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ACTIONS OF DISCRETE LINEAR GROUPS
AND ZIMMER'S CONJECTURE

RENATO FERES

Abstract

We consider lattice subgroups of higher-rank semisimple Lie
groups acting as automorphisms of principal iJ-bundles with
connection. Under the assumption that the action is not iso-
metric and that certain conditions relating H and the higher
rank group are satisfied, we show that such actions are classi-
fied by two essentially algebraic examples.

1. Introduction

Let Γ be a lattice subgroup of a higher rank semisimple Lie group
G. More precisely, G = G(R)° is the identity component of the set of
real points of G, and G is a semisimple M-group whose almost simple
factors have M-rank at least 2. We assume that the elements of Γ are
automorphisms of a principal iί-bundle P which is an iϊ-reduction of
the frame bundle F(M) of a compact cJ-dimensional smooth manifold
M, and H C SLdR is the set of real points of a linear algebraic E-group
H. Γ acts in this way as a group of diffeomorphisms of M preserving
a volume form.

R. Zimmer asked in [18] whether all ergodic, volume preserving ac-
tions of lattices in higher rank semisimple Lie groups on compact man-
ifolds can be derived from essentially algebraic building-block actions
obtained from homomorphisms of G into other groups. The model ac-
tions given in [18] are of three types: (1) a special kind of isometric
action; (2) aίfine actions on compact nilmanifolds and (3) left transla-
tions on compact quotients L/A where L is a connected Lie group, Λ
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a cocompact lattice, and Γ acts on the quotient via a homomorphism
7Γ: Γ - > L.

A new class of actions, not previously considered by Zimmer, was
discovered by Katok and Lewis in [10]. Their examples, obtained by
a kind of blow-up construction at finite orbits of examples of type (2)
above, show that M cannot always be expected to possess an invariant
complete locally homogeneous structure. Similar exceptional examples
in which more geometric structure is preserved than only a volume form
seems, however, very hard to construct and possibly do not exist. Their
examples also leave open the possibility that the volume preserving
actions of Γ still correspond to those built out of the original examples
described by Zimmer in [18] at least on an open invariant set (of full
measure).

The results we state below verify Zimmer's conjecture under a num-
ber of extra assumptions. The most important one is that the action
on the principal bundle P preserves a connection. This is a natural
hypothesis since, as first remarked by Zimmer, all measure-preserving
smooth actions of Γ do preserve a (Borel) measurable connection (cf.
Proposition 1.7), which can often be proved unique and sometimes con-
tinuous. (Cf. Theorem 1.8. See also [3].) Moreover, it will be seen that
very little regularity of the assumed connection is actually used below.
Therefore, hypothesis H2 should be understood as an assumption on
regularity rather than on existence. In this regard we point out that
after the present work was completed N. Qian [16] showed that Lemma
3.4 holds true under the assumption r > 1. Therefore all that follows
(Theorem 1.1 in particular) only requires that the assumed invariant
connection be Cr for r > 0.

The main observation we make is that Zimmer's superrigidity theo-
rem can be used to understand the holonomy of an invariant connec-
tion, thus giving new connections between curvature and superrigid-
ity. The first example of that interaction was obtained by Zimmer in
[19], which shows that if a lattice of SLnR (n > 3) acts smoothly on
a compact smooth n-dimensional Riemannian manifold by affine (i.e.,
connection-preserving) transformations and such that the action is not
finite, then the curvature tensor must vanish and the lattice must be
commensurable to a conjugate of SXnZ. (It is also shown there that if
dimM < n and the action is affine for an arbitrary affine connection,
then the action is finite.)
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The present characterization of actions of Γ seems to be the first
which does not exclude the type E2 described below. Moreover, the
local Lie methods used here give a more geometric approach to re-
sults classifying lattice actions with suitable hyperbolicity assumptions.
Thus, for example, one may compare the proof of Theorem 1.8 with
the more dynamical methods of [6], [8], [9], [11], [10].

A second assumption made here is that any representation of the
algebraic universal cover of G on Cd (d = dimM) that arises from a
homomorphism of that group into H is irreducible. (We stress the point
that we have fixed a homomorphic imbedding of H into SLdR that
comes from the definition of P as a reduction of F(M).) For example,
we may assume that G and H are locally isomorphic and the imbedding
of H into GLdC defines an irreducible representation; alternatively, we
could assume that H = SLdR and that G is such group as SOp,q(R)
with p + q — d, p > q > 2, or SpnR for 2n = d, n > 2, or any other
higher rank linear group for which the first nontrivial representation
occurs in dimension d. More precisely, we assume the following:

H I . Given any nontrivial homomorphism π : G —> H, where G
is the algebraic universal cover of G, the representation of G that π
defines on Cd is irreducible.

H2. The action ofΓ on M preserves a Cr connection (r > 1) on
P. If the associated connection on TM is torsion-free, it suffices that
r>0.

(The recent work of N. Qian noted above allows one to replace H2
with

H2\ The action preserves a Cr connection for r > 0.
In particular, Theorem 1.1 holds true with a C r , r > 0, connection,

irrespective of its torsion.)
H3. The action does not preserve a (Borel) measurable Riemannian

metric.
H4. The smooth measure associated with the T-invariant volume

form has countably many ergodic components.
The existence of a C° Γ-invariant connection on P and the assump-

tion that the action preserves a measurable Riemannian metric imply
that it actually preserves a smooth Riemannian metric ([21]). (We
stress that P is a reduction of the frame bundle F(M) and not an
abstract principal bundle.)

Condition H3 is implied by a number of natural dynamical assump-
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tions. For example, if we know that the action does not have discrete
spectrum, then it cannot preserve a measurable Riemannian metric
([22]). Also the existence of a measurable invariant Riemannian metric
forces the characteristic (Lyapunov) exponents of any 7 E Γ to vanish,
as can be easily checked.

Before stating our results, we describe the two main classes of exam-
ples that occur here. (Zimmer's list in [18] also includes a special class
of isometric actions on Riemannian manifolds, which does not arise un-
der our assumptions. Affine actions on (non-flat) nilmanifolds also do
not arise, due to HI.)

E l . Affine actions on flat manifolds and tori.
Γ acts on Ίd = Rd/Zd via a homomorphism π : Γ -> SLdZ. We also

allow for a translational component given by a finite homomorphism of
Γ into Rd. More generally, a smooth manifold M may admit Td as a
finite cover, and the action of Γ on M lifts to an affine action (of some
finite extension of Γ) on Ύd.

E2. Left translations on compact quotients of non-compact semisim-
ple Lie groups.

Let L be a connected, noncompact semisimple Lie group, and Λ a
cocompact lattice in L. Also consider a homomorphism π : Γ —>- L.
Then Γ acts on L/Λ by left multiplication through π. More generally,
M may admit L/Λ as a finite cover such that the action of Γ on M
lifts to an action by left translation (by a finite extension of Γ) on
that cover. The manifold can also be a quotient K\M where M is as
above, and K is a compact group commuting with the image of the
homomorphism π.

We say that an action aλ : Γ x M -> M is Cs isomorphic to another
action α2 : Γ x N -> N if there exists a Cs diffeomorphism / : M —• N
that conjugates the two : α 2(7,/(ra)) = /(αi(7,771)).

The main result is the following.
Theorem 1.1. Let a lattice group Γ of a higher rank semisimple

Lie group G act by bundle automorphisms on a principal H-bundle P
over a smooth compact manifold M, so that hypothesis HI through H4
are satisfied. Then, either the Zariski closure of the connection's full
holonomy group contains a nontriυial homomorphic image of G, or the
action is C Γ + 2 isomorphic to either El or E2. Here r > 1 is the same as
in H2, where the connection is assumed of class Cr. If the connection
is torsion-free and Cr for r > 0, the action is C r + 2 isomorphic to an
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example of type El.

We can draw a number of immediate corollaries. Notice that the
assumptions below are chosen so as to exclude the possibility that the
holonomy of the invariant connection be larger than G. For large holon-
omy groups our techniques do not work.

Corollary 1.2. Assume the same conditions of the theorem. As-
sume moreover that the connection in H2 is either Lorentzian or has
amenable holonomy (e.g., a Riemannian or conformal connection), not
necessarily without torsion, and Cr. Then the action is C Γ + 2 isomor-
phic to either El or E2.

Corollary 1.3. Assume that a lattice subgroup of a simple higher
rank Lie group G acts on a compact d-dimensional pseudo-Riemannian
manifold M, so as to preserve a pseudo-Riemannian connection (possi-
bly with torsion). Also assume that the normalized pseudo-Riemannian
volume density has countably many ergodic components and that dim G
> \d(d — 1). Then, either the action preserves a Riemannian metric,
or it is isomorphic to an affine action on a (Riemannian) flat manifold,
as described in example El.

Under the conditions of the theorem, the restricted holonomy is also
either trivial or contains a homomorphic image of G. (We believe that
the latter never occurs.) In fact, the following proposition is part of
the proof of the theorem.

Proposition 1.4. Assume the same set-up of the theorem, plus
hypothesis HI, H2 and H3. We may relax hypothesis H2 and assume
that the action preserves a continuous H-connection, rather than a
differentiable one. Let Hol(m) denote either the connection's restricted
holonomy group or the connected component of the (either Hausdorff or
Zariski) closure of the full holonomy group at m (calculated for a fixed
basis ofTMm.) Then Hol(m) is either trivial or contains a nontrivial
homomorphic image of G.

Corollary 1.5. Assume the conditions of the theorem. Assume
moreover that the invariant connection's restricted holonomy does not
contain a non-trivial homomorphic image of G and that the fundamen-
tal group of M is virtually solvable. Then the action is Cr+2isomorphic
to an affine action on a flat manifold.

The following theorem is an example of how it is sometimes possi-
ble to rule out the possibility of a large holonomy group, using more
detailed information about the action.
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Theorem 1.6. Let a lattice Γ in SLdR act on a compact d-dimensio-
nal smooth manifold M so as to preserve a Lipschitz continuous affine
connection and an ergodic volume density. Assume moreover that the
action does not preserve a Riemannian metric. Then the manifold is
diffeomorphic to a torus and the action is C°° isomorphic to one of
type El.

A result similar to the above, for a fiber bundle M, was obtained in
[4]; part of the proof of Theorem 1.6 is taken from there.

We have so far assumed that the action preserves a connection. It is
expected that ergodic actions of higher rank lattices will automatically
preserve a connection, perhaps defined only on an open invariant set.
In fact, a measurable invariant connection always exists and it can
sometimes be shown to be unique.

The following remark is due to Zimmer [24]. It is a consequence of
Proposition 2.1.

Proposition 1.7. Let Γ be a lattice in a higher rank semisimple
Lie group G. Assume that Γ acts ergodically on M by diffeomorphisms
preserving a Borel probability measure. Then there exists a T-invariant
Borel affine connection on TM. As a special case, let Γ be a lattice
in SLJRJ d > 3, and dimM = d. If the action is not measurably
isometric, it must preserve a unique Borel connection.

Our care to assume as little differentiability for the invariant con-
nection as the arguments permit is motivated by the above proposition
and the hope that by using dynamical properties of the action such
as hyperbolicity, it may be possible to show that an invariant connec-
tion has better regularity properties than measurability. The follow-
ing result illustrates the point. Note that no connection is explicitly
mentioned in the statement of the next theorem. The proof provides
an alternative, more geometric approach to the problem of rigidity
of lattice actions with Anosov elements, which does not depend on
Anosov's structural stability theorem and is therefore not limited to the
study of perturbations of lattice actions. For other results of a similar
type, concerning the rigidity of lattice actions under perturbations, see
[6], [8], [9], [11], [10].

A smooth diffeomorphism / of a compact smooth manifold M is
Anosov if TM decomposes continuously as a direct sum TM = E+®E~
of invariant subbundles E+ and E~, so that the following estimate
applies: For some (in fact, any) Riemannian metric || ||, there exist



560 RENATO FERES

positive constants C > 1, e < a < A, such that for all x E M, for all
positive integers n, and for all v £ ±

The subbundles E± are the tangent bundles of C° foliations E±, the
Anosov foliations of/, whose leaves are smooth. We say that / satisfies
the ^-pinching condition if A < 2a.

Theorem 1.8. Let Γ be a lattice in a higher rank semisimple Lie
group G. Assume that Γ acts on a compact, d-dimensional smooth
manifold M so as to preserve a volume form and so that some element
ofT is a ^-pinched Anosov diffeomorphism. Also assume that the di-
mension of the first nontrivial representation of the universal cover of
G is d. Then the action is C2 isomorphic to example El.

For some groups such as 5LnIR, it is possible to show that if the
isomorphism is diίferentiable as above, then it (as well as the connec-
tion) is actually C°°. We refer to [6], [9] and [11] for this aspect of the
problem.

2. The holonomy of invariant connections

The main purpose of this section is to prove Proposition 1.4. Let
E —> M be a smooth vector bundle of rank = d over a compact,
connected manifold M, and denote by p : F(E) —> M its bundle of
frames. Let Γ be a group of automorphisms of J5, and A : Γ x M —>
GLq(R) the cocycle representing the Γ-action with respect to a (Borel)
section σ : M -> F(E). A reduction of F(E) to an 5Xd(M)-subbundle
corresponds to giving a volume form on E.

Let P denote a principal subbundle of F(E) whose structure group
H is contained in SLd(R). If Γ acts as automorphisms of P, the cocycle
A representing the action can be assumed to take values in H.

Let μ b e a Borel measure on M. Two sections σ and σ' of P are μ-
equivalent if there is a Borel function φ : M —» H such that σ' = σoφ μ-
almost everywhere. Two cocycles are μ-equivalent if they are associated
to equivalent sections.

We now suppose that Γ acts by automorphisms of P preserving an
ergodic measure μ on M. Then (9.2.1, p.166 [20]) there exists an
algebraic R-group L C H with the following property: For some Borel
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section of JP, the cocycle representing the Γ-action takes values in '.
and there is no equivalent cocycle taking values in L'(R) for a proper
R-subgroup 1/ of L. L(R) is unique up to conjugacy in H and its
conjugacy class is called the algebraic hull of (a cocycle associated to)
the Γ-action. The algebraic hull is compact if any of its representatives
L(M) is. The algebraic hull for an invariant measure on M can be
defined as a map from the ergodic components of that measure into
the conjugacy classes of algebraic subgroups of H.

Proposition 2.1 is taken from [12]. The case of a cocompact Γ
was first proved by Zimmer in [23]. The general case below combines
[23] with [13].

Proposition 2.1. The algebraic hull for an ergodic action of a lat-
tice in a higher rank semisimple Lie group preserving a Borel probability
measure is reductive with compact center.

Let A : Γ x M —> L(R) be a measurable cocycle into the real points
of an R-group L. Denote by L° the identity component of L. Define
o n M ' = M x (L(E)/L°(R)) the skew-product action by Γ:

According to [20 (9.2.6)], if μ is an ergodic, Γ-invariant, finite measure
on M, the product of μ with the counting measure on (the finite set)
L(R)/L°(R) is also an ergodic, Γ-invariant, finite measure on M' with
respect to the skew-action. Moreover, by the same proposition, the
cocycle A' Γ x M ' - } L(R) on M' defined as A1 (7, (x, [g])) = A{j,x)
has algebraic hull LO(M). Let P' = P x L(R)/L°(R).

The following proposition is a consequence of the superrigidity the-
orem for cocycles ([20]).

Proposition 2.2. Let Γ be a lattice in a higher rank semisimple
Lie group that acts as smooth automorphisms of a principal H-bundle
over a compact manifold M, preserving an ergodic probability mea-
sure, so that hypothesis HI is satisfied. Then, the algebraic hull L of
the action is either compact or almost simple with center contained in
{±1}. Moreover, if the latter holds, there exists a measurable section of
P' —>• M' with respect to which the action's cocycle into L/{±1} has the
form A(7,m) = π(j), where π : G —>• L/Z is a rational homomorphism
defined over R and Z is the center ofL.

Proof. Let L = L(R) C H be the algebraic hull of a cocycle
a : Γ x M -+ H representing the action. After passing to an ergodic
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finite extension M' we may assume that L is connected. Since L is
reductive, we may write L = Z S, where Z is the (connected) center,
and S = Sχ .. . Sk is semisimple with almost simple factors S .̂ Any two
distinct factors of S centralize each other since their intersection is a
finite subgroup in Z. If we show that for some i, S{ is locally isomorphic
to a simple factor of G, it will follow from hypothesis HI and Schur's
lemma that L = S» and the center of L is contained in {±1}. That is
in fact true due to the superrigidity theorem for cocycles. To see that,
first note that since L is not compact, some S«(M) is not compact.
Consider the cocycle β = p o a where p : L -> (S</Z Π S i)(R). By
passing to a finite ergodic extension, we may assume that S</Z Π S<
is connected. Then the cocycle superrigidity theorem applies, and it
follows that β is equivalent to the cocycle obtained from a surjective
rational homomorphism π : G -> Sj/Z Π S; defined over R Therefore
L is almost simple and the claim follows.

The following version of the Borel density theorem is taken from
[25].

Theorem 2.3 [Borel density theorem]. Let L be a semisimple
algebraic group defined over M such that no simple factor of L(R) is
compact. Let V be an algebraic variety defined over K and suppose that
L acts upon V regularly over M. Assume moreover that the action of
L on V = V(R) preserves a Borel probability measure μ. Then μ is
supported on the set of fixed points of L.

The next proposition is key to our argument. Our use of it here
should be compared with the argument in, say [26], where Zimmer
wants to derive information about the stabilizer groups of points for ac-
tions of G, whereas our concern is the holonomy group of a Γ-invariant
connection.

Proposition 2.4. Let T : H x V - ) V ί ι e α regular action of an
algebraic group H on an algebraic variety V so that the group, the
action and the variety are defined over IR. Denote Th(v) = T(h,v),
H — H(IR) and V = V(K). Let Γ be a lattice in a connected semisimple
real group G = G(M) such that no simple factor of G is compact. Let
π : G -> H be a homomorphism defined over K. Let M be a compact
metric space, μ a Borel probability measure on M and suppose that Γ
acts ergodically on M as a group of homeomorphisms preserving μ. Let
φ : M —)• V be a Γ-equivariant Borel function, that is, φoj = Tπ(7) oφ,
μ-almost everywhere. Then φ = φ0 ^constant μ-a.e. and φ0 is a fixed
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point for τr(G).
Proof. Denote η = φ*μ, the push-forward of μ to V. Then η is

preserved by π(Γ):

^(T)* 7? = (τπ(7) ° Ψ)Φ = (<p ° i)*μ = (φ° τ)*μ = φ*μ = v

Now, define

-L Tπ(gUη du([g]),
G/T

where v is the G-invariant measure on G/Γ and [g] denotes an element
of G/Γ. μ is well defined since η is preserved by π(Γ). It is also
immediate that μ defines a π(G)-invariant probability measure on V.
Borel density theorem now applies and we obtain that μ is supported
on the fixed points of π(G). In particular, there exists a Γ-invariant
subset M' of M of full μ-measure such that φ maps M1 into the set
of fixed points of τr(G) in V. Therefore, φ is Γ-invariant on M'. The
claim now follows from the assumption that the action of Γ on M is
ergodic.

Lemma 2.5. Assume hypothesis HI; that is, given any nontriυial
homomorphism π : G —>> H C SLd defined over R, for a fixed homo-
morphic imbedding ofΉ. in the special linear group, we assume that the
representation ofG that π defines on Cd is irreducible. If H1 is a closed
subgroup of H normalized by π(G), then H' either contains τr(G) or is
contained in {±/}.

Proof. First note that G = τr(G) is almost simple. H' Π G is a nor-
mal subgroup of G, hence it either contains G or is finite, contained in
the center of G. Let us suppose the latter. Let Lie{Ά') denote the Lie
algebra of H' and Lie(Q) its radical. We claim that Lie(Q) is zero. For
each g E G, Adg(Lie(Ή!)) = Lie(Ή') since, by assumption, G normal-
izes H'. In particular, G normalizes Lie(Q). Since Lίe(Q) is a solvable
subalgebra of Lie(SLdC), it has a common eigenvector v G C*. Since
G normalizes Lie(Q), gυ is also a common eigenvector for all g £ G.
As G is irreducible (hypothesis HI), Lie(Q) is an abelian diagonaliz-
able subalgebra of Lie(SLdC) and hence is conjugate to a subalgebra
of the diagonal algebra. We may assume without loss of generality
that Lie(Q) is itself diagonal. Note that, if A — (α^) G Lie(G) and
D — diagonal(Zχ,..., ld) G Lze(Q), their bracket is [A, D] — ({h — lj)aij)
so that if li Φ lj for some pair of indices i and j and some D, it follows
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that dij = 0 for all A E Lie(G). Fix some index i and define the maxi-
mal set / = {ii,... ,iβ} such that if j is not in /, then lj Φ U for some
D E Lie(Q). Since α^ = 0 for all i in / and j in the complement of /,
the vector space V spanned by e^ for i E / is invariant under multipli-
cation by matrices in Lίe(G). Therefore, V is also invariant under G,
so that V = Cd due to the irreducibility assumption. It follows that
/ = {1,..., d} and U — lj for all i and j . Since Lie(Q) is a subalgebra
of Lie(SLdC), it must be zero. It follows that Lie(H') is semisimple.
Recall that we are under the assumption that Lie(G) Π Lie(Ή.') = 0,
and that Lze(H') is normalized by Lie(G). Therefore, there is an R-
subgroup G' of G H' isomorphic to G, which centralizes H'. One can
now apply the hypothesis once more and Schur's lemma to conclude
that H' is finite. In fact, as the elements of H' have determinant 1, H'
is contained in {XI: Xd — 1}. Hence H1 is contained in {±1}.

We assume now that P admits a Γ-invariant connection and we de-
note by V the associated aίfine connection on TM. The connection
is assumed continuous in the following sense: If σ : M —> P is a C1

section of P, we may write (Vσ)m = σ o Am, where m E M •-> Am

is a continuous function of M taking values in Hom(M!i, Lie(H)) and
Lie(H) is the Lie algebra of H.

Let now σ be a not necessarily continuous section of P. At each point
m E M we may define the holonomy group of V at m, HoF (m) C if,
consisting of all h = h(m, c) E H such that Πcσ(ra) = σ(m) o /ι, where
c : [0,1] -> M is a enclosed path in M with endpoints at m and Πc

denotes parallel translation along c. Note that t E [0,1] *->- Πc|[o,*]σ(ra)
is a C1 function. Likewise, denote by Hol^(m) the restricted holonomy
group at m, where here the closed curves are homotopically trivial.
Hol%(m) is the connected component of the identity in Holv(m).

We also assume from now on all the conditions of Proposition 1.4.
Since Γ leaves invariant the connection, for every 7 E Γ and closed path
c with endpoints at m we have

( T 7 ) m o Πcσ(m) - Π 7 O C(T 7)m o σ(m),

where σ is a section of P. Let μ be an ergodic component of the
invariant smooth measure whose algebraic hull is not compact. (If for
some invariant measure the algebraic hull is compact, Γ must preserve a
Riemannian metric due to [21].) Denote by A : Γ x M —> H the cocycle
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describing the action of Γ with respect to σ and h the connection's
holonomy, also expressed in terms of σ. Then the above formula, that

As in Proposition 1.4, denote by Hol(m) either the restricted holon-
omy group or the connected component of the identity of the closure of
the full holonomy group at m. Let Lie{Hol(m)) denote the Lie algebra
of Hol(m). It follows from Proposition 2.2 and the above discussion
that Lie(Hol(j(m))) = Tπ{Ί)Lie(Hol(m)), where Tgh = ghg'1. (Note
that this action is defined on the quotient of the algebraic hull by its
center.) Defining φ : M -* V = Grassmann variety of vector sub-
spaces of Lie(H), we obtain that φ oη = Tπ^φ. Proposition 2.4 now
implies that φ is almost everywhere equal to some Lie algebra that is
normalized by π(G(M)). Proposition 1.4 follows now from the above
lemma.

3. Local Lie group structures on M

We assume in this section that the invariant connection's holonomy
group is finite. After passing to a finite cover of M (and a finite ex-
tension of Γ acting on that cover) we may assume that the connection
has trivial holonomy. Therefore there exists a continuous, parallel sec-
tion σ of P. A parallel section of P linearizes the action, in the sense
that its associated cocycle is independent of m € M and so it defines
a homomorphism of Γ into H. If the connection is continuous, this
linearizing section is C1.

Denote W = Rd and for each e E W consider the C1 vector field σe
on M. Define a continuous function Cσ : M -> W ® /\2 W* as follows:

Cσ(m)(eΛe') = σ(m)~1[σe,σe']m,

where [σe, σe'] denotes Lie bracket of vector fields.
Lemma 3.1. Let σ be a linearizing section for the connection pre-

serving action of Γ on M, with associated cocycle given by the homo-
morphism π : Γ -> GLdR. Denote V = W <8> /\2W*. If A G V and
heH, denote ThA = hAh'1, so that (ThA)(eAe!) =
Then
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Proof. Let σ be a C 1 section of F ( M ) , and 7 any diffeomorphism
of M. A straightforward computation that uses the fact that diffeo-
morphisms preserve the Lie bracket of vector fields yields that

I f α : Γ x M — » i f c GLdR is the cocycle of Γ relative to σ and
Aγ(ra) = α(7, ra), we define θ(e) = θΊ(e) = A~ιdAΊ(σAΊe), for any
e G K d , s o that 0 is a continuous function taking values in Lie(H)®W*.
Define d : Lie(H)®W* -> W® tf W* by dη(eΛe') = -η(e)e' + η(e')e.
A somewhat long but still totally straightforward computation shows
that if σ1 — σA,

cσ, = τχλcσ - dθ.

Since η+σ = σAγ, the above two formulas give Cσ o 7 " 1 = T^λCσ — dθ.
If σ is a linearizing framing for the action, then ΘΊ = 0 for all 7 G Γ
and the claim follows.

If the invariant volume has countably many ergodic components, it
follows from the above and Proposition 2.4 that Cσ is constant. There-
fore, Cσ defines the structure of a d-dimensional Lie algebra Lie(L) on
W, and for all 7 G Γ, π(7) G fl" C GLdR is a Lie algebra automor-
phism. Also, as Γ is Zariski dense in G, TΉ^g)Cσ = Cσ for all g G G, so
that π(G) C if is a group of automorphisms of Lie(L). Thus by the
hypothesis HI and the observation that the radical of Lie(L) as well
as the subspace [Lie(L),Lie(L)] are π(G)-invariant subspaces, Lίe(L)
is either abelian or semisimple. We summarize the above discussion in
the next proposition.

Proposition 3.2. Assume the conditions of Propositionl.4 plus hy-
pothesis H4 Assume moreover that the connected component of the
holonomy group's Zariski closure does not contain a homomorphic im-
age of G. Then a finite cover M' of M admits a framing of C1 vector
fields X i , . . . , Xd spanning a d-dimensional Lie algebra Lie(L) and such
that the section of P defined by {Xi} linearizes the action of a finite
extension of Γ on M'. The Lie algebra Lie(L) is either abelian or
semisimple.

Given a Lie group L, denote by Aff(L) the group of all diίfeomor-
phisms of L that send right-invariant vector fields into right-invariant
vector fields. Define on TL an aίfine connection VL by the property
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that right-invariant vector fields are parallel. Then VL is flat (in fact,
the global holonomy of VL is trivial since L admits a framing by right-
invariant vector fields) and its torsion satisfies T(X,Y) = —[X,Y], for
right-invariant vector fields X and Y. (In particular, V L T = 0.) Also
VL is biinvariant since for all g G L and X right-invariant, L9ifX is also
right-invariant. (Rg> and Lg are respectively the right and left transla-
tions by g' and g and they commute.) Aff(L) coincides with the set of
VL-affine diίfeomorphisms of L, that is, diffeomorphisms that preserve
the connection.

Denote by AffR(L) the subgroup of Aff(L) consisting of those trans-
formations / such that f*X = X for all right-invariant vector fields.
Note that AffR(L) is exactly the group L acting by right translations.
In fact, let g G L be such that R~ι o /(e) = e where e is the identity in
L. Then R~ι o / induces the identity automorphism of the Lie algebra
of L and so must correspond to the identity of L.

If Λ is a discrete subgroup of L, we denote Aff(L/A) the group of
affine diffeomorphisms of L/Λ, which are the diffeomorphisms that lift
to affine diffeomorphisms of L.

Proposition 3.3. Let M be a compact, d-dimensional smooth man-
ifold and {Xi}f=ι a- framing of Cr vector fields on M, r > 2, such that
[Xi,Xj] = Σ ^ = i C^ -Yjb; where Ct* are constants. If C^ = 0, we may
assume that r > 1. Assume moreover that {Xi} linearizes the action of
a group Γ of smooth diffeomorphisms of M. Then there exists a C Γ + 1

diffeomorphism F : M -> L/K, where L is a connected, simply con-
nected Lie group, Λ a cocompact lattice in L and Γ is conjugate under
F to a subgroup of affine diffeomorphisms of L/K.

The proposition follows from the previous discussion and the ele-
mentary lemma below.

L e m m a 3.4. Let M and N be smooth manifolds of dimension d,
and {Xi}i=1 and {Yi}f=ι Cr framings with r > 1 + Lipschitz. Assume
that [Xi,Xj] = ΣLi CfjXk and [Y^Yj] = Σti C?jYk, where C*. are
constants. Then for every in G M and n G N we can find neighborhoods
U of m and V of n and a C Γ + 1 diffeomorphism F between U and V
such that F*Xi = Y{. If C^ = 0 and the vector fields are only Lipschitz
continuous, the same is true.

Proof. Denote by φ[^ and φ^ the local flows of Xi and Y{, re-
spectively. For each m, t ι-> φ[ι\m) is Cs for s = 2 + Lipschitz, and
m h->- φι'(m) is Cu for u = 1 -f Lipschitz. The same holds for φt . We
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define the local Cu diffeomorphisms from a neighborhood of 0 G Rd to

a neighborhood of m and n, respectively:

Φ m

We also define F = Φ n o Φ ^ , a Cu diffeomorphism from a neighborhood

of m onto a neighborhood of n, taking m into n. In what follows, we

assume that [3^,1^] = Σ Λ fjjYki f° r Lipschitz continuous functions /£

Denote by 5<, i = 0,. . . , d, a small submanifold of M containing ra,
consisting of points of the form Φ m ( * i , . . . , *», 0, . . . , 0). Note that Sd

is an open neighborhood of ra. It follows from the definition that on
Ski F*Xi = Y% fof i > k. We claim that F+Xi — Yi over an entire
neighborhood of ra. The proof will be by induction. Assume that
F*Xi = l ί , i = 1,. . . , d on SΊ_i and we show next that the same in true
on Si. It suffices to establish the equality for i = 1,...,/ — 1 since it is
automatically satisfied by the other values.

We write F*Xi = Σ^ihijYj for i = 1,... ,Z - 1, where Λ^ are
Lipschitz continous functions. It will suffice to show that Yih^ = 0
almost everywhere, since in that case hij(φt(p)) = hij(p) = 5^, for
p E F(Sl_i) and 1 < i < I - 1 and 1 < j < d, so that F*Xi = Yi on Sh

Almost everywhere, we have the identity: F*[Xι,Xi] = [F*Xι,F*Xi].
We can write this identity in terms of the (I—1) xd matrix H = (Λ^ ) and
the dxd matrix F = (/y), where /^ = //i? as follows. Denote by fx the
upper left (/ - 1) x (I - 1) block of / and by / 2 the lower (d-l + l)xd
block of /. Then H must satisfy the system of ordinary differential
equations: YiH = fiH — Hf + f2 with initial value H(tι = 0) = (£α/?)
It can be checked that the constant matrix Ho = (δaβ) is a solution of
this initial value problem, so that the claim follows from the uniqueness
of the solution.

Prom the above it is seen that M admits a Cr+2 (L, L)-structure
according to definition in [17], which must be complete, due to Propo-
sition 3.6 [17]. Therefore between the universal cover of M and L we
obtain a diffeomorphism that maps the lift of X{ to a right-invariant
vector field on L. The deck transformations of M are conjugate under
this diffeomorphism to a group Λ of affine automorphisms of L that
preserve the vector fields X{. The proposition now follows.
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The conclusions up to now are summarized below.
Proposition 3.5. We assume here all the conditions of Theorem 1.1

and that G does not embed into the Zariski closure of the full holonomy
group. Then there exist a connected, simply connected Lie group L
and a cocompact lattice A of L, such that some finite cover M' of M
is C r + 2 diffeomorphic to L/A and the diffeomorphism conjugates the
finite extension of Γ acting on M' to a group of affine automorphisms
of L/A. L is either semisimple or the additive group Rd.

It should be noted that the actions of type E2 do admit connections
with large holonomy group (as well as connection without holonomy).
When the holonomy group is large (i.e., contains a nontrivial homo-
morphisc image of G) the techniques of our paper do not work.

4. The affine automorphisms of L/A

In this section we conclude the proof of Theorem 1.1. The main point
left is to determine the group of affine automorphisms of the compact
quotient L/A referred to in Proposition 3.5.

Let L be a connected Lie group, and σ a smooth section of the frame
bundle F(L) such that for each e G Md, d — dimL, m H-> σ(m)e is a
right-invariant vector field. Consider the homomorphism

a : Aff(L) -* Aut(Lie(L)) C GLdR,

such that Tfmσ(m) = σ(/(ra))α(/). (Here, we identify the Lie algebra
Lie(L) of L with Wd equipped with bracket [e, ef] = σ~1[σe^σe'].) The
kernel of a is the group AffR(L) = {Rg : g G L} = L. Therefore
dim Aff(L) < d + dim(Aut(Lie{L))).

If L is semisimple, Aut(Lie(L)) contains Ad(L) as a normal subgroup
of finite index ([15]). Note that Ad(L) is contained in the image of α,
so dim;4/f(L) = 2d. Moreover, as L is connected and Aut(Lie(L))
has finitely many connected components, Aff(L) also has finitely many
components. The component of the identity, Aff(L)°, can be identified
with (L x L)/Z(L), where Z(L) is the center of L, and the inclusion
into Aff(L) is given as follows: [̂ 1,̂ 2] E (L x L)/Z(L) ι-> / such that
f(m) = gimg^1.

Proposition 4.1. Let L be a connected, semisimple Lie group, and
A a cocompact lattice. Then L, viewed as a subgroup of Aff(L/A) of
left translations, constitutes a subgroup of finite index in Aff(L/A).
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It will help to first set some notation. The lattice Λ can be regarded
as a subgroup of Aff(L)° under the correspondence λ 4 / λ, where
fx(m) = raλ"1. We also define the subroup Aff*(L) = {/ G Aff(L) :
Vra G L,Vλ G Λ,3λ' G Λ such that/(mλ) = /(ra)λ'}. Aίf*(L) is
the set of lifts to L of elements of Aff(L/A), and contains the deck
transformations / λ G λ as a normal subgroup. Then Aff*(L)/A is
isomorphic to Aff(L/A). Define A = Aff *(L) Π Aff(L)°, a normal sub-
group in Aff*(L) which contains Λ as a normal subgroup. Note that
(Aff*(L)/A)/(A/A) * Aff (L)/A = {Aff*{L)Aff{LY)/Aff{Lγ C
Aff(L)/Aff(L)°, which is finite. Therefore A/A is a normal subgroup
of finite index in Aff*(L)/A ^ Aff(L/A).

Lemma 4.2. Le£ A be a lattice in a connected semisimple Lie group
L. Then ZL(A) = {g G L : g\g~ι = λ,Vλ G Λ} is contained in the
center of L.

Proof. This is immediate from the fact that (AZ(L))/Z(L) is Zariski
dense in L/Z(L).

Lemma 4.3. There is an injective map

L\A/A -* Aut(A)/A,

where A, on the right-hand side, is identified with a subgroup of inner
automorphisms and, on the left-hand side, with a subgroup of right
translations.

Proof. Prom the definition of Aff*(L), if / G A we have f(mλ) =
/(ra)0(λ), where θ is an automorphism of Λ. Moreover (Lg o/)(mλ) =
(Lg o /)(m)0(λ), so L is in the kernel of the homomorphism / G A •->•
0 G Awί(Λ), and the map L\A/A —>• Aut(A)/A is well defined. Let
/i and /2 be two elements of A associated to the same θ. Prom the
definition of θ we obtain that /i(m)~1/i(r^λ) = /2(^i)~1/2(^λ), so
0/x(λ) = /2(λ) for all λ G A, where # = /2(e)/i(e)-1. Recall that
Aff(L)° is isomorphic with (L x L)/Z(L), so that /i(ra) = gimg'~ι. If
we write ^ = g^^i — Q'^d'n then f°r aU λ G A, ϊiλϊi"1 = λ. But from
the previous lemma we know that the set of all such u is contained in
the center of L, so that [51,92] — [ffί^L which shows that the map is
injective.

In order to prove Proposition 4.1, it suffices to show that, if Λ —
{a G Aut(A) : α(λ) = gλg'1} (these are automorphisms coming from
Aff(L)°, under the correspondence / ι-» θ defined in the above proof),
then the inner automorphisms by elements of A constitute a subgroup
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of finite index in A. Note that A can be identified with a closed sub-
group of L/Z(L), containing the image in L/Z(L) of the lattice Λ. The
connected component of A must centralize the image of Λ in L/Z(L)
so, by Lemma 4.2, the group A is discrete. Therefore the image of Λ
in A must be a subgroup of finite index, proving the claim.

The proof of Theorem 1.1 now follows from the above results. Ob-
serve that, when L is abelian, M is covered by a flat torus, and the affine
diffeomorphisms of M lift to a subgroup of SLdZ tx Ύd. The action's
translation component defines a finite subgroup of Td, according to
[6].

If the invariant connection is Riemannian of Lorentzian, or of any
other type for which the structure group has real rank less than 2, its
holonomy group cannot contain a Lie group of higher IR-split rank, so
Corollary 1.2 follows immediately from the main theorem.

If the connection is pseudo-Riemannian, its holonomy group is con-
tained in the orthogonal group of appropriate signature, which has di-
mension \d(d— 1). Therefore, Corollary 1.3 is also a direct consequence
of the theorem. Note that the pseudo-Riemannian volume density is
automatically Γ-invariant if the manifold is compact.

Corollary 1.5 follows from Proposition 1.4, that is used to conclude
that the connection is flat, and the main theorem, plus the remark that
the Zariski closure of a virtually solvable subgroup of SLd (the image of
the fundamental group under the holonomy representation) must also
be virtually solvable, and connot contain a connected simple Lie group.

For the proof of Theorem 1.6, one first shows that the curvature
tensor of the Lipschitz connection vanishes, by following an argument
used for example in [1]. This is done by noting that a nonzero invariant
measurable tensor field would impose certain relations among the Lya-
punov exponents of elements of Γ. These exponents are in turn related
to the eigenvalues of semisimple elements of Γ for the representation
of Γ obtained from the superrigidity theorem for cocycles. But these
eigenvalues are easily seen to violate those relations. (See for example
[1].) Once the curvature tensor is shown to vanish (almost everywhere),
we know just as for smooth connections, that the restricted holonomy
group must be trivial. We give a proof of this fact below since we
could not find it in the literature. Next step is to show that the global
holonomy is small enough so that it cannot contain a homomorphic
image of G. We refer to [4] for the details. We only note here that the
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global holonomy can be seen to be abelian, and one uses in an essen-
tial way the hyperbolic properties of the dynamics of the action of a
maximal diagonalizable abelian subgroup of Γ. The crucial remark to
make is the following: The fastest contracting directions associated to
a connection-preserving (nonuniformly) hyperbolic diffeomorphism of
M must be parallel when transported along the local stable manifolds.

Proposition 4.4. Let E be a smooth vector bundle over a d-
dimensional manifold M, equipped with a Lipschitz continuous con-
nection V. Suppose that the curvature tensor of V, which is defined
on a set of full measure, vanishes identically on that set. Then the
restricted holonomy group of V is trivial.

Proof. Let {Xι = -£-}?=ι be smooth coordinate vector fields, and

{ηi}f=1 a smooth local framing on E. Denote VXiηj = Σ*=i ^^kjVk^
where A^ is a Lipschitz function from Mn into the set oidxdreal ma-
trices. The condition that the curvature of V is zero almost everywhere
corresponds to [VXilVXj] = 0 almost everywhere, where translates in
coordinates to

almost everywhere.
Define a continuous local section of E as follows. Given u0 G EPo, let

u{tu ... , t n ) be such that u0 = w(0,... ,0), V X n u = 0, Vχn_1w| { t n=0} =
0, ..., VXku\{tn=...=tk+1=0} = 0, ..., VXlu\itn=-=t2=o} = 0. Then The-
orem 8.1, p.109 [5] ίz(ί l 5 . . . , ί n ) is a Lipschitz continuous function in
( t i , . . . , ί n ) , and u(tu... , ^ , 0 , . . . ,0) is C1 in tk for k = 1,... ,n. Set
/ ( t i , . . . , tk) = uΓ(ii, ...,£*> 0, . . . , 0). Then / is a C 1 function in £*,
Lipschitz continuous in (ti,...,ίjb) and (as ~^- = —A^u is Lipschitz
continuous) §£-{tι,..., tfc) is also Lipschitz continuous in ( ί 1 ? . . . , £&).

Define Dif(t) = limh^0^(u(t + hei)-u(t)), where e* = (0,..., 1,...,
0), with 1 at the ith. position. We claim that (Z? ί/)(ί1,..., ί̂ ) is a
bounded function in (ii,...,**) and Lipschitz continuous in tk. We
have

, , h-i, h),
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where

p ( / ι , ί 1 , . . . , ^ _ 1 , ί Λ ) = - [ / ( ί 1 , . . . , t i + / ι , . . . , ί

Denoting

a(h) =g(h,tι,...,tk-1,t*k) and b(h) = -

and by the elementary properties

l™Λ-»o[α(Λ) + Hh)] < lim^oαίΛ) + Hm^o < limh^o[a(h) + b(h)]

and

-&_>0|α(/>) + 6(Λ)| = lπnh._>0(-\a(h) + b(h)\)

and the mean value theorem

a(h) + b(h) = | f - ( M i , ... ,t*-i,τ)(tϊ - tfc),

we obtain the claim with the same Lipschitz constant as for J-£. We
also have that Dk(Dif) — Di(Dkf) is almost everywhere 0. We define
now η(tχ,..., tk) = u(tι,..., tk, 0,..., 0) and make use of the induction
assumption that 77(^1,... ,4-i50) is C1 and satisfies Vχ.η\th=o for i =
1,..., k — 1. Denoting Vχ{η = Dtiη + A^η, we get from equation (1)
that

almost everywhere. Writing V = V^Ty, we obtain from the above
that V satisfies the differential equation DtkV + A^V = 0 with ini-
tial condition V(ίi,..., i*-i, 0) = 0 for all ί1?..., ίΛ_χ. It follows that
V(ίi,... ,ίfc) = 0 almost everywhere, so that Vχ.η = 0 for almost all
(ί i , . . . , tk) and i = 1,..., k. In particular, 77 is C 1 with Lipschitz deriva-
tives. By induction, u is C1 with Lipschitz derivatives in tu . . . , tn and
parallel: Vχ.u = 0 for all i. In this way, we have built a parallel local
section of E with arbitrary value at (0,... ,0). The proposition now
follows.
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5. Existence of invariant connections

In this section we prove Proposition 1.7 and discuss the existence of

invariant connections under the hypothesis of Theorems 1.8 and 1.9.

Let p : E —> M be a Cr vector bundle over M. Let J\ (E) denote the

vector bundle over M consisting of first jets of germs of differentiate

sections of E. The following short sequence of vector bundles is exact:

0 > T*M®E —ι-^ Jλ(E) ^ ^ E y 0.

A connection on E can be described as a splitting of this exact
sequence: σ : E ^ Ji(E), π o σ = IdE. Such splitting defines a
covariant derivative map V : Yλ{E) -> Γ°(T*M ® E), where Γr(E)
denotes the space of Cr-sections of E, as follows: For X G Γ 1 ^ ) , and
denoting jxX G Γ0(Jχ(£;)) the first jet of X, set: VX = (Id-σoπfaX.

We now assume that (/, /) is a Cr automorphism ofp E^M
(so that p o / = / o p ) , from which we obtain automorphisms of
JX(E) and T*M ® E as follows: For jλX{x) G Ji{E)x, /• jι_X(x)_ =
j1(fXof-1)(f(χ)) and for a®X G T*MX®EX, f\a®X) = fa®fX,
where fa = a o Tf~1\TMf{x). With these definitions, / becomes an
automorphism of the above exact sequence.

An /-invariant Cr-connection V : Γ r + 1 (£) -> Γ r(T*M ® E) can be
described as a CΓ-splitting σ of the last diagram, for which σ o f\E =
f\ji(E) ° σ Equivalently, it can be described as an /-equivariant Cr

subbundle in Ji(£?), complementary to i(T*M ® JE7).

The existence of Γ-invariant connections, where Γ is a lattice in a
higher rank Lie group, can now be derived by taking a bounded section
of the frame bundle of Jλ (E) that is adapted to the vertical subbun-
dle, and by applying Proposition 2.1 to the cocycle obtained from it.
The fact that the algebraic hull is reductive implies the existence of a
measurable Γ-invariant complement to the vertical subbundle.

For nonisometric actions of lattices in SLdR on d-dimensional mani-
folds, the uniqueness claimed in Proposition 1.7 is due to the fact that
the difference of two invariant connections is an invariant tensor field
which, if not zero, has to impose relations among the eigenvalues of ele-
ments of Γ, which do not exist. For the details of this type of argument
we refer to [2]. These remarks prove Proposition 1.7.

The following proposition is taken from [2].

Proposition 5.1. Let f be a ^-pinched Anosoυ diffeomorphism of a
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compact manifold. Then f preserves a continuous, torsion-free, affine
connection V. The connection is unique in the class of measurable
invariant connections, and with respect to it the stable and unstable
Anosov distributions E+ and E~ are parallel.

The proof of Theorem 1.8 follows from applying the main theorem to
the continuous connection obtained from the above proposition. Note
that the uniqueness and Proposition 1.7 are needed so that we are
certain that the connection is preserved by all of Γ. The fact that the
stable and unstable distributions are parallel shows that the holonomy
of the continuous connection is contained in GLnMx GLd_nW, n ^ 0 , c ί ,
so that it cannot contain an image of G.
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