theorem A and the inequality for [d*d(ηk+ι — ηk)]1/2 mentioned above,
which is similar to (32), it can be shown that [d*d(ηk+ι — ηk)]1/2 =

O ( 2 " f c r 1 / 2 ) , so that (E) holds for j = k + 1, as t < K.
Part (C) for j = k + 1 then follows from parts (A) and (D) for

j = k + 1 and part (it) of Theorem A. Thus parts (A)-(E) hold for
j = k + 1. This completes the inductive step. Therefore, by induction
on j , the sequences {ηj}^ί0 and {ej}£L0

 e χ i s * a n d satisfy d*ηj = 0,
equations (26) and (27) and parts (α)-(e) and (A)-(E) for all j .

By parts (D) and (E) of the Proposition, the sequence {d^dηj}^
converges in C°' 1 / 2(Λ2T*M), and as d*ηό = 0 this means that {(d*d +
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dd*)Vj}^=0 converges in C°'1/2(Λ2T*M). So by the material at the be-
ginning of the proof, the sequence {ty}jt0 converges in C2)1/2(Λ2T*M),
as we have to prove. By part (B) of the Proposition the sequence
{ej}j^o converges in R. Let 77, e be the limits of these sequences. Tak-
ing the limit in (26) gives (22), and taking the limit in (27) gives (25),
so that 77 and e satisfy (23). Also d*η — 0 as d*ηj = 0 for all j ,
and part (c) shows that ||dr/||c° < Kt1/2. This completes the proof of
Proposition 3.1.2. q.e.d.

Proof of Proposition 3.1.3. There is a standard method called the
'bootstrap argument' for proving smoothness of solutions to a nonlinear
differential equation with elliptic principal part. However, we cannot
immediately apply this argument to equation (25), since both sides
involve the second derivatives of 77. Let us therefore collect on the left-
hand side the terms in (25) involving Vdη and add on the equation
dd*η = 0, giving

(33) {d*d + dd*)η + P(dη, Vdη) = G(e, d > , dη).

Here P is a function that is linear in Vdη, smooth in dη, and is zero
when dη is zero, and G is a smooth function of its arguments.

Since d*d + dd* is elliptic and ellipticity is an open condition, we de-
duce that d*d+dd*+P is also elliptic whenever dη is sufficiently small in
C°. But by Proposition 3.1.2, \\dη\\co < Kt1'2, so as t < n, d*d+dd*+P
is elliptic. Now dη G C1>1/2(Λ3Γ*M) by Proposition 3.1.2. Suppose
that dη e Cfe'1/2(Λ3T*M). Then the coefficients of d*d + dd* + P
and the right-hand side of (33) are both in C*'1/2. Thus by Proposi-
tion 1.2.2, η e Ck^^2(A2T*M), so dη G C*+M/2(A3T*M). Therefore
by induction on fc, dη G Ck^2(A3T*M) and η G Ck^/2(A2T*M) for all
positive integers k. So η is smooth, q.e.d.

Proof of Proposition 3.1.4- We begin the proof with a Lemma.
Lemma 3.1.5. Let M, φ, η and e be as in Proposition 3.1.2, and

suppose t is sufficiently small. Define

x7 = π7(dΘ(φ + dη)), xι4 = π14(dθ(φ + dη)),

(34) y7 = f π 7 (d * 7Γ! {dη)), y14 = | π i 4 {d * π x (dη)) -ed*φ,

zΊ = 2π7(d*π7(dη)), z14 = 2π14(d * π7(dη)).
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Then x7,y7,z7 and #14,2/14,214 satisfy the equations

X7 = 2/7 + Z7, £14 = 2/14 +

(35)

and the inequalities \\x7\\2 < Ikulh and H2/14II2 < |I|2/7||2
Proof. Since ψ and η satisfy (23) by Proposition 3.1.2 and d * φ G

C°°(Λf4) by Lemma 1.1.2, taking π7 and π i 4 of (23) and using (34)

give x7 = y7 + z7 and xu = yu + zu, as we have to prove. Now

d*π7(dη) = \d{y Aφ) = \dv Aφ for some smooth 1-form v. But it can

be shown by calculation in coordinates that if ξ G A2 then ξ A φ = 2 * £,

and if ξ G AJ4 then ξΛy> = — *£. Therefore z7 = \π7(dv)Aφ = *π7(dι/)

and 2:14 = |τri4((ii>') A φ = — | * τri4(cίz/), so t h a t di/ = *^7 — 2 * 2 1 4 .

As </? is closed, dv A dv A φ is an exact 7-form, and fM dv A dv A ψ = 0

by Stokes' Theorem. But dvAdvAφ= {2|ττ7(rf^)|2 - \πu(dv)\2}dμ, so

integration yields 2||π7(cίι/)||2 — ||πi4(rfϊ/)||2 = 0. Since dv = *z7 — 2*z 1 4,

this implies | |z 7 | | 2 = λ/2||^i4||2, as we have to prove. By definition

#7 + #14 is a closed 5-form, and dv = *z7 — 2 * z 1 4 is an exact 2-form.

Therefore (x7 + xu) A (*z7 — 2*zu) is an exact 7-form, and integrating

over M shows that (#7,27) = 2(#14,214), as we have to prove.

Let us write ψ = φ + dη, and let Λ 5Γ*M = Λγ 0 AJ4 be the splitting

defined by Proposition 1.1.1 using ψ. By Lemma 1.1.2, as dψ = 0 we

have x7 + X14 = dθ(φ) G C°°(Al4). Since A\A approaches A\A as \dη\

becomes small, if \dη\ is sufiiciently small then |τr7(/i)| < |πi 4 (μ) | when-

ever μ G A\A. But this holds since ||dτ/||co < Kt1/2 by Proposition 3.1.2

and t < K. Therefore llrr; |̂|2 < ||α^i4 | |2, as we have to prove.

Write |πi(d77) — eφ = fψ for / a smooth real function. Then

|rf * πι(dή) — ed * φ = df A *φ + fd * ψ. But d * ψ G C°°(Λi4)

by Lemma 1.1.2 and df A *φ G COQ{A\). Thus y7 = df A *φ and

2/i4 = fd * φ = fd * ψ. A calculation in coordinates shows that

\df A *φ\ = y/S\df\ so that | |y7 | |2 = >/3||d/||2 and \\yu\\2 < ll/lbll^llσ1-

Now

7 / fdμ = / fψ A *φ = - dη A *φ — e / φ A *φ

(36) = - [ dηA*ψ- 7e vol(M),
3 7M

since fMdηA*φ = -JMηΛd*φ = -JMηAd*ψ = JMdη A *</>
by integration by parts, and fMφ A*φ = 7vol(M). But by (22) the
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r.h.s. of (36) is zero, so that JM fdμ = 0. Thus by part (iυ) of Theorem

A we have | | / | | 2 < E5\\df\\2, so that | |y1 4 | |2 < Z^^E^t^y^ from

above and part (i) of Theorem A. Hence H2/14 H2 < ^ 112/τ 112 as ί < «.

This concludes the proof of Lemma 3.1.5. q.e.d.

To finish the Proposition, we shall show that the conclusions of the

Lemma force x7 = y7 — z7 = 0 and xΐ4 = yλ4 = z14 = 0. Now as

x7 = y7 + z7, we have \\y7\\2 < \\x7\\2 + \\z7\\2, and therefore

(37) \\x14 - z14\\2 = \\y14\\2 < ^

But2(z 1 4 ,z 1 4 ) = INi4|l2 + lki4| |2-|Ni4-^i4| |2 Using this, (37) and the
inequality | | z i 4 | | | + | | z i 4 | | | > 2||rz;141|2||^i4II2 we can show that (xϊ4,z14) >

However, since (x7,z7) = 2(x14,Zι4) this implies that

(38)

which is a contradiction unless \\x7\\2 = 0 or | |^ 7 | | 2 = 0, as 3Λ/2/4 > 1.

Thus x7 = 0 or z7 = 0.

For the case z7 = 0, z14 = 0 as \\z7\\2 = \/2||zi4||2, and therefore

x7 = y7 and xu = y14. But then ||rc7||2 < \\xuh = H1/14II2 < \Wy7\\2 =

\\\x7\\2, so that HX7II2 = 0, and thus x7 = X\4 — y7 = yχ4 = 0. For

the case x7 = 0, we have y7 = —z7, and therefore \\yu\\2 ̂  4II1/7II2 =

ϊlkrlb = x l k u l h Now if 2r14 ^ 0 then | |y1 4 | |2 < | |^ 1 4 | | 2 so that

(^14^14) > 0, projecting the equation X\4 — y\4 + Zχ4 onto z 1 4. But

this means that (x7,z7) > 0, which contradicts x7 = 0. Therefore

Zχ4 — 0, so z7 — 0 and we have reduced to the previous case. Thus

in both cases we have x7 = y7 = z7 — 0 and X14 = yx4 = z14 = 0. In

particular, dθ(φ + dη) = x7 + X\4 = 0. So putting (̂  = φ + dη, we have

d(p = dθ(φ) = 0, and £ is a torsion-free G?2- structure. This completes

the proofs of Proposition 3.1.4 and Theorem A. q.e.d.

3.2. The proofs of some inequalities. In this section we shall
prove Theorem B of §2.3. We begin with three Lemmas.

L e m m a 3.2.1. Let J3i/2,i?i be the balls about the origin in E 7

with radii ~ and 1 respectively, and let h be the Euclidean metric on

Bι. Then there exist positive constants F l 5 F 2 , F 3 such that if h is a

riemannian metric on Bλ and ||/ί —/ι||Ci,i/2 < Fλ, then the following is

true.
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Let x e C1Λ/2(A3T*Bλ) and suppose d\ = 0. Then χ satisfies the
inequalities

(39)

(40)
l |Vχk / 2 | | c o + [Vχ| β l / 2 ] 1 / 2 < F3(\\d*χ\\co + [d*χ}1/2

Here the connection V and all norms are w.r.t. the metric h on Bγ.
Proof. Using the mean value theorem, it can be seen that for a real

function / G C^Si), where Bλ has the Euclidean metric Λ,

(41) sup |/ |<inf |/ | + 2||V/||co.
B B

But infB l |/| < voliBj-^Wf]^. Thus for / e C 1 ^ ) , we have
||/||σo < l^dlV/Hco + H/II2) for some constant F2 > 0 independent
of /. Since V depends on h and its first derivative, the inequality
||/||co < ^2(||V/||co + II/H2) will hold for any metric h on Bλ such that
\\h — h\\ci < Fi, for some small Fx > 0. Putting / = |χ| for some
χeCι(A3T*Bι) gives

(42) llxllco<F2(||V|χ|||co + | |χ| |2),

where norms are with respect to h. So the inequality |V|χ|| < |Vχ|
gives (39), as we have to prove.

Now consider the operator d + d* : θ ^ o C ^ ί Λ ' T Bi) ->
0 j = o C^iA^Bi), where d* is w.r.t. the metric h on Bλ. This is a first-
order, elliptic, self-adjoint operator. Suppose that x E C1'1/2(Λ3T*J5i)
and dχ = 0. To get (40) we shall apply an elliptic regularity result for
d + d* to the equation (d + d*)χ = d*χ. The elliptic regularity result
we need is [7, Theorem 1, p. 517], which gives interior estimates for the
Holder norms of the solutions of an elliptic equation. Using this result
it is easy to show that (40) holds for some constant F3 depending on
some upper bounds for the C0'1/2 norms of the coefficients of the op-
erator d + d*, and a positive lower bound for the elliptic constant of
d + d* on Bx. But if \\h — h\\CiΛ/2 < Fλ and Fλ is sufficiently small, then
such bounds hold independently of h. Therefore when JF\ is chosen
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sufficiently small and \\h — h\\ci,i/2 < F 1 ? both (39) and (40) hold for

some constant F3 > 0 independent of h and χ. q.e.d.

Lemma 3.2.2. Let D2,D3 and t be positive constants, and sup-

pose (M,g) is a complete riemannian 7-manifold with injectivity ra-

dius δ(g) satisfying δ(g) > D2t, and Riemann curvature R(g) satisfy-

ing ||iϊ(<7)||c0 < D3t~
2. Then there exists a constant F4 > 0 depending

only on D2 and D3, such that for each r E (0, F4t] and each m E M,

there exists an open ball Br(m) about m in M and a diffeomorphism

^r,m ' Bλ —> Br(m) where Bx is the open unit ball in W, such that

*r,m(0) = m and

(43) \\r-2^m(g)-h\\cltl/2<Fu

where Fλ is the constant of Lemma 3.2.1.
Proof. Consider the conformally rescaled metric t~2g in place of g.

Then δ(t~2g) = Γ M ^ ) , and R{t~2g) = t2R(g), so that δ{t~2g) > D2

and | | i?(t~ 2g)| | c 0 < D3. Therefore it suffices to prove the Lemma for
t = 1. What is required is systems of coordinates on open balls in M, in
which the metric g appears close to the Euclidean metric in the C 1 ' 1 / 2

norm. These are provided by Jost and Karcher's theory of harmonic
coordinates ([11], [10, p. 124]). They show that if the injectivity radius
is bounded below and the sectional curvature is bounded above, then
there exist coordinate systems on all balls of a given radius, in which
the ClyOC norm of the metric is bounded in terms of a for each a E (0,1).
Using this result, the Lemma quickly follows, q.e.d.

Lemma 3.2.3. Let D2,D3 and t be positive constants, and sup-
pose (M, g) is a compact riemannian 7-manifold with injectivity radius
δ(g) satisfying δ(g) > D2t, and Riemann curvature R(g) satisfying
| | i2(0)| | c o < D3t~

2. Let F ! , . . . , F 4 be the constants of Lemmas 3.2.1
and 3.2.2. Then there exists a positive constant F 5 depending on D2, D3

such that for each r E (0, F4t], the following is true.

Let x E C M / 2 ( A 3 T * M ) and suppose dx = 0. Then χ satisfies the
inequalities

(44) llxllc0 ^ -^(HlVχllco + ̂ ^ l l x l h ) ?

(45)

ίWco+r^ld'χjiβ+r-'WxWco).
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Proof. By Lemma 3.2.2, there exist balls Br(m) and diffeomor-
phisms Φ r ? m for each ra, such that (43) holds. Therefore, Lemma
3.2.1 holds for the metric h = r-2%m(g) on Bλ. We deduce that
if x G C1Λ/2(A3T*M) and d,χ = 0, then for each ra G M we have the
inequalities

(46) llxkίnϋllco < F2(r\\Vχ\BΛπι)\\c0 + r " 7 / 2 | | χ | i M m ) | | 2 ) ,

|| Vχ|β r / a ( m ) | | c 0 + r1'2 [Vχ|β r / 2 ( m )] 1 / 2

(47)

< F3(\\d*χ\Br{m)\\CO + r 1 / 2 [ d * χ | j B r ( m ) ] 1 / 2 + r ~ 1 | | χ | i M m ) | | c 0 ) .

Here the powers of r inserted in (46), (48) are those necessary to com-
pensate for the change of metric from h to r2h = Φ* m(g), and Br/2{m)
is Φ r , m (β 1 / 2 ) .

Since (46) holds for all m € M, inequality (44) holds on M by taking
the supremum over all ra G M, as we have to prove. Similarly, taking
the supremum of (48) over ra G M shows that

(48) ||Vχ||c° ^ ^3(IM*x||c° + rl^2[d*χ]i/2 + r~1 | |χllc0)?

(49)

r 1 / 2 ^up [Vχ| B r / 2 ( m ) ] 1 / 2 < F 3 ( |Kχ | | c o +r1 / 2[<f x]i/2 + r - 1 | | χ | | C o ) .

By making the constant Fι of Lemma 3.2.1 smaller if necessary, we
can ensure that the geodesic ball of radius r/4 about ra is contained
in Brf2{m) for each m e M. Now every geodesic of length r/4 lies in
a geodesic ball of radius r/4, and is thus contained in some Br/2(m).
Therefore by the definition of Holder norms in §1.2, the l.h.s. of (49)
is greater or equal to the supremum of the expression |Vχ(7(0)) —
Vχ(7(l))|//(7)1/2 (interpreted in the sense of §1.2) over geodesies
7 : [0,1] -> M of length at most r/4. But if £(7) > r/4, then

(50)



322 DOMINIC D. JOYCE

We deduce that

(51) [Vχ]1 / 2 < max ( s u p [ V χ k / 2 ( m ) ]

Therefore, combining (48), (49) and (51) gives (45), with F 5 = 5F 3,
and the proof is complete, q.e.d.

Now we can prove Theorem B.
Theorem B. Let 2? l 5 . . . , Db be positive constants. Then there exist

positive constants E^ . . . , E5 and λ depending only on JDI, . . . , Dh, such
that for every t E (0, λ], the following is true.

Let M be a compact 7-manifold, and φ a smooth, closed section of
Λ+M on M. Let g be the metric associated to ψ. Suppose that ψ is
a smooth 3-form on M with d*ψ = d*φ, and that the following five
conditions hold:

(%) IIVΊI2 < Dtt
4 and \\ψ\\c* < Dλt\

(ii) the injectivity radius δ(g) satisfies δ(g) > D2t,

(Hi) the Riemann curvature R(g) of g satisfies ||i?(<7)||c0 < D3t~
2,

(iv) the volume vol(M) satisfies vol(M) > Z)4 ; and

(v) the diameter diam(M) satisfies diam(M) < Db.
Then conditions (i)-(iv) of Theorem A hold for (M,φ).

Proof. Since [V^]?/2 < 2||VV>||c°||V2V>llco by (6), we deduce that
||VV>||ci.i/2 < ^Dxt

A by part (i) of Theorem B. Therefore part (i) of
Theorem A holds with constant Eλ — 3Z?i, as we have to prove. To
prove part (ii) of Theorem A, suppose that χ G C 1 ' 1 / 2 (Λ 3 T*M) and
dχ = 0. Putting r = F4t in Lemma 3.2.3, inequality (44) shows that
||λl|c° < -B2(*||Vχ||co + ί " 7 / 2 | | χ | | 2 ) for some constant E2 > 0 depending
on F2 and F 4 , which in turn depend on D2 and D3. This is the first
part of condition (ii) of Theorem A.

Similarly, (45) shows that for some F6 > 0 depending on F2 and F 5 ,
we have

(52)

+ ί 1 / 2 [ V χ ] 1 / 2 < F6(\\d*x\\co

Using (44) to substitute for ||χ||c° i n (52) yields that

( 1 - F 2 F 6 rί-^HVχllσo

(53) < F6(\\d'x\\co
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for any r with 0 < r < F4ί. Choosing r = min(F4, (2F2F6)~x)t gives
1 - F2F6rt~1 > \, and so (53) implies that

(54)
l|Vχ||co + *1/2[Vχ]1/2 < E3(\\d*χ\\Co +*1/2[<f χ ] 1 / 2 + ί - 9 / 2 | | x | | 2 ) ,

for some constant E3 > 0 depending on F 2 ,F 4 and F 6, which in turn
depend only on D2 and D3. This is the second part of condition (ii)
of Theorem A. Condition (in) of Theorem A follows trivially from
condition (iv) of Theorem B.

It remains to prove condition (iv) of Theorem A. Consider the Lapla-
cian Δ = d*d acting on real functions on M. This is a self-adjoint,
elliptic operator with nonnegative eigenvalues and kernel the constant
functions. Yau [18, Theorem 7, p. 504] has given an explicit, positive
lower bound for the smallest positive eigenvalue of Δ on a compact rie-
mannian manifold of dimension n without boundary. His lower bound
depends only on the dimension n, an upper bound for the diameter
diam(M), a positive lower bound for the volume vol(M), (which both
follow from parts (iυ), (v) of Theorem B), and a bound for the Ricci
curvature Ric(g) of the manifold.

Now a torsion-free G2- structure yields a Ricci-flat metric, and the
Ricci curvature of the metric depends on the torsion of the G2- struc-
ture. Since Vφ is linear in dψ and d*<p, and dψ = 0 and d*φ = d*ψ, it
follows that Vψ and V2φ depend on V^ and V2tφ respectively. There-
fore, by part (i) of Theorem B we deduce that the Ricci curvature of
g is O(t4) for small t. Thus the Ricci curvature of g is bounded for
small t.

So by Yau's result, the smallest positive eigenvalue of Δ on (M, gt) is
bounded below, for small t, by a positive constant, E$2 say, depending
only on Z?χ,... ,Z?5. Therefore when t is small, say when t < λ for
some λ depending on Z>χ,..., Z)5, if / is a smooth function on M and
JMfdμ = 0, we have (/,Δ/> > E^\\f\\l But </,Δ/> = | | « , so
ll/lb < ^δll^/lb, which is part (iv) of Theorem A. Thus parts (i)-(iv)
of Theorem A hold for (M, ψ) when t G (0, λ], and the proof of Theorem
B is complete, q.e.d.

3.3. Deformations of metrics with holonomy in G2 In this
section we prove Theorem C of §2.3. This result was first announced
by Bryant and Harvey [5, p. 561], but their proof has not yet been
published.
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Theorem C. Let M be a compact Ί-manifold, let X be the set of
torsion-free G2- structures on M, and let Diffo(M) be the group of
diffeomorphisms of M isotopic to the identity. Define a map Ξ : X —>
iϊ 3(M, R) by Ξ(φ) = [φ]. Then Ξ is invariant under the action of
Diffo(M) on X. Moreover, if φ G X, then there exists an open subset
Y C X which contains φ and is invariant under Diffo(M), such that
Ξ induces an isomorphism between Y/Diffo(M) and an open ball about
[φ] in # 3 (M,R).

Proof. The standard method for proving a result of this sort is to
find a 'slice' for the action of Diffo(M) on X, which is some equation
imposed ona G l that locally has a unique solution in each orbit of
Diffo(M). We shall give such a slice. Let φ be some fixed element of X,
and let φ be a nearby element of X. Then ψ may be written uniquely as
ψ = φ + w + dη, where w is a smooth 3-form satisfying dw = d*w = 0,
and η is a d*- exact 2-form. Our 'slice' for the action of Diffo(M) on
X is the equation π7(f/) = 0, and it can be shown that close to φ this
equation is transverse to the orbits of Diίfo(M).

The proof using this method would then show that for each suffi-
ciently small w with dw = d*w = 0, there is a unique small η that is
d*- exact and satisfies π7(η) = 0 and dθ(φ + w + dη) = 0. (This part of
the proof follows the proof of Theorem A closely.) Thus the slice in X is
locally isomorphic to the vector space of 3-forms w with dw = d*w = 0,
which is isomorphic to H3(M, R) by Hodge theory. Therefore the slice
in X is locally isomorphic to H3(M,R). Thus X/ΌΊS0(M) is locally
isomorphic to H3(M, R), and the proof is complete.

For an example of a 'slice theorem' similar to the one required, the
reader may consult [8], which gives a slice for the space of riemannian
metrics on a manifold. Now the proof we have sketched above can be
fleshed out into a valid proof of Theorem C in a straightforward way.
However, the author finds it rather dull and unenlightening. Therefore
we will give a more motivated proof, that treats infinite-dimensional
spaces somewhat informally. The reader objecting to this lack of rigour
may follow the approach above, filling in the formal details on the local
equivalence of X/Diffo(M) with the 'slice' π7(η) = 0 using [8].

Our proof relies on the following two Propositions.
Proposition 3.3.1. Suppose M is a compact 7-manifold and ψ

a torsion-free G2- structure on M. Then for each sufficiently small
σ G H3(M, R), there exists a torsion-free G2- structure φ close to φ,
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with [φ] = [φ]+σ.
Proof. The idea of the proof is to choose a closed 3-form χ repre-

senting σ, and to look for a smooth 2-form η satisfying d*η = 0 and
dθ(φ + χ + dη) = 0. Using Theorems A and B, it is easy to show that
when llxllc2 is sufficiently small, η exists, and ||df/||σ° is bounded in
terms of | |χ | |c 2 Putting φ = φ + χ + dη, the proof is complete, q.e.d.

Proposition 3.3.2. Suppose M is a compact 7-manifold and {φt :
t G (—e, e)} is a smooth family of torsion-free G2- structures on M
with [φί] = [φ0] in H3(M,R) for each t G (-c,e). Let X be the set
of torsion-free G2- structures on M, and let Diίfo(M) be the group of
diffeomorphisms of M isotopic to the identity. Then all φt lie in the
same orbit of Diffo(M) in X.

Proof. Since the cohomology class [φt] is constant in H3(M, R),
the derivative dφt/dt is an exact 3-form. Let us choose χ such that
dφt/dt = dχ and ||τri4(χ)||2 is minimized, where the splitting A2T*M =
AγφΛi4 and the metric are those induced by φt. It can easily be shown
that there exists a smooth 2-form χ satisfying these conditions. Now
if v is a 1-form then χ1 = χ + dv also satisfies dφt/dt = dχ1', so we
must have ||τr14(χ)||2 < HTΓ^ΪX')^- We deduce that (π14(χ),ώ/) = 0,
and as this holds for all 1-forms i/, by integration by parts we have
d*τri4(χ) = 0. Thus we have shown that dφt/dt — d\ for some χ
with d*πi4(χ) = 0.

Because {φt : t G (—e, e)} is a family of torsion-free G2- structures, it
follows from Lemma 3.1.1 that if dφt/dt = £, then | * τri(f) +

is a closed 4-form. Putting ξ = dχ5 we deduce that

(55) d ( | * πχ(dχ) + *π7(dχ) - *π27(dχ)) = 0.

If X G C°°(Λ7), then χ = v φt for some vector field v, and d\ — Cvφt.
But then (55) holds trivially, since if φt changes by Lie translation then
θ(φt) remains closed. Thus (55) holds with π7(χ) in place of x, and so
by subtraction it holds with π1 4(χ) in place of χ Therefore

(56) <Γ{fπxίΛrwίx)) + τr7(dπ14(χ)) - π2 7(dπ1 4(χ))} = 0.

Now π i 4(χ) Λ *φt = 0, so dπ14(χ) Λ *φt = 0 as d * φt = 0 , and
thus πi(dπχ4(χ)) = 0. Also, *π i 4(χ) = - π i 4 ( χ ) Λ φu so d*π1A(χ) is
proportional to dπu(χ)Λφu which is proportional to π7(dπ1 4(χ)). But
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= 0 from above, and thus π7(cίπi4(χ)) = 0. Therefore from
(56) we deduce that d*cίπ14(χ) = 0, so cίπ14(χ) = 0 by integration by
parts. However, χ was chosen such that ||τr14(χ)||2 is minimum modulo
addition of closed 2-forms, so since τri4(χ) is closed, it must be zero.

Therefore χ G C°°(Aγ), and so dφt/dt = Cvφt for some vector field
v, as above. But Lie translation by vector fields generates the action of
Diffo(M) on X, and so Cvψt is a tangent vector to the orbit of Diffo(M)
through φt. Thus dφt/dt is always tangent to the orbit of Diffo(M),
and all φt lie in the same orbit, q.e.d.

Now we can prove Theorem C. By Proposition 3.3.1, we can deduce
that the map Ξ : X —>- H3(M, R) is locally surjective, and further, that
the first derivative of Ξ is also surjective. (This is because the construc-
tion of ψ in the Proposition actually yields φ with \\φ — ψ\\ < C\\σ\\
in some suitable norms.) Here is the informal step in the reasoning:
we deduce that in some neighbourhood of φ in X, the submanifolds
Ξ = constant are path-connected by piecewise-smooth paths. This
can probably be made rigorous using some sort of Implicit Function
Theorem.

By Proposition 3.3.2, piecewise-smooth paths in the submanifolds
Ξ = constant remain within a single orbit of Diffo(M), so these sub-
manifolds are locally contained in a single orbit of Diffo(M). Now
cohomology classes in iϊ 3(M, E) are homotopy invariants, so they are
invariant under diffeomorphisms isotopic to the identity, and thus φ
and φ must be in distinct orbits of Diffo(M) if Ξ(φ) Φ Ξ(φ). Therefore
Ξ induces a local isomorphism between f/*3(M, IR) and X/Diffo(M),
and Theorem C is proved, q.e.d.
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