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GEOMETRY OF THE ENDS OF THE MODULI
SPACE OF ANTI-SELF-DUAL CONNECTIONS

PAUL M. N. FEEHAN

1. Introduction

Let Xo be a closed, oriented, C°° four-manifold and let MχOiP(go)
be the moduli space of po-anti-self-dual connections on a principal G
bundle P over Xo. The subspace Mχo>P(<7o)> obtained by excluding the
reducible connections is then a finite-dimensional, usually non-compact,
C°° manifold. The moduli space MχoP(go) is naturally endowed with a
metric g of Weil-Petersson type, called the L2 metric, and our purpose
in this article is to study the geometry of the moduli space ends.

(a) Main results. It has been conjectured by D. Groisser and
T. Parker in [13], [14] and by S. K. Donaldson in [5] that the moduli
space of anti-self-dual connections, endowed with the L2 metric, has
finite volume and diameter. The goal of this article is to prove this
conjecture under the hypotheses described below.

Theorem 1.1. Let Xo be a closed, connected, oriented, simply-
connected, C°° four-manifold with generic metric g0 and let P be a
principal G bundle over Xo such that either (1) G = SU(2) or SO(3)
and 6+(X0) = 0, or (2) G = SO(3) and w2(P) Φ 0, where w2(P) is the
second Stiefel-Whitney class of P. Then the moduli space MχoP(go)
of irreducible g0-anti-self-dual connections on P has finite volume and
diameter with respect to the L2 metric g defined by g0.

We plan to discuss the case of G = SU(2) and b+(X0) > 0 in a sub-
sequent article. Note that when G = SO(3) and w2(P) φ 0, the trivial
(product) connection Θ does not appear in the Uhlenbeck compacti-
fication M^ ) P(#o) By 'diameter' we mean the sum of the diameters
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of the connected components of Mχo P{go)\ the hypotheses imply that
Mχop(go) has finitely many path components. In [5] Donaldson con-
jectured that the L2-metric completion of the moduli space coincides
with the Uhlenbeck compactification [3], [7]. We announce here the
following result whose proof is included in [9].

Theorem 1.2. Under the hypotheses of Theorem 1.1, the comple-
tion of MχθiP(go) with respect to the L2 metric g is homeomorphic to
the Uhlenbeck compactification MXo P(go).

The requirement that Xo be simply-connected implies that the mod-
uli space of flat connections consists of a single point representing the
product connection over Xo. This assumption simplifies the description
of the ends of the moduli spaces M^op(jo), but is not important in the
derivation of bounds for the components of g. We assume G = SU(2)
or SO(3) in order to appeal to the generic metric theorems of Freed and
Uhlenbeck which ensure that the moduli space is a C°° manifold; other-
wise, the bounds for g obtained in Chapter 5 hold for any compact Lie
group. For the sake of clarity, we assume G — SU(2) for the remainder
of the article and denote MχOiP(go) by MχOjfc(jo), where c2(P) — k > 0
is the second Chern class.

(b) History. The properties of the L2 metric have been investi-
gated by many authors in recent years, but most extensively by Groisser
and Parker. In particular, they have conducted detailed studies of its
behaviour at the boundary of certain k = 1 moduli spaces. Explicit
formulas for the components of g have been found by Doi, Matsumoto,
and Matumoto [2], Groisser and Parker [13], and Habermann [15] when
k = 1 and Xo is the four-sphere S4 with its standard round metric gx.
Groisser conducted a similar study when Xo is the complex projective
space CP , equipped with the Fubini-Study metric gFS [11]. Their
formulas imply that these k = 1 moduli spaces have finite g-volume
and g-diameter. More generally, Groisser and Parker have established
Theorem 1.1 in the special case k = 1 [14]. They also obtained C°
bounds for g in neighbourhoods of the reducible connections, the 'con-
ical ends', for any k > 1. In [12], Groisser refined some of the k = 1
results obtained in [14]. It is worth recalling that the L2 metric is not
invariant with respect to conformal changes in the metric g0 on Xo.

The approach of [14] does not appear to readily generalise to the case
k > 1, since their method relies on Donaldson's collar map which gives a
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diffeomorphism from the 'bubbling end' of MJ 0 | 1 (g0) to the collar Xo x

(0, λ0). For this reason we adopt a quite different method which uses

the gluing techniques of Taubes and Donaldson to construct a system

of local coordinate charts covering the 'ends' of the moduli space. We

then estimate the components of g with respect to these coordinates. In

the case of the Weil-Petersson metric on Teichmύller space, estimates

of this type have been obtained by Masur [16]. In [8], the author

proved Theorem 1.1, when Xo = S4 and k = 2, using the ADHM

correspondence [7]. After the present work was submitted, a preprint

was received from Peng giving L2 estimates for the derivatives with

respect to moduli parameters of the family of anti-self-dual connections

A on the connected sum XO#XS
A constructed in §7.2.2 of [7], with

H\. = 0 [18]. His L2 estimates are defined with respect to a family of

metrics gx which are conformally equivalent to g0 and which pinch the

neck of the connected sum as λ -» 0; away from the neck gx coincides

with g0 on Xo and it converges in C°° to the standard round metric on

the unit sphere S4.

(c) Outline and strategy. It remains to summarise the methods

used in the proofs of our main results. Let us first recall the definition

of the L2 metric. The tangent space TAMχQk{g0) is identified with the

cohomology group H\ = ker d\'go/imd*^90. Given tangent vectors [a],

[6], the L2 metric g is defined by

(l l) g[A](M, [&]) = {πAa,πAb)L2{x^go),

where πA = 1 — dA{d^90 dA)~ι d^go is the L2 orthogonal projection from
Z/W(X0,adP) to the subspace kertf^0. Clearly, g([α], [&]) is bounded
above by ||α||L2||fe||L2, and so a reasonable strategy is to seek upper
bounds for g over the moduli space ends. This will suffice for our
present application.

(i) Moduli space ends and the bubble tree compactification. Our first
task is to describe useful models for the ends of the moduli space of
anti-self-dual connections. Let (Ao, xu . . . , xmo) be a point in the stra-
tum ~Mι^Qk(g0) Π (MXoM(go) x sk~ko(Xo)) of the Uhlenbeck compact-
ification (see §4.1) which lies away from the diagonals of the symmet-
ric product, so that ra0 = k — k0 and each point Xi has multiplic-
ity 1. Then every point [A] G MXθίk(go) which is close enough to
(AQ^XIJ . . . , # m o ) in the Uhlenbeck topology can be shown to lie in a
neighbourhood constructible by gluing or 'gluing neighbourhood' [3],
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[7]. Thus, suppose [Aa] is a sequence in MXθik(go) which converges

weakly to (Ao, Xi,..., xmo). As described in §4.2, the sequence of con-

nections [Aa] produces sequences of local mass centres xia converging

to the points Xι and sequences of local scales λia converging to zero.

Using the scales λ i α, one now dilates the metric g0 around the points

xia and produces a sequence of conformally equivalent, C°° metrics ga

on a connected sum X = X 0 # i 2 i § 4 As the scales λia tend to zero,

the corresponding neck is pinched and the connected-sum metrics ga

converge in C°° on compact subsets away from the neck regions to

the metric g0 on Xo and the standard round metric g\ (of radius 1)

on each copy of S4. This 'conformal blow-up' procedure gives a se-

quence of <7α-anti-self-dual connections [Aa] which converges strongly

(in the sense of [7]) to a limit (Ao, / i , . . . , Imo) over the join Xo Vĵ α S4,

where the I{ are the standard one-instantons over X{ — S 4 with cen-

tre at the north pole n and scale 1. Here, strong convergence means

C°° convergence on compact sets away from the necks and such that

Q2(A)) + Σil°i c2{Ii) — k', there are no singular points and there is no

curvature loss over the necks. One obtains an open neighbourhood in

^Xo,fco(#o) of t h e boundary point (A0,Xi,... ,x m o ) by gluing up the

limit (A o , / i , . . . , / m o ) .

On the other hand, if the set Zo = (xu . . . , xmo) lies in the diagonal

of the symmetric product sk~k°(X0), the limiting behaviour of the se-

quence [Aa] may be rather more complicated. Suppose [Aa] is the corre-

sponding sequence of gα-anti-self-dual connections over X = Xo#iΞ:Oi§4

produced by conformal blow-ups. The sequence Aa converges in C°°

on compact subsets of Xo \ Zo to a <7o-&nti-self-dual connection Ao over

Xo, but in general only converges weakly to an Uhlenbeck limit (Ai, Zi)

over the four-spheres X{ = S4, where Z{ = (xu,..., ximi) is contained

in Xi \ {s} and s is the south pole. If the connection A^ i > 0, is not

flat, then the conformal blow-ups may be chosen so that its curvature

density is centred in the sense of [23]; its mass centre lies at the north

pole and has scale (essentially its 'standard deviation') equal to 1 (see

§4.2).

Unless all the singular sets Z{ are empty, one can no longer produce

an open subset of the moduli space MXθik(go) simply by gluing up the

connections (̂ 4i)™°0; because of the nature of the convergence process,

some of the required moduli parameters have been lost in the limit.

Instead, the above conformal blow-up process must be iterated. The
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idea of iterating conformal blow-ups has been suggested by Sacks and
Uhlenbeck in the context of harmonic maps of S2 [19]. Taubes described
an iterative scheme of this type which is used to analyse the limiting
behaviour of sequences of connections with uniformly bounded Yang-
Mills functional and functional gradient tending to zero [23]. Parker
and Wolfson described a bubble tree compactification for pseudoholo-
morphic maps of Riemann surfaces into symplectic manifolds and noted
that their method should apply to the case of Yang-Mills connections
over four-manifolds [17].

For the problem at hand, by repeatedly applying conformal blow-
ups, we obtain a sequence of <7α-anti-self-dual connections Aa over a
large connected sum X = #IeχXi. Here, X is a set of multi-indices
I obtained when the conformal blow-up process is iterated. Thus, 1
records the tree structure and if I = 0, then Xj is the four-manifold
Xo? while if I Φ 0, then Xj is a copy of S4. The construction of the
'conformal blow-up maps' fIa ensures that the blow-up process must be
repeated at most k times in order to produce a sequence of connections
[Aa] which converge strongly to a limit (Aj)IeI over a join \l i<zχXι,
where Ao is a go-

anti-self-dual connection over Xo and each Aj, for
/ φ 0, is a #i-anti-self-dual connection over Xj = S4. The sequence
of metrics ga converges in C°° on compact subsets away from the neck
regions to the metric g0 on Xo and the standard round metric gλ on
each sphere Xj. This convergence scheme produces the 'bubble tree
compactification' MχOϊfco(ffo) a n d 1S described in §4.3.

In particular, bubble tree degeneration and gluing are inverse to one
another in a natural way. Using the techniques of [7] one can now glue
up the bubble tree limits (Aj)χeχ to form #-anti-self-dual connections
A over a connected sum X = jfciςxXi, and construct open subsets of
the moduli space Mx,k(g) by small deformations of the limit data. The
gluing procedure gives a collection of conformal maps // (from a small
ball in a lower level summand Xj_ to the complement in the sphere Xι
of a small ball around the south pole) defined in exactly the same way
as the above conformal blow-up maps fja. Here, g is a C°° metric on X,
which is conformally equivalent to the old metric g0 (via the maps //)
and depends on the choice of gluing sites, frames in the principle SO(4)
frame bundle FXQ, scales, and the metric g0 on Xo] its construction
and properties are discussed in §3.5. Similar metrics over connected
sums are described in [3] and [24]. Pulling back via the blow-up maps
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then gives go-anti-self-dual connections A over Xo and hence, produces

open subsets of the moduli space MXθjk(go).

Generalising the arguments in [3] and [7] and employing the compact-

ness results of §4.3, one then shows that MXo k(g0) has a finite cover

consisting of gluing neighbourhoods V. Of course, any precompact

open subset of MXo,k(go) is covered by finitely many Kuranishi charts,

and these comprise the 'gluing charts' in this case. Moreover, the L2-

metric geometry near the reducible connections, the conical ends, has

already been analysed by Groisser and Parker [14], so we may confine

our attention to the more troublesome bubbling ends.

(ii) Upper bounds for the components of the L2 metric. We now

outline a method of computing estimates for the L2 metric g over the

ends of the moduli space. In §§3.3 and 3.4 we apply the techniques

of [3] and [7] to first construct approximate gluing maps J1 : T°/Γ —>
β*x,ki t -> [^'(*)] H e r e > x i s t h e connected sum #ieXXi with C°°

metric g conformally equivalent to g0 on Xθ5 and T/Γ is a certain

parameter space. If the ^-self-dual curvature F+t9(A') is sufficiently

small, one can then solve the g-anti-self-dual equation, F+'9{A'+ά) = 0,

or equivalently

(1.2) tfj 'α + (α Λ a)^g = -F+«{A'\

for a e Ω1(X,sΔP). This gives a C°° family of g-anti-self-dual con-

nections A = A' + a and thus a gluing map J : T°/T —>- AίJjjfe(j),

t -y [A(t)]. The solutions a to Eq. (1.2) are expressed in the form

a = Pξ, where ξ G Ω+'^(X,adP) and P is a right inverse to the oper-

ator d\:g constructed (as in [7]) by patching together right inverses Pj

for the operators d\\91 over the summands Xj. Therefore, Eq. (1.2)

takes the shape

(1.3) ξ + {PξA Pξ)+'9 = -F+>9(A').

Following [7], we assemble the framework required for solving Eq. (1.2)

in §5.1.

Now the L2 metric g depends on the choice of metric g0, not just the

conformal class [g0]. So, using the conformal maps //, we pull back the

family of g-anti-self-dual connections A(t) = A'(t) + a(t) over X to an

equivalent C°° family of go-anti-self-dual connections A(t) = λ'(t)+a(t)

over Xo. Hence, we obtain gluing maps J : T°/T -> M^ok(go), t ->
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[A(t)] analogous to those constructed by Taubes. The properties of the
gluing maps J and J are discussed in §5.2.

The problem then is to estimate the differentials DJ and this task
is comprised of two parts. The first part is to bound the derivatives
dA'/dt] this local calculation is the subject of §§3.7 to 3.9 and the main
results are summarised in §3.10. The more difficult part is to bound the
derivatives of the correction terms, dά/dt; this involves bounding the
derivatives of global operators such as P and is described in §§5.3 to
5.5. The problem of expressing bounds for derivatives of ά(t) in terms
of bounds for derivatives of a(t) is the subject of §3.5. Some care is re-
quired here, since the conformal maps // vary with the scale and centre
parameters, as does the metric g in Eq. (1.2). The required estimates
for the derivatives da/dt are then computed in §§5.3 to 5.5 in terms
of bounds for dP/dt and dξ/dt; the estimates for dξ/dt are obtained
implicitly from Eq. (1.2). For the special case of a neighbourhood of a
point (AQ,AI) (with H\Q = 0), L2 estimates for the derivatives dA/dt
were later obtained independently by Peng using similar methods [18].

It is the estimates for derivatives with respect to the scales λj which
require the most care. For example, difficulties arise when bounding
the derivatives ΘAι /dλj because of the dependence on λj of the confor-
mal maps // and the cutoff functions required to patch the connections
Aj together over the connected sum. These derivatives are ill-behaved
as λ/ -> 0, and the necks of the connected sum X are pinched. Prob-
lems also occur when one attempts to bound dα/dλ/, since a = Pξ
and the construction of P involves cutoff functions with badly behaved
derivatives with respect to λ/ as λ/ -> 0. The final estimates for the
differentials DJ and the corresponding bounds for the L2 metric g
are sumarised in §5.6. The constants appearing in the bounds for g
depend only on the gluing neighbourhood. Theorem 1.1 then follows
immediately from these estimates.

2. Preliminaries

In this Chapter we establish our notation and define the L2 metric.
Unless stated otherwise, we adhere to the standard conventions of [7].
For further details concerning gauge theory, we refer to [7] or [10] and
the references therein, while for details concerning the L2 metric, we
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refer to [13], [14].
Let X be a closed, connected, oriented, C°° four-manifold with Rie-

mannian metric g and let P be a principal G bundle over X with Lie
algebra g. As noted in the Introduction, we will generally confine our
attention in this article to the case G = SU(2) for the sake of clarity. We
let Ω'(P, g) denote the space of C°° g-valued Z-forms, let a d P = PxAdfl
be the adjoint bundle, and let Ωz(X,ad P) be the space of C°° adP-
valued Z-forms on X. Let Ap be the aίfine subspace in Ω*(P, g) of
C°° connection 1-forms on P. For a connection A on P, we let V^ be
the corresponding covariant derivative, let dA be the exterior covariant
derivative, and let FA £ Ω2(X, adP) denote the curvature.

Let QP be the group of C°° bundle automorphisms or gauge trans-
formations. Recall that the isotropy group Γ^ C Gp of a connection
A on P is isomorphic to the centraliser of the holonomy group of A
in G, and the centre Z of the bundle structure group G is isomorphic
to the centre of QP. Thus TA D Z and we let A*P be the dense open
subset of connections A G Ap with Γ^ = Z, so that A*P is the space of
irreducible connections on P when G = SU(2) or SO(3).

The bundles AιT*X ® adP have fibre metrics ( , ) induced by the
Riemannian metric g on X and the inner product on the Lie alge-
bra g given by —1 times the Cartan-Killing form; if £1,̂ 2 £ 05 then
(C15C2) = — tr(ξiξ2) In particular, we may define Sobolev spaces
L*Ωι(X,adP) in the usual way and consider the action of the L2

n_γ

gauge transformations Q on the space of l?n connections Ap (for n > 2)
with quotient BP = AP/GP, omitting the explicit Sobolev notation
when no confusion can arise.

The tangent space TAA*P is equal to ΩX(X,adP) while the tangent
space to the £/-orbit through A G A*P is ΊmdA C ΩX(X,adP). This
induces an L2-orthogonal decomposition TAA*P = ker dA Θimcί^, where
kerd^ C ΩX(X,adP). There is an associated horizontal projection
operator πA : TAA*P -> kercί^, with πA = 1 — dAG°Ad*A, where G°A is
the Green's operator for the Laplacian Δ^ = d*AdA. To identify the
tangent space T^Bp, introduce C°° paths A(t) in A*P and u(t) in Gp,
ti(0) = 1. If Au(t) = Ut(At), then

/ o i \ d A u

(2.1) _

Thus dA/dt(0) defines an element of Ω^^adPj/imrf^ and there-
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fore the tangent space T[A]Bp is given by Ω1(X,adP)/imdA ~
Let Mp(g) be the moduli space of g-anti-self-dual connections on the

G bundle P over X, that is {[A] G BP : F+^(A) = 0}, and let M£(g) be
the dense open subset MP(g)Γ\BP. If A(t) is a (7°° path in Λp satisfying
F+'9{A{t)) — 0, then dA/dt(0) defines an element of keτd*A/ imd^9.
The p-anti-self-dual condition F+>g(A) — 0 is equivalent to d\'9odA = 0,
and so we have the elliptic deformation complex

(2.2) Ω°(X,adP) -^> Ωx(X,adP) - ^ Ω+'^(X,adP)

with associated cohomology groups HA, where HA is the Lie algebra of
ΓΛ, the group H\ = ker d^9/ im dA is just the tangent space T[A]MP(g),
and iί^ = cokevd^9. By Hodge theory there are natural isomorphisms
HA ~ kerΔ^, HA ~ kerc?^ Πkerd^'5, and HA ~ kerΔ^'p, where the
Laplacian A^9 is equal to d%9(d%9)*.

If [i4] is an irreducible point of MP(g), then HA = 0, and an irre-
ducible point [A] is regular if HA = 0. The moduli space MP(g) is
regular if all its irreducible points are regular points, and in that case,
Mp{g) is a C°° manifold of dimension

(2.3) dimMp(p) = 8k(P) - 3(1 - bλ(X) + 6+

with tangent space T[A]Mp(g) — H\ at the point [A].
According to the Freed-Uhlenbeck theorems, the anti-self-dual mod-

uli spaces Mp(g) are smooth manifolds when g is generic. More pre-
cisely, if 6+(X) > 0, P is any SU(2) or SO(3) bundle P over X, and the
metric g on X is generic, then the following hold: (1) Mp(g) contains
no points [A] with E\ φ 0. (2) If b+(X) > 0 and / > 0, then MP(g)
contains no points [A] with HA Φ 0 for any bundle P with 0 < k(P) < I.
(3) If b+(X) = 0 and P is non-trivial, then the cohomology groups H\
are zero for all the reducible g-anti-self-dual connections A on P, and a
neighbourhood of point [A] G Mp(g) with iί^ 7̂  0 is homeomorphic to
a cone over CP4k~2 and diffeomorphic away from the cone point [A].

It remains to define the L2 metric. The quotient space Bp inherits a
(weak) Riemannian L2 metric g by requiring that the projection map
for the principal GP/Z bundle A*P —> Bp be a Riemannian submersion:
if [α], [b] are tangent vectors in T[A]BP, then

(2.4) g[A]([a], [6]) = / <πΛα, πAb) dVg,
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and this restricts to give a C°° Riemannian metric g on the moduli

space Mp(g).

3. Differentials of the approximate gluing maps

Our purpose in this Chapter is to construct the approximate gluing

maps J' : T/Γ -> B*Xk and J' : T/Γ -> β£0,*> a n d t o estimate the

differentials DJ', and especially DJ'. The construction of J' uses

the method employed by Donaldson in [3], [7]. The induced maps J1

are essentially the approximate gluing maps described by Taubes in

[20], [21], [23]. In the former case, we obtain an almost g-anti-self-dual

connection A1 over a connected sum X = X0#IezS4 with metric g

conformally equivalent to g0 on Xo, while in the latter case we obtain

an almost go-a,nti-self-d\ial connection A' over Xo with its fixed metric

g0. In Chapter 5, we obtain a system of coordinate charts J : T/Γ —>

MχQk(go) covering the moduli space by perturbing the maps J' using

the techniques of [7] for solving the anti-self-dual equation.

3.1. Preliminary estimates for connections and curvature.
We describe some pointwise estimates for local connection one-forms

and curvature two-forms. We first consider estimates for connection

one-forms in radial gauge on a C°° manifold X with C°° metric g.

Suppose P -» X is a principal G bundle, A is a C°° connection on

P, and B is an open geodesic ball centred at x0 E X with radius

ρ/2, where ρ is the injectivity radius of (X, g). Define a C°° local

section σ : B —> P by parallel transport of a point in the fibre P\XQ

along radial geodesies through x0. If 7 is a radial geodesic in B with

7 ( 0 ) = x0 a n d 7 ( ί ) = ξu t h e n σ*A(x0) = 0 a n d Lξtσ*A(-γ(t)) =0,t>0.

If φ~ι : B —>• M4 is a geodesic normal coordinate system centred at rr0,

and we define a geodesic 7 by η(i) = φ(tx), x E B, t E [0,1], then

Ίμ(t) = txμ , 7 = x, and ty:σ*A = xμ(σ*A)μ. We recall the following

estimates for local connection one-forms in radial gauge.

Lemma 3.1. [25 (p. 14)] Let A be a C°° connection on a principal

G bundle P —>• X, where X is a C°° manifold with C°° metric g, and

let B be a geodesic ball of radius ρ/2 centred at x0 G X, σ : B -> P

be a local section such that σ*A is in radial gauge centred at x0, and

φ"1 : B -» Rn be a geodesic normal coordinate system centred at x0. If

K = \\FΛ\\Lθo(Btg), then \φ*σ*A\g(x) < K\x\, for \x\ < ρ/2.
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Let H P 1 be the right quaternionic projective space, with the stan-

dard identifications M ~ M4 and H P 1 ~ § 4 . Coordinate patches for

§ 4 may then be defined by Un = {[x,y] : y φ 0} = S 4 \ {s} and

Us = {[a;, y] : x Φ 0} = S 4 \ {n} covering the north pole n = [0,1] and

south pole s = [1,0], respectively. We let φ~ι : Un -> M4, [x,y] «-> xy~ι

and φ~ι : Us -» M4, [x, j/] h-> yz" 1 denote the standard local coordinate

charts. If g\ is the standard round metric of radius 1 on S4, then

(3.1)

for α = n, 5, where the standard flat metric on K4 is denoted by δ.

Let A be a C°° connection on a principal G bundle P -» S4, where

§ 4 has its standard metric gλ. We define a system of local sections

σα : I7α -> P, α = n, 5, by parallel transport of points in the fibres P\a

along radial geodesies through the north or south poles. The estimates

below follow easily since A is smooth over S 4 with metric gλ:

L e m m a 3.2. Let A be a C°° connection on a principal G bundle

P -» § 4 , where S 4 has metric gλ and K = H-PUlU^ίs4,^)- Then, for

a,β E {n,s},

L e m m a 3.3. Given the hypotheses of Lemma 3.2, if the local con-

nection one-forms σ*A are in radial gauge, then \Φ*aσ*aA\gi(x) < K\x\,

for x G M4 and a = n, s.

3.2. Connections over the four-sphere and conformal dif-
feomorphisms. Recall that the group of conformal diffeomorphisms

of S 4 acts on the space Λp of C°° connections on a G bundle P over S4.

The group D x T of dilations and translations of R4 may be identified

with a subgroup of the conformal group of S4. Hence, in this section

we discuss some aspects of the induced action of W~ x M4 on the space

Ap For related material we refer to [5], [10], [13], [14], and [23].

Let P b e a G bundle with C°° connection A G Ωι(P,g) over a C°°
manifold X and suppose ψt is a C°° one-parameter group of diffeomor-
phisms of X generating a vector field ξ G C°°{TX). Let £ e C°°(TP)
be the horizontal vector field covering ξ and let φt be the one-parameter
group of diffeomorphisms of P generated by ξ. Then ψt commutes with
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right G multiplication and covers φ. Fixing Ω E Ω1(P,g), we obtain a
C°° one-parameter family of C°° one-forms φ*tΩ on P with

ί3 2) LSI
( 3 2 ) at t=o~C^

where CξΩ E Ω1 (P, g) denotes the Lie derivative of Ω with respect to
£; in particular, φ\A is a C°° one-parameter family of C°° connection
one-forms on P.

Lemma 3.4. Let P be a G bundle with connection A E ^(P^g)
over a manifold X. Given a vector field ξ E C°°{TX), let £ E C°°(TP)
be its horizontal lift. If FA E Ω2(P,g) is the curvature of A, then
CξA = LξFA.

Proof Since £ is horizontal, A(£) = 0 and so for any vector field η E
TP, we have (CξA){η) = (tξdA + dίξA)(η) = dA(η,£). But FA(η,£) =
dA(η,£) + ^[A(η),A(ξ)] and so the result follows.

We also need to consider Lie derivatives of ad P-valued one-forms.
Recall that if π : P —» X is the bundle projection, there is an injective
map π* : ΩX(X, adP) <-> Ω1(P,fl). The one-forms Ω in the image of
π* are characterised by the properties (a) i?*Ω = Ad(u~1)Ω, for all
u E G, and (b) Ω(η) = 0 if r/ E Γ P is vertical. Hence, the action of
<pt on Ω1(P,g) induces an action on Ω1(X,adP) = Γ(T*X ® adP).
Thus, if ω E Ω1 (X, ad P), we obtain a C°° one-parameter family of C°°
ad P-valued one-forms ^*α; on I with

where £ζ-ω E ΩX(X, adP) denotes the Lie derivative of ω with respect

toξ.
For the purposes of calculation, it is useful to phrase the preced-

ing discussion in terms of local one-forms on X. It is convenient to
choose a system of local sections σa : Ua —>• P which are parallel
with respect to the connection A and vector field ξ, in the sense that
A(σa*ξ) — 0. For example, one can try to construct σa by first choos-
ing a section σα|vβ, where Fα is a submanifold of Ua transverse to the
vector field ξ, and then extend by parallel translation along integral
curves of ξ to construct a section σa over a tubular neighbourhood Ua

of Va. Local sections of this type are described in [10 (pp. 146-147)]
and [25 (pp. 14-15)].
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Given a system of (A, ^-parallel local sections σα, we have ξ = σa*ξ

and φt = σ*aφt over Ua. Hence, for ω G Ω1(X,adP) we see that
σaΨtω = Ψtσ*aω a n d σa£ξω — £ξσaω o n ^α 5 and similarly for A G

Ω1(P.g). Indeed, one can see that the transition functions {uaβ} are

constant along the vector field ξ. For if σβ = σauaβ, then σβ*ξ =

Va*ξ' Uaβ + °« Uaβ+ξ, which gives A(σβ*ξ) = Ad(u~β)A(σ^ξ) + A(σa

uaβ*ξ), and thus duaβ(ξ) = 0, since A(σa*ξ) = A{σβ+ξ) — 0 and A(σa

uaβ*€) = uaβ*ξ Here, σa uaβ^ is the vector field on P\Ua obtained

by differentiating the maps G -ϊ P given by u «->* σa(x)u. When

computing Lie derivatives of local connection one-forms or ad P-valued

one-forms with respect to a vector field £, we shall always require that

the local sections σa be (A, ^-parallel.

It is often useful to express Cξω in terms of covariant derivatives.

Suppose X has a C°° metric g. We have C^ω = iξdω + dtξω, or in local

coordinates, {Cξω)μ = ξudωμ/dxu +ωί/dξ"/dxμ. We find that

(3.4) Cξω = V}'9ω + ω(Vgξ),

using normal geodesic coordinates {xμ} and (A, ξ)-parallel local sec-
tions {σa}. In the sequel, we omit the "tildes" to indicate lifts of
vector fields or diffeomorphisms on the base to the total space of a
principal bundle, this being understood from the context. Note that if
Φ : X —> X is a diffeomorphism and ω G Ω1(X, a d P ) , then we have
£ξΦ*ω = Φ*CΦ^ω.

Let A be a C°° connection on a G bundle P over § 4 and let ω G
Ω 1 (S 4 ,adP). For any t G (-00,00), let δt be the dilation of E 4 given
by x »-> etx1 and for any p G M4 let τp be the translation of K4 de-
fined by τp : x t->- x — p. If δt and r^ again denote the conformal
diffeomorphisms of S 4 induced by the chart x = φ~ι, then the group
C = SO(4) x D x T of rotations, dilations, and translations of K4 is
identified with the subgroup in Conf(S4, gι) of diffeomorphisms which
fix the south pole s G S4. Setting φt = δt or r ί p, we see that these
diffeomorphisms are generated by the vector fields

(3.5) r S X ' ± and - P - - p - ^

We always choose p G l 4 with \p\ < 1. We next describe the construc-

tion of (A, ^-parallel local sections σa for ξ = r or p.
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Considering the group of dilations D, let σn, σs be the local sections

formed by choosing points in the fibres P | n , P\s and then parallel trans-

lating along radial directions from the poles. The transition function

u will be constant along the radial directions, du{τ) = 0, and the lo-

cal connection one-forms σ*aA are in radial gauge. On the other hand,

considering the group of translations T, suppose first that p = d/dxA

and let σn|§3,σs|s3 be the local sections formed by parallel translation

from the north and south poles of the three-sphere S3 C S4 defined by

the image of the x1α;2α;3-plane under the map φn : M4 —> § 4 \ {s}. We

obtain local sections crn,σs by parallel translation along the α;4-axis.

The transition function u will now be constant along the α;4-axis, so

du(p) = 0, and the local connection one-forms σ^A are in a transverse

gauge. By a linear change of coordinates, the same argument applies

to arbitrary translations.

For the dilations, we have

(3.6) — I — = Crω = irdω + ω,
dt t=o

using CξU = Lξdω+dίξϋύ, or in local coordinates, {C^ω)μ = ζvdωμ/dxv

ωudξu/dxμ. Similarly, for the translations we have

(3.7) ^ - -Cpω = -tpdω,
dt t=0

where p = pμd/dxμ.
For any λ G (0, oo), let c λ be the diίfeomorphism of S 4 defined by the

chart x = φ~λ and the dilation c λ of M4 given by x H> X/X. Then c λ = δt

with t = — logλ, and so from Eq. (3.6) we have -§χC\ω = — jc*x£rω.
Similarly, for the translations τq, q G M4, we see that Eq. (3.7) gives
•§^τ*ω = —τ*£pω, where d/dp = pμd/dqμ on the left-hand side and
using τq+tp — ψtp o τq on the right. Combining these actions, we find
that

(3.8) _ r ; c * α ; = - - r ; C * £ r α ; and — τ*qc*xω = -±T*qc*xCpu).

Similarly, considering the action of the dilations c λ and translations τq

on connection one-forms, we have

(3 9) §\T^A = -\^^A and j ^ ^ - r ^ ^
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These derivative formulas play a significant role in the sequel.

It is convenient at this point to recall Taubes' definition of a centred

connection over the four-sphere [23 (p. 343)]. Let A be a #i-anti-self-

dual connection on a G bundle P with c2{P) = k over S4, where § 4 has

its standard metric g\. Pulling back via the chart x — φ~ι : S 4 \ {s} —ϊ

M4, we obtain a ί-anti-self-dual connection A on a, G bundle P over M4

with its standard metric δ. Let Θ denote the flat connection on the

product bundle. Suppose A φ Θ; then the mass centre q and scale λ

are defined by

q = Centre^] = -\- ί x\FA\
2 d4x,

(3.10)

λ2 - Scale2[A] ^Λ_jjχ- q\*\FA\
2 d*x

If A = Θ, we set Centrepl] = 0 and Scale[τ4] = 0. The connection A is

called centred if Centre^] = 0 and Scale[i4] = 1. Eq. (3.10) leads to

the following Tchebycheυ ineqality:

(3.11) / \FA\
2

J\x-q\>RX

d4x

Hence, the ball B(q,RX) contains ^4-energy greater than or equal to
8π2k{l-R~2).

Setting fχtq = cx o τq, we see that Centre[(/^^)*A] = 0 and
Scale[(/;^)*A] = 1. Let Mk denote the moduli space of gi-anti-self-
dual connections on the bundle P over S4 and let M® denote the moduli
space of centred gι-antί-self-dual connections. Note that M° consists of
a single point representing the standard one-instanton over S4. More
generally, the relationship between Mk and M% is explained below.

Proposition 3.5. For any k > 0, the space M% is a smooth sub-
manifold of Mk. Moreover, Mk is diffeomorphic to Mk x R4 x (0, oo).

Proof. One argues as in [23 (pp. 343-344)] and [22 (pp. 365-367)].
Given [A] G Mk with Centre[^4] = q and Scale[A) = λ, set f\A = cχorq.
The map [A] -» ([{fχ^)*A]JqJλ) then gives the required diffeomor-
phism.

3.3. Gluing construction of approximately anti-self-dual
connections. We describe the approximate gluing constructions of
Donaldson [3], [7], and Taubes [20], [21], [23], adapted to the case of
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'bubble trees7. For clarity, we first discuss the construction of approx-
imately anti-self-dual connections over single connected sums. Let Xo

be our closed, smooth four-manifold with metric g0 and injectivity ra-
dius ρθ5 and let Xι = S4 with its standard round metric g\ of radius 1.
Let Xι be a point in Xo and let Xχn, X\s denote the north and south poles
of Xlm Let Pi -» Xi be principal G bundles with c2(Pi) = fci5 i = 0, L
Let FX0 be the principle SO (4) bundle of oriented, orthonormal frames
over Xo.

A choice of frame vλ G FXQ\Xl defines a geodesic normal coordinate
system φϊ1 = exp"1 : Bι(ρ0) ~^ ̂ 4 Denote φla = φa, a = s,n, where
φ-1

 : J7α = § 4 \ {Q/} _>. M4 are the standard coordinate charts on the
four-sphere. Let Bλ(r) = B(xl7r) be the open geodesic ball in Xo with
centre xλ and radius r, and let Bls(r) = 0iβ({a; G M4 : |x| < r}), an
open ball in Xι with centre a;is. Let Ωι(r,R) = Ω(a;i,r,i?) be the
open annulus B1(R) \ Bι(r) centred at xλ G Xo? with inner radius r
and outer radius iϊ; similarly, let Ω ls(r,i?) = Ω(xis,r,R) be the open
annulus Bιs(R) \ Bls(r) in Xχ

Let N > 4 be a large parameter, to be fixed later, and let λi > 0 be a
small scale parameter such that λ\^2N <^ 1. We define open sets X'Q =
Xo \ B^N-iXl'2), X{ = Xo \ S i ( |λ l / 2 ) , and X"' = Xo \ Bi(2JVλ}/a)
— the complements in Xo of small balls around the point X\. Likewise,
define open sets XI, X", and X[" in the sphere Xx. Let Ωx denote the
annulus ^{N^X]12,N\\/2) in Xo and let Ω l s = Ω^iV^λ^iVλl 7 2 )
be the corresponding annulus in Xι. Let C\ be the dilation map on 4

defined by x \-> x/Xx. Define balls B[ = B^NXl'2) and B'{ = j }
centred at α i in Xo and a diffeomorphism

(3.12) / l ^ l n O d O ^ l B ί —> X(.

Hence, /i identifies the small balls J5{ and B" in Xo with the open sets
X[ and Xι{ in X l 5 and restricts to a diffeomorphism /i : Ωx -> Ωis.

We let X be the connected sum X 0 #/i^i In §3.5 we define a smooth
metric j o n l which closely approximates the metrics g{ on each sum-
mand X[ and such that the map fι : B[ —¥ X[ is conformal. Thus,
(X,g) is conformally equivalent to (Xo>So)

Let ili be ^-anti-self-dual connections on the bundles Pi —» Xiy

i = 0,1. The connections AO,AU together with a choice of points
in the fibres Po\Xl,Pi\Xla, define local sections σ1 : i?i(ρ0) -> ^o and
σls : JΓj \ {rrln} -> Px by parallel transport along radial geodesies
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through xu xu. Hence, we obtain local trivialisations PQ\Bl ~ Bλ x G

and Pi\Bla^BuxG.

Let bλ > 4Nλ{/2 be a small parameter, bλ < | m i n { l , £ 0 } ; we will

eventually set 61 = AN\\/2. Choose cutoff functions φ{ on X{ such that

0 < φi < 1, with ψo = 1 on Xo \ £i(&i), Vo = 0 on Bi(&i/2), and

similarly for ^ on X l β We let A'o = ψ0A0 be the C°° connection on

the bundle π 0 : Po -» Xo defined by

(3.13) A'o =

lCvWA) on
Of course, we have the analogous definition for the C°° connection A[

over Xι, and we obtain almost anti-self-dual connections which are flat

on the balls B[, B[s.

To construct the cutoff functions φi, choose a C°° bump function ζ

on R1 such that ζ(t) = 1 for t > 1 and ζ(t) = 0 for t < 1/2. Define

a C°° cutoff function ^6 on M4 by ̂ ( ^ ) = C(M/δ)> for a n Y & > °

Set ί/?o = {Φ^YΨbi and extend by 1 on Xo \ B(xι,bχ) and by zero on

B(xubι/2) to give φ0 E C°°(X0); likewise, set ̂  = {φΐl)*φbλ and

extend to give y?χ G C^ί-Yi). Each ψi extends by zero to give a C°°

cutoff function on the connected sum X.

Choose a G-equivariant isomorphism pi G Gl X l , where

GlX l = HomσCPoUu-PiUiJ — G is the space of 'gluing parameters'.

Using the connections Ai over the small |6i-balls, spread out the fibre

isomorphism pλ to give a bundle isomorphism px : P 0 | Ω I —> Pi\nla cov-

ering the diffeomorphism fλ : Ωo -> Ω^ Thus, σipi = f*σιs on Ωi. We

define the smooth connected-sum bundle P —> X with second Chern

class c2(P) = k = k0 + kx by setting P\X>Q = PQ\X.Q and P\xί = P i U

Note that the bundle P is defined by transition functions independent

of the scale λi- We define a smooth connection A' = A'^A^ on P —> X

by setting A' = A[ on each summand X2 .

If Γ^. are the isotropy groups of the connections Au and Γ = Γ ^ x

TAι, then we recall that the gluing construction gives a bijection be-

tween the gauge equivalence classes [A^px)] in J3χ k and G\Xl /Γ

[7 (p. 286)].

Using the diffeomorphism /1 : B[ -> X{, we pull back the bundle

P over X to a bundle P over Xo> given by P|χ^ = PQ\X>0 and P | β j =

/ΓPils We have an induced system of local sections of P\B'O given
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near xx by σln = ftσln : B[ -» P, σ iθ = /j^i, : 2?ί \ {si} -> P,
and σi = σλ : Ωi(iV"1λ^2,ρo) ~~̂  -P The corresponding transition
functions ύι = ffui : B[ \ {x0} -> G and px : Ωi —> G are determined
by σis = σmώi on B{ \ {#0} and σ1p1 = /^σ^ on Ω1#

On the pull-back bundle P -» Xo we define the corresponding smooth
pull-back connection A1 by setting A1 = A'o on P\χ>0 and A' = f*A[
on P|β/. We obtain local connection 1-forms for A' over Xo given
by o\nA! = f*(ylnA[ on the ball £?{, σJ-A' = CΓJΆQ on the annulus
ΩiίiV^λί72, ρ0), and σ{sA' = /ίσJsAi on the punctured ball BJ \ {x^.

On the annulus Ωx we have σ{aA' = αJA' = 0, and since

(3.14) σ*uA! = pΓ^Γ^oPi + P Γ ' Φ I on Ω l7

we see that dpi = 0 on Ωx and so pi is constant on Ωi. The transition
function ύι on B[\{x0} is independent of λi, since ^i on Xλ\{x\n,Xιs}
is constant along geodesies connecting the north and south poles. Thus,
the bundle P is defined by transition functions which are constant with
respect to λi-

We now generalise the preceding discussion to give a construction of
approximately anti-self-dual connections over multiple connected sums.
The description we give here is closely related to Taubes' iterated gluing
construction [23 (§4)]. The construction parallels the description of the
ends of the bubble tree compactification MχOίk(go) described in Chap-
ter 4.

It is convenient at this point to introduce some terminology. Let
/ = ( i l 5 . . . , iΓ) denote a multi-index of positive integers. The length of/
is r; we regard 0 as a multi-index of length zero. Given / = ( i l 5 . . . , i r),
we let /_ = (ii, ., V-i); we will often denote a multi-index of the
form (i x , . . . , i r + 1) by i+ or if we wish to be more specific, by / j , where
j = iΓ + 1 > 0 or s,n (indicating north or south poles of S4), with a
slight abuse of notation. Let I be an oriented tree with a finite set of
vertices {/}, including a base vertex 0, and a set of edges {(/,/+)}. If
/ = ( ΐ l 5 . . . , i r ) and / — (jΊ,.. . , j*), then we say I < J if r < t and
J = ( i x , . . . , i r, j r + 1 , . . . , j t ) . The valence of each vertex / is the number
of edges emanating from that vertex. The height of the tree 1 is the
number of levels — the length of the longest multi-index minus one.
With respect to a given vertex /, the edge (/_,/) is called incoming,
and the edge (/,/+) outgoing.
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The construction of a C°°, approximately #-anti-self-dual connection
A' of second Chern class k > 1, associated with a tree T, requires the
following data:

Data 3.6. Gluing data for approximately anti-self-dual connections.
(1) To each vertex I, we associate a p/-anti-self-dual connection Aj

on a G bundle P 7 -> Λ> with c2(P/) = fc/ > 0. If / = 0, then
Xo is the base four-manifold with metric g0, while if / > 0, then
Xι — S 4 with its standard round metric gι = gλ of radius 1.

(2) To each edge (/_,/), we associate the data (6/, λ/, p/, x/, t?/) given
by the

(i) Connection cutoff parameter 6/.
(ii) Scale parameter λj.

(iii) Bundle gluing parameter pi G G1X J, where QλXι —

Hom(P/Jaj/,.P/|a./J.
(iv) Centre or gluing site Xι G X/_.
(v) Frame v7 G F X Q U I if /- = 0.

(3) Constants 60? ^o5 λ0, iV.
For convenience, if J+ = /s, we denote 6 / s = 6/, λ / s = λ/, 7V/s = JV,
and pis = p/. We let α;/n, x/s denote the north and south poles of the
spheres Xt = S4. If /_ > 0, then xτ = φi_n{qi) G Λ>, where g / G l 4 .
Define

(3.15) b — max 6/ and λ = maxλj.

The gluing data should satisfy the following constraints:
Condition 3.7. Gluing data constraints.

(1) Scales: 4NX1/2 < 6/ < Jmin{l, &>,<*,}, 4 < iV0 < N, and 0 <
λ/ < λ0.

(2) Separation of centres: Suppose X/, xΓ G Xi_.

(i) If /_ = 0, then distg^x^Xp) > 4(6/ + 6//).

(ii) If /_ > 0, then \qx -qΓ\> 4(6/ + 6/').

(3) Topology: Σ/€i ki = k and fe/ > 0 for some / > 0.
Remark 3.8. Definition 3.6, together with the constraints of Con-

dition 3.7 should be compared with the definition of 'bubble tree ideal'
connections in §4.3. The requirements on the scales and separation of



484 PAUL M. N. FEEHAN

centres are in place simply to ensure that the different gluing regions

do not interfere with one another.

The gluing procedure now generalises to give a C°° family of ap-

proximately g-anti-self-dual connections A' = #jezA'j on a bundle P

over a multiple connected sum X = #/GjX}. First, consider the defi-

nition of coordinate charts, open balls, and annuli in Xo. If /_ = 0, let

φj1 = exp^1 : B{xI,ρ0) —> R4 be a geodesic normal coordinate chart

defined by a point Vj in the oriented frame bundle fibre FXO\XI. Let

£?/(r) = B(xj,r) be the open geodesic ball in Xo with centre xj and

radius r.

Turning to the four-spheres Xj, for any / > 0, let φIa = φa, a =

5,n be the standard inverse coordinate charts on Xj. Define open

neighbourhoods in Xι by

B
Is
(r) = B(x

l8
,r) = φ

Is
 ( { x G l

4
: \x\ < r}),

(3.16)
B
I+
(r) = B(x

I+
,r) = φ

In
 {{x G K

4
 : \x - g

J+
| < r}) .

Let Ωj(r,R) = Ω(x/,r, R) be the open annulus 5/(i?) \ #/(r) centred

at xj G Xι_, with inner radius r and outer radius R.

Define small balls B\ = B{xI,Nλ)/2) and annuli Ω7 =

Ω(z/,iVλy2,iVλj/2) in X7_, / > 0. The open subset X\_ is the com-

plement in Xj_ of the balls Bj(N~1X1/2)J the open subset X"_ is the

complement in Xj_ of the balls i?/( |λy 2), and the open subset Xψ_ is

the complement in Xj_ of the balls BI(2NX1/2).
We define identification maps // by

(3.17) f^Φmocjoφji-.B'j —> X;,

where cj is the dilation x —> x/λi on 1R4. The above maps φj are local
coordinate charts on Xτ_ given by

(3.18) φ7* = ( e X P - 1

 l { I - = °«
\τi°ΦTln if /- > 0,

where TJ is the translation x —> x — qj on M4. The charts (/>71 =
exp"1 may be replaced by φj1 = τPl o exp"1, |p 7 | < ρ0? if we wish to
compute derivatives with respect to the centres Xj in Xo. For notational
consistency, we let / 0 denote the identity map on Xo.
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Using the diffeomorphisms // : Ω7 -> Ω/s we obtain a connected
sum X = #IeIXj. We again defer to §3.5 for the precise definition of a
metric g on X closely approximating the metrics gι on the summands
Xj and such that the maps // : B\ -> X\ are conformal. With this
choice of metric, the connected sum (X, g) is conformally equivalent to

We have a local section σ7 of P/_ defined by a choice of point in the
fibre Pi_\Xl and Aj_-parallel translation from xj\ similarly, we have
local sections σ/n, σIs of P/ defined by a choice of points in the fibres
P/|xjn5 Pi\χis a n d ^/-parallel translation from Xin,Xis. These sections
provide local trivialisations P^IB^QO) — #/(£o) x G and P/|χj\{x/n} —
Xi \ {xin} x G. Define C°° cutoff functions φι on each summand Xi
by setting

(3.19) φj =

where the factor {φ~ϊl)*φbI is omitted when / = 0. Note that φj = 0 on
the balls BIs(bj/2) and BI+ {bI+/2) in Xi and smoothly extends by 1 on
the complement of the balls BIs(bj) and BI+(bI+) in Xj. Lastly, extend
each ψj by zero to give a C°° cutoff function on the connected sum X.
Setting A'j_ = φi_Ai_, A'j = φjAj, we obtain C°° almost anti-self-dual
connections Λ7_, A'j which are flat on the balls BI(bI/2),BIs(bI/2).

The gluing parameter p/ provides an isomorphism of the fibres :
Pi_\Xj — Pj\xis Using the connections AJ_,AJ, this identification is
extended to give a bundle isomorphism pj : P/_|Ω/ -> Pi\aIβ covering
//. By these identification maps we obtain a connected-sum G bundle
P —> X with c2(P) = k and transition functions which are constant
with respect to the scales λ/. The cutoff connections A'r on P/ patch
together to give a C°° connection A' on P. As before, the connection
A1 on the connected-sum bundle P over X pull back via the maps //
to give a connection A' on a bundle P over Xo.

Lastly, we record some estimates for the connections A' when re-
stricted to a summand X'j. For this and later purposes, we define the
following Sobolev norms: Let V91 denote the Levi-Civita connection
on TXi defined by the metric gu so that if / E COO{XI), then

(3.20)
2=0
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for any 1 < p < oo and integer n > 0. Similarly, if a 6 Ωz(Xj, ad Pj),

then

(3.21) \\a\\Lζ{Xl>Al,gi) = £ \\(VA"°>ya\\LP{Xl,gi).

It is important to note that these norms will depend only on a set of

fixed connections, {Aj}IeI, and a set of fixed metrics {gi}iei-

Recalling that A'T = ψiAi, define one-forms α/ E Ω1 (X/, ad Pj) by

setting Aj — A'j + a^ Thus

= ί(l-φI)σlAI on B/+(6/+),

^ [0 on X/\U/+B/+(5/+).

With the aid of bounds for the derivatives of the cutoff functions ψj

for C = C(gj) and J = I_ or /,

Standard arguments then give the following estimates.

Lemma 3.9. Let 1 < p < oo. TΛen fΛere erri5̂ 5 a constant C =

C(Aj,gi,p) such that

(a) | | α / | | L - o ( X / ι W ) < Cb and | |α/| |Lp (χ I ι P J) <

f&; l|F(^)||L-(χ/iW) < σ α^ I I F + ^ ^ I U ^ , ) < ctlv.
3.4. Approximate gluing maps. Adopting a more global per-

spective, the construction of §3.3 yields a family of 'approximate gluing
maps', J1 : T/T -> B*Xk and J' : T/T -> B*XoΛ, which we describe
in this section. We first recall that the standard Kuranishi models
give the required parametrisations for neighbourhoods of points [A/]
in MXnkl(gi). Let A/ be a #/-anti-self-dual connection over X/, with
isotropy group ΓAl and ίPAι = 0. For a small enough open neighbour-
hood TAl of 0 E H\^ we have smooth Γ^-equivariant maps

(3.23) on:TAl —> keτd*// Cίί^I/.adP/)

solving the ^/-anti-self-dual equation F+'β'(Aj + α/(ί/)) = 0, ί/ G T Λ / .

Setting .A/(ί/) = .4/ 4- α/(ί/), we obtain a homeomorphism

(3.24) #i:TAl/ΓAl ^ UAl, t,—> [Atfj)],
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onto an open neighbourhood UΛl of [Aj] E MXltkl. If A7 is the product
connection, θ, then ΓAl = SU(2) and so H°Ai φ 0, while H\τ = 0. If
A/ is a non-trivial reducible connection, then ΓAj = S1 and fΓj7 ^ 0;
we have a homeomorphism #/ : TAl/ΓAj -> UAl and a diffeomorphism
#/ : (TA/ \ {0})/ΓA/ -> Ϊ7A7 \ [A/]. Finally, if A7 is irreducible, then
Γ^7 = (±1) and HAl = 0; in this case we have a diffeomorphism

We now dispose of the construction of neighbourhoods of reducible
connections in Mχo,k(go). Recall that the reducible connections in
MχOtk(go) are in one-to-one correspondence with pairs {±c}, where
c E H2(X0,Z) satisfies c2 = k. In particular, there are only finitely
many and so to describe a neighbourhood of any such reducible con-
nection [A] E Mχo,k(go), we may employ the Kuranishi model ϋA :
TA/YA -> UA.

We now describe the approximate gluing maps J' and J\ beginning
with the parameter spaces T/Γ. First, with the centres {#/} and scales
{λ/} held fixed, the parameter spaces TAl and GL^ combine to give a
C°° manifold

(3.25) T = TAoxl[(TAlxGlXl),
iex

parametrising a 'small' family of approximately anti-self-dual connec-
tions. Then

(3.26) Γ Ξ Γ , O X Π ΓAI

iex

acts freely on T and T/Γ is a C°° manifold. If we allow the centres,
now denoted j//, to move over disjoint balls B(xI^r0) C Xi_ and allow
the scales λj to vary in the interval (0, λ0), the parameter space of Eq.
(3.25) is augmented to give a C°° manifold

(3.27) T = TAo x Π (TAl x G1XJ xB(xj,r0) x (0,λ0)),
iex

parametrising a 'large' family of approximately g-anti-self-dual connec-
tions. Again, Γ acts freely on T, and T/Γ is a C°° manifold. We fix
local trivialisations of the frame bundle FX0 over the balls S(x/,r0),
and these provide smooth families of geodesic normal coordinate charts
on Xo.
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We note that the almost anti-self-dual connections A1 produced by

§3.3 are indeed irreducible:

Lemma 3.10. Let A1 be a connection on the G bundle P over X

defined by Data 3.6 and Condition 3.7. Then A1 is irreducible, that is,

H% = 0, for small enough b0 and large enough No.

The Lemma follows from Aronszajn's unique continuation principle

for solutions to AAtη — 0 via standard methods, so the proof is omitted.

Hence, the approximate gluing construction of §3.3 gives a C°° map

(3.28) J' .T/T —> B'Xtk, t—>[A'(t)],

where B\ k has the structure of an L2

n Hubert manifold, n > 3. More-
over, J' is a C°° submersion onto its image; see §5.2. We refer to J'
as an approximate gluing map over X and its image W C Bχk as an
approximate gluing neighbourhood.

The dimension of the parameter space T/Γ is given by

(3.29) dim T/Γ

= d i m i ^ o - dimiί° o + Σ ί d i m f Γ ^ - dimH°Ao + 8),
/>o

since each factor GlίC/ xB{xI,rQ) x (0, λ0) has dimension 8, d i m i ί ^ =

dimΓ^, and H2

Ai = 0 for all / > 0 by hypothesis. Families of centred

<7/-anti-self-dual connections Aj E M\ιki (g/) are parametrised by small

balls TAi, and thus we obtain a C°° parameter space

(3.30) T ° Ξ T A O X Π {T°AI x G1XJ xB(sj,r 0) x (0,λ0)),
A I

iex

with C°° quotient T°/Γ of dimension equal to dimMx,k(g). The map
J1 : T°/T -> B*Xk is a C°° embedding; see §5.2.

Lastly, using the conformal diffeomorphisms //, the bundle P over
X pulls back to a bundle P over Xo. The gluing construction now pro-
duces an approximately <70-anti-self-dual connection A' in Bχ0 k. The
map J1 of Eq. (3.28) pulls back to a C°° map

(3.31) J'-.T/T —> B^kl t^[A'{t)}.

Again, J' is a C°° submersion onto its image and is a C°° embedding

when the parameter space T/Γ is replaced by the smaller parameter
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space T°/Γ; see §5.2. As before, the image V of J1 in B*Xok is called
an approximate gluing neighbourhood.

3.5. Metrics on connected sums. In this section we define a
conformal structure [g] on the connected sum X = #l€χXj. This is ac-
complished by replacing the standard round metric gj on each spherical
summand X\ by a quasi-conformally equivalent metric gι so that the
identification maps // : B\ -» X\ are conformal. We then construct
a C°° metric g on X in the conformal class [g] = [g0] and compare
the resulting Lp norms for the different possible metrics on each sum-
mand Xj. Our construction is modelled on the constructions of Don-
aldson and Taubes for metrics on connected sums — see [3 (p. 322)],
[7 (p. 293)], and [24]. The metric g depends on the choice of fixed base
metric g0, fixed neck width parameter iV, scales λj, centres xj, and
frames υj. We also obtain bounds for the derivatives of g with respect
to λ/ and xι.

With respect to a geodesic normal coordinate system x = 0"1 on
Bil(ρ0) C Xθ5 the covariant components of g0 satisfy

(^5oU(0) = ^ and ^ , (0) = 0,

(3.32) K f̂foίμi/ "- ^ l ( ^ ) < c k | 2 a n d

(x) < c\x\, \x\ < ρo/2,

for some constant c = c(g0). The analogous relations hold for the
contravariant components of go- We now define a conformal structure
[g] on X:

Definition 3.11. The conformal structure [g] on X is defined by
the C°° metric g0 on X^ and a choice of C°° metric gι on each summand
Xj, I > 0, given by

in i μv - \/i2(rz:)/i1-
2(λ/^ + 9/)(^3/_)μ i /(λ/α;) if /_ > 0,

where \x\ < NλJ1 . For convenience, we let gj = g! denote the stan-
dard metric on Xι and let g0 = g0 denote the metric on Xo

Definition 3.11 provides the following expression for gj:

(3.33) (Φϊn9l)μΛX) = h2ΛX)(Φh9θ)μ^(y(X))^ \X\ < N^J1/2,
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where

(3.34) = Xh(λili2(

The map fj:Bj-ϊ X\ is now conformal with respect to the metrics
gi_ on Bj C X}_ and cjj on X}:

t>ΪfΪ9l)μΛX) =
if J_ = 0,

if ' - > 0,

where \x\ < NX1/2. Thus, //#/ is conformally equivalent to the metric
gx_ on Ω/ and so we obtain a conformal structure [g] on X = #ieχXi

We must verify that gι is a good approximation to the standard
round metric gj on X\ for small λ^.

Lemma 3.12. For any I > 0, the metric gr converges to gι in C°°
on compact subsets of Xi \ {xis} as Xit -> 0. Moreover, we have the
following bounds:
(a) For any integer I > 0; there is a constant c = c(go,l) such that

dxai dxaι dxai dxaι <cN2Xiλh\{x), \x\ <NX]
-1/2

The analogous bounds hold for the contravariant components
(Φ*in9i)μi/> provided h\(x) is replaced by h^2(x).

(b) Let *-gi denote the Hodge star operator for gj. Then there is a
constant c = c(g0) such that

Proof (a) This follows easily from Eq. (3.32) and Definition 3.11.
(b) This follows immediately from (a) and the definition of the Hodge
star operator.

We will also require bounds for the derivatives of gj with respect to
the scales λ/ and centres Xj. The following estimates will suffice for
our application.
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Lemma 3.13. IfO<I<J, there is a constant c = c(go,J) such
that the following bounds hold:
(a) For any \x\ < N\~ι/2,

if KJ

and \I\ = 1,

if KJ

and \J\ > 2,

ifI = J

and \J\ = 1,

9(Φ*JJJ) μv cN2h\{x)

c\l\x\h\(x)

and \J\ > 2.

(b) If d/dpi = pjd/dqf, then for any \x\ <
-1/2

)μv

dpi

if I = J and\J\ = l,

ifI<J and\J\>2.

The analogous bounds in (a) and (b) hold for the contraυariant
components of gj, if h\{x) is replaced by h^2(x).

(c) For any ζ € Ω2{X'j, ad Pj), then

cNXJ1/2

< cNλ\[2

IICIIJ

L-{x,jigj).

if I = J

and \J\ > 2,

otherwise.

Proof. (a) The inequalities follow from Eq. (3.32) and Defini-
tion 3.11.

(b) The proof is similar. When |/| = 1, we recall that the normal
geodesic chart φiλ = expv. is replaced by φiχ = expv. oτqii in order
to compute the required derivative at qiχ — 0 (corresponding to xiχ =
φi^O)). The estimates follow immediately from (a) and (b).

We next define an honest C°° metric g on X. Consider a neck Ωj =
/i"1^/,) labelled by the multi-index /. We replace the metric gi_
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on the annulus Ω/ and replace the metric gj on the annulus Ω/5 by
conformally equivalent metrics mi_gj_ and rπjgi so that

(3.35) m/_ff/_ = fi(mi9i) on Ω/.

Hence, the metrics mi_gi_ and rrijgj agree on the neck and patch
together to give a C°° metric, say p, on a neighbourhood of the neck
in the connected sum Xj_#Xχ. On the annulus Ω/ = φi({x G K4 :
N^X1/2 < \x\ < NX1/2}) we have

(3.36)

f + \x\2)-2(φ}g0)μΛx) if/- = 0,

By comparing //#/ and #/_ on Ω/, a little experimentation reveals that
the C°° conformal factors mj_ and raj can be chosen so that

K-1 < mi. < κN4 on ΩI(N'1X1/2,NX1

I

/2)1

(3.37) K-1 <mj_<κ on Ω7(f λ}/2, ΛΓλj/2),

ra7_ = 1 on Ωj (2λψ, 47Vλ}/2),

and likewise for rnj on Ω/s, and some constant K — κ(g0). For each
summand Xj, we smoothly extend the raj to X\ by setting ra/ = 1
away from the neck regions. This gives a C°° metric j o n X = ή^i^τXi
by setting

(3.38) g = ra/ff/ on X\, for all / e l

The construction ensures that each ra/ obeys

(3.39)

κ~x < ra7 < κAΓ4 on X}, KΓ1 < ra/ < K on X}', and

ra7 = 1 on X'l'.

Thus, the metrics gι and # are equivalent on X" with constants inde-
pendent of TV, and equivalent over X\ with constants now depending
on N.

The Hodge star operator *p : Ω2(X,adP) -> Ω2(X,adP) only de-
pends on the conformal class [g] of g and so over each summand X\ of
X we have *p = * m / 5 / = *^7. Prom Lemma 3.13, we obtain:
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Lemma 3.14. There is a constant c = c(g0) such that for any
ζeΩ2(X,ΆdP), we have

(a) ||(a*ir/^λJr)C|U-(A-,ί,) < cΛΓλ71/a||C||i-(A',i,),

(b) \\(d*g/dPl)ζ\\L-{x>g) <cN$(2\\ζ\\L-(Xιβ).
We will often need to compare Lp norms defined by the different

metrics p/, #/, and g over X\ C X. The required Comparison estimates7

given below follow in a straightforward way from Lemma 3.12 and Eq.
(3.39), and similar inequalities may be found in [7 (p. 294)].

L e m m a 3.15. For any I > 0, the following holds.
(a) If 2 <p<oo and4 < q < oo, there is a constant c = c(go,k,p,q),

1 < c < oo, such that for any ω G Ω1 (-Xj, adPj) and ζ E
Ω 2 (X; ,adP 7 ) ; we have

and

( ; ) ^ ) and | | C I U * ( ; * ) { ^ )

(b) If 1 < p < Do, n > 1, and b0 is sufficiently small, there is a
constant c = c(go,k,n,N,p), 1 < c < oo, such that for any
a e Ωn(X},adP 7), we have

c"~1||α||Lp(xί,0/) < | |«IUP(X;,5I)J II«IUP(X; ) P) < c\\a\\LP{χ>ngi).

Lastly, having defined the conformal structure [g] of X, we apply the
estimates for dψi in Eq. (3.22), the estimates for A'j and F+'9l(A'j) in
Lemma 3.9, and the estimates for * p — *^7 in Lemma 3.12 to obtain a
bound for the Lp-norm of the p-self-dual curvature F+'9(A') = | ( 1 +
*g)F(A') of the connection A1 on the connected sum bundle P over X.
Similar estimates have been given by Taubes and Donaldson.

Proposition 3.16. For 1 < p < oo and sufficently small b0, there
exists a constant C — C(go,p,T) such that for any t E T one has

/

3.6. Estimates over connected sums and conformal vector
fields. The goal of this section is to obtain L2 estimates for the

derivatives with respect to the scales λ/ and centres xj of ad P-valued

one-forms ώ over the base manifold Xo obtained by pulling back ad P-

valued one-forms ω over the connected sum X.

Following Taubes [22], [23], let us begin by defining some useful

Sobolev norms on Ω1 (S4, ad P) and examine their behaviour under con-

formal diffeomorphisms. Suppose A is a C°° connection on a G bundle
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P over § 4 . Let gγ be the standard round metric on S 4 and let δ be

the flat metric on S4 \ {5} obtained via the conformal identification

Φn1 '• ^ 4 \ is} ~* ^ 4 Let VΛ'gi denote the covariant derivative on

Ω 1(§ 4, a d P ) defined by the connection A and metric gi, while WΛjδ

denotes the covariant derivative on Γ*(S4 \ {s}) ® a d P defined by A

and δ. Define an L\ norm on Ω 1 ^ 4 , a d P ) by

(3.40) IMU?(SM.*I) = IMUa(s',*i) + \\VA'giω\\Li<β\9l)

Similarly, if ω has compact support in S 4 \ {s}, define

(3.41) \ω\A = | | V Λ ^

,(5) = | | ^ | | L 2 ( S 4 , ( 5 ) + | |V ' ω

The properties of | \A and || ||L2(S4,Λ,<5) are described by the following

result of [22]. Recall that C = D x T x SO(4) is identified, using

φn : M4 —> § 4 \ {s}, with the subgroup of conformal diffeomorphisms of

(§4,<7i) which fix the south pole.

Lemma 3.17. [22 (Proposition 2.4)] Given an L\ connection A on

a G bundle P over § 4 , then the following holds:

(a) I \A extends to a continuous norm on L^Ω 1 (S 4 ,adP).

(b) The norm | \A is C-invariant: for any f G C, \f*ω\f*A = |ω|^.

(c) There exists a constant 1 < z < 00, which is independent of P,

A, f, andω <Ξ Ω x (S 4 ,adP) ; such that

< z\\ω\\L2{s*tAtgi).

Lemma 3.18. [23 (Lemma 3.1)] Let A be a C°° connection on a
G bundle P over § 4 with its standard metric gλ and let f : S 4 -> S 4

be a conformal diffeomorphism. Then there exists a constant 1 < z <
00, which is independent of P, A, f, and ω G Ω ^ S 4 , a d P ) , with the
following significance:

Recall that c λ denotes both the dilation x ι-> x/X of K4 and the
conformal diffeomorphism of (§4,ffi) induced by φn. A straightfor-
ward application of Holder's inequality yields the following 'transfer
estimates' for the maps c λ .
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Lemma 3.19. Let 2 < p < pλ < 4 and let λ e (0,1]. Let U be an
open subset of§4 \ B(s, NX1'2) and let P be a G bundle over S4. Then
there is a constant C = C(N) such that the following holds,
(a) IfωtQ}(U,&άP),then

(b) Ifζe Ω2(£/,adP), then \\c*xζ\\L2{c-χι{UUi) < C\\ζ\\L2(u,gι).

We next consider the action of the conformal group on ΩX(S4, adP).
Let f\A denote the lift to S4, via the chart φn, of the conformal dif-
feomorphism cΛ o τq on M4. Let F b e a G bundle over § 4 and suppose
ω E Ω1(S4,adP). Then Eq. (3.8) gives

where d/dp = pμd/dqμ. It will be convenient to express the above Lie
derivatives in terms of covariant derivatives. If A is a C°° connection
on P, then Eqs. (3.6) and (3.7) imply that

(3.43) Crω = ω + V^δω and Cpω = V£'*ω.

This leads to the following estimates for the derivatives of fχ qω with
respect to λ and q.

Lemma 3.20. Let A be α C°° connection on α G bundle P over § 4,
let U C S4 \ B(s,Nλ1/2) be an open subset, ω E Ω2(ί7,adP) ; where ω
has compact support in U, and d/dp = pμd/dqμ, \p\ < 1. Then there
is a constant C = C(q, N) such that the following bounds hold,
(a) \\dflqω/dX\\LHf-l(u)tgi) < ^

Proof. (a) Observe that U = φniB^NX-1/2)) and f^(U) =
φn{B{q,Nλ1/2)). Prom Eqs. (3.42) and (3.43), we have

on

where r = yμd/dyμ and /^,»r = xμd/dxμ with respect to the coordi-
nates y = φ-1 on U and x = τq o φ~x on fχ\{U). Since |/^J,,r|Λ <
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Cλ1/2 on fχtl(U), Lemma 3.19 implies

(t/))θ

the last step following by conformal invariance. Lemma 3.17 then gives
(a).

(b) Prom Eqs. (3.42) and (3.43), we have

a n d /λ,4>" = Λ 1 * P V Λ % V Λ ' ^ on

where p = pμd/dyμ on [/ and / ^ p = λpμd/dxμ on /λ~*(ί7). Since
I Λ 1 * P L < Cλ on /λ-J(l7), Lemma 3.19 yields

\δ) < Cλ\\ω\\L2{u^δ).

Hence (b) follows from Lemma 3.17.
We will frequently need to compute estimates for families of one-

forms ω over connected sums X, and to this end, it will be useful to
define suitable Sobolev norms which depend only on the fixed connec-
tions Aj and, in particular, the fixed metrics gj on each summand Xj
rather than varying metric g on X. Let P be the G bundle over the
connected sum X — #/GjX/ defined in §3.3. Then we may view any
ω e Ω1 (X, ad P) as a collection of ω7 G Ω1 (Xj, ad P/) which agree over
the necks Ω/ = /71(Ω/S) connecting each pair X/_ and X/:

on Ωj,

where // : Ω/ —>- ΩIs is the identification map.
Prom §3.5, we recall that there is a C°° metric g on X which agrees,

modulo the conformal factors m/, with the metrics g0 on the base
XQ and gι ~ gλ on the four-spheres X\. Moreover, the Lq norms on
Ω^X^adP/), 4 < q < oo, and Lp norms on Ω2(X},adP7), 2 < p < oo,
compare uniformly when defined with the metrics gi, gi,oτ g = rriigj on
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Xj. The constants involved in these norm comparisons are independent

of the scale parameters λ j for forms supported on X\ and independent

of both the λj and N for forms supported on X'/. Thus, we may

conveniently define Lq norms on Ω*(X, adP), 4 < q < oo, and Lp

norms on Ω2(X, ad P), 2 < p < oo, using the metric g on X.

In Chapter 5, we will need to bound the L\ norms of solutions

ω E Ω^J^adP) to the #-anti-self-dual equation F+>9(A' + ω) = 0

over X. Unfortunately, since the conformal factors raj have badly

behaved derivatives over the neck regions, the norm comparisons de-

scribed above do not hold for L2

n Sobolev norms if n > 1. Of course,

problems of this type are encountered in [3], [7], and [24]. So, given

such a n u G Ω1(X, ad P), with ω = {ω/}/ej as above, and 1 < p < oo,

we define

(3.44) Ik
iei

by analogy with Eq. (6.25) in [24].
Recall that a one-form ω e ΩX(X, adP) pulls back to a one-form

ώ E Ω^Xo^dP) defined by

(3.45) ώ = /ί / > o n / 0 - 1 - . . / 7 1 W ) c X o ,

for each J G I. We will need estimates for the derivatives of ώ with

respect to the scales A/ and centres £/. To begin, we need suitable

expressions for these derivatives:

Lemma 3.21. Let ω e Ω,ι(X'j,adPj), 0 < I < J, and

VμιdjQ(tι- Then:

(a) ^fS-f> = ^

0>) sf?/o //<" = - V / o flCμv, for J = I;

aI7/o •••/> = -λ?7o* • fίCrfl • • • / > , for J > I;

(*) afr/o //<" = -*77o* • • • fϊCp"> f°r J = *!

(f) &fS •••/> = -λ/-7o fiC,fl • • • f>, for J>I.
Remark 3.22. When I_ = 0, then d/dpi = rfd/drf and // =

Φin°ci °Φj1 is replaced by // — φinoc/oτPl oφj1 in order to compute

the derivative at pi = 0.
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These expressions lead to the following bounds for the derivatives
with respect to the scales λj and centres Xι of the pull-backs /<J • f}ω

Lemma 3.23. Letω G Ω^Xj, adPj), where ω has compact support
inX'j, U = f^o. .ofj^X'j) C I 0 , 0 < / < J , andd/dpI=pμ

Id/dqϊ
with \pi\ < 1. Then there is a constant C = C(go,N) such that the
following hold.

(a) ||of-/o •••/>|| <<?||lrll ,forJ<I;
ι / | | d λ j Ό JJ | | L 2 ( f / ) - \\9Xi\\L2{x^y J

,forJ<I;

Proo/. (a) By repeatedly applying Lemma 3.19, we find that

d / ; • • • / >

dλ L2(U,go)
• / ; -

< C I—I
as required for (a). For J = I and f/ =
Lemmas 3.19 and 3.20 show that

fi

= / ( ) " ' JI-

dfjω
dλϊ

J1/2
<CλJ1'Λ\\ω\\IzιxitΛtji).

Let V = fΓ+o-'oflHXj) C -Y;, so that U = f^o-.-off^V) C
Then for J > /, we have

<σ

<

by repeatedly applying Lemma 3.18 in the last step. This gives (b);
the proofs of (c) and (d) are similar.
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Finally, we obtain our estimate for the derivatives of ώ with respect
to the scales λj and centres xj.

Proposition 3.24. There is a constant C — (go,T) such that for
any ω G Ω̂ -X", adP) and teT, the following bounds hold.
(a) \\dώ/d\j\\LHXo,9o) < C(\\dω/d\j\\LHx,9) + λ71/2 | |ω|U

(b) \\dώ/dPl\\LHXo,9o) < C(\\dω/dPl\\LHX,g) + \\ω\\C2{x)).
Proof. By Lemma 3.23 we have

dώ dω

-1/2

and so (a) follows from Lemma 3.15. Similarly, Lemma 3.23 gives

\dώ

Wi L2(Xo,go)

and likewise, (b) follows from Lemma 3.15.
3.7. Derivatives with respect to scales and centres. We

obtain Lp estimates for the derivatives of the connections A1 and A'
and of the ^-self-dual curvature F+>9(A') with respect to the scales λj
and centres #/.

Throughout this section we require that bj = 4NλJ for all J. Let
us first record the following bounds for the derivatives of the cutoff
functions ψj for J = /_ or /:

(3.46)

dpi

<
9J

ddφj
< CN~2XJ3/2 on X'j.

< CN-'X;1'2,
9J

ddψj

dp i
on

9J

where d/dpi = p^d/dqj and |p/| < 1. The constant C depends only
on §j. We now begin with the LF estimates for derivatives of the
connections A'.
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Proposition 3.25. Suppose 1 < p < oo and I > 0. Then for
sufficiently small λ0, there is a constant C = C(go,p,T) such that for
any teT,

(b) \\dA/dPl\\LP{x,9) < CXψ.
Proof, (a) Observe that dA /dXi is non-zero only on the supports

of dψi_/dXi and dψi/dXi, given by the annuli Ω7(|67,67) in X'j_ and
Ω7 s(|67,67) inX}.

Step 1. Estimate of dAjdXi over X\_. Recall that ψi_ — 1 on
the complement of the balls S7(67) in X7_, while 0 < φj_ < 1 on
Ω7(|ί>7,67), and ψι_ = 0 on J37(|&7). We have σ\A — φi_σ}Aj_ on
Ω7(|67,fe7) and thus σ}(dA/dXi) = (dφi_/dXj)σjAj_ on X}_ Since

W//0λ7 | < CA71 by Eq. (3.46) and |σ;^7_ |p/_ < CX1/2 on Ω7(|67,67)
by Lemmas 3.1 and 3.3, we obtain the pointwise bound

on Ω/(|6/,6j),
on X;_\Ω7(|&/,&/)

Hence, we get the integral estimate

(3.47) k dA'

~dλ~τ
dVgg <

noting that g = g/_ on Xj_ \ Bi(^br) and appealing to Lemma 3.12.
Step 2. Estimate of dA /dλi over X\. A similar argument shows

that

(3.48) k dA
dV99 <

and combining the integral bounds from Steps 1 and 2 gives (a). For
(b) we use the pointwise estimates \dψj/dpi\ < CXJ1'2, J = /_, /. The
same argument as in (a) then gives the required bound.

Our next task is to obtain a Lp estimates for the derivatives of the
#-self-dual curvature F+'9(A).

Proposition 3.26. Suppose 1 < p < 4 and I > 0. Then for
sufficiently small Xo, there exists a constant C = C(go?P?T) such that
for any teT,
(a)
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(b) \\dF+>s(A')/dPl\\LHX,g) < C(λ2/p-1/2 + λ 1 / 2 p).
Proof. (a) We note that F+'°{A') = F+'^(φjAj) on X'j and so

dF+'9(A')/d\i is supported on UJ>I_X'J. It is convenient to obtain
estimates separately over the regions X'j_, Xj, and X'j, J > I.

Step 1. Estimate of dF+'9{A')/dλi over X'j_. On the annulus
^i{\h,bj) we have F+'*{A') = | (1 + *h_)F{φi_λi_) and

_) +dφi_

/- Λ σ*iAi- •

Therefore, we see that

dF(φj_Aj_)

d\i

,_ Λσ',A,_.

on Xj_. The metric gj_ is independent of λ/, and so applying the
pointwise estimates of Lemmas 3.1, 3.3, and Eq. (3.46), we find that

L on Ω/d&jΛ),

on Xr \ ίlτ(hbτ,br).

Consequently, we obtain

(3.49) / dVg < C\2ΓP,

where we observe that g = gΊ_ on Ω/(|6/,6/).
Step 2. Estimate of dF+^iA^/dXi over X'j. We have F+ 'iA') =

|(1 + ^FUHAJ) and F(^A/) = ^/F(A/) + dψ, Λ σ^A, + (φj -
ψI)σ\'sAι A σ*uAj on X'j. Thus,

l
) + ( 1 +

j

Λ σ / s j 4 /
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on X'j. Applying the pointwise estimates of Lemmas 3.3, 3.12, 3.13,
and Eq. (3.46), we find that

ΦlΊn'

0

(x) < < CXJ1

1 C\x\

on BIs{\bI),

on Ωj,(|6/,6/),

(mXI\BIs{bi)-

Now g = gτ on Xj\i?/s(|&j), and so applying the above estimates and
Holder's inequality gives

(3.50) L, dλ,
dVg < C\2fp,

completing Step 2.
Step 3. Estimate of dF+'9(A')/dX! over X'J} J > I. We have

\^LF{φjAj) on

since F+'9(A') = | (1 + *-gj)F('ψjAj). The pointwise estimates of Lem-
mas 3.9, 3.12, and 3.13 show that

ΦjJn' (*) ^
0 on Bj,{\bj),

on

Again, 5 = gj on Xj \ BJs{\bj), and so

(3.51)
dλr

dFa < C.

Combining the integral estimates of Steps 1 to 3 then gives (a).
(b) The argument is the same, except that we now use the cutoff

function estimates \dψj/dpi\ < Cλj1'2, \ddψj/dpi\ < CXJ1, J = /-,/,

and metric estimates \dgj/dpj\ < CNX , J > I.
Lastly, we have L2 estimates of the derivatives of A1 with respect to

λ/ and xj.
Proposition 3.27. Suppose I > 0. Then for sufficiently small λ0,

there is a constant C = C(g0, T) such that for any t eT,
(a) WdA/dXjW^x^ < C,
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(b) \\dA'/dPj\\LHXθtgo) < C.
Proof. (a) The connection one-forms over Xo having non-zero

derivatives with respect to λ/ are given by

A' = I/O over /o-'o o/^i jc lo,

over XI\BI.(Nf1λ1/2),

where A'j is the C°° connection over Xj, / > 0, defined by

\φjAj

o v e r t h e r e s ί o n s A;1 ° * * ° /71 W ) c X
over the complement of these regions in

It is convenient to consider the estimates over these different regions of
X separately.

Step 1. Estimate of df£ - fϊψ^A^/dλj. We have A' =
fo '" //_ Ψi- Ai_, which is supported on Uλ = /Q"1 O o ffj- (X}_) c Xo,
and therefore -^A' = fζ //_ •£jψi_AI_ on l^. Lemma 3.19 implies
that

fS-fL' dλr

We have σ\ίφι_Aί_ — lψι_σ*ιAi_, where the section σ/ is chosen so that
σ}Ai_ is in radial gauge, and so the pointwise estimates of Lemmas
3.1, 3.3, and Eq. (3.46) yield

\CXJ1/2

[0
on

Noting that g — gj_ on Xj_ \ 5/(6/), we obtain the integral bound

ix r #λ/ g
L dV9

9 <

and combining the preceding integral estimates gives || ̂ fj^Ί

OX1/2, completing Step 1.
Step 2. Estimate of <9/0* fϊψIAI/d\I. We denote A' =

/o ' *' fiΨiAi, which is supported on U2 = f'1 o - o fγ1{Xl

I) C Xo,
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and so -^A! = /0* //_ gf^/jψiAj on £/2 Repeated application of
Lemma 3.19 then gives the integral bound

/o /;_:

d\. <c\
L2(U2,g0)

0λ,

Recall that Eq. (3.9) implies ^-//^/Λ/ = — λ7 //
The curvature F(ψjAj) is supported on Xj \BIs(^bI), and

is supported on Bi^N^X1/2). Then,

o n

\φ*InirF(φjAr)\δl(x)<K-
2 ) 2 '\x\η

and since φ*IfjtrF('φIAI)(x) = Xj1φ*IntrF(φiAj)(x/λi), we obtain

0 if |x|

where i ί Ξ \\F{fφIAI)\\Loo^χIigi^ is bounded by a constant C indepen-
dent of λ7 by Lemma 3.9. But g = gu on S/dΛΓ/^y2) C X|'_,
and moreover, the metrics <7/_, ^/_, and <J/_ are equivalent over the
ball J?/(|iVj"1λy2), with constants depending at most on Xj. Thus, we
obtain the integral estimate

k dλ,
dVg < C\j,

com-and so, combining these bounds, we have H f̂j-̂ 'I
pleting Step 2.

Step 3. Estimate of df* • • • //i^/dλ/. We have A't =
//+••• / J ^ J ^ J over V3 = Λ;1

 O • • o / J 1 ^ ) C B'I+ C X,, with J > /.
We denote A' = /„• / i j and observe that gfj i ' = /• /;_ ^ffA'j
over U3 = U1 o • • • o /- 1 (V3) C Xo Thus,
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C B\.Note that dAjjdλi is supported on / / " 1 ( +

As r = yμd/dyμ with respect to y = ^ on X7 \ {xIs}, we have
/-^r = xμd/dxμ with respect to x = 0J 1 on J5}. If |y| < i?o on
J3}+, for some constant 0 < Ro < oo depending at most on £/, then
M < #oλj on fJl{B'I+). Thus, l / / " 1 ^ < i^λ 7 on Λ " 1 ^ ) and so
we have the pointwise bound

Therefore, with the aid of repeated applications of Lemma 3.19, we
find that

Jo rdA* <C
L2(U3,9o)

< com-and since \\F{A'j)\\L*ιx.jtβj) < C, this gives ||af7-4.'||i2(c/3tfo)

pleting Step 3. Combining the results from Steps 1 to 3 then yields
(a). For (b) we use the cutoff function estimate \dφj/dpi\ < CXJ1'2!,
J — /_,/. The vector field r is replaced by p = Ptίd/dyμ, with re-
spect to the coordinates y = φj^. Then, / ^ p = λipμd/dxμ with
respect to the coordinates x = φj1 and we have the vector field esti-
mate l/^pl < RoXi on fγι{Bl

I+). The required bound hence follows
by an argument similar to that of (a).

3.8. Derivatives with respect to bundle gluing parameters.
The purpose of this section is to obtain estimates for the derivatives
of the almost ASD connections A' and A1 with respect to the bundle
gluing parameters pi G Gl/, / > 0. These estimates may be extracted
from [7 (§7.2)] and we include them here for completeness.

Since we wish to differentiate a family of connections A'(pi) on a
family of G-bundles P(pi) with respect to the gluing parameters pj G
Gl/, we first pull this family back to an equivalent family on a fixed
bundle, say P(pi), as described in [7 (p. 296)]. Let pi G Gl be a given
gluing parameter; then points pi in a small neighbourhood of pi in Gl/
can be written in the form p = Pi exp(τ ), where v G Vj = adPi\Xla ~ fl.
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One regards the fibres of P/_ and P/ as being identified by pi and so
υ may be considered as a local section of both P/_ and P/, covariantly
constant with respect to the connections A'j_, A1.

We digress in order to construct a set of cutoff functions {7/} on X
such that ΣieiΊi ~ l These cutoffs will be needed here and again in
§5.1 for patching together certain integral operators over the Xj to give
an integral operator over X. Choose a bump function 7 E C 0 0 ^ 1 ) such
that 7(ί) = 1 if t > 2 and j(t) = 0 if t < \. Define a cutoff function

(3.52) 7 Λ (z) Ξ 7 ( | z | /λ 1 / 2 ) , z E R 4 .

Now define C°° cutoff functions 7/ on each summand Xj by setting

(3.53) 7/ = (Φ7sΎ(l ~ 7A,) Π t o + Γ T λ ^ on Xu

where the factor (^7S

1)*(1 — 7λf) is omitted when 7 = 0. Note that
7/ = 0 on the balls BIs{\\)/2) and £/+(§λ,{2) in XJm We extend 7/
to a C°° cutoff function on Xι by zero on these balls and by 1 on the
complement of the larger balls BIs(2λj 2) and BI+(2\\'*) in X7; then
extend by zero outside X" C X to give 7/ E C°°(X). By construction,
we have Σ / G χ7/ = 1 on X, with a slight abuse of notation. Indeed,
note that // maps the annulus Ω/(|λ/, 2λ/) around the point xj in Xj_
onto the annulus Ω/ s(|λ/, 2λj) around the south pole xIs in Xj. Thus,
fΪΊi+Ίi- = 1 on each annulus Ω/. Lastly, note that there is a constant
C, depending at most on the metric g0, such that

on ςij,ςιIt, ||d7/IUp(x/>β/) < Cλ2 / p~1 / 2,

(3.54)

for any 1 < p < 00. Define gauge transformations uj_ (v) on Aut P/_ \
and w/(i;) on AutP/|χj by setting

(3.55) " I
on Ω / s,

on X'j\ΩIt
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Note that uj has a natural extension to a gauge transformation of Pj

over all of Xj — equal to exp(-v) on BIs{Nγι\)/2), the ball enclosed

by the annulus Ω/5. Similarly for the gauge transformation uj_. After

identifying the bundles and base manifolds over Ω = Ω7 = Ω/5, we

have uI_uJ1 = exp((7/_ + 7/)v) = exp(v). Hence, relative to the flat

connections A'J^A'J, the gauge transformations uj differ by a constant

bundle automorphism over Ω, and so their action on the connection

A'(pi) is the same: uI_(A'(pI))\n — UJ(A'(PJ))\Q. Therefore, while the

automorphisms uj do not patch together to give a global automorphism

of P(pj), their actions on the connection A'(pi) do. Indeed, we can

define a connection A'(pj^υ) on P(βi) by

(3.56) A{pI,v) = <
[u7(A'(pi)) on X'j.

If pi = p/exp(υ), the connections A'(pi,υ) and A'(pi) are gauge equiv-
alent [7 (p. 296)]. Thus, as desired, we have an equivalent family of
connections A'(pi,v) on the fixed connected sum bundle P = P(pi)
Let Lj C Gl/ be a coordinate neighbourhood and suppose p/ G I/.
Then

(3.57) &DBQ —> Lj C Gl/, vι—> p/(v) = p7exp(v)

is a coordinate chart centred at p/, where i?0 is the unit ball in g, and
there is a C°° embedding

(3.58) 0 D S 0 —»• ^ i P , ϋ —^il'ίp/.t;).

It remains to consider the derivative of the family A'(p/, υ) with respect

to v.

Recall that if u = w(θ) is a one-parameter family of gauge trans-

formations, B is a fixed connection, and l?u(s) is the induced one-

parameter family of gauge transformed connections, then dBu/ds(0) =

d β u ^ - ^ O ) ) , where i^άfO) G Ω°(X,adP). Although the tij_,tx/

are not globally defined gauge transformations, this differentiation for-

mula still applies to the one-parameter families uj_ (s) = Uj_ (sv) and

uj(s) = uι(sυ). Therefore, we have

ί
dA{Ίiv) onXjΠΩ,

-dA,(Ίl_v) onXjΠΩ,

0 on X \ Ω.



508 PAUL M. N. FEEHAN

This leads to the following estimate for the derivative of the family

J4 ;(PJ) with respect to the gluing parameters pι\ a related and more

general estimate is given by Lemma 7.2.49 in [7].

Proposition 3.28. Let 2 < p < 4 and suppose that 4 < q < oo is

determined by 1/A + l/q = 1/p. Then there is a constant c = c(go,p, T)

such that

(a) c\v\\]lp-1 < \\dA'/dv\\Lq{x,9) < c-'\v\X2/p-\

(b) c\v\X2/p-1/2 < \\dA'/dυ\\LΠx,9) < c~ι\v\>?iIP~l/2•
Proof. Note that 7/_ +7/ = 1 on Ω and so dA> (jiv) = —d^ (7/_ v) on

Ω. Moreover, d^i^iv) = dηi®v on Ω, and so we have ||dyi'(7/^)IUg(A',0)
= \v\ ||d7/||i,9(x,0) Prom Eq. (3.54) there is a constant c > 0 indepen-
dent of λ/ such that

ψμ2/«-1 / 2 ΘA'\

dv

-1/2

\Li(Xtg)

since \\dA'ldv\\Lqi<x,g) = ||rfΛ'(7/υ)IUί(xlrt Then (a) follows since 2/q-
1/2 = 2/p - 1, and likewise for (b).

Using the conformal maps / j , we pull back the family A' = A'(p/, υ)
on the fixed bundle P over X to a family A'(p^ v) on the fixed bundle
P over XQ.

Proposition 3.29. If 2 < p < 4, there is a constant C = C(go,p, T)
such that for any t G T, \\dA'/dυ\\LP(Xθtgo) < CX2/P~1/2.

Proof. Since dA'/dυ = 0 outside the annulus Ω / s C X\, Proposi-
tion 3.28 gives

dA' < c\2/p-1/2.
dv L'(X'Itgi)

But A' = f
3.19 yields

on U = *" 1 - - *~ιo o fj (Xj) C Xo, and so Lemma

/o /;
dA'

dv
<C

dA1

dv

Combining these estimates gives the desired bound.

3.9. Derivatives with respect to lower moduli. In this section
we obtain Lp estimates for the derivatives of the connections A1, A\

and the self-dual curvature F+>9(A') with respect to the 'lower mod-

uli parameters' ί7. The bundle P 7 carrying the family of connections
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{Ai(tI)}tieτAi can be assumed to be fixed with respect to the parame-
ters t e TAl since the space TAj — an open ball in Hλ

Ai centred at 0 —
is contractible. However, the local sections σ/+(£/) are defined by the
connections ^4/(ίj) (together a choice of point in Pj\Xl ) and will vary
with ΐ/. Thus, the bundle gluing maps for the connected sum bundle
P, defined by σI+ (tj) \-+ σI+sβI+ (tj) (suppressing the identification map
// : Ω/+ —>- ί?/+β), will in general vary with tr. We may suppose that
the remaining parameters are fixed and thus we obtain a family of con-
nections A'(ti) on a family of bundles P(ί/). The difficulty, of course,
is that unless we have a family of connections defined on a fixed bundle,
we cannot define the derivative dA1 /dtj. Problems such as these are
discussed in [4 (p. 423)]. For our purposes, we note the bundles are
all isomorphic and as TAl is contractible, the connections Af(tj) could
be pulled back by bundle isomorphisms hj E Hom(P(0),P(£j)) to an
equivalent family hjA'(tj) on the fixed bundle P(0), and then we could
define

Since any two such families hj{tj) of bundle isomorphisms would differ
by a family of automorphisms of the fixed bundle P(0), by using (3.60),
dA1 Idti would give a well-defined tangent vector to Bp^ at [A'(tj)].
Naturally, the analogous remarks apply to the family of connections
i'(£j) on the bundles Pfa).

In our case, a family of isomorphisms hj(tj) : Pj(0) —>• Pj(tj) may be
described quite explicitly, in a manner similar to that of §3.8, and these
will give a gauge equivalent family of connections /ι}A'(£j), h}A'(tj) on
fixed bundles P(0), P(0) respectively, although just as in §3.8, the iso-
morphisms hj(tr) will not patch together to give a global isomorphism
of P(0) with P(ί7) or P(0) with JP(tj). Nonetheless Eq. (3.60) still
makes sense and this allows us to estimate the length of the tangent
vector dA'/dtj in terms of derivatives of the local connection one-forms,
as desired. Let hj(tj) : P/(0) -> Pi{ti) be a family of bundle isomor-
phisms represented locally by σ/+(0) ι-> σI+(t)θI+(tj). Then /ι}Aj(£j)
is an equivalent family on the fixed bundle P/(0), with
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Note that while the local connection one-forms σ/+(£/)M/(ίj) are in
radial gauge, this will not in general be the case for the one-forms
0j+(O)*Λ/(tj)*<A/(t/). We next consider the variation in the bundle
gluing maps pi+(ti) induced by the variation in σI+(tj) with tj. Over
X/, we replace θI+(tj) above by 0/+(tj)exp(7/+?;/(£/)) and over XI+s

define hi(ti) by right multiplication with exp(7/?;/(ί/)). Recalling the
notation of §3.8, vι : TAl -> fl is a smooth map with v(0) — 0 defined
(for small enough TAl) by the identity pi+(ti) = pi+(0) exp(t>/(£/)).
Lastly, for J ^ /,/+, we set /ij(ί/) = 1. Then, for the remainder of
this article, we require that the derivatives dA'/dti be defined by (3.60).

This understood, we obtain the following estimates for the deriva-
tives with respect to the parameters tj of the connections A' and A1 and
for the g-self-dual curvature F+i9(A'). The proofs are straightforward,
following the pattern in §3.7, and so are omitted.

Proposition 3.30. Let 1 < p < oo. For sufficiently small b0, there
exists a constant C = C(go->p, T) such that for any t E T,
(a) WdA'/dtj - 0j4//0ί/||LPW' fP j) < Cλ)lp,

(b) WdA'/dt^LP^g) < C.
Proposition 3.31. Let 1 < p < oo. For sufficiently small b0, there

is a constant C = C(go,p, T) such that for any t G T,

Proposition 3.32. For sufficiently small b0, there is a constant
C = C{go,N,T) such that for any t G T, \\dAι/dhW^^^ < C.

Proof. Let U = fo1 ff1 (X'i) C Xo and note that -^A! =
^7/0 ""' fϊΨiAi, which is equal to /0* fj ^jφiAi on U and is zero
elsewhere. Now

Jo " ' Ji
dti

<C\
L2(U,go) dtj

by Lemma 3.19 and so the result follows.
3.10. Differentials of the approximate gluing maps. We

close this Chapter by summarising the results of the preceding sections
and record our bounds for the differentials of the approximate gluing
m a p s ^ (which follow by combining Propositions 3.25, 3.30, and 3.28))
and J' (which follow by combining Propositions 3.27, 3.32, and 3.29).
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Theorem 3.33. Let J' : T -> B*Xk be the approximate gluing map

11-> [A'(t)]. Assume 67 = 4/V,λ7

/2 for all I. Then for sufficiently small

λ0 and any t e T, there is a constant C = C(go,T) such that the

following estimates hold.

(a) \\DJ'(d/dtf)\\L2(x,g)<C,

(b) WDJ'id/dp^h^^Cλ1/2,

(c) \\DJ'(d/dx>ί)\\LHx,9)<C,

(d) WDJ'id/dXM^x^^C.

Theorem 3.34. Let J' : T—> Bχo k be the approximate gluing map

t f-> [Ά'(t)]. Let bj = 47V/λ}/2 for all I. Then for sufficiently small λ0

and any t £T, there is a constant C = C(g0, T) such that the following

estimates hold.

(a) \\DJ'(d/dtJ)\\LHXo,go)<C,

(b) \\DJ {dld(ή)\\L*(Xΰ,gΰ)<C\)/2,

(c) \\DJ'(d/dxϊ)\\L*(xo,9o)<C,

4. Bubble tree compactification of the moduli space
of anti-self-dual connections

In order to describe the ends of the moduli space Mχo,k(go) one cus-
tomarily appeals to the Uhlenbeck compactification M^o k{go)> This al-
lows one to give quite explicit descriptions of the parts of the ends away
from the diagonals in the symmetric products MχOik(9o) x sι(X0) ap-
pearing in the compactification, as for example in [3 (§V)] and [7 (§8.2)].
These examples consider ideal boundary points of the form
(A0,Xι,... ,£/), where the Xi are distinct points with multiplicity 1,
and Ao is a go-anti-self-dual connection over Xo. Open neighbour-
hoods of (A0,x1,... ,xι) in MXok(go) are then constructed by gluing
standard one-instantons onto Ao.

In order to construct open neighbourhoods of ideal boundary points
corresponding to the diagonals of MXQ k(go) we must employ the iter-
ated gluing construction of Chapters 3 and 5. This strategy is men-
tioned briefly in [7 (§8.2)]. The construction gives a homeomorphism
J : T°/Γ —> V, where V is an open neighbourhood of a boundary point
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in M^o k(go) — a 'gluing neighbourhood'. In order to use this proce-
dure to describe the ends of M^oyk(go), we need to show that MXok(go)
is covered by finitely many such gluing neighborhoods. In particular,
we need to show that any point in Mχok(go) which is sufficiently close
to the ideal boundary (with respect to the Uhlenbeck topology) lies in
the image of a gluing map J. This is accomplished in two steps:

Step 1. We show that any sequence {Aa} of (fo-anti-self-dual connec-
tions over Xo converging weakly to a limit (Ao, xx,..., xmo) determines
a sequence of metrics {ga} and a sequence {Aa} of gα-anti-self-dual con-
nections over a connected sum X = #IezX'Ia which converges strongly
to a limit (Aj)Iez, in the sense of [7 (§7.3)]. Here, (X,ga) is confor-
mally equivalent to (Xo,5o) for all α, and is defined exactly as in §3.3
and §3.5.

Step 2. We apply an analogue of Theorem 7.3.2 [7] to show that the
new sequence {Aa} is JD^-convergent, q > 4, in the sense of [7 (§7.3)].
The appropriate analogue of Theorem 7.2.62 [7] then shows that the
points [Aa] E Mx,k{ga) lie in the image of some J for sufficiently large
a. Consequently, the points [Aa] G MXθik(gQ) lie in the image of the
corresponding map J, for some parameter space T°/Γ. The choice of
parameter space T°/Γ is essentially determined by (A/)/6χ, which we
call the strong or bubble tree limit of the sequence {Aa}. . In this
Chapter we discuss Step 1 and describe the bubble tree compactifi-
cation of the moduli space of anti-self-dual SU(2) connections — the
extension to the general case of compact, semi-simple Lie groups being
straightforward. Step 2 is discussed in §§5.1 and 5.2 after the necessary
analytical framework has been established. Throughout this Chapter,
we suppose only that Xo is a closed, oriented, simply-connected C°°
four-manifold, g0 is a C°° metric, and G = SU(2).

4.1. Uhlenbeck compactification. We recall the definition of
the Uhlenbeck compactification [7] and describe some of the related
convergence results we will need for our description of the bubble tree
compactification.

Definition 4.1. An Uhlenbeck ideal go-anti-self-dual connection on
a G bundle P over Xo with c2(P) = k > 0 is a pair (Λ0,Z0), where
Ao is a <70-anti-self-dual connection on a G bundle Po over Xo with
02(^0) = ko>0 and Zo = {xi}^ is a (possibly empty) set of points in
Xo with multiplicities kt > 1, for i = 1,..., ra0, such that Σ™^ k{ = k.
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The curvature density of (Ao, ZQ) is defined to be the Borel measure

(4.1) μ(Ao,Zo) = \F(Ao)\2

go+8ir2δZo,

where δz0 = ΣH°i ^z»> s o ^haA ̂ e total mass of μ(A0,Z0) is 8π2k.
Setting / = kx H h km and repeating points according to their mul-
tiplicity, one obtains an element (xu . . . , xt) of the symmetric product

sι(Xo).
Definition 4.2. Let {^4α}^i, be a sequence of <70-anti-self-dual con-

nections on a G bundle P over Xo with c2(P) = k > 0 and let (Ao, Zo)
be an ideal <70-

anti-self-dual connection on P. Then the sequence {Aa}
converges weakly to (Ao, Zo) if the following hold:
(a) The sequence {μα}£Li converges to μ(A0, Zo) in the weak-* topol-

ogy on measures.

(b) There is a sequence of C°° bundle maps j a : Po|xo\^o """• P\xo\zo

such that 7*^4α converges in C°° on compact subsets of Xo \ Zo

to the connection Ao. Equivalently, require that for any integer
n > 1, there is a sequence of L2

nJtl bundle maps j a such that
7* Aa converges in L2

nλoc on Xo \ Zo to Ao.
Via the natural extension of Definition 4.2 to sequences of ideal con-

nections, the set of all Uhlenbeck ideal go-anti-self-dual connections of
fixed second Chern class &,

IMXo,k(go) = Π(MXo,*-ι(ίto) x sι(Xo)),
1=0

is endowed with a metrisable topology. Let M^-o jA.(ffo) be the closure
of MXo,k(go) in IMXθtk(go). According to [7 (Theorem 4.4.4)], any
infinite sequence in MχQ^{go) has a weakly convergent subsequence
with limit point in MXo k(g0), and in particular, the latter space is
compact [7 (Theorem 4.4.3)].

For our description of the bubble tree compactification, we will need
the following minor extension of the convergence result in Theorem
4.4.4 [7] and its cousin, Proposition 9.4.2 [7], which allows for a sequence
of metrics {ga} converging to g0 in C°°. The proof employs standard
arguments well described in [7 (§4.4)] and is left to the reader.

Proposition 4.3. Let {Ua}™^ be an exhaustion of the punctured
manifold Xo \ {p} by an increasing sequence {Ua}^=1 of precompact
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open sets, so that Uλ <ξ U2 m • • <E XO \ {p} and U^=1Ua = Xo \ {p}.

Let {ga}™=1 be a sequence of metrics on the subsets Ua converging in

Cr (r > 3) on compact subsets of Xo \ {p} to a Cr metric g0 on Xo>

Let P be a G bundle over Xo \ {p} and let {Aa}^=1 be a sequence

of ga-anti-self-dual connections on the restrictions P\ua- If there is a

constant M < oo such that

L \F{Aa)\]adVga <M for alia,

then there is a set of points Zo = {a^}^ C XQ and a go-anti-self-
dual connection Ao on a G bundle Po over Xo such that a subsequence
{A*}J£Li converges weakly to (A0,ZQ).

The mass of the Uhlenbeck limit (A0,Z0) in Proposition 4.3 is 8π2

times an integer and may be computed from the weakly convergent
sequence {Aa}™=1 by

(4.2) lim lim / \F{Aa)\]adV9a,
n—>oo a—>oo Jy y a

where {V^j^j is any exhaustion of Xo \ {p} by an increasing sequence
of precompact open subsets.

4.2. Conformal blow-ups. Given a sequence of #o-anti-self-dual
connections on a G bundle P over Xo with curvature densities concen-
trating near a set of 'singular points' in Xo?

 w e define associated se-
quences of mass centres and scales. In a manner analogous to Chapter
3, we then obtain sequences of 'conformal blow-up maps' fIa (defined
exactly as in §3.3) which resolve these singularities in a sense that will
be made precise below and in §4.3. As will become evident, the pro-
cess of applying conformal blow-ups may need to be iterated before the
singularities are completely 'resolved'.

Let us commence by defining the first level conformal blow-ups. Sup-
pose {A*}£Li ι s a sequence of gΌ-anti-self-dual connections over Xo

with weak limit (Ao, Zo). Let us consider the behaviour of the sequence
{^α}^=i in MXθik(gQ) near the singular set Zo = {xi}™?λ in more detail.
If the point Xι has multiplicity fcj, then

JSs JSs,
B(Xi,r)

/
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Choose constants do,ro such that

(4.4) 0 < dQ < m i n d i s t ^ ^ , ^ ) , 0 < r0 < -mi
iφj 4

We next define mass centres and scales of <70-anti-self-dual connections
restricted to the fixed ball B(xiir0) C Xo by appropriately modifying
the previous definitions of mass centres and scales of §3.2 for ̂ -anti-
self-dual connections over §4. First, note that

(4.5) Um

B(xitro)

Choose a frame v{ in FXO\X. and let q = φ~l be the associated geodesic
normal coordinate chart. For each i, define a sequence of mass centres
{χia}%=i i n B(χi,ro) by xia ΞΞ φXi{qia), where qia = Centre[A,|β ( a ;. ) r o )]

G M4 and

Centre[i4 α | B ( a ; . > r o )]

k J
Define a sequence of scales {Ka}%Li m (0?°°) by setting
λia = Scale[Aα|β(a..ϊΓ0)], where

Sc<ύe2[Aa\B{xi)ro)]

1 B(Xi,ro)

As in §3.2., Eq. (4.7) leads to a Tchebychev inequality:

J (\F(Aa)\l-\F(Ao)\l)dVgo

V* °) B(xi,ro)\B(xia,R\ia)

< 8π2kiR~2, R > 1.

Hence, if R » 1 and a is sufficiently large, the balls B(xia,R\ia)
contain most of the 8π 2 ^ quantity of Aα-energy bubbling off at xia.

Remark 4.4. Other choices of scale function are possible. For
example, we might have chosen λia to be the radius of the ball centred
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at xioc containing Aα-energy 8π2(ki — | ) . A cutoff function is required
in order to regularise this definition.

Thus, we obtain a sequence of scales {Ka}%Li associated to the se-
quences of mass centres {xia}™=ι and connections {^α}£Li More-
over, Eq. (4.3) implies that the sequence xia converges to Xι and that
the sequence of scales \ i a converges to zero. Choose a sequence of
frames via 6 FX0\Xia converging to the frame Vi G FX0\Xi and let
φ~*a be the corresponding geodesic normal coordinate charts. Let
fXia = φin o cXia o φ~^ where cXia is the dilation of R4 given by
x ι-> x/λia, and let giθί be the approximately round metric on X'ia
defined as in §3.5. Let Pia = (f~})*P be the induced G bundle over
X'ia and Aia = (/~*)*Aa be the induced ^α-anti-self-dual connection
on Pia. We call the maps fXia conformal blow-ups.

We obtain a sequence of open subsets X'ia which exhaust Xι \ {xiS} >
a sequence of metrics {fficj£Li, and a sequence of giα-anti-self-dual
connections {Aiθί}™=ι over the X'ia. The sequence {gia}^Lι converges
in C°° on compact subsets of X{ \ {xiS} to the standard round metric
Qi on Xi = S4. Let {ga}™=1 be the sequence of C°° metrics, defined as
in §3.5, on the connected sum X = #™?0X

f

ia, defined as in §3.3, and let
{Aa}™=1 be the induced sequence of ^α-anti-self-dual connections over
X. We call the connected sums (X, ga) conformal blow-ups of (X0,g0).

There is a uniform upper bound on the L2 norms \\F{Aia)\\L2(χ>ioί^ia)
since

2 Ay
9oaV9o

(4.9) j χ \F(Aia)\2.ia dV-9ia = jB χ \F(Aa)\

< 8π2(ki + 1/2),

for sufficiently large a by Eq. (4.3), while Eqs. (4.5) and (4.8) give a
lower bound

(4.10)

ki - 1/2).

Proposition 4.3 provides a subsequence {Aia}
(^z=1 which converges weak-

ly to an ideal granti-self-dual connection (Ai? Z{) over Xi, where Zi =
{xij}™!- The energy bound of Eq. (4.8) ensures that Zi C Xi \ {xiS}-
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Let μι = μ(Ai, Zi) be the associated singular measure on X^ and note
that its mass may be computed by

dμi= lim lim / \F(Aia)\ladV~9ia
R^>™ a->°° JB(xin ,Λ) 9

Since this must be 8π2 times an integer, Eqs. (4.9) and (4.10) imply
that μι has mass δπ2/^, where k{ = Σ™ΐokij, A{ is a granti-self-dual
connection on a bundle Pi over X{ with c2{Pi) = ki0, and each point
Xij has multiplicity k^.

Remark 4.5. It is not strictly necessary that we construct a se-
quence of honest metrics ga over the connected sums X = H^QX1^

above; a sequence of conformal structures [ga] constructed as in §3.5
would suffice and this would eliminate the need for the choice of con-
formal factors over the necks. In any case, the actual limits obtained
are independent of such choices.

The above conformal blow-up construction produces a sequence of
gXia -anti-self-dual connections AXia on increasing subsets X'ia of the
four-sphere Xι with weak ^-anti-self-dual limit (Ai,Zi). With the in-
verse process of gluing in mind, we describe a modified choice of con-
formal blow-ups which yield centred limits (Ai,Zi). First, a technical
lemma concerning the variation of geodesic normal coordinate charts
with their coordinate centres is required. The proof uses Taylor's the-
orem and is left to the reader.

L e m m a 4.6. Let Xo be a closed C°° n-manifold with metric g0 and
injectiυity radius ρ0. Let x0 G X and x — exp^1 be the geodesic normal
coordinate chart on B(xo,ρo) defined by a choice of frame v0 G FX\Xo.
Suppose Xι G B(x0, ρo/4) and p = exp~^(xι), so that dist^rrijXo) =
\p\. We now define two coordinate charts on B(xι, QQ/2):

(a) Let Vι G FX\Xl be the frame obtained by parallel translating
v0 along the geodesic joining x0 to xl7 and let w = exp^1 on
B(xuβ0/2).

(b) Let τp be the translation on Rn given by ̂ 4 q— p, and let w = rpo

exp^1 on B(xι,Qo/2). Then the coordinates w converge to w in

C°° °onB(x0,ρ0/4) asp->0: \wμ-wμ\ = 0(\w\\p\), \dwμ/dwa-

δ%\ = O(p), and for all m>2, dmwμ/dwai dwam = O(p).

Next, we define the mass centre and scale of a positive Borel measure
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μ on R4 by

(4.11) p = Centre[μ] = / xdμ,

X2 = Scale2[μ]= ί \x - p\2 dμ.
JR4

Let Θ be the product connection over X{. The proof of the follow-
ing lemma describes how to choose conformal blow-ups which produce
centred limits.

L e m m a 4.7. Let {Aa} be a sequence of g0-anti-self-dual connec-
tions over Xo with weak limit (A0,Z0), where Zo = {xi}^ is non-
empty. Choose r0 as in Eq. (4.4). Then for each Xi E Zo, the sequence
{Aa} determines a sequence of points {wia} converging to xiy a se-
quence of frames via E FX0\Wia converging to a frame Vι E FX0\Xi,
and a sequence of scales {nia} converging to zero such that the fol-
lowing holds. Fix N > 4, let fWia be the corresponding sequences of
conformal blow-ups, and let AWia be the induced sequence of gWia-anti-
self-dual connections with weak g^anti-self-dual limit {A^Z^) over the
four-sphere Xi. The limit (A^Zi) has the following properties:

(a) If Ai φ Θ, then Ai is centred;

(b) If Ai = Θ, then the corresponding singular measure fii is centred.

Proof, (a) We begin by defining, exactly as before, a sequence of

points {xia} converging to x^ a sequence of frames via E FX0\Xia

converging to a frame v{ E FX0\Xi, and a sequence of scales {λ^} con-

verging to zero. Let fXia be the corresponding sequences of conformal

blow-ups and let AXia be the induced sequence of gXia -anti-self-dual

connections with weak <7ranti-self-dual limit (A{1 Z{) over Xia Suppose

Center [Ai] = Pi and Scale [Ai] = v{.

C a s e 1. Zi is empty. Recall that fXia = φin o cXia o φ~]^ AXia =

( / " ! _ ) M α , a n d 9χia = KaifxiiYgo- Define hi = φin o cVi o τPi o φ^ and

set fWia =hiθ fXia. Then

fwia = Φin ° CχiaU. O Tp.\ia O φ~*a = φin O CKia O φ~*a ,

where wia = φXia(piλia), κ>ia = λ i α ^ , and φWia = φXia o τ~liQ. Thus,

fwia provides a diffeomorphism from the small ball B(wiθί,Nκ\£) in

Xo to the open subset B(xin,Nκ~a ) of Xi. The sequence of points

{wia} converges to x{ and the sequence of scales {nia} converges to
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zero. As in §3.5, define a sequence of metrics on the increasing subsets

B{xin,Nn~a/2) by gWia = ^Ta^iUwLYdo- Then gWia converges to the

standard metric g{ in C°° on compact subsets of Xi \ {xis}. Define a se-

quence of gWia-anti-self-dual connections over the balls B(xin,Nκ~[^2)

by AWia = UwLYAcx, and observe that ΛWia = (h^YA^. The se-

quence {AWia} converges to the centred connection (h^YAi in C°° on

compact subsets of X{ \ {xiS}.

It remains to replace the chart w = φ~^a on B(wia,ρ0/2) by a

geodesic normal coordinate chart w = φ~la Choose a frame υ'ia G

FX0\Wia by parallel translating the frame υia G FX0\Xia along the

geodesic connecting xia and wicn noting that distgo(xia,Wia) = |pi |λ i α.

Thus, as λ -» oo, the coordinate chart w converges in C°° on B(xu ρ/4)

to the geodesic normal coordinate chart w in the sense of Lemma 4.6.

Define a new sequence of conformal blow-up maps by setting fWia =

Φin ° cKia o φΰ)Λ>> and define corresponding sequences of connections

and metrics on the balls B(xin,NκJ^2) by AWia = (f~*a)*Aa and

gWia = κϊahl(f~*a)*g0. Lemma 4.6 implies that the sequences {gWiQ}

and {A^.^} converge in C°° on compact subsets of Xi \ {xiS} to the

metric <ft and centred ^-anti-self-dual connection A{ = {hJxγAi, This

completes the proof of (a) in Case 1.

Case 2. Zi is non-empty. The proof is similar to that of Case 1.

Let Zi = h~1(Zi). Then the sequences {A^^} and {AWia} converge in

C°° on compact subsets of Xi \ (Zi U {xiS}) to the centred connection

(b) One sets Centre[μ.;] = p i ? Scale[μi] = i/i? and essentially repeats

the proof of Part (a) for the sequence of measures μXia = |.F(^4Xiα)|^o.

Remark 4.8. In the sequel, we require that the conformal blow-up

maps be chosen as in Lemma 4.7. However, to conserve notation, we

will relabel the points wia and scales κia by xia and λ i α, respectively,

and the limit (λu Z{) by (Au Zi).

A technical point that we have not addressed above is that, just as

in [17], the weak limit of the sequence {Aiα] apparently depends on

certain choices of parameters in the conformal blow-up construction:

(1) Neck width parameter N. This was only included in this Chapter

for the sake of consistency with the gluing construction of Chapters 3

and 5: we could just as well have set N = 2, say.

(2) Radius r 0 . Following [17], the dependency is removed by letting
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r0 —ϊ 0. The conformal blow-up process gives a sequence of points
{xia{r0)}, scales {Xia{r0)}, blow-up maps {/* iα(r0)}, metrics {gia(ro)}>
and connections {Aia(r0)}. The sequence of connections {Aia(r0)} con-
verges to an ideal gi-anti-self-dual limit (A i(ro),2'i(ro)), for any fixed
r 0 > 0. We now let r 0 -> 0 and by a standard diagonal argument,
we obtain a weakly convergent subsequence {Aia(r0)} with weak limit
{AuZi), say.

(3) Frames via and Vi. The construction is SO(4) equivariant: Ro-
tating the frames via G FX\Xia and Vι G FXX. by elements of SO(4)
induces an SO {A) action on the connections Aia and Aι as described
in §3.2.

There is one final issue which will be important in our later discus-
sion of alternative modes of convergence for sequences of anti-self-dual
connections: We must exclude the possibilty that curvature is lost over
the necks Ω̂  arising in the conformal blow-up process described above.
Of course, the curvature can only bubble off with masses equal to an
integer multiple of 8π2, so it suffices to show that we can choose the
neck parameters to ensure that the curvature masses over the necks
are strictly less than 8π2. So, consider again the sequence {Aa}™=1 of
go-anti-self-dual connections over Xo with weak limit (A0,Z0), where
Zo = {xi}™?n and let {Aia}

(^L1 be the corresponding sequences of gia-
anti-self-dual connections over X'ia having weak limits ( ^ Z ; ) , where
%i = {^ijY^Li- Let {λia}%Li be the sequence of scales associated to
the sequence of connections { A c J ^ and the singular point Xi G Zo

Given this situation, standard arguments yield the following curvature
estimates near xf.

L e m m a 4.9. Given ε > 0, there exist positive constants RQ, rλ, and
a0 with the following significance. For large enough Ro, small enough
ri and large enough α 0 , then RoX{a < r\ for any a > α 0 and the
following hold,
(a) \\\F(Aia)\\lHB{xM§ia) - 8π%\ < ε2,

(b)

(c)

(d) \\F{Aa)\\L2(ςι(Xi,RaXia>Tl)tgo) < ε.

Thus, we have the following curvature estimate which ensures that

in the limit there is no 'curvature loss' over the necks Ω,. (In particular,

if Aia converges weakly to (A{, Zi), then the singular set Z» C Xi does
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not contain the south pole xis.)
Corollary 4.10. Given ε > 0 and N > 4, there is an a0 > 0

with the following significance. If Ωia = Vί(xia^N~ι>^^N>^l^) and,
B'ia = B(xia,NXil ), then for any a > α 0 , we have
(a) \\F(Aa)\\LHΩia,go) <ε, and

(b) HlFμjlll.^^-δπ^Kε.
Lastly, we note that the conformal blow-up process may of course

be iterated if the singular sets Z{ are non-empty. In the next section
we show that after repeating the conformal blow-up process at most k
times, we obtain a sequence of pα-anti-self-dual connections {Aa} which
is strongly convergent. Indeed, given the weakly convergent sequence
{Aia}™=1 over the X'ia near a point x^ with multiplicity k{j in the
singular set Z; C X^ the second-level process differs from the first-
level only in minor technical details: We define sequences of centres
Xijot — Φχij(Qίja) converging to Xij and scales λija converging to zero,
now using the metrics gia and a coordinate chart φXi. on Xi given by
φXij = Φin ° τ~} where φin(Qij) = Xij- The blow-up maps are defined
using coordinate charts on Xi given by φXija — φin o τ~ja and setting
fχija — Φijn ° c\ija o φ~}.a. We then proceed exactly as before and
similarly for all higher-level blow-ups.

4.3. Bubble tree compactification. By analogy with the ar-
guments of [23 (§5)] and [17], we define a bubble tree compactification
for the moduli space MχOik(go) of anti-self-dual connections. First, we
need an appropriate notion of an 4ideal connection':

Definition 4.11. A bubble tree ideal g0-anti-self-dual connection A
of second Chern class k over Xo is determined by the following data.
(a) An oriented tree 1 with a finite set of vertices {/}, including

a base vertex 0, and a set of edges {(/_,/)}. Each vertex / is
labelled with an integer kr > 0 such that:

e
(ii) if I > 0 is a terminal vertex, then kj > 0,

(iii) there are at most k terminal vertices, excluding

the base vertex.

(b) A (2m — l)-tuple (A/,α;/)/G2, where m is the number of vertices
in I.

(c) If / = 0, then Ao is a yO"anti-self-dual connection on a G bundle
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Po over Xo with c2(P0) = k0 > 0.

(d) If / > 0, then

(i) Aj is either the product connection Θ or a centred
<7/-anti-self-dual connection on a G bundle P/ over the
sphere Xj = § 4 with c2(P/) = fc/, where gj is the stan-
dard round metric,

(ii) xι is a point in Xo if /_ = 0 and a point in
Xi_\{xis}ifI->0.

(e) If / > 0 and Aj = Θ, then there are at least 2 outgoing edges
emanating from that vertex.

Definition 4.11 should be compared with the construction of ap-
proximately anti-self-dual connections in §3.3. The ideal connection
(Ai,xi)iez is often written as {Aj)Ieχ. Heuristically, we may view an
ideal go-anti-self-dual connection A = (Aj)jeχ as a 'connection' over
the join V/GjX/, where each sphere X/ is attached to the lower level
Xj_ by identifying the south pole xIs with the point Xj G Xi_. Let
Zj_ C Xj_ denote the set of 'attachment points' Xj in Xo, if /_ = 0,
or points xj in X/_\{zjs}, if /_ > 0. Let m/ be the number of points
in Zj, i.e., the number of outgoing edges emanating from vertex /.

Second, we need an appropriate notion of convergence. Let X =
# / G J ^ / be the connected sum defined in §3.3 by a set of scales {λ/α}jGχ,
with λα -> 0 as a ->• oc, and a fixed neck parameter N. Similarly, if
{ga} is the corresponding sequence of C°° metrics on X defined in §3.5,
then ga converges to gι in C°° on compact subsets of X/\(Z/ U {xis})
for each / > 0. As in [7 (§7.3.1)], we consider the following modes of
convergence for sequences of anti-self-dual connections over X.

Definition 4.12. Let {^4α}^i be a sequence of gα-anti-self-dual
connections on a fixed bundle P with c2(P) = k over the connected
sum X = #/€z-X>.
(a) Let Y e sk(X) be a multiset in U/GχX/ \ (ZI U {xis}). The

sequence {Aa} converges weakly to ((^4/,rc/)/€2:,y), if the gauge
equivalence classes [Aa] converge in C°° to ([^4/])/6χ over compact
subsets of UieχXI\(ZIU{xIs}UY), and if the curvature densities
converge, then
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over compact subsets of U/GjX/ \ {Zι U {xis})-

(b) The sequence {Aa} converges strongly to the limit (Aj,xj)Ieχ if
it converges weakly to (AΓ 3 £/)/GZ (with no singular set Y) and
Σieτc2(Pi) — C2(P)> Here, the Aj are ^/-anti-self-dual connec-
tions on G bundles Pj over Xj with c2(Pi) = kj.

We let BMχo^(go) denote the set bubble tree ideal go-&nti-self-dual
connection over Xo of total second Chern class k. Thus, each point
of BMχo^k(go) is represented by a (2m — l)-tuple (Λ/,x/)/€i, with m
being the total number of vertices of the tree 1.

Definition 4.13. We say that a sequence {Aa}™=1 of #0-a<nti-self-
dual connections on a G bundle P over Xo with c2(P) = k converges
strongly to a bubble tree ideal go-anti-self-dual connection (x/,A/)/Gχ
in BMχo,k(go) if there exist sequences of conformal blow-ups {fia}iej
with the following property. Let {ga} be the induced sequence of C°°
metrics in the conformal class [g0] on the connected sum X = #/GχXj,
and let {Aa} denote the induced sequence of gα-anti-self-dual connec-
tions over X. Then we require that the sequence of metrics {ga} con-
verges in C°° on compact sets of Xj \ (Zj U {xis}) to the metric #/,
/ > 0, and that the sequence of connections {Aa} converges strongly
to the ideal ^0-anti-self-dual connection (^4/,^/)/€j.

This definition of convergence extends to the space of bubble tree
ideal connections BMχo^(go), which is then endowed with a second
countable Haussdorf topology. Define the bubble tree compactificatίon
MTχo,k(9o) to be the closure of MXθik(go) in BMx^k(g0).

Theorem 4.14 The space M^oyk{go) is compact.
The result follows from the special case below.
Theorem 4.15. Any infinite sequence in MXo,k(go) has a strongly

convergent subsequence with limit point in MXok(go).
Proof. The argument is similar to the proof of Proposition 5.3 in

[23]. Fix a G bundle P over Xo with c2(P) = k > 0 and let {AQ}£°=1 be
a sequence of go-&nti-self-dual connections on P. The main point is to
repeatedly apply conformal blow-ups fIa until we obtain a sequence of
induced metrics ga over a connected sum X, with (X,ga) conformally
equivalent to (X0,g0), and a sequence of induced <?α-anti-self-dual con-
nections over X, denoted by {Aα}, which is strongly convergent. We
adopt the convention below that subsequences are immediately rela-
belled.
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Step 1. There is a subsequence {Aa} which converges weakly to
an ideal go-anti-self-dual connection (A0,Z0), with Zo = {xi}^ corre-
sponding to a point in the symmetric product sk(X0). If Zo is empty
then we are done, so assume that m0 > 1. Let ki be the multiplicity of
Xi and note that 0 < ki < k. For each i and large enough α, the con-
nection Aa determines a set of mass centers {xia}™?u with xia —> x^
and a set of scales {λ }̂™^ with Xia -> 0 as α -» oo. Fix a neck
width parameter N > 4, choose a sequence of frames via G FX0\Xia

converging to a frame v{ G FX0\xn and let {fia}^ι be the conformal
blow-up maps defined by these centres, frames, scales, and parameter
N. If X = #™?0X'ia, then {X,ga) is the conformal blow-up of (Xo,9o)
determined by the maps fia. Let P now denote the induced G bundle
over Jf, let Aa denote the induced gα-anti-self-dual connection over X,
and let Aia be the restriction of Λa to the open subset X'ia.

The sequence [Aia] has a weakly convergent subsequence, again de-
noted [Aia\, with weak limit (Ai,Zi), where Zi corresponds to a point
in ski(Xi). Corollary 4.10 implies that no mass is lost over the neck Ω;.
Hence, if Zi is empty for i — 1... ra^, then we have Σ ^ o ki = fc, the
sequence [Aia] converges strongly to [Ai], and we proceed to the Final
Step. Otherwise, Zi is non-empty for some i > 0 and we proceed to
Step 2.

Step 2. For some i > 0, Step 1 produces a non-empty singular set
Zi = {xij}™^. Let kjj be the multiplicity of the point x^, let c2(Ai) =
kio, and note that Σj= 0 ^ = ki > 0. Let μ̂  be the singular measure
associated with {A^Z^). We now consider two cases, depending on
whether or not A{ is the flat product connection Θ over X{.

Case (a). A{ — θ . Since Scale[μ;] = 1, the diameter of the set Zi
must be positive and so this case can only occur ΊίrΠi > 1. Let kij be
the multiplicity of the point Xij and note that as rrii > 1 we must have
maxj kij < k — 1.

Case (b). A{ φ θ . Therefore, ki0 = c2(Ai) > 0 and so we again
must have maxj k^ < k — 1, since Σj=o ^υ = ki < k.

For large enough α, the connection Aia determines a set of mass
centres {xija}^, with xija —> x^, and a set of scales {Kja}i^n with
λija —> 0 as a —> oo. Let {/ijα}j=i be the conformal blow-up maps
defined by these centres, scales, and parameter N. Let P denote the
induced G bundle over the new connected sum X = #S :

0

0 X ι

/

α #^ 1 X^ α ,
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let Aa denote the induced <7α-anti-self-dual connection over X, and let
{^.ijα} be the induced sequence of #α-anti-self-dual connections over
the open subsets X'ija of the spheres X^.

The sequence [Aija] has a weakly convergent subsequence with weak
limit (Aij, Zij) and no loss of mass over the necks Ωΐ:7 α . If Z^ is empty
for j = l , . . . , ra; , then we have Σ ^ 0 ^ j = ^ή the sequence [Aija]
converges strongly to [-Â  ], and the blow-up process terminates at the
vertices Aij. Otherwise, Z{j is non-empty for some j and we proceed
to Step 3.

Step 1. 3 < I < k. For some multi-index I of length \I\ — I — 1,
Step I — 1 produces a non-empty singular set Zj = {xjj}™^ contained
in the sphere Xj. The sequence [AIa] has a weak limit (Aj, Z 7 ), where
Zι corresponds to a point in skϊ[Xι). Let kjj be the multiplicity of the
point xij, let c2(4τ) = fc/0, and note that Σ™=o kjj = fc/ > 0. Let μj
be the singular measure associated with (A7, Zj).

Case (a). Aj = Θ. Since Scale[μ/] = 1, the diameter of the set Zj
must be positive. Hence, m/ > 1 and so we have

(4.12) max*;/,-<fc-J + l, \Ij\=l, l<l<k.

Case (b). Aj φ Θ. Therefore, kI0 = C2(Aj) > 0, and Eq. (4.12)
again holds, since Σ^o ^ij = kj < k.

Eq. (4.12) implies that the conformal blow-up process terminates
completely after at most k steps.

For large enough α, the connection AIa determines a set of mass
centres {xija}7^! in Xi \ {%is} > with xjja —> x/j, and a set of scales
{λjjα}™^, with λjja —> 0 as a —> oo. Let {//jαj^i be the con-
formal blow-up maps defined by these centres, scales, and parame-
ter N. Let P denote the induced G bundle over the connected sum
X — ftiX^affj^iX'ija, let Aa denote the induced gα-anti-self-dual con-
nection over X, and let {Ajja} be the induced sequence of gα-anti-self-
dual connections over the open subsets Xjja of the spheres Xij.

The sequence [AIja] has a weakly convergent subsequence with weak
limit (AJJ^ZJJ) and no loss of mass over the necks Ω/Jα. If Zjj is
empty for j = 1,... ,raj, then we have Σ^=o kij = &/? the sequence
[A/Jα] converges strongly to [A/j], the blow-up process terminates at
the vertices A/J5 and we proceed to Step I + 1.

Final Step. After performing at most k conformal blow-ups, we
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obtain a sequence of g^-anti-self-dual connections {Aa} over a con-
nected sum X — #IeτX'Ia. The sequence {Aa} converges strongly to
a bubble tree limit (Aj^xj)Ieχ^ since the singular points have all been
blown up and there has been no mass loss over the necks Ω/α.

Plainly, the compactification J4T

Xok(gQ) is 'larger' than the Uhlen-

beck compactification Jd^-ok(go). Indeed, there is an obvious surjective

map

(4.13) π:ΛΓ w (<?o) —•> A^Offc(So)

obtained by sending a bubble tree ideal connection (A/,rz;/)/€χ to the
corresponding Uhlenbeck ideal connection (Λo, α?i,..., xmo). The mul-
tiplicity of Xi £ Xo is the sum of the second Chern classes of the
anti-self-dual connections Aj attached to the subtree lying above the
vertex i.

Corollary 4.16. The map π : Mτ

Xok(go) —> M^O)fc(<?o) is continu-
ous.

4.4. Dq convergence and strong convergence. We will need
one further notion of convergence in order to show that every point
of the moduli space Mx^k(g) lies in the image of the gluing map J
constructed in Chapter 5. Let P be a G bundle over a closed manifold
X with metric g. Following [7 (§7.2.4)], fix 4 < q < oo and let Dq be
the distance function on the space Bχ}p given by

(4.14) Dq([A], [B]) = inf ||Λ - n{B)\\Lq(x,g).

We recall the following definition of Donaldson and Kronheimer.
Definition 4.17. [7 (p. 308)] Let {\ia}™=1, for each I > 0, be

sequences of scales satisfying λa —> 0, where λa = max/ λ/α? and let
{Aa}^=1 be a sequence of connections on a fixed G bundle P —> X,
where X = #ieχXj and Xj = § 4 if I > 0. The connected sum X has a
sequence of metrics {ga}^Lι defined by the sequence of scales {λ/α}£L1;

a sequence of points {#jα}£Li> where the Xja converge with respect to
the fixed metric gj to a point xj E Xj_, and a neck width parameter
N. Assume that the connections Aa are ga-ASD with respect to the
sequence of metrics {ga}%Lι on X. Then the sequence { A * } ^ is Dq-
convergent to (A/,a;/)/€ I if Dq([Aa\χ^[Aj\χn]) ~» 0 as a -> oo.

Dq convergence is called ζLq convergence' in [7]. The result below
explains the relationship between strong convergence and Dq conver-
gence.
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Theorem 4.18. [7 (p. 309)] Let {Aa}™=1 be a sequence of connec-
tions on a bundle P —> X which are ASD with respect to the sequence
of metrics {ga}^=ι determined by the sequences of scales {λ/α}, where
λa -> 0. Then the sequence {Aa}^Lx is strongly convergent if and only
if it is Dq-conυergent.

5. Differentials of the gluing maps

In this Chapter we obtain L2 estimates for the differentials of the
gluing maps J : T/Γ -> Mχok. These give C° bounds for the compo-
nents of the L2 metric g on the bubbling ends oΐ MχQk(g0) and allow us
to complete the proofs of Theorems 1.1 and 1.2. In particular, for the
remainder of the article, the hypotheses of Theorem 1.1 are assumed to
be in effect.

5.1. Construction of the gluing maps. In this section we con-
struct the gluing maps J : T/Γ -> M*Xk(g) and J : T/Γ -> M£o k(g0),
and set up the analytical framework required for the later sections. Our
first task is to construct a right inverse to the linear operator d^,g and
so we choose suitable Sobolev spaces L9, L\ and for the remainder of
this Chapter, we fix

(5.1) 2 < p < 4 and 4 < g < o o so that 1/4 + l/q = 1/p.

By hypothesis, H2

Ai = 0 for all / and thus the operators d^f1 have
right inverses P/. More explicitly, if Δ j^ 7 is the Laplacian d^f^d^91)*
and G^f1 is the corresponding Green's operator, we may set Pj =
{d~^'I

gi)*G~AI

gi. A standard application of the Calderon-Zygmund theory
and the Sobolev inequalities gives the following bounds.

Lemma 5.1. Assume H2

Ai = 0. Then the operators Pj : L* -+
L\ and Pj : Lp -* Lq are bounded and there are constants Ci =
CiίA^g^p), i = 1,2, such that for all ξ G

We next define the C°° cutoff functions to be used in the construction
of a right parametrix Q for d\lg by patching together the operators P/
over X.
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Lemma 5.2. [7 (Lemma 7.2.10)] For any λ > 0 and N > 4, there
exist a C°° function β\^ on M4 and a constant K independent of X, N,
such that βXN{x) = 1 for \x\ > \X1'2, βXN(x) = 0 for \x\ < N~ιX1'2,
and \\dβx,N\\LHu*,δ) < K(\ogN)-V*.

Define C°° cutoff functions βj on each Xi by setting

(5.2) βj = (φjϊrβx,,*iί(ΦτϊYβ>»+,» o n χi>

where the factor {φ~jl)*β\I,N is omitted when 7 = 0. Here, the cutoff
functions comprising βj have been extended so that βj = 1 on the
complement in Xj of the balls BIs{\\)'2) and BI+(\\)'*). Also, βi = 0

on the balls BIs(N-1\)12) and Bj^N^λ)1^) in Xj\ thus, we may
extend βι by zero to give βι e C°°(X). The L4 estimate of Lemma 5.2
implies that

(5.3) \\dfr\\LHXl,gi)<cK(logN)-3/\

for some c = c(<70,&) For the cutoff functions {7/} defined by Eqs.
(3.52) and (3.53), we recall that Σ1Ί1 = 1 on X. Note also that
βι — 1 on the support of 7/.

Define operators Q7 : L?Ω+ *'(-Y7,adP/) -> I/Ω^Xj, adP 7) by set-
ting Q7 = /3/P/7/. Define a right parametrix Q : £?Ω+'*(X,adP) ->
LPΩ1(X, ad P) for the operator d\:9 by Q = ^ 7 Q/ The error operator
R : LPΩ+'*(X,adP) -> LpΩ+^(X,adP) is then given by

(5.4) d\,gQ = l + R.

Lemmas 3.15 and 5.1 thus yield the following estimates for the opera-
tors Qj and Q.

Lemma 5.3. There are constants Ci — Ci(go,p,T), i = 1,2, such
that for any t E T, the following bounds hold,
(a) For any ξ E

For any ξ e L*>Ω+*(X, ad P),
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Next, there is an analogue of Lemma 7.2.14 [7] (see also [7 (p. 294)]),

giving an Lp bound for the operator R. The proof follows easily from

Lemmas 3.9, 3.12, and 5.1, and Eq. (5.3). In [7] it is assumed that the

metrics gj are flat in small neighbourhoods of the points x^ but this

restriction is easily removed by using Lemma 3.12.

L e m m a 5.4. There is a constant ε = ε(6, N,p), with ε —>• 0 as

N -> oo and b -> 0 such that for any t G T and ξ G LPΩ+>9{X, a d P ) ,

Thus, for the remainder of this article, we choose No > 4 large
enough and b0 < 1 small enough so that ε(b,N,p) < 2/3 for all b <
bo and N > ΛΓ0, and fix N = No and 6/ = 4NX1/2 for all I e 1.
We now construct a right inverse P for d^,9. Lemma 5.4 yields the
(LP,LP) operator norm bounds ||i?|| < 2/3 and ||(1 + i?)~1 | | < 3. Since
Qj = /3/P/7/, we have the (Lp,Lq) operator norm bound \\Qi\\ < Cj,
say, giving the (Lp,Lq) operator norm bound | |Q| | < C = Σ / C / ^n

summary, there is the following version of Proposition 7.2.35 [7].

Proposition 5.5. There are constants No and b0 such that for
any N > No, b < b0, and t e T, the operator P = Q(l + R)'1 :
£?Ω+ '^(X,adP) -> LpQ}{X,&άP) is a right inverse to d\',g and there
are constants Cι — Ci(go,p,T), i = 1,2 such that for any

We next construct families of solutions to the full non-linear anti-
self-dual equation over connected sums. For each t G T we seek a
solution A(t) = A'(t) + a(t) to F+>9{A' + a) = 0, or equivalently

(5.5) d\;ga + (a Λ a)^9 = -F+>9(A'),

where a e fi2(X,adP). If a = Pξ, with ξ(t) G Ω+'^(X,adP), then this
equation becomes

(5.6) ξ + (PξΛ P0+ig = -F+>9(A').

With the aid of Lemma 7.2.23 [7 (p. 290)] (an application of the Con-
traction Mapping Theorem to Eq. (5.6)) and Proposition 5.5, one easily
obtains the following version of Theorem 7.2.24 [7].
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Theorem 5.6. For sufficiently small λ0 < 1, sufficiently large No >

4, and sufficiently small TAτ,/El, the following holds. For any t (Ξ T,

there exists an L\ g-anti-self-dual connection A(t) = A'(t) + a(t) over

X, with a(t) = Pξ(t). There are positive constants Ci = Cι(go,p,T),

i = 1,2,3, such that

| |α|U.(*,β ) < CΛξWLHx.9) < C2\\F+<°(A')\\LP{x,g) <

We pull back the g-anti-self-dual connections A on P —> X via the

conformal maps // to give <70-anti-self-dual connections A = A1 + a on

P -> Xo, where A is defined by

(5.7) A =/;•••/; A o v e r / o - 1 - - - / / 1 ^ ) ,

and similarly for A1 and ά. In particular, A = A' + a is a solution to

the go-anti-self-dual equation F+'go(A' + a) = 0 over Xθ 5 oτ explicitly

(5.8) d^fa + (a Λ ά)+>90 = - F + ' ^ ° ( i ' ) 5

where ά G Ω1(Xθ 5ad-P) Standard arguments show that the anti-self-
dual connections A and A are actually C°° and that they are smooth
points of the moduli spaces Mχ^(g) and MχQ^k(g0) [7]:

L e m m a 5.7. Lei A be the g-anti-self-dual connection over X pro-
duced by Theorem 5.6 and let A be the corresponding g0-anti-self-dual
connection over Xo. Then the following hold:

(a) The connections A and A are C°°,

(b) H°A = 0 and H^ = 0, for small enough b0 and large enough No,

(c) H2

A = 0 and H\ = 0.

Prom §4.4, we recall that Dq is the distance function on BXyk given
by Dq([A], [B]) = inf^s \\A - u{B)\\Lq{χ,g). In particular, we have the
following version of Theorem 7.2.62 [7] (compare also Theorem 4.53

[3])
Theorem 5.8. Let 4̂/ be gι-anti-self-dual connections on G bundles

Pi over manifolds XIf I G 1. If I = 0, then Xo is a closed, oriented,
C°° four-manifold with generic C°° metric g0 and negative definite in-
tersection form. If I > 0, then Xj = S 4 with standard round metric gλ

of radius 1. Let X = #IeχXj, the connected sum four-manifold with
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C°° metric g (conformally equivalent to g0) determined by the choice
of points {#/}, frames {vi}, scales {λ}; and neck width parameter N.
Let P be the connected sum bundle over X, where c2(P) = k > 1.
Let λ = maxjeχλj. Let TAl be open balls centred at 0 € H\^I E I
Γ = Uieτ^Aj and T = TAox Uiexi^ x Gl*,), as in Eqs. (3.25) and
(3.26). Then, for sufficiently small λ0 < 1, sufficiently large No > 4,
and sufficiently small TAl, I E I, the following holds. There is a C°°
homeomorphism onto an open subset:

_ > U C Mi t P(0), t H -

where A(t) = Λ'(ί) + a(£), a(t) = Pξ(ί)7 and ξ(t) are as in Theorem
5.6. For any v > 0 and 4 < g < oo, ίΛe manifold T and constant
λo(^) can 6e chosen so that, for all \ < X0(v), U = {[A] e MχP(g) :
D^Alx,,}^}) < v}, for all I el.

Proof. This is a straightforward generalisation of Theorem 7.2.62 [7]
to the case of multiple connected sums (see [7 (§7.2.8)]) and a restriction
to the case where G = SU(2) and b+(X0) = 0. The metric g0 is not
required to be flat in small neighourhoods of the gluing sites a;/ G l o
Lemma 5.7 implies that the image of J lies in the dense open subset
M^pfj) C MXjP(g). The fact that J is C°° is a calculation of the type
that appears many times in §§5.3, 5.4, and 5.5. See also Appendix A
[22] and Remark 4.24 [3].

We refer to J as a gluing map over the connected sum and its image
U C Mx k(g) as a gluing neighbourhood. Moreover, J extends to a C°°
gluing map on the larger parameter spaces T and T° of Eqs. (3.27)
and (3.30). Further properties of these maps are described in the next
section. Lastly, for the original metric g0 on the base four-manifold XOί

Theorem 5.8 takes the following form.
Corollary 5.9. Given the hypotheses of Theorem 5.8, there is a

homeomorphism onto an open subset

j . T / r _ > V c M*XoJ>(go), t —• [A(t)},

where V C M*χ p{go) is obtained by pulling back the subset U C
Mx,p(9) o/Theorem 5.8.

Again, J extends to a C°° map on the larger parameter spaces T and
T°, and additional properties of J are discussed in the next section.
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5.2. Structure of the compactifled moduli spaces. The
bubbling ends of M^o}k(go) away from the diagonals are described in
[7 (§8.2)]. We extend this description to neighbourhoods of points in
the diagonals of the Uhlenbeck compactification. For related construc-
tions and some further details, we refer to the papers of Taubes and
Donaldson.

The proposition below is the basic result we require in order to
parametrise neighbourhoods covering the ends of Mχk(g) away from
the reducible connections. See also [3 (§IV)], and [22 (p. 529)] for vari-
ous special cases of the following statements. The following proof is sim-
ilar to the arguments used in the proof of Theorem 4.53
[3 (p. 316 & p. 325)].

Proposition 5.10. Given the hypotheses of Theorem 5.8, the fol-
lowing hold:

(a) The approximate gluing map J' : T/Γ —> Bχk is a C°° embed-
ding.

(b) The gluing map J : T/Γ —> U C Mχk{g) is a diffeomorphism

onto an open subset.

(c) The extended gluing map J : T/Γ ->• U C M^k(g) is a C°°
submersion onto an open subset.

(d) The extended gluing map J : T°/Γ -> U° C M*Xk(g) is a diffeo-

morphism onto an open subset.

Proof, (a) The proof is essentially the same as the argument required

for (b) and so is omitted, (b) Prom Theorem 5.8, J is a C°° homeo-

morphism, and so it is enough to show that J is also an immersion,

since T/Γ has dimension equal to that of MJ- k(g). Prom the proof of

Theorem 5.8, there is a C°° Γ-equivariant gluing map J : T —>• A*Xk,

t H-» A(t). So, we first show that J is an immersion and then conclude

that the induced map on quotients is a diffeomorphism. The constant

λ0 may be chosen as small as desired and in (a) and (b), the λ/ and Xι

may be held fixed.

Step 1. Definition of restriction maps. Choose cutoff functions

?/>/, as in §3.3, which are zero on the balls J3/s(&//2), BI+(bI+/2) and
equal to 1 on the complement in Xj of the slightly larger balls 5/s(6/),
Bi+(bI+). Define a map π X j : L W ^ a d P ) -+ I ^ ^ a d P / ) by left
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multiplication with ψj, so that

(5.9) | μ - πXlω\\LHx,,9i) = O(λ), ω € &{Xi,gi),

since ψι is equal to 1 on the complement of a set in Xj of ^/-volume
2

O(λ ). Next, for / > 0, choose a cutoff function, which is zero out-
side the annulus Ω/s = Ω(xIs, N~λ λ1/2, NX1/2) in Xj, and is equal to 1
on the slightly smaller annulus Ω(α;/S, | λ j 2,2X1/2) containing the sup-
ports of the derivatives of the cutoff functions 7/_,7/ Define a map
πΩ / : L2Ω1(X,aΔP) -> LWίΩ/,, ad P7) by left multiplication with
this cutoff function. Lastly, let Π = τr0 Θ/>o (πx/ θ πΩ j) be the induced
map

> X j , ad Pj)ΘL2ΩHΩi

Step 2. Partial derivatives with respect to lower moduli parameters.
We have C°° Γ^-equivariant maps i?/ : TAl -> Λ*XnPl^ tj H> Aj(tι)
given by the Kuranishi model. Let υ be a tangent vector to TAJ ? i.e.,
suppose [v] G ff^. Then Eq. (5.9) and the estimates of §5.4 give the
following bounds for the differentials with respect to the lower moduli
parameters:

(5.10) \\nXlDJ(υ) - Dh(v)\\v(Xt,βι) = O(\1/2).

The map i?/ is an immersion and so the range of Dϋi has dimension
equal to dimίΓ^. For small enough λ, Eq. (5.10) implies that the
range of πXlDJ also has dimension equal to dim iSΓ^

Step 3. Partial derivatives with respect to gluing parameters. Let
v be a tangent vector to Gl/. The estimates of §5.5 give the following
bounds for the differentials with respect to the gluing parameters:

(5.11) \\πΩlDJ(v) - DJ'(υ)\\L*(Xl,gi) = O(λ2),

recalling that DJ'(υ) is supported on Ω7(|λ}/2,2\)'2). But from Propo-
sition 3.28 we have

(5.12) \\DJ'(v)\\LHXn9l)>c\vl

for some constant c > 0 independent of λ. In particular, the range
of πςijDJ1 has dimension equal to dimGlj. So, for sufficiently small
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λ, Eqs. (5.11) and (5.12) imply that the range of π Ω / ίλΓ also has

dimension equal to dimGl/.

Step 4. The quotient map. Combining these observations, we find

that the range oΐUDJ has dimension equal to dimi3",40+X)/ > 0(dimiϊ^7

+ dimGl/) = dimT, so that keτllDJ = 0 and J is an immersion.

Prom Theorem 5.8, the open subset U = J(T) in A*x k projects to an

open subset U = J{T) in Mχk{g) and composing J with the projec-

tion Λ*Xk -+ A*Xk/G, we obtain a submersion X : T -» Mχk(g). The

group Γ acts freely on T,J is Γ-equivariant, dimT/Γ =dimMχ k(g),

and the gluing map descends to a diffeomorphism I: T/Γ —> AIχ k(g),

as required, (c) This follows from (b). For the derivatives with re-

spect to λ/ or #/, the cutoff functions required to define Π should be

replaced by cutoffs with similar supports and which are fixed with re-

spect to small variations in the scales and centres, (d) This is similar

to the proof of (c) and uses Proposition 3.5.

In order to parametrise neighbourhoods of boundary points in

MXok(go), we use the following corollary to Proposition 5.10.

Corollary 5.11. Given the hypotheses o/Theorem 5.8, the following

hold:

(a) The approximate gluing map J1 : T/Γ —> Bχok is a C°° embed-

ding,

(b) The gluing map J : T/Γ —> V C MχQ k{go) is a diffeomorphism
onto an open subset,

(c) The extended gluing map J : T/Γ - ) V C M*Xok(go) is a C°°

submersion onto an open subset,

(d) The extended gluing map J : T°/Γ -> V° C M^ok(g0) is a dif-
feomorphism, onto an open subset.

Taken together, Theorems 7.3.2 and 7.2.62 in [7] imply that if A is
any g-anti-self-dual connection on a fixed G bundle P over the con-
nected sum X and the necks Ω are all sufficiently pinched (so that λ is
small), then [A] lies in the image of the gluing map. The corresponding
statement in our application is given below.

Theorem 5.12. Given the hypotheses of Theorem 5.8, then the fol-
lowing holds. Let {Aa}™=1 be a sequence of connections on a G bundle
P over the connected sum X = #IeXXI which are anti-self-dual with
respect to the sequence of metrics {ga}^Lι determined by the sequences
of scales {λ/α} with λa —> 0, a fixed neck width parameter N, sequences
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of points {xia} converging to {#/}, and frames in FX0\Xla converging
to frames in FX0\Xl. Suppose the sequence {Aa}

<^L1 is strongly conver-
gent to (Aj)iez, where Aj is a gj-anti-self-dual connection over each
summand Xj. For a0 sufficiently large, there exists a gluing neighbour-
hood U such that [Aa] G U, for all a > a0.

Proof. See [7 (§7.3.1)]. Theorem 4.18 implies that the sequence
{Aa} is Dq convergent (for any 4 < q < oo) to (A/)/€χ. So, Theorem 5.8
implies that the points [Aa] are contained in a gluing neighbourhood
U, for all a > α0 if OLQ is sufficiently large.

Recall that G\XI = SU(2) ~ §3, a copy of the standard three-sphere,
and let G1XJ be the closure of G1XJ x (0, λ0) in the cone (G1XJ x [0, λ0))/ ~,
where (p,0) - (p',0) if p,p' G G1XJ. Then, by analogy with [7 (§8.2)]
and [3 (§V)], we set

(5.13) T = TAo x Π (TAI x B(xj,r0) x GΪXJ)) ,
lex

and likewise, define T . It is also convenient to define

(5.14) dT = {ίoo = (t7, vu Pu λ/)/€X e T : λj = 0 for some /},

where the 4-tuple (ίj, y/,p/, λ/) above is replaced by ί°, if / = 0. The
space dT® is defined similarly. Moreover, the gluing map J has a
natural definition on the boundary dT. Suppose t^ G dT and let
(λi,..., λc) denote the corresponding scales in Eq. (5.14) which have
been set equal to zero. By cutting the edges with λ; = 0, we may
view the tree 1 as a union of subtrees \Jc

i=ιX
ι. If t^ G 9T, we write

t^ = (ί1, , tc), with V G T\ and set

(5.15) J(t^) = (Jit1),..., J(tc)), ^ G T,

where each Jit1) is an anti-self-dual connection over a connected sum
Yi = #ie*Xi, say, and X = #ieχXi = # L i ^ The relationship
between the gluing maps J and Ji is explained by the continuity result
below, which we just state in the special cases X = X 0 # ^ i # ^ 2 , for
the sake of clarity. The argument required for this case carries over
with no significant change to the more general cases just described.

Proposition 5.13. Let X = X0#XφX2, let Y = XO#XU and
let Y" = Y \ B(xu | λ i / 2 ) . Assume that the hypotheses of Theorem 5.8
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hold and let Jx, Jγ be the gluing maps over the connected sums X
and Y', respectively. Then there is an ε — ε(q) > 0 and a constant
C = C(go,q,T) such that \\Jχ(t)\γ» - JY\\L^9) < C\\°.

The proof is similar to that of Proposition 7.2.64 [7] and the ar-
guments in §5.3, and so is omitted. It now follows that J extends
continuously to T

Proposition 5.14. Assume that the hypotheses of Theorem 5.8
hold. Let {ta}^Lι be a sequence in T which converges to t^ E dT.
Then the sequence {J{ta)}^=l converges strongly to J^OQ).

Proof. Let {\}c

i=ι denote the scales, determined by t^, which have
been set equal to zero in Eq. (5.14). The points ta E T are then nat-
urally written as ta = (ί^,..., f£), with the sequences tι

a converging to
ί* E T\ say. According to Proposition 5.13, the sequence J(ta) is then
Dq convergent to (J(t ι),..., J(tc)) and hence, strongly convergent by
Theorem 5.18.

It remains to show that Mχo^k(go) has a finite cover consisting of
gluing neighbourhoods. Of course, away from the bubbling ends, the
moduli space is covered by the standard Kuranishi charts. In addition,
the geometry of these charts around the reducible connections has al-
ready been analysed in [14], so our focus here is on the bubbling ends.
Given any Uhlenbeck boundary point (A0,#i,... ,#/) E ~MUχQ,k(9o)'>
where c2(A0) — k — I and each Xι has multiplicity 1, Theorem 8.2.3
[7] provides an open neighbourhood V of (Ao, xu . . . , xt) in M^o^(^o)5

a parameter space T°/Γ, and a gluing map J giving a homeomorphism
of 7^/Γ with V = V Π M*XQ k(g0). Theorem 8.2.4 in [7] states that this

gluing map extends to a homeomorphism J : / /Γ —» V. Thus, away
from the diagonals, the ends of MXQ k(go) are covered by gluing neigh-
bourhoods. The generalisations below provide a covering of the ends
of MXok(go) which includes the diagonals.

Theorem 5.15. Let (A),£i,... ,xmo) be a boundary point in
MXok(go). Under the hypotheses of Theorem 5.8, there exist neigh-
bourhoods V C MXok(go) of (A0,Xi,... ,a;mo) and a parameter space
T° such that i/V = VθM^o k(g0), then the gluing map J : T°/Γ -> V
is a diffeomorphism.

Proof Suppose {[^α]}^Li is a sequence in MXθik(go), converging
weakly to the Uhlenbeck limit {A0,x1,.. .,xmo). Let {[A*])w be the
corresponding strongly convergent sequence in MX)k(ga) with the bub-
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ble tree limit (A7, xi)ieX. Then Theorem 5.12 produces a gluing neigh-
bourhood J(T°/T) = U C Mx,k{ga) and an α 0 such that [Aa] E W for
all a > αo Let V be the corresponding neighbourhood in MχOik(g0).
Then the conclusions follow from Corollary 5.11.

Theorem 5.16. Given the hypotheses of Theorem 5.15, the gluing
map J extends to a homeomorphism of i /Γ with a neighbourhood V
of(Ao,xu...,xmo) inJTXok(go).

Proof. This follows from Proposition 5.14 and Theorem 5.16.
Remark 5.17. So, every boundary point in MXQ k(go) has a

neighbourhood constructible by gluing. Plainly, the same statement
holds for boundary points in ~Mτ

Xo jfc(ffo)
5.3. Derivatives with respect to scales and centres. The

main purpose of this section is to obtain L2 estimates for the partial
derivatives of the family of go-ai^i-self-dual connections A with respect
to the scales λj and centres X[.

Unless noted otherwise, throughout this section and for the remainder
of this article, we assume that p and q are Sobolev exponents satisfying
the strict inequalities 2 < p < 4 and 4 < q < oo, where q is determined
by \jp = 1/4 + l/q. The constant λ0 > 0 is assumed small and may
be decreased as needed. We use C = C(go,p,T) to denote constants
which are independent of the points t = (ti,pi,xj,λi) £ T. As usual,
we abbreviate the derivative with respect to the centre parameters,
pid/dq? (where | P / | < 1) by d/dPl.

Denoting η = —F+9(A') in Eq. (5.6), we have the following prelim-
inary estimate for the derivatives of ά with respect to the parameters
λj and xj.

Lemma 5.18. Let ξ and a = Pξ be as in Theorem 5.8, and assume
that the conditions of that theorem hold. Then, for small enough λ0 >
0, there is a constant C = C(gOjT) such that for any t ET,

II5A/IIL2(XO,PO) ~ Vl<9λ/ "L*(X,g) ll<9λ/llL2(X,s) * / '

W d p ^ L ^ X ) ~ v j ldp 1>£ 2 (X) l l 9 p l L a ( X )p p (
Proof. Prom Proposition 3.24, we have

I da
\dλj

<c\\^
L2(Xo,9o)

-i/2CXJ1/2\\a\\cί(xh

where a = Pξ and d{Pξ)/d\τ = {dP/dλ^ξ + P(0ξ/0λj). The esti-
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mates of Proposition 5.5 and Theorem 5.6 then give (a). The proof of
(b) is similar.

We now differentiate the g-anti-self-dual equation and obtain a priori
estimates for the partial derivatives of ξ with respect to λj and X/.

Lemma 5.19. Let ξ be as in Theorem 5.8 and assume that the
conditions of that theorem hold. Then, for small enough λ0 > 0, there
is a constant C — C(go,T) such that for any t GT,
(a) Wdξ/dλjW^x^ < C (l + X2XJ1/2 + λ\\(dP/dλI)ξ\\LHX,g)),

(b) \\dξ/dPl\\LHX,g) <c(i + \\\(dP/dPl)ξ\\LHX,g)).

Proof Differentiating Eq. (5.6) with respect to λ/ gives

(
\dλj

ΛPξ) -{PξΛ dPξ\ +,9

The estimates of Lemma 3.14 and Proposition 5.5 imply that

dη

d\i
cuwhxj1

dP

Proposition 3.26 and Theorem 5.6 yield ||9r//5λ/||L2 < C, and \\ξ\\L2 <
CX respectively. Thus, for λ0 small enough, we may assume C||ξ||£,2 <
1/2. Part (a) then follows by combining the above estimates and rear-
rangment, and the proof of (b) is similar.

To complete our task, we need an estimate for the derivatives of P
with respect to λ/ and xr. Before proceeding, we first record some
bounds for the derivatives of the cutoff functions βi and 7/. Sup-
pose 1 < p < 00. From the definition of βj there is a constant
C = C(g!,N,p) such that

(5.16) \dβi\gi <Cλ7 1 / 2 onΩ 7 ,Ω
/s,
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Second, for the derivatives of βj with respect to λ/, one has

(5.17)

<

dλi

for J = /_ or J, these derivatives being zero otherwise. Third, for the
derivatives of βj with respect to #/, one has

(5.18)
\dβj

\dpi

^ Λ2

— 7

1-1/2

2/P-1/2

\ddβj

dpi
ddβj

<CXJJ\

dp I "LP(Xj,gj)

for J — /_ or /, these derivatives being zero otherwise. The cutoff
functions jj also satisfy the bounds of Eqs. (5.16), (5.17) and (5.18).

Proposition 5.20. For any 0 < δ < | and 2 < p < 4 defined by
p = 4/(l+2J) ; and sma// enough λ0? ίΛere zs a constant C = C(δ,g0, T)
such that for anyteT and ξ G LPΩ+'^(X, adP),
fαj UdP/dXMWmx,,) <CλJ1/2-δU\\LP{Xi9),

(b) \\(dP/dPl)ξ\\LHX)9) <CλJδ\\ξ\\LPix,9).
Proof, (a) As P = Q(l + R) x, we first obtain operator bounds for

dQ/dλi, dR/dλi, and then deduce an operator bound for dP/dλj.
Step 1. Estimate for dQ/dX^ Recall that Qξ = ΣjQjζi where

Qj = βjPjjj is independent of λj for J φ /_, /, and so

dQ _ dQi_
dλj

where

with the analogous expression for dQi_/d\i. Choose 4 < q, qι < oo
and 2 <p,pι < 4 by setting

(5.19) p = 4/(l + 2ί)

1/p = 1/4 +

and g = 4/(1-2$),

and 1/2 = 1/Pl + l/qu
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and observe that 1/4 = 1/q + l/qx and 1/2 = 1/p + 1/q, while 2/p =
1/2 + δ and 2/q = 1/2 — δ. Applying Holder's inequality, the opera-
tor bounds for Pj of Lemma 5.1, and the fact that \\dβj/dXi\\L9 and

,q are bounded by CX2/9'1 from Eq. (5.17), we find

[ ~ \\dXj iq dXi^iq ~~

Combining the above estimate with the analogous bound for the

dQi_ /dXi term, we see that

(5.20)
dQ_

completing Step 1.

Step 2. Estimate for dR/dX^ We have R = d%9Q - 1 on X, and

so differentiating with respect to λ/ gives

Using our L°° bound for d * p /dXj of Lemma 3.14, the L4 bound for

dA'/dXj of Proposition 3.25, and the operator norm bounds for Q of

Lemma 5.3, we obtain

(5.21)
dR J1/2

< C\J1/2\\dA.Qξ\\L,

For the d^ Q term above, noting that d̂ / Qξ — Σj ^A'J Qiξ and writing

Aj = Aj + aj over Xj lead to

Λ + βjdAjPjΊJi + βj[aj, PjΊjξ\.

By the bounds \\dβj\\LA < C of Eq. (5.16), ||oj||L4 < CX of Lemma 3.9,

Holder's inequality, and the operator bounds for Pj of Lemma 5.1, we

find that

(5.22) \\dΛ.Qζ\\L><C\\ξ\\L2.

For the d~^,gdQ/dXi term, note that

_d,,gdQI +tgdQj
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We use d^f'Pi = 1 and βj = 1 on supp7/ to get

+

with the analogous expression for d#9 dQi_/d\i. Prom Lemmas 3.14

and 5.1. it follows that

c \\d
dβΛ
dλi IL dX,

+C\\dβI\\

dβi

r Uh" +

IklMKIIi

'4 lien.

+c\

oil

dλi

dλi

IKIIJ

Now ||α/||L4 < CX by Lemma 3.9, and because of Eq. (5.17), ||0j3//0λj||L,
and H^z/SA/ll̂ g are bounded by CX2/9"1. Hence,

with the analogous bound for the d^,g dQi_ /<9λ/ term. Therefore,

(5.23)

Combining the above inequalities and noting that
< C\\ξ\\L,(x,g), yield

(5.24)
dR

<Cλ*/ -ι\\ξ\\LP-,

which completes Step 2.
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Step 3. Estimate for dP/dX^ Differentiating P = Q(l + R)'1

with respect to λj gives

9P dQ ! ! dR !
Γ{1+R) ^ 1 + i ? ) {1+R)

and thus applying the bounds from Steps 1 and 2, we have

which yields (a) since 2/q — 1 — —1/2 — J. For (b), the strategy of
(a) shows that \\(dQ/dpi)ξ\\L4 and \\(dR/dp^\\L4{Xig) are bounded by

CX2/g-1/2M\\LP, leading to

(5.25)
L*(X,g

and so (b) follows.
As is readily verified, Lemma 5.19 and Proposition 5.20 then provide

the following estimates for the derivatives of ξ and a with respect to
λ/ and Xj\

Corollary 5.21. Letξ and a = Pξ be as in Theorem 5.8 and assume
that the conditions of that theorem hold. Then, for small enough λ0 >
0; there is a constant C = C(δ,go,T) such that for any t ETf

(a) Wdξ/dλiWwxj < C(l + λ 3 / 2 + V 7 2 "*),

(b) \\dildPl\\LHx,a) < C{\

(c) \\dα/dλrhHx,9) <

(d) \\dα/dPl\\L*(x,9) < C(l + X1/2+SλJδ).
With bounds for the derivatives of £ and P with respect to λ/ and

xj at hand, we obtain our final estimates for the derivatives of the anti-
self-dual connections A and A. Since A — A'+α, combining Proposition
3.25 and Corollary 5.21 gives

Corollary 5.22. Assume that the conditions of Theorem 5.8 hold.
Then, for any 0 < δ < 1/2 and small enough λ0 > 0, there is a constant
C = C(δ,go >T) such that for any t ET, the following bounds hold:

(a) /

(b) \\dAldPl\\LHX,g) < C{\ + λ 1 / 2 + V
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Theorem 5.23. Assume that the conditions of Theorem 5.8 hold.
Then, for any 0 < δ < 1/2 and small enough λ0 > 0, there is a constant
C = C(δ,g0, T) such that for any t eT, the following bounds hold:
(a) \\dά/dλj\\LHXo,go) < C(l + λ 1 / 2 + V / 2 - * ) ,

(b) WdA/dλiWw^ < C(l + λ 1 / 2 + V / 2 " 4 ) ,

(c) \\dά/dPl\\LHXo>go) < C(l + λ 1 / 2 + ί λ 7 4 ) ,

(d) \\dA/dPl\\LHXo,go) < c{\ + λ 1 / 2 + V).

Proof. Using the bound ||£||LP < CX P of Theorem 5.6, the equality
2/p = 1/2 + £, the L2 estimate for <9ά/dλ/ in Lemma 5.18, the L2

estimate for dξ/dλi in Corollary 5.21, and the operator estimate for
dP/dλj in Proposition 5.20, we obtain

/ Γi (Tl/2+δ\ -1/2-5 . Λ , γ3/2+(5 χ/2-5 Tl/2+J i/2\
\ O I Λ Λj T I T A Λj T Λ Λj I ,

L*(Xo,9o) V '

which yields (a). Then (b) follows from (a) and the estimate
WdA'/dXjWLHXoΛo) < C of Proposition 3.27. The proofs of (c) and
(d) are similar.

5.4. Derivatives with respect to lower moduli. In this
section we obtain estimates for the derivatives of the family of po-anti-
self-dual connections A with respect to the lower moduli parameters
ti G T^7. Just as in §5.3, the strategy is to use the g-anti-self-dual
equation of Eq. (5.6), together with its derivatives with respect to the
tj parameters, to first obtain estimates for the derivatives of a and £,
and then the required derivatives of ά and A'. The Sobolev exponents
p, q are fixed so that 2 < p < 4 and 4 < q < oo, where q is determined
by 1/p = 1/4 + 1/q. We have the following preliminary estimates for
the derivatives of ξ and a.

Lemma 5.24. Let ξ and a = Pξ be as in Theorem 5.8, and assume
that the conditions of that theorem hold. Then, for small enough λ0 >
0, there is a constant C — C(go,p,T) such that for any t E 7",
(a) Wda/dtiWinx,,,) < C\\dξ/dtr\\LP{x,g) + \\(dP/dt^\\LP(x>g),

(b) Wdξ/dtjWLux,,) < C (λ 2 / p- 1 / 2 + \2/P\\(dP/dtr)ξ\\LHX,g)).
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Proof. Differentiating Eq. (5.6) with respect to tj gives

K = *L _ (?E1 Λ pλ+'3 _ (pc Λ

dtj dtj \dtj V V ξ

dtj dtj dtj

The proofs of (a) and (b) are then similar to those of Lemmas 5.18 and
5.19.

Thus, an operator estimate for dPjdtj is required. As P =
R)~\ we have

(5.26) | g = | g ( l + R)-1 - 0(1 + R)-1^ + ΛΓ1-

We recall that Pj = d*^1 G\]gi. Differentiating with respect to ίj, we
obtain

+zlzΔL-n
d Γ j d ΰ ~ d t Γ Al '

The derivatives of d\'f and d*^' with respect to tj are given by

for any ω € Ω^X/^dP/) and ξ G Ω+ s'(X/,adP/). Therefore,

L ^ M J

and so we find that

Note that 1-Pjd^91 is a bounded (Lq, Lq) operator on Ω+'^ (Xj, ad Pj)
by the Calderon-Zygmund theory.

Lemma 5.25. There is α constant C = C(go,p,T) such that for
any teT,
(a) IKaPj/at/KIU μo,,,) < C\\ξ\\LP{Xl,9l), for ξ e
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(b) \\(dQ/dt^\\Lq{Xig) < C\\ξ\\LHX,g), for ξ e
Proof. Since 1 - Pid\f is bounded on

the Holder inequalities show that
, Eq. (5.27) and

dA,\
dtj \L*

\\Piξ\\L«

But G^'f and Pj are bounded (Lp,Lq) operators and noting that the
family -4/(ΐ/) is smoothly parametrised by tj G TAn we obtain (a).
Since Qj = βiPiji and Q = Σi Qii inequality (b) follows.

It remains to estimate the derivative of R with respect to ί/.
Lemma 5.26. There is a constant C = C(go,p,T) such that

for any t E T and ξ G ISΩ+ °(X,g), we have ||(3Λ/0ί/)ClU'(*,β) ^

Proof. We recall that R = d%9Q - 1 over X and R = cf̂ ;9Q/ - 1
over Xj. Writing A'j = Ai + aj, we find that

R = dβjA PlΊi + βid^

Noting that d^'f'Pi = 1 and differentiating with respect to ί/, we have

dR. .„

(5.28)

and therefore

—Λ

(5.29)

Ίiξ

c\

+ C
dti

+ C\

\\Pa£h

dtj

LP
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where aj = (φI-l)σ}AI and dajjdtj = {rφI-ΐ)σ*IdAI/dtI. Aside from
the self-dual projection and factor /?/, the last term on the right-hand
side of Eq. (5.28) is given by

-dΛιPi
dAj

Since P/ is a bounded operator from Lp to Lp, using the bounded
inclusion L\ ->• Lq we see that

<c

<C

+

+C

dtj

θtr

\\G+

AfΊiξ\\L,

dAΛ
dtj \L4

Since the family Aι{i) is smoothly parametrised by tj € TAn and
is a bounded operator from Lp to L%, we have

(5.30) dA dtj
<c\\ξ\\LF.

Eqs. (5.29), (5.30) and Lemma 5.25 then yield the required bound for
dR/dtj.

Thus, Eq. (5.26), together with Lemmas 5.25 and 5.26, provides an
estimate for the derivative of P with respect to tj:

Proposition 5.27. There is a constant C = C(go,p,T) such that
for anyteT and ξ e LpΩ+ '5(X,adP) ; we have \\dP/dtjξ\\Lq{x g) <
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This leads to our final estimates for the derivatives of ξ and a with
respect to tj.

Corollary 5.28. Let ξ and a = Pξ be as in Theorem 5.8, and as-
sume that the conditions of that theorem hold. Then, for small enough
λ0 > 0; there is a constant C = C(go,p,T) such that for any t ET,
(a) t1"-112

(b)
Proof. Inequality (a) follows from Lemma 5.24 and Proposition

5.27, since ||£||LP < C\ by Theorem 5.6. Inequality (b) then follows
from (a) and Lemma 5.24.

By combining Proposition 3.30 and Corollary 5.28 we obtain an es-
timate for the derivatives of the connections A = A1 + a over X:

Corollary 5.29. Assume that the conditions of Theorem 5.8 hold.
Then, for any 2 < p < 4 and sufficiently small λ0 > 0, there is a
constant C — C(go,p,T) such that for any t £T,
(a) WdA/dh - dAj/dtjW^x^,) < C\2/P~1/2,

(b) WdA/dttW^x^ < C.
We now come to the main result of this section.
Theorem 5.30. Assume that the conditions of Theorem 5.8 hold.

Then, for any 2 < p < 4 and sufficiently small λ0 > 0, there is a
constant C = C(go,p, T) such that for any t ET,

(a) Hdα/at/iU-ίxo,*) < C A 2 / P " 1 / 2

(b) Wdλ/duWLπxom) < C.
Proof. Let U = fc1 • fTι(X'i) C Xo and note that dajdtj =

Σ/ fo fida/dh on U. Lemma 3.19 gives

da

LP(Xo,go)
Jo " ' Ji "H7"

LP(XO,9O) \\ULI\\LP{X,g)

and so Part (a) follows from Corollary 5.28. Part (b) follows from (a),
and the estimate ||9^47^/IUp(Xo,^o) ^ C of Proposition 3.32.

5.5. Derivatives with respect to bundle gluing parameters.
We obtain estimates for the partial derivatives of the family of gQ-dmt'i-
self-dual connections A(t) with respect to the bundle gluing parameters
Pi £ Glj. The Sobolev exponents p, q are fixed so that 2 < p < 4, with
4 < q < oo determined by 1/4 + 1/q — 1/p. We first recall the estimate
of Donaldson and Kronheimer for the derivative of α = Pξ with respect
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to the gluing parameters p/. As described in §3.8, we work with an

equivalent family of p-anti-self-dual connections A = A' + a on a fixed

bundle P. Thus, considering only the gluing parameters, we have a

diffeomorphism Bg 3 v -> A{p^v) G Λ*XP (where Bg is the unit ball

in g), giving a family of C°° connections on a fixed bundle P = P(pi), as

in Eq. (3.58). Here, BQ 3 υ -> pi(v) = pjexp(υ) G Gl/ is a coordinate

chart centred at p 7 G Gl/, as in Eq. (3.57). This understood, one has

the following bounds.

Proposition 5.31. [7 (p. 303)] Let a be as in Theorem 5.8, and as-

sume that the conditions of that theorem hold. Then, for small enough

λ0 > 0, there is a constant C = C(gOip,T) such that for any t G T,

\\da/dυ\\LHX>g) < C λ 2 / P + 1

Proof. The proof in [7] deals only with single connected sums X =

X 0 # ^ i > but the argument adapts without significant change to the

general case of multiple connected sums #jeχXi. Likewise, the as-

sumptions in [7] that Γ/ = 1 and H°Al = H\t — 0, for all /, do not

affect the relevant estimates.

Corollary 5.32. Let A be as in Theorem 5.8, and assume that the

conditions of that theorem hold. Then, for small enough λ0 > 0 ; there is

a constant C = C(go,p,T) such that for any t G T, \\dA/dυ\\LP(χg) <

c\2/p-1/2.
Proof. Combine Propositions 3.28 and 5.31.
Moreover, we have the following estimates for the derivatives of the

go-anti-self-dual connections A = A' + ά on the fixed bundle P over Xo.
Theorem 5.33. Assume that the conditions of Theorem 5.8 hold.

Then, for small enough λ0 > 0, there is a constant C =
such that for any t ET,
(a) \\dά/dv\\LP{Xi9) < C

(b) \\dA/dv\\LP{Xi9) < Cλ2/P~1/2.
Proof. Since a = f* • ffa on U = /o"1 o o ff1 (X}), Lemma 3.19

gives

II r r^ll <rllaαll
Jo ' " " 11 ~Ξ~\\ — ° \\Έ~\\ '

II aυ\\LP(U,g0) W^WLPiX'^gj)

and Proposition 5.31 gives (a). Similarly, (b) follows from (a) and
Proposition 3.29.
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5.6. Differentials of the gluing maps and final arguments.
We summarise the results of the preceding sections and record our
bounds for the differentials of the approximate gluing maps J and J.
The estimates for DJ then give bounds for the diagonal (and so all)
components of the L2 metric g and completes the proof of Theorem 1.1.
Combining these metric bounds with results of Donaldson in [5] then
completes the proof of Theorem 1.2. The following two theorems sum-
marise the estimates obtained in §§5.3 to 5.5, the first following from
Corollaries 5.22, 5.29, and 5.32 and the second from Theorems 5.23,
5.30, and 5.33.

Theorem 5.34. Let J : T/Γ —> Mχk{g) be a gluing map and
assume that the conditions of Theorem 5.8 hold. Then for sufficiently
small λ0 > 0 and any t e T, there exists a constant C = C(go,T) such
that the following bounds hold:
(a) \\DJ(d/dtf)\\LHXiί) < C,

(b) \\DJ{dldfi)\\LHXtβ) < Cλ1/2,

(c) \\DJ(d/dxΐ)\\L,(x,g) < (7(1 + λ 1 / 2 + V ) ,

(d) WDjφidXfiWw,,) < c{\ + \1/2+δ\j1/2-s).

Theorem 5.35. Let J : T/Γ —> Mχo k(g0) be a gluing map and
assume that the conditions of Theorem 5.8 hold. Then for any 0 < δ <
1/2, sufficiently small λ0 > 0 and any t G T, there exists a constant
C = C(δ,go,T) such that the following bounds hold:
(a) \\DJ(d/dtJ)\\LHxo,9o) < C,

(b) | |Dj(a/a^)| |L 2 ( X o,9 o )<cλ1 / 2,

(c) \\DJ(d/dxS)\\LHXot9o) < C(l + λ 1 / 2 + V ) ,

(d) WDJid/dλM^x^ < c(i + \1/2+δ\j^-s).
It remains to reinterpret the bounds of Theorem 5.35 in terms of the

corresponding bounds for the diagonal components of the L2 metric g.
Corollary 5.36. Under the hypotheses of Theorem 5.35, the follow-

ing bounds hold:

(a) g(d/m<ϊ,d/dtj)<c,
(b)

(c) g(d/dxΊ, d/dxΊ) < C(l + λ1 + 2 ίλ72 ί),

(d) gid/dλj^/dλr) < c{\ + λ 1 + 2 V~ 2 ί )
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Recall that the g-length of a path (so,Si) 3 s -> A(s) G Mχok(go)
is computed by

as.
ds L2(Xo,go)

The proofs of our main results are now essentially complete.
Proof of Theorem 1.1. Since 0 < δ < 1/2, the bounds of Theo-

rem imply that the gluing neighbourhoods V = J(T°/V) have finite
g-volume and g-diameter. Therefore, the bubbling ends of Mχok(go)
have finite g-volume and g-diameter since the entire moduli space is
covered by finitely many such neighbourhoods. Away from the Uhlen-
beck boundary, gluing neighbourhoods consist simply of C°° Kuranishi
charts. The conical ends corresponding to Kuranishi charts around the
reducible connections have finite g-volume and g-diameter by Theo-
rem 1 [14].

Next we consider the relationship between the metric completion and
the Uhlenbeck compactification of the anti-self-dual moduli space. Let
d2 be the distance function on MχQk(g0) defined by the L2 metric g.
Thus, if [A], [B] are two points in Mχok(g0), then d2([A], [B]) is the
infimum over all g-lengths of paths in Mχok(go) joining [A], [B]. If
the two points lie in different path components of the moduli space,
then set cί2([^L [B]) — oo. Since b+(X0) = 0, the moduli space has at
most finitely many path components; we say that MχQ k(go) has finite
g-diameter if the sum of the g-diameters of the connected components
is finite. In [5], Donaldson constructs two other distance functions, D2

and D\, for any fixed ε > 0. First, given points [A], [B] in Bχok, set

mf\\AuB

Lemma 2 [5] (or Lemma 4.2.4 [7]) shows that D2 is a well-defined dis-
tance function on B*XQ k. Moreover, Lemma 1 [5] implies that D2([^4], [B])
is equal to the distance function defined in the usual way by the L2 met-
ric on Bχok as the infimum over g-lengths of paths in B*Xo^k joining [A]
and [B]. One then obtains a second distance function on Mχo k(go) by
restriction. Define an ε-neighbour hood of MχQ k(go) in Bχo k by

χo,k •• \\FΪ9a\\mx0,9a) < e}
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Then JD2([yl], [B]) is defined as infimum of the g-lengths of paths in
Bχε

0,k joining two points [A] and [B] in Bχε

Qk. One now obtains a
third distance function on Mχok(go) by restriction. The three distance
functions d2, D2, and D\ on Mχok(go) are related by

(5.31) D2([A], [B]) < Dε

2([A], [B]) < d2([A], [B]),

for all [A], [B] E Mχok(go). To show that the d2-completion of Mχok(g0)

is homeomorphic to the Uhlenbeck compactification MXQ k(go), it is

enough to prove that a sequence [Aa] in Mχo k(g0) is d2-Cauchy if and

only if it is convergent in the Uhlenbeck topology. For the metric J9|,

one has

Theorem 5.37. [5 (Theorem 4)] For any ε > 0, the Ό\-completion

°f MxoAβo) i s homeomorphic toJΓXQk{g0).
Thus Donaldson's result gives part of the proof of Theorem 1.2:

Suppose a sequence [Aa] in Mχok(go) is c£2-Cauchy. According to Eq.
(5.31), it must also be D^-Cauchy and so is convergent in the Uhlenbeck
topology by Theorem 5.37 or simply by Proposition 6 [5]. The proof of
the reverse direction, namely that a sequence [Aa] which is convergent
in the Uhlenbeck topology is also d2-Cauchy, is included in [9].
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