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GEOMETRY OF THE ENDS OF THE MODULI
SPACE OF ANTI-SELF-DUAL CONNECTIONS

PAUL M. N. FEEHAN

1. Introduction

Let X, be a closed, oriented, C* four-manifold and let Mx, p(go)
be the moduli space of gy-anti-self-dual connections on a principal G
bundle P over X,. The subspace Mx, p(go), obtained by excluding the
reducible connections is then a finite-dimensional, usually non-compact,
C* manifold. The moduli space Mk, p(go) is naturally endowed with a
metric g of Weil-Petersson type, called the L? metric, and our purpose
in this article is to study the geometry of the moduli space ends.

(a) Main results. It has been conjectured by D. Groisser and
T. Parker in [13], [14] and by S. K. Donaldson in [5] that the moduli
space of anti-self-dual connections, endowed with the L? metric, has
finite volume and diameter. The goal of this article is to prove this
conjecture under the hypotheses described below.

Theorem 1.1. Let X, be a closed, connected, oriented, simply-
connected, C*™ four-manifold with generic metric go and let P be a
principal G bundle over X, such that either (1) G = SU(2) or SO(3)
and bt (X,) =0, or (2) G = SO(3) and wy(P) # 0, where wy(P) is the
second Stiefel-Whitney class of P. Then the moduli space M, p(go)
of trreducible go-anti-self-dual connections on P has finite volume and
diameter with respect to the L? metric g defined by go.

We plan to discuss the case of G = SU(2) and b*(X,) > 0 in a sub-
sequent article. Note that when G = SO(3) and w,(P) # 0, the trivial
(product) connection © does not appear in the Uhlenbeck compacti-
fication m p(90). By ‘diameter’ we mean the sum of the diameters
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of the connected components of M}  p(go); the hypotheses imply that
M3, p(go) has finitely many path components. In [5] Donaldson con-
jectured that the L?-metric completion of the moduli space coincides
with the Uhlenbeck compactification [3], [7]. We announce here the
following result whose proof is included in [9].

Theorem 1.2. Under the hypotheses of Theorem 1.1, the comple-
tion of M, p(go) with respect to the L? metric g is homeomorphic to
the Uhlenbeck compactification mmp(go).

The requirement that X, be simply-connected implies that the mod-
uli space of flat connections consists of a single point representing the
product connection over X,. This assumption simplifies the description
of the ends of the moduli spaces M, p(go), but is not important in the
derivation of bounds for the components of g. We assume G = SU(2)
or SO(3) in order to appeal to the generic metric theorems of Freed and
Uhlenbeck which ensure that the moduli space is a C*° manifold; other-
wise, the bounds for g obtained in Chapter 5 hold for any compact Lie
group. For the sake of clarity, we assume G = SU(2) for the remainder
of the article and denote Mx, p(go) by Mx, x(go), where c;(P) =k >0
is the second Chern class.

(b) History. The properties of the L? metric have been investi-
gated by many authors in recent years, but most extensively by Groisser
and Parker. In particular, they have conducted detailed studies of its
behaviour at the boundary of certain k¥ = 1 moduli spaces. Explicit
formulas for the components of g have been found by Doi, Matsumoto,
and Matumoto [2], Groisser and Parker [13], and Habermann [15] when
k =1 and X is the four-sphere S* with its standard round metric g;.
Groisser conducted a similar study when X, is the complex projective
space @2, equipped with the Fubini-Study metric grs [11]. Their
formulas imply that these £ = 1 moduli spaces have finite g-volume
and g-diameter. More generally, Groisser and Parker have established
Theorem 1.1 in the special case k = 1 [14]. They also obtained C°
bounds for g in neighbourhoods of the reducible connections, the ‘con-
ical ends’, for any £ > 1. In [12], Groisser refined some of the k =1
results obtained in [14]. It is worth recalling that the L? metric is not
invariant with respect to conformal changes in the metric g, on Xj.

The approach of [14] does not appear to readily generalise to the case
k > 1, since their method relies on Donaldson’s collar map which gives a
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diffeomorphism from the ‘bubbling end’ of M %o.1(90) to the collar X, x
(0,X). For this reason we adopt a quite different method which uses
the gluing techniques of Taubes and Donaldson to construct a system
of local coordinate charts covering the ‘ends’ of the moduli space. We
then estimate the components of g with respect to these coordinates. In
the case of the Weil-Petersson metric on Teichmiiller space, estimates
of this type have been obtained by Masur [16]. In [8], the author
proved Theorem 1.1, when X, = S* and ¥ = 2, using the ADHM
correspondence [7]. After the present work was submitted, a preprint
was received from Peng giving L? estimates for the derivatives with
respect to moduli parameters of the family of anti-self-dual connections
A on the connected sum X,#,S* constructed in §7.2.2 of [7], with
H% =0 [18]. His L? estimates are defined with respect to a family of
metrics g, which are conformally equivalent to go and which pinch the
neck of the connected sum as A — 0; away from the neck g, coincides
with go on X and it converges in C* to the standard round metric on
the unit sphere S*.

(c) Outline and strategy. It remains to summarise the methods
used in the proofs of our main results. Let us first recall the definition
of the L? metric. The tangent space T4 M%,_ ,(go) is identified with the
cohomology group H} = kerd};*°/imd}*. Given tangent vectors [a],
[b], the L? metric g is defined by

(L.1) gra([al, [8]) = (Taa, mab) L2(xXo,90) 5

where 14 = 1 —d4(d3*°d4)~1d%* is the L? orthogonal projection from
L?Q*(Xo,ad P) to the subspace ker d;%. Clearly, g([a], [b]) is bounded
above by ||a||z2||b]|z2, and so a reasonable strategy is to seek upper
bounds for g over the moduli space ends. This will suffice for our
present application.

(i) Moduli space ends and the bubble tree compactification. Our first
task is to describe useful models for the ends of the moduli space of
anti-self-dual connections. Let (Ag, z1,...,Zm,) be a point in the stra-
tum My, ;(90) N (Mxq,k,(90) X s¥7%(X;)) of the Uhlenbeck compact-
ification (see §4.1) which lies away from the diagonals of the symmet-
ric product, so that my = k — k; and each point z; has multiplic-
ity 1. Then every point [A] € Mx, x(go) which is close enough to
(Ao, Z1,-..,Zm,) in the Uhlenbeck topology can be shown to lie in a
neighbourhood constructible by gluing or ‘gluing neighbourhood’ [3],
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[7). Thus, suppose [A,] is a sequence in My, x(go) which converges
weakly to (Ao, Z1,...,%m,). As described in §4.2, the sequence of con-
nections [A,] produces sequences of local mass centres z;, converging
to the points z; and sequences of local scales \;, converging to zero.
Using the scales \;,, one now dilates the metric gy around the points
Z;o and produces a sequence of conformally equivalent, C*™ metrics g,
on a connected sum X = X,#19S% As the scales \;, tend to zero,
the corresponding neck is pinched and the connected-sum metrics g,
converge in C*° on compact subsets away from the neck regions to
the metric go on X, and the standard round metric g; (of radius 1)
on each copy of S*. This ‘conformal blow-up’ procedure gives a se-
quence of g,-anti-self-dual connections [Aa] which converges strongly
(in the sense of [7]) to a limit (Ao, 1, ..., I;m,) over the join X, V2% S%
where the I; are the standard one-instantons over X; = S* with cen-
tre at the north pole n and scale 1. Here, strong convergence means
C convergence on compact sets away from the necks and such that
c2(Ap) + X7 ¢o(I;) = k; there are no singular points and there is no
curvature loss over the necks. One obtains an open neighbourhood in
mmko (g0) of the boundary point (Ao, Zi,...,Zm,) by gluing up the
limit (Ao, L1, ..., In,)-

On the other hand, if the set Zy = (z1,...,Znm,) lies in the diagonal
of the symmetric product s*~*(X,), the limiting behaviour of the se-
quence [A,] may be rather more complicated. Suppose [A,] is the corre-
sponding sequence of g,-anti-self-dual connections over X = Xo#S*
produced by conformal blow-ups. The sequence A, converges in C*®
on compact subsets of X \ Z, to a go-anti-self-dual connection A, over
Xo, but in general only converges weakly to an Uhlenbeck limit (4;, Z;)
over the four-spheres X; = S*, where Z; = (z;1,...,Tim,) is contained
in X; \ {s} and s is the south pole. If the connection A4;, i > 0, is not
flat, then the conformal blow-ups may be chosen so that its curvature
density is centred in the sense of [23]; its mass centre lies at the north
pole and has scale (essentially its ‘standard deviation’) equal to 1 (see
§4.2).

Unless all the singular sets Z; are empty, one can no longer produce
an open subset of the moduli space My, x(go) simply by gluing up the
connections (A4;)i2; because of the nature of the convergence process,
some of the required moduli parameters have been lost in the limit.

Instead, the above conformal blow-up process must be iterated. The
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idea of iterating conformal blow-ups has been suggested by Sacks and
Uhlenbeck in the context of harmonic maps of S2[19]. Taubes described
an iterative scheme of this type which is used to analyse the limiting
behaviour of sequences of connections with uniformly bounded Yang-
Mills functional and functional gradient tending to zero [23]. Parker
and Wolfson described a bubble tree compactification for pseudoholo-
morphic maps of Riemann surfaces into symplectic manifolds and noted
that their method should apply to the case of Yang-Mills connections
over four-manifolds [17].

For the problem at hand, by repeatedly applying conformal blow-
ups, we obtain a sequence of g,-anti-self-dual connections A, over a
large connected sum X = #,c7X;. Here, T is a set of multi-indices
I obtained when the conformal blow-up process is iterated. Thus, Z
records the tree structure and if I = 0, then X; is the four-manifold
Xo, while if I # 0, then X; is a copy of S*. The construction of the
‘conformal blow-up maps’ f;, ensures that the blow-up process must be
repeated at most k times in order to produce a sequence of connections
[Aa] which converge strongly to a limit (A;);ez over a join V,ez X,
where Ay is a gg-anti-self-dual connection over X, and each A;, for
I # 0, is a g;-anti-self-dual connection over X; = S* The sequence
of metrics g, converges in C* on compact subsets away from the neck
regions to the metric go on X, and the standard round metric g; on
each sphere X;. This convergence scheme produces the ‘bubble tree
compactification’ H;O’ k,(90) and is described in §4.3.

In particular, bubble tree degeneration and gluing are inverse to one
another in a natural way. Using the techniques of [7] one can now glue
up the bubble tree limits (A;)rez to form g-anti-self-dual connections
A over a connected sum X = #;c7X;, and construct open subsets of
the moduli space M x(g) by small deformations of the limit data. The
gluing procedure gives a collection of conformal maps f; (from a small
ball in a lower level summand X;_ to the complement in the sphere X
of a small ball around the south pole) defined in exactly the same way
as the above conformal blow-up maps f;,. Here, g is a C* metric on X,
which is conformally equivalent to the old metric gy (via the maps f;)
and depends on the choice of gluing sites, frames in the principle SO(4)
frame bundle FX,, scales, and the metric g, on Xj; its construction
and properties are discussed in §3.5. Similar metrics over connected
sums are described in [3] and [24]. Pulling back via the blow-up maps
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then gives go-anti-self-dual connections A over X, and hence, produces
open subsets of the moduli space Mx, x(go)-

Generalising the arguments in [3] and [7] and employing the compact-
ness results of §4.3, one then shows that mo,k(go) has a finite cover
consisting of gluing neighbourhoods V. Of course, any precompact
open subset of Mx, x(go) is covered by finitely many Kuranishi charts,
and these comprise the ‘gluing charts’ in this case. Moreover, the L*-
metric geometry near the reducible connections, the conical ends, has
already been analysed by Groisser and Parker [14], so we may confine
our attention to the more troublesome bubbling ends.

(11) Upper bounds for the components of the L? metric. We now
outline a method of computing estimates for the L? metric g over the
ends of the moduli space. In §§3.3 and 3.4 we apply the techniques
of [3] and [7] to first construct approximate gluing maps J': 7°/T —
Bk, t = [A'(t)]. Here, X is the connected sum #ezX; with C*
metric g conformally equivalent to gy on X, and 7/I' is a certain
parameter space. If the g-self-dual curvature F1t9(A’) is sufficiently
small, one can then solve the g-anti-self-dual equation, F*9(A'+a) = 0,
or equivalently

(1.2) difa+ (ana)t? = —-FHI(A),

for a € Q'(X,ad P). This gives a C* family of g-anti-self-dual con-
nections A = A’ + a and thus a gluing map J : T°/T — Mx,(9),
t — [A(t)]. The solutions a to Eq. (1.2) are expressed in the form
a = P¢, where £ € QT9(X,ad P) and P is a right inverse to the oper-
ator d};)? constructed (as in [7]) by patching together right inverses P;
for the operators d};’’ over the summands X;. Therefore, Eq. (1.2)
takes the shape

(1.3) £+ (PEAPE)T! = —FHI(A').

Following [7], we assemble the framework required for solving Eq. (1.2)
in §5.1.

Now the L? metric g depends on the choice of metric go, not just the
conformal class [go]. So, using the conformal maps f;, we pull back the
family of g-anti-self-dual connections A(t) = A'(t) + a(t) over X to an
equivalent C* family of go-anti-self-dual connections A(t) = A'(t)+a(t)
over X,. Hence, we obtain gluing maps J : 7°/T — M}, (), t —
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[A(¢)] analogous to those constructed by Taubes. The properties of the
gluing maps J and J are discussed in §5.2.

The problem then is to estimate the differentials D and this task
is comprised of two parts. The first part is to bound the derivatives
0A'/0t; this local calculation is the subject of §§3.7 to 3.9 and the main
results are summarised in §3.10. The more difficult part is to bound the
derivatives of the correction terms, da/dt; this involves bounding the
derivatives of global operators such as P and is described in §§5.3 to
5.5. The problem of expressing bounds for derivatives of a(¢) in terms
of bounds for derivatives of a(t) is the subject of §3.5. Some care is re-
quired here, since the conformal maps f; vary with the scale and centre
parameters, as does the metric g in Eq. (1.2). The required estimates
for the derivatives da/0t are then computed in §§5.3 to 5.5 in terms
of bounds for dP/dt and 0¢/0t; the estimates for 9¢/0t are obtained
implicitly from Eq. (1.2). For the special case of a neighbourhood of a
point (Ao, A;) (with Hj = 0), L? estimates for the derivatives A/0t
were later obtained independently by Peng using similar methods [18].

It is the estimates for derivatives with respect to the scales A; which
require the most care. For example, difficulties arise when bounding
the derivatives 9 A’ /0\; because of the dependence on A of the confor-
mal maps f; and the cutoff functions required to patch the connections
Ay together over the connected sum. These derivatives are ill-behaved
as A; — 0, and the necks of the connected sum X are pinched. Prob-
lems also occur when one attempts to bound da/0);, since a = P¢
and the construction of P involves cutoff functions with badly behaved
derivatives with respect to A\; as \; — 0. The final estimates for the
differentials DJ and the corresponding bounds for the L? metric g
are sumarised in §5.6. The constants appearing in the bounds for g
depend only on the gluing neighbourhood. Theorem 1.1 then follows
immediately from these estimates.

2. Preliminaries

In this Chapter we establish our notation and define the L? metric.
Unless stated otherwise, we adhere to the standard conventions of [7].
For further details concerning gauge theory, we refer to [7] or [10] and
the references therein, while for details concerning the L? metric, we
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refer to [13], [14].

Let X be a closed, connected, oriented, C* four-manifold with Rie-
mannian metric g and let P be a principal G bundle over X with Lie
algebra g. As noted in the Introduction, we will generally confine our
attention in this article to the case G = SU(2) for the sake of clarity. We
let Q!(P, g) denote the space of O g-valued I-forms, let ad P = P x 749
be the adjoint bundle, and let (X,ad P) be the space of C*° ad P-
valued [-forms on X. Let Ap be the affine subspace in Q'(P,g) of
C® connection 1-forms on P. For a connection A on P, we let V4 be
the corresponding covariant derivative, let d4 be the exterior covariant
derivative, and let F4 € Q*(X,ad P) denote the curvature.

Let Gp be the group of C*° bundle automorphisms or gauge trans-
formations. Recall that the isotropy group I'y C Gp of a connection
A on P is isomorphic to the centraliser of the holonomy group of A
in G, and the centre Z of the bundle structure group G is isomorphic
to the centre of Gp. Thus I'y D Z and we let A} be the dense open
subset of connections A € Ap with I'y = Z, so that A} is the space of
irreducible connections on P when G = SU(2) or SO(3).

The bundles A'T*X ® ad P have fibre metrics ( , ) induced by the
Riemannian metric g on X and the inner product on the Lie alge-
bra g given by —1 times the Cartan-Killing form; if §;,& € g, then
(&1,&) = —tr(&1€2). In particular, we may define Sobolev spaces
LrQY(X,ad P) in the usual way and consider the action of the LZ_,;
gauge transformations G on the space of L2 connections Ap (for n > 2)
with quotient Bp = Ap/Gp, omitting the explicit Sobolev notation
when no confusion can arise.

The tangent space Tx.A} is equal to Q'(X,ad P) while the tangent
space to the G-orbit through A € A} is imds C Q'(X,ad P). This
induces an L?-orthogonal decomposition T4 A} = ker d% @imd,, where
kerdy} C Q'(X,ad P). There is an associated horizontal projection
operator my : TyAp — kerdy, with my = 1 — d4G%d%, where GY is
the Green’s operator for the Laplacian AY = d%d4. To identify the
tangent space Tj4Bp, introduce C* paths A(t) in A} and u(t) in Gp,
u(0) = 1. If A%(¢) = us(A;), then

dA® dA du
2.1 = ) i u -12- .
(2.1) o Ad(u )dt +dy (u dt>

Thus dA/dt(0) defines an element of Q!(X,ad P)/imd, and there-
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fore the tangent space Tj4 B} is given by Q'(X,ad P)/imd4 ~ ker d¥.

Let Mp(g) be the moduli space of g-anti-self-dual connections on the
G bundle P over X, that is {[A] € Bp : F+9(A) = 0}, and let M} (g) be
the dense open subset Mp(g)NBy. If A(t) is a C™ path in Ap satisfying
F+9(A(t)) = 0, then dA/dt(0) defines an element of kerd’/imd}?.
The g-anti-self-dual condition F+9(A) = 0 is equivalent to d};"Yod4 = 0,
and so we have the elliptic deformation complex

. a3
22)  Q°(X,ad P) 25 Q'(X,ad P) 2= QH9(X,ad P)

with associated cohomology groups H?%, where HY is the Lie algebra of
T4, the group H} = kerd}?/im d, is just the tangent space Tj ;Mp(g),
and H? = coker d?. By Hodge theory there are natural isomorphisms
HY ~ ker AY, H} ~ kerd} Nkerd};?, and H3 ~ ker A};'?, where the
Laplacian A} is equal to d?(d}?)*.

If [A4] is an irreducible point of Mp(g), then H = 0, and an irre-
ducible point [A] is regular if H5 = 0. The moduli space Mp(g) is
regular if all its irreducible points are regular points, and in that case,
M} (g) is a C*° manifold of dimension

(2.3) dim Mp(g) = 8k(P) — 3(1 — by(X) + b+ (X)),

with tangent space Tj4 M} (g) = H) at the point [A].

According to the Freed-Uhlenbeck theorems, the anti-self-dual mod-
uli spaces M} (g) are smooth manifolds when g is generic. More pre-
cisely, if b*(X) > 0, P is any SU(2) or SO(3) bundle P over X, and the
metric g on X is generic, then the following hold: (1) M}(g) contains
no points [A] with H3 # 0. (2) If b*(X) > 0 and [ > 0, then Mp(g)
contains no points [A] with HY # 0 for any bundle P with 0 < k(P) <.
(3) If b*(X) = 0 and P is non-trivial, then the cohomology groups H%
are zero for all the reducible g-anti-self-dual connections A on P, and a
neighbourhood of point [A] € Mp(g) with HY # 0 is homeomorphic to
a cone over CP**~? and diffeomorphic away from the cone point [A].

It remains to define the L? metric. The quotient space B} inherits a
(weak) Riemannian L? metric g by requiring that the projection map
for the principal Gp/Z bundle A}, — By be a Riemannian submersion:
if [a], [b] are tangent vectors in Tj4Bp, then

(2.4) g ((al, [6]) = /X (T 4a, T4b) dV,,
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and this restricts to give a C*° Riemannian metric g on the moduli
space M}(g).

3. Differentials of the approximate gluing maps

Our purpose in this Chapter is to construct the approximate gluing
maps J' : T/T — By, and J' : T/T — Bk, .x» and to estimate the
differentials D.J’, and especially D.J’. The construction of J' uses
the method employed by Donaldson in [3], [7]. The induced maps J'
are essentially the approximate gluing maps described by Taubes in
[20], [21], [23]. In the former case, we obtain an almost g-anti-self-dual
connection A’ over a connected sum X = X#c7S* with metric g
conformally equivalent to gy on Xj, while in the latter case we obtain
an almost gq-anti-self-dual connection A" over X, with its fixed metric
go. In Chapter 5, we obtain a system of coordinate charts J : T/T' —
M5, 1(go) covering the moduli space by perturbing the maps J' using
the techniques of [7] for solving the anti-self-dual equation.

3.1. Preliminary estimates for connections and curvature.
We describe some pointwise estimates for local connection one-forms
and curvature two-forms. We first consider estimates for connection
one-forms in radial gauge on a C*° manifold X with C* metric g.
Suppose P — X is a principal G bundle, A is a C® connection on
P, and B is an open geodesic ball centred at z, € X with radius
0/2, where g is the injectivity radius of (X,g). Define a C'* local
section o : B — P by parallel transport of a point in the fibre P|,,
along radial geodesics through z,. If vy is a radial geodesic in B with
v(0) = zo and ¥(t) = &, then 0*A(zo) = 0 and t¢,0*A(7(t)) =0,t > 0.
If 97! : B — R! is a geodesic normal coordinate system centred at zo,
and we define a geodesic v by v(t) = ¢(tz), z € B, t € [0,1], then
Y4(t) = tz#*, ¥ = x, and 1x0*A = z#(0*A),. We recall the following
estimates for local connection one-forms in radial gauge.

Lemma 3.1. [25 (p. 14)] Let A be a C*™ connection on a principal
G bundle P — X, where X is a C*™ manifold with C* metric g, and
let B be a geodesic ball of radius p/2 centred at xy € X, 0 : B - P
be a local section such that o*A is in radial gauge centred at x,, and
¢~ : B — R" be a geodesic normal coordinate system centred at . If
K = |Falls(5.), then |¢"0" Aly(z) < Klol, for  |o] < o/2.
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Let HP! be the right quaternionic projective space, with the stan-
dard identifications H ~ R* and HP' ~ S* Coordinate patches for
S* may then be defined by U, = {[z,y] : y # 0} = S*\ {s} and
U, = {[z,y] : z # 0} = S*\ {n} covering the north pole n = [0,1] and
south pole s = [1, 0], respectively. We let ¢,;! : U, — R?, [z,y] — zy~?
and ¢;' : U; = R*, [z,y] = yz~! denote the standard local coordinate
charts. If g; is the standard round metric of radius 1 on S%, then

(31 (9)m(@) = B(@)op = ————bu,  TER,

(1 +Jzf*)> ™

for & = n, s, where the standard flat metric on R? is denoted by 4.

Let A be a C™ connection on a principal G bundle P — S*, where
S* has its standard metric g;. We define a system of local sections
04 : Uy = P, a = n, s, by parallel transport of points in the fibres P|,
along radial geodesics through the north or south poles. The estimates
below follow easily since A is smooth over S* with metric g;:

Lemma 3.2. Let A be a C*® connection on a principal G bundle
P — S* where S* has metric g and K = ||Fallp~(ssq,)- Then, for

a?ﬁ E {n’ 8}7

|psF (o A)s(z) < 4K 1 {-"’ €R! if a=p,

(1+|=[?)? zeRN\{0} if a#8.

Lemma 3.3. Given the hypotheses of Lemma 3.2, if the local con-
nection one-forms o* A are in radial gauge, then |¢pot A, (z) < Klz|,
for z € R* and a = n,s.

3.2. Connections over the four-sphere and conformal dif-
feomorphisms. Recall that the group of conformal diffeomorphisms
of S* acts on the space Ap of C* connections on a G bundle P over S*.
The group D x T of dilations and translations of R* may be identified
with a subgroup of the conformal group of S%. Hence, in this section
we discuss some aspects of the induced action of Rt x R* on the space
Ap. For related material we refer to [5], [10], [13], [14], and [23].

Let P be a G bundle with C*® connection A € Q!(P,g) over a C®
manifold X and suppose ¢; is a C* one-parameter group of diffeomor-
phisms of X generating a vector field £ € C*°(T'X). Let £ € C*°(TP)
be the horizontal vector field covering ¢ and let ¢; be the one-parameter
group of diffeomorphisms of P generated by €. Then @, commutes with
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right G multiplication and covers ¢. Fixing Q € Q!(P, g), we obtain a
C™ one-parameter family of C* one-forms ¢;2 on P with

402
dt li=o
where L:Q € Q'(P,g) denotes the Lie derivative of Q with respect to
f ; in particular, ;A is a C™ one-parameter family of C* connection
one-forms on P.

Lemma 3.4. Let P be a G bundle with connection A € Q'(P,g)
over a manifold X. Given a vector field ¢ € C®(TX), let £ € C°(TP)
be its horizontal lift. If Fa € Q*(P,g) is the curvature of A, then
[:{'A = I’EFA'

Proof. Since £ is horizontal, A(£) = 0 and so for any vector field n €
TP, we have (L;A)(n) = (1zdA + dizA)(n) = dA(n,§). But Fa(n,€) =
dA(n, &) + 1[A(n), A(€)] and so the result follows.

We also need to consider Lie derivatives of ad P-valued one-forms.
Recall that if 7 : P — X is the bundle projection, there is an injective
map 7 : Q}(X,ad P) — Q(P,g). The one-forms  in the image of
n* are characterised by the properties (a) R:Q = Ad(u™!)Q, for all
u € G, and (b) Q(n) = 0 if n € TP is vertical. Hence, the action of
@; on Q!(P,g) induces an action on Q'(X,ad P) = I'(T*X ® ad P).
Thus, if w € Q'(X,ad P), we obtain a C*® one-parameter family of C*°
ad P-valued one-forms ¢;w on X with

(32) = ['5'97

do;w

dt It=0 = Lew,

where L:w € Q'(X,ad P) denotes the Lie derivative of w with respect
to £ .

For the purposes of calculation, it is useful to phrase the preced-
ing discussion in terms of local one-forms on X. It is convenient to
choose a system of local sections o, : U, — P which are parallel
with respect to the connection A and vector field £, in the sense that
A(0a+&) = 0. For example, one can try to construct o, by first choos-
ing a section o,|y,, where V, is a submanifold of U, transverse to the
vector field ¢, and then extend by parallel translation along integral
curves of £ to construct a section o, over a tubular neighbourhood U,
of V. Local sections of this type are described in [10 (pp. 146-147)]
and (25 (pp. 14-15)].

(3.3)
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Given a system of (A, £)-parallel local sections o,, we have E = Oaxé
and ¢; = oy, over U,. Hence, for w € Q(X,ad P) we see that
oapiw = piow and o Lzw = Leozw on U,, and similarly for A €
Q'(P,g). Indeed, one can see that the transition functions {u,s} are
constant along the vector field {. For if o5 = 0,u,g, then 05 =
Oaxl - Uap + g - Ugp&, Which gives A(04.8) = Ad(uz5)A(0aué) + A(oq -
Uags€), and thus du,g(€) = 0, since A(04.€) = A(05.£) =0 and A(o, -
Uaps€) = Uops. Here, 04 - usp.€ is the vector field on P|y, obtained
by differentiating the maps G — P given by u — o,(z)u. When
computing Lie derivatives of local connection one-forms or ad P-valued
one-forms with respect to a vector field &, we shall always require that
the local sections o, be (A, ¢)-parallel.

It is often useful to express Lzw in terms of covariant derivatives.
Suppose X has a C*° metric g. We have L;w = 1.dw + di;w, or in local
coordinates, (Lew), = £Y0w,/0z" + w, 06" /0z*. We find that

(3.4) Lew = Vw4 w(V9€),

using normal geodesic coordinates {z*} and (A4, £)-parallel local sec-
tions {o,}. In the sequel, we omit the “tildes” to indicate lifts of
vector fields or diffeomorphisms on the base to the total space of a
principal bundle, this being understood from the context. Note that if
® : X - X is a diffeomorphism and w € Q*(X,ad P), then we have
EE(I)*O) = Q*[:q;*gw.

Let A be a C*™ connection on a G bundle P over S* and let w €
Q1(S* ad P). For any t € (—o00,0), let §; be the dilation of R* given
by £ — €'z, and for any p € R?* let 7, be the translation of R* de-
fined by 7, : £ = z — p. If §; and 7, again denote the conformal
diffeomorphisms of S* induced by the chart z = ¢!, then the group
C= S0(4) x Dx T of rotations, dilations, and translations of R* is
identified with the subgroup in Conf(S?,g,) of diffeomorphisms which
fix the south pole s € S%. Setting ¢; = d; or 7;p, we see that these
diffeomorphisms are generated by the vector fields

0 Y
(3.5) r=cfs— and —p=-pp.

We always choose p € R* with |p| < 1. We next describe the construc-
tion of (A, &)-parallel local sections o, for { =r or p.
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Considering the group of dilations D, let ¢,,0, be the local sections
formed by choosing points in the fibres P|,,, P|; and then parallel trans-
lating along radial directions from the poles. The transition function
u will be constant along the radial directions, du(r) = 0, and the lo-
cal connection one-forms ¢, A are in radial gauge. On the other hand,
considering the group of translations T, suppose first that p = 8/0z*
and let o,|ss, 0,|ss be the local sections formed by parallel translation
from the north and south poles of the three-sphere S® C S* defined by
the image of the z'z*z%-plane under the map ¢, : R* — S*\ {s}. We
obtain local sections o,,0, by parallel translation along the z*-axis.
The transition function » will now be constant along the z*-axis, so
du(p) = 0, and the local connection one-forms o} A are in a transverse
gauge. By a linear change of coordinates, the same argument applies
to arbitrary translations.

For the dilations, we have

dé;w ‘
dt li=o

using Lew = tedw+diew, or in local coordinates, (Lew), = €”0w,/0z” +
w, 0¥ /0z*. Similarly, for the translations we have

= Liw = i dw + w,

(3.6)

driw ‘
dt li=o

(3.7) = —Low = —tpdw,
where p = p#9/0z*.

For any X € (0,00), let c; be the diffeomorphism of S* defined by the
chart £ = ¢-* and the dilation c, of R* given by z — z/). Then ¢, = é;
with ¢ = —log ), and so from Eq. (3.6) we have Zcjw = —1c}Lw.
Similarly, for the translations 7,, ¢ € R*, we see that Eq. (3.7) gives
ZTsw = —7rLpw, where 8/8p = p"d/dg* on the left-hand side and
using 7,44, = @p © T, On the right. Combining these actions, we find

that

* %k J— 1 * %k a * % 1
FnTaGw = "1, c\Lyw and 57} aw=-y
Similarly, considering the action of the dilations c, and translations 7,
on connection one-forms, we have

(3.8) T, Lpw.

6 * % ]‘ * %k a 1
(3.9) T A= =3 auFa and —7'ciA = —XT;cf\LpFA.

A Op
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These derivative formulas play a significant role in the sequel.

It is convenient at this point to recall Taubes’ definition of a centred
connection over the four-sphere [23 (p. 343)]. Let A be a g;-anti-self-
dual connection on a G bundle P with ¢,(P) = k over S*, where S* has
its standard metric g;. Pulling back via the chart z = ¢! : S*\ {s} —
R*, we obtain a d-anti-self-dual connection A on a G bundle P over R*
with its standard metric §. Let © denote the flat connection on the
product bundle. Suppose A # ©O; then the mass centre ¢ and scale A
are defined by

1
g = Centre[4] = Sk /1124 z|Fal? d'z,
(3.10)
PP |
A? = Scale’[A] = PR /Rq|33 —q|*|Fal*d'z

If A =06, we set Centre[A] = 0 and Scale[A] = 0. The connection A is
called centred if Centre[A] = 0 and Scale[4] = 1. Eq. (3.10) leads to
the following T'chebychev ineqality:

(3.11) / |Fu?d'z < 87°kR™?, R >1.
|z—g|>RX

Hence, the ball B(g, R)\) contains A-energy greater than or equal to
8n2k(1 — R™2).

Setting fi, = ¢y o 7;,, we see that Centre[(f5,;)*4] = 0 and
Scale[(f5,)*A] = 1. Let M denote the moduli space of g;-anti-self-
dual connections on the bundle P over S* and let MY denote the moduli
space of centred g, -anti-self-dual connections. Note that M} consists of
a single point representing the standard one-instanton over S*. More
generally, the relationship between M; and M} is explained below.

Proposition 3.5. For any k > 0, the space M} is a smooth sub-
manifold of M. Moreover, My is diffeomorphic to MP x R* x (0,00).

Proof. Onme argues as in [23 (pp. 343-344)] and [22 (pp. 365-367)].
Given [A] € M;, with Centre[A] = g and Scale[A] = A, set f), = cro7,.
The map [A] — ([(fi,)*Al,¢,A) then gives the required diffeomor-
phism.

3.3. Gluing construction of approximately anti-self-dual
connections. We describe the approximate gluing constructions of
Donaldson [3], [7], and Taubes [20], [21], [23], adapted to the case of
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‘bubble trees’. For clarity, we first discuss the construction of approx-
imately anti-self-dual connections over single connected sums. Let X,
be our closed, smooth four-manifold with metric go and injectivity ra-
dius gy, and let X; = S* with its standard round metric g; of radius 1.
Let z; be a point in X, and let z,,,, z;, denote the north and south poles
of X;. Let P, - X; be principal G bundles with ¢,(P;) = k;, 1 =0, 1.
Let F X, be the principle SO(4) bundle of oriented, orthonormal frames
over X,.

A choice of frame v; € FXy|,, defines a geodesic normal coordinate
system ¢;' = exp;! : Bi(go) = R*. Denote ¢1o = ¢q, @ = s,n, where
¢! : U, = S*\ {a} = R* are the standard coordinate charts on the
four-sphere. Let B,(r) = B(z;,r) be the open geodesic ball in X, with
centre z; and radius r, and let Bi,(r) = ¢1,({z € R* : |z| < r}), an
open ball in X; with centre z;,. Let Q,(r,R) = Q(z;,r,R) be the
open annulus B;(R) \ B;(r) centred at z, € X,, with inner radius r
and outer radius R; similarly, let Q,,(r, R) = Q(z,,7, R) be the open
annulus Bi,(R) \ By,(r) in X;.

Let N > 4 be a large parameter, to be fixed later, and let A; > 0 be a
small scale parameter such that A\;/’N < 1. We define open sets Xy =
Xo \ B1(N7IA?), XI' = X0\ B1(3M\/%), and X} = X, \ B1(2NN?)
— the complements in X of small balls around the point z;. Likewise,
define open sets X;, X{', and X" in the sphere X;. Let €, denote the
annulus Q,(N-1AY2, NAY?) in X, and let Qi, = Q,,(N"1AY2, NAY?)
be the corresponding annulus in X;. Let ¢, be the dilation map on R*
defined by z — z/,. Define balls B! = B;(NA}/?) and B} = B, (2\;'?)
centred at z, in X, and a diffeomorphism

(312) f1 = ¢1n oc; o d);l : B{ — X{

Hence, f; identifies the small balls B; and By’ in X, with the open sets
X, and X} in X, and restricts to a diffecomorphism f; : 1 — Qy,.

We let X be the connected sum X,#;, X;. In §3.5 we define a smooth
metric g on X which closely approximates the metrics g; on each sum-
mand X; and such that the map f, : B} — X is conformal. Thus,
(X, g) is conformally equivalent to (Xy, go)-

Let A; be g;-anti-self-dual connections on the bundles P; — X,
1 = 0,1. The connections Ay, A;, together with a choice of points
in the fibres Py|,,, Pi|,,,, define local sections o; : Bi(g,) — P, and
01, + X1 \ {z1n} — P by parallel transport along radial geodesics
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through z,, z,,. Hence, we obtain local trivialisations Pylp, 2B, x G
and PIIBL. ad Bls x G.

Let b, > 4N )\i/ ? be a small parameter, b, < +min{1, go}; we will
eventually set b; = 4N )\i/ ?. Choose cutoff functions ; on X; such that
0 < 4; <1, with ¢ = 1 on Xo \ Bi(b1), %0 = 0 on By (b,/2), and
similarly for ¢; on X;. We let Ay = 1A, be the C*™ connection on
the bundle 7y : Py — X, defined by

(313) A(') = {AO on POlXO\Bl(bl)7

WS('J)OUIAO) on PllBl(bl)’

Of course, we have the analogous definition for the C'*° connection A}
over X;, and we obtain almost anti-self~-dual connections which are flat
on the balls Bj, Bj,.

To construct the cutoff functions ;, choose a C* bump function ¢
on R! such that ((¢) = 1 for ¢t > 1 and ¢(t) = 0 for ¢t < 1/2. Define
a C* cutoff function 1, on R* by v,(z) = ((|z|/b), for any b > 0.
Set 1o = (¢7)*1s, and extend by 1 on X, \ B(z;,b;) and by zero on
B(z1,b,/2) to give ¢, € C®(X,); likewise, set 1, = (41, )*1s, and
extend to give ¢; € C*(X;). Each p; extends by zero to give a C*®
cutoff function on the connected sum X.

Choose a G-equivariant isomorphism p; € Gl,, where
Gl;, = Homg(Polzy, Pilzy,) =~ G is the space of ‘gluing parameters’.
Using the connections A; over the small 1b;-balls, spread out the fibre
isomorphism p, to give a bundle isomorphism p; : Fylg, = Pilq,, cov-
ering the diffeomorphism f; : Qo = Q;. Thus, 01p; = fyo1, on ;. We
define the smooth connected-sum bundle P — X with second Chern
class ¢;(P) = k = ko + ki by setting P|x; = Po|x; and P|x; = Pi|x;-
Note that the bundle P is defined by transition functions independent
of the scale ;. We define a smooth connection A' = Aj#A] on P =+ X
by setting A’ = A} on each summand X;.

If T4, are the isotropy groups of the connections 4;, and I' = T"4, x
I'4,, then we recall that the gluing construction gives a bijection be-
tween the gauge equivalence classes [A'(p;)] in Bx; and Gl,, /T
[7 (p. 286)].

Using the diffeomorphism f, : B — X], we pull back the bundle
P over X to a bundle P over X, given by I3|X‘fJ = Polx;, and 13[3; =
fiPi|p;. We have an induced system of local sections of P B, given
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near z; by 61, = frow, : Bi = P, 61, = frois : B\ {z1} = P,
and 6; = oy : (N ‘1)\1/ 2,90) — P. The corresponding transition
functions 4; = ffu; : By \ {zo} = G and p; : Q; — G are determined
by 615 = G1atl; on By \ {wo]: and 01p; = f; 615 on §;.

On the pull-back bundle P — X, we define the corresponding smooth
pull-back connection A’ by setting A’ = Al on P| x; and A = frA
on PI B;,- We obtain local connection 1-forms for A" over X, given
by 67,A' = frot, A, on the ball B], 6tA' = orAl on the annulus
Q,(N-AY?, 0p), and 67, A" = fro:, A, on the punctured ball B, \ {z,}.

On the annulus ©; we have 67,4’ = o7 A’ = 0, and since

~

(3.14) 61, A" = prleT Abpy + prdpy on

we see that dp; = 0 on 2, and so p, is constant on 2;. The transition
function 4, on B} \{z,} is independent of A, since u; on X; \{Z1n, Z15}
is constant along geodesics connecting the north and south poles. Thus,
the bundle P is defined by transition functions which are constant with
respect to A;.

We now generalise the preceding discussion to give a construction of
approximately anti-self-dual connections over multiple connected sums.
The description we give here is closely related to Taubes’ iterated gluing
construction [23 (§4)]. The construction parallels the description of the
ends of the bubble tree compactification Mx, 1(go) described in Chap-
ter 4.

It is convenient at this point to introduce some terminology. Let

I = (4y,...,1,) denote a multi-index of positive integers. The length of I
is r; we regard 0 as a multi-index of length zero. Given I = (iy,...,1,),
we let I_ = (i1,...,%,_1); we will often denote a multi-index of the
form (%,...,%,41) by I, or if we wish to be more specific, by Ij, where

j = 1,41 > 0 or s,n (indicating north or south poles of S*), with a
slight abuse of notation. Let Z be an oriented tree with a finite set of
vertices {I}, including a base vertex 0, and a set of edges {(I,I;)}. If
I = (iy,...,%,) and I = (j1,...,7¢), then we say I < J if r < t and
J = (i1, 43y Jrs1,---,J¢). The valence of each vertex I is the number
of edges emanating from that vertex. The height of the tree Z is the
number of levels — the length of the longest multi-index minus one.
With respect to a given vertex I, the edge (I_,I) is called incoming,
and the edge (I, I, ) outgoing.
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The construction of a C*, approximately g-anti-self-dual connection
A’ of second Chern class k > 1, associated with a tree Z, requires the
following data:

Data 3.6. Gluing data for approzimately anti-self-dual connections.
(1) To each vertez I, we associate a gr-anti-self-dual connection A;

on a G bundle P — X; with ¢;(P;) = k; > 0. If I = 0, then
X, is the base four-manifold with metric go, while if 7 > 0, then
X; = S* with its standard round metric g; = g, of radius 1.

(2) To each edge (I_,I), we associate the data (by, A1, pr,Zr,vr) given
by the

(i) Connection cutoff parameter b;.
(ii) Scale parameter ;.
(iii) Bundle gluing parameter p; € Gl,,, where Gl,, =
Hom(Pr_|z;, Prlzs,)-
(iv) Centre or gluing site z; € X;_.
(v) Frame vy € FX,l,, if I = 0.

(3) Constants by, do, Ao, V.
For convenience, if I, = Is, we denote by, = by, A\;; = A;, Nz = N,
and pr, = pr. We let x5, 21, denote the north and south poles of the
spheres X; = S* If I_ > 0, then z; = ¢;_,(qr) € X1, where ¢q; € R*.
Define
(3.15) b=maxb; and )= max);.
Ie1 Tez
The gluing data should satisfy the following constraints:
Condition 3.7. Gluing data constraints.
(1) Scales: 4N/\}/2 < by < $min{l,00,do}, 4 < Ny < N, and 0 <
Ar < X
(2) Separation of centres: Suppose z;,z; € X;_.

(i) IfI_ =0, then dist, (z1,2) > 4(bs + bp).
(i) IfI_ >0, then |qr —qp| > 4(b; + by).

(3) Topology: 3 ;czkr =k and k; > 0 for some I > 0.

Remark 3.8. Definition 3.6, together with the constraints of Con-
dition 3.7 should be compared with the definition of ‘bubble tree ideal’
connections in §4.3. The requirements on the scales and separation of
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centres are in place simply to ensure that the different gluing regions
do not interfere with one another.

The gluing procedure now generalises to give a C* family of ap-
proximately g-anti-self-dual connections A’ = #c7A} on a bundle P
over a multiple connected sum X = #7X;. First, consider the defi-
nition of coordinate charts, open balls, and annuli in X,. If I_ = 0, let
¢1' = exp;! : B(zr,0) — R* be a geodesic normal coordinate chart
defined by a point v; in the oriented frame bundle fibre FX,|,,. Let
B;(r) = B(zy,r) be the open geodesic ball in X, with centre z; and
radius r.

Turning to the four-spheres X;, for any I > 0, let ¢ = ¢, @ =
s,n be the standard inverse coordinate charts on X;. Define open
neighbourhoods in X; by

Bro(r) = B(zrs,7) =1, {z € R 1 |z] < 1}),
(3.16)
Bi, (r)=B(zr,,r) =¢m ({z R : |z —gqr,| <T}).

Let Q;(r,R) = Q(z;,7, R) be the open annulus B;(R) \ B;(r) centred
at z; € X;_, with inner radius r and outer radius R.

Define small balls B, = B(z;,NA/?) and annuli Q; =
Q(zr, NAY?, NX¥?) in X;_, I > 0. The open subset X} is the com-
plement in X;_ of the balls B;(N~1A\}?), the open subset X} is the

complement in X;_ of the balls B( %)\}/ %), and the open subset X! is

the complement in X;_ of the balls B;(2NAY?).
We define identification maps f; by

(3.17) fr=¢mocrodr' : By — Xj,

where ¢y is the dilation £ — z/)A; on R*. The above maps ¢; are local
coordinate charts on X;_ given by

exp, ! if I_=0,
TI°¢I__1n if I > 07

(3.18) o= {

where 7; is the translation £ — z — q; on RY. The charts ¢;' =
exp,! may be replaced by ¢;' = 7,, o exp;!, |ps| < 0o, if we wish to
compute derivatives with respect to the centres z; in X,. For notational
consistency, we let f, denote the identity map on Xj.
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Using the diffeomorphisms f; : ; — ;, we obtain a connected
sum X = #e7X;. We again defer to §3.5 for the precise definition of a
metric g on X closely approximating the metrics g; on the summands
X} and such that the maps f; : Bj — X} are conformal. With this
choice of metric, the connected sum (X, g) is conformally equivalent to
(Xo, 9o)-

We have a local section o; of P;_ defined by a choice of point in the
fibre P;_|,, and A;_-parallel translation from z;; similarly, we have
local sections oy, o1, of P; defined by a choice of points in the fibres
Pile;.s Prlz,, and Aj-parallel translation from z;,,z;,. These sections
provide local trivialisations P;_|p, (o) =~ B1(0o) X G and Pr|x,\{z;} =
X1\ {z} X G. Define C* cutoff functions 1; on each summand X;
by setting

(3.19) ¥r = (é1.) ¥, [[(81)) %1, on X,

Iy

where the factor (¢, )*4s, is omitted when I = 0. Note that 1; = 0 on
the balls By,(b;/2) and By, (bs, /2) in X; and smoothly extends by 1 on
the complement of the balls By,(b;) and By, (br,) in X;. Lastly, extend
each ¢; by zero to give a C* cutoff function on the connected sum X.
Setting A} = Ar_, A} = 1A, we obtain C* almost anti-self-dual
connections A} , A} which are flat on the balls B;(b;/2), B, (b1/2).

The gluing parameter p; provides an isomorphism of the fibres :
P;_|;; =~ Pj|,,,. Using the connections A;_, A;, this identification is
extended to give a bundle isomorphism g, : Pr_|q, = Prlq,, covering
fr. By these identification maps we obtain a connected-sum G bundle
P — X with ¢;(P) = k and transition functions which are constant
with respect to the scales A;. The cutoff connections A} on P; patch
together to give a C* connection A’ on P. As before, the connection
A’ on the connected-sum bundle P over X pull back via the maps fr
to give a connection A’ on a bundle P over X,.

Lastly, we record some estimates for the connections A’ when re-
stricted to a summand X;. For this and later purposes, we define the
following Sobolev norms: Let V9 denote the Levi-Civita connection
on TX; defined by the metric gy, so that if f € C*(X}), then

(320) “f”Lf.(XI,yI) = z ”(Vgl)if”LP(thr)a
=0



486 PAUL M. N. FEEHAN

for any 1 < p < oo and integer n > 0. Similarly, if o € Q'(X;,ad Py),
then

n
(3.21) lodlz (xraran) = D N(VA ) @l Lo (xs ) -

=0

It is important to note that these norms will depend only on a set of
fized connections, {Aj}1ez, and a set of fized metrics {g;}rez-

Recalling that A} = 9;A;, define one-forms a; € Q!(X;,ad P;) by
setting A; = A} + a;. Thus

o — {(1—1/}1)0;+A1 on By, (br,),
0 on XI\UI+ B]+(b1+).

With the aid of bounds for the derivatives of the cutoff functions %,
for C=C(g;) and J=1_or I,

|dl(/)~]|g.l < Cb.71 on QJ(bJ/za bJ)a
”d")bJ”L‘(XJ,yJ) <C.

Standard arguments then give the following estimates.
Lemma 3.9. Let 1 < p < oo. Then there exists a constant C =
C(Ar1,91,p) such that

(a) llarllze(x,6r) < Cb and [lasllLe(x;,9) <

(5) NF(AD s~ (xr.00) < C and [|FH97 (A7) lzo(x1,61) < C.

3.4. Approximate gluing maps. Adopting a more global per-
spective, the construction of §3.3 yields a family of ‘approximate gluing
maps’, J' : T/T = By, and J' : T/T — Bk, , which we describe
in this section. We first recall that the standard Kuranishi models
give the required parametrisations for neighbourhoods of points [4/]
in Mx, x,(g1). Let A; be a g;-anti-self-dual connection over X;, with
isotropy group I's, and H} = 0. For a small enough open neighbour-
hood T4, of 0 € H},, we have smooth I'4,-equivariant maps

(3.22)

C-4/p+1’

(323) Qg TAI — kerdj{f’ C QI(X],adP[)

solving the g;-anti-self-dual equation F*97(A; + a;(t;)) =0, t; € Ty,.
Setting A;(t;) = Ar + a4(t;), we obtain a homeomorphism

(324) ’19] : TA;/FAI — UA” tr — [AI(tI)],
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onto an open neighbourhood Uy, of [A[] € Mx, 4,. If A; is the product
connection, ©, then I'y, = SU(2) and so H}, # 0, while H}, = 0. If
Aj is a non-trivial reducible connection, then I'y, = S! and HY #0;
we have a homeomorphism ¥; : T4, /T4, — Uya, and a diffeomorphism
dr 2 (Ta, \ {0})/Ta, = Ua, \ [A7]- Finally, if A; is irreducible, then
T4, = (*1) and HY, = 0; in this case we have a diffeomorphism
19] : TAI/PAI — UAI-

We now dispose of the construction of neighbourhoods of reducible
connections in Mx, x(go). Recall that the reducible connections in
My, 1(go) are in one-to-one correspondence with pairs {£c}, where
c € H*(X,,Z) satisfies ¢ = k. In particular, there are only finitely
many and so to describe a neighbourhood of any such reducible con-
nection [A] € Mx, +(go), we may employ the Kuranishi model 94 :
TA/FA — Uy,.

We now describe the approximate gluing maps J' and J', beginning
with the parameter spaces 7 /T. First, with the centres {z;} and scales
{Ar} held fixed, the parameter spaces T4, and Gl,, combine to give a
C* manifold

(3.25) T =Ty, x [[ (Ta, x GL,),

Iez
parametrising a ‘small’ family of approximately anti-self-dual connec-
tions. Then

(3.26) =Ty x [[Ta

Iez
acts freely on T and T'/T is a C* manifold. If we allow the centres,
now denoted y;, to move over disjoint balls B(z;,79) C X;_ and allow
the scales A; to vary in the interval (0, \o), the parameter space of Eq.
(3.25) is augmented to give a C* manifold

(3.27) T =Ta, % [[ (Ta, X Glo, xB(z1,7m0) X (0, X)),

IeT
parametrising a ‘large’ family of approximately g-anti-self-dual connec-
tions. Again, I" acts freely on 7, and 7/I" is a C* manifold. We fix
local trivialisations of the frame bundle F X, over the balls B(z;,),
and these provide smooth families of geodesic normal coordinate charts
on X,.
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We note that the almost anti-self-dual connections A’ produced by
§3.3 are indeed irreducible:

Lemma 3.10. Let A' be a connection on the G bundle P over X
defined by Data 3.6 and Condition 3.7. Then A’ is irreducible, that is,
HY, =0, for small enough by and large enough Ny.

The Lemma follows from Aronszajn’s unique continuation principle
for solutions to A 4.n = 0 via standard methods, so the proof is omitted.
Hence, the approximate gluing construction of §3.3 gives a C* map

(3.28) J :T|T — Bx» t— [A'(2)],

where B , has the structure of an L2 Hilbert manifold, n > 3. More-
over, J' is a C'*® submersion onto its image; see §5.2. We refer to J'
as an approrimate gluing map over X and its image U' C Bk, as an
approzimate gluing neighbourhood.

The dimension of the parameter space 7 /T" is given by

(3.29) dimT/T
= dim H} — dim HS + Y (dim H}, — dim HY, +8),

I>0

since each factor Gl,, X B(zr,7o) X (0, Ao) has dimension 8, dim H}, =
dimTy,, and Hj, = 0 for all I > 0 by hypothesis. Families of centred
gr-anti-self-dual connections A; € M%, , (gr) are parametrised by small
balls T}, and thus we obtain a C* parameter space

(330) 7_0 = TAo X H (Tg[ X Glz; XB(.’L'],T[)) X (0, Ao)) y

Iez

with C*® quotient 7°/T" of dimension equal to dim M x(g). The map
J': T°/T — Bk, is a C* embedding; see §5.2.

Lastly, using the conformal diffeomorphisms f;, the bundle P over
X pulls back to a bundle P over X,. The gluing construction now pro-
duces an approximately go-anti-self-dual connection A’ in B, - The
map J' of Eq. (3.28) pulls back to a C* map

(3.31) J:T|T — By, t—[A)]

Again, J' is a C™ submersion onto its image and is a C* embedding
when the parameter space 7 /T is replaced by the smaller parameter
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space T°/T; see §5.2. As before, the image V' of J' in B,  is called
an approximate gluing neighbourhood.

3.5. Metrics on connected sums. In this section we define a
conformal structure [g] on the connected sum X = #;c7X;. This is ac-
complished by replacing the standard round metric g; on each spherical
summand X; by a quasi-conformally equivalent metric §; so that the
identification maps f; : B} — X are conformal. We then construct
a C* metric g on X in the conformal class [g] = [go] and compare
the resulting L? norms for the different possible metrics on each sum-
mand X;. Our construction is modelled on the constructions of Don-
aldson and Taubes for metrics on connected sums — see {3 (p. 322)],
[7 (p. 293)], and [24]. The metric g depends on the choice of fixed base
metric go, fixed neck width parameter N, scales A;, centres z;, and
frames v;. We also obtain bounds for the derivatives of g with respect
to A; and z;.

With respect to a geodesic normal coordinate system z = ¢;;' on
B;,(00) C Xo, the covariant components of g, satisfy

o(: v
(,00),0(0) = b, and 2FaSodur gy _ g

(3.32) (8%, 90w — 8y(z) < clz* and
a T v
ﬂ# () <cal, ol < a/2,

for some constant ¢ = c¢(go). The analogous relations hold for the
contravariant components of go. We now define a conformal structure
[g] on X:

Definition 3.11. The conformal structure [g] on X is defined by
the C'*° metric go on X, and a choice of C* metric g; on each summand
X1, I >0, given by

. - h2(z) (P} 90) o (A1) if I_=0,
($1a0)s ) = { LG uz) .
hi(2)hi*(A1% + q1)(9791_ ) (A1) if I_ >0,
where |z| < NA;'/%. For convenience, we let g; = g; denote the stan-

dard metric on X; and let §o = go denote the metric on Xj.
Definition 3.11 provides the following expression for g;:

(3.33)  ($3ndir)ur (@) = B2(2)(0},90)ur (y(2)), 2| < NATY2,
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where

y(z) = ;' o -0 fit o drn()
(3.34) =\, (Ailiz(' " ()\1_ (Arz+qr) +qr_) ) + Giyiy)-

The map f; : By = X; is now conformal with respect to the metrics
gr_ on By C X; and gy on Xt

(B3 F150) () = {A,‘th(:c/)q)(qb}go)w(x) if I_=0,
1f191) AP R2(x /AR (x4 @) (6331 )wo(2)  if I- >0,

where |z| < N )\1/ ?. Thus, f;§; is conformally equivalent to the metric
I y

gr_ on 5 and so we obtain a conformal structure [g] on X = #1ezX;.

We must verify that §; is a good approximation to the standard
round metric g; on X for small ), .

Lemma 3.12. For any I > 0, the metric §; converges to gr in C*
on compact subsets of X1\ {z1s} as A\;, = 0. Moreover, we have the
following bounds:

(a) For any integer | > 0, there is a constant ¢ = c(go,!) such that

al(qs; gI)#V 6l(¢; gI);u/ 2 2 -1/2
- - . < : N2,
ozt ... 0xw 6330‘1 e O | — cN )‘ll h‘l (x)7 le < I

The analogous bounds hold for the contravariant components
(#%,.81)*, provided h3(z) is replaced by hi*(z).

(b) Let x5, denote the Hodge star operator for g;. Then there is a
constant ¢ = c(go) such that

%5, ¢ =*g,Cll oo (x1.0r) < EN?Aiy ICllLoex2,90), € € (X, ad Py).

Proof. (a) This follows easily from Eq. (3.32) and Definition 3.11.
(b) This follows immediately from (a) and the definition of the Hodge
star operator.

We will also require bounds for the derivatives of §; with respect to
the scales A\; and centres z;. The following estimates will suffice for
our application.
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Lemma 3.13. If0 < I < J, there is a constant ¢ = c(go,J) such
that the following bounds hold:
(a) For any |z| < NX;*?,

(chi B2 (z) if I<J
and |I| =1,
cA? b3 () if I<J
. - and |J| > 2,
l-%ﬁ%")\g;ﬁ (z) < < cN?hi(z) ifI=J
and |J| =1,
o2 |alhd(x)
<eNXAYPRz)  ifI=J
\ and |J| > 2.

(b) If8/8p; = p20/8q2, then for any |z| < NA;'/?,

,a(qs;ngj)w ) < cNXh2(z)  if I=J and|J] =1,
dpr = eX i () ifI1<J and|J|>2.

The analogous bounds in (a) and (b) hold for the contravariant
components of Gy, if h2(z) is replaced by hy?(z).
(c) For any ¢ € Q*(X),ad Py), then

NP\l gy i T=J

O
a_;l_ < and |J| > 2,
I (X"
L>(X,95) cN2||C||L°°(X’,,gJ) otherwise,
O0%;
5 ch < eNA?[1¢ N oo (xs 0)-
Pr llpe(x/,g5)

Proof.  (a) The inequalities follow from Eq. (3.32) and Defini-
tion 3.11.

(b) The proof is similar. When |I| = 1, we recall that the normal
geodesic chart ¢;, = exp,, Is replaced by ¢;, = €exp,, OTg, in order
to compute the required derivative at ¢;, = 0 (corresponding to z;, =
¢i,(0)). The estimates follow immediately from (a) and (b).

We next define an honest C* metric g on X. Consider a neck €}y =

71(Qy,) labelled by the multi-index I. We replace the metric gr_
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on the annulus {2; and replace the metric g; on the annulus Q;, by
conformally equivalent metrics m;_g;_ and m;g; so that

(335) myr_gr. = f}"(m;g;) on QI.

Hence, the metrics m;_g;_ and m;g; agree on the neck and patch
together to give a C'* metric, say g, on a neighbourhood of the neck
in the connected sum X; #X;. On the annulus Q; = ¢;({z € R* :
N-\}? < |z| < NAY?}) we have
(3.36)
v e e ANI(A?2 + |2)?) "2 (h3G0) uv (= if I_ =0,
wﬁﬂmdﬂz{ O +1oP) (G0 (e) i
4XF (A7 + |z?)7*hy (2 + ar) (9791 ) o (z) i I- > 0.

By comparing f;gr and g;_ on €2, a little experimentation reveals that
the C* conformal factors m;_ and m; can be chosen so that

k' <my_ < kN* on Q(N-IX/?, NXY?),
(3.37) k1 <mp <k on (N2, NAY?),
my = 1 on QI(ZA}/274N)‘}/2)v

and likewise for m; on Qj,, and some constant K = k(go). For each
summand X;, we smoothly extend the m; to X} by setting m; = 1
away from the neck regions. This gives a C* metric g on X = #,;c7X[
by setting

(3.38) g=migy on X;, forallleZ.

The construction ensures that each m; obeys

(3.39)
k' <m;<kN*'on X;, k'<m;<k on X}, and

mr=1 on X}

Thus, the metrics g; and g are equivalent on X} with constants inde-
pendent of N, and equivalent over X; with constants now depending
on N.

The Hodge star operator x, : Q*(X,ad P) — Q*(X,ad P) only de-
pends on the conformal class [g] of g and so over each summand X} of
X we have *; = *,,, 5, = *;,. From Lemma 3.13, we obtain:
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Lemma 3.14. There is a constant ¢ = c(go) such that for any
¢ € N%(X,ad P), we have
(@) 1(0%y/0M1)SlIL(x.6) < eNAT ¢l Lo (.09

(6) 1@%0/3p1)Cllim(xa) < VA€l
We will often need to compare LP norms defined by the different
metrics gy, gr, and g over X; C X. The required ‘comparison estimates’
given below follow in a straightforward way from Lemma 3.12 and Eq.
(3.39), and similar inequalities may be found in [7 (p. 294)].
Lemma 3.15. For any I > 0, the following holds.
(a) If2<p<ooandd <gq < oo, there is a constant ¢ = c(go, k, D, q),
1 < ¢ < oo, such that for any w € Q' (X},ad P;) and ¢ €
0%(X},ad Pr), we have

lwllzaxs,g) < cllwllpaxrey  and [[CllLe(x;,0) < eliCllLe(x: o>
lwllzexr o < ¢ Hwllzaxy.gy and [Cllzexr o < € HICH Lo (x7,9)-

(b) If1 < p < oo, n >1, and by is sufficiently small, there is a
constant ¢ = c¢(go,k,m,N,p), 1 < ¢ < o0, such that for any
a € Q(X},ad Pr), we have

cHledloexy.g0 < e xigrys  lellzexyg) < clledlsx),on)-

Lastly, having defined the conformal structure [g] of X, we apply the
estimates for di; in Eq. (3.22), the estimates for A} and F197(A}) in
Lemma 3.9, and the estimates for *x, — *,, in Lemma 3.12 to obtain a
bound for the LP-norm of the g-self-dual curvature F*9(A’) = 1(1 +
#4)F(A") of the connection A’ on the connected sum bundle P over X.
Similar estimates have been given by Taubes and Donaldson.

Proposition 3.16. For 1 < p < oo and sufficently small by, there
exists a constant C = C(go,p,T) such that for any t € T one has
1F9(4)|1sxg) < CB.

3.6. Estimates over connected sums and conformal vector
fields.  The goal of this section is to obtain L? estimates for the
derivatives with respect to the scales A; and centres z; of ad P-valued
one-forms @ over the base manifold X, obtained by pulling back ad P-
valued one-forms w over the connected sum X.

Following Taubes [22], [23], let us begin by defining some useful
Sobolev norms on Q*(S* ad P) and examine their behaviour under con-
formal diffeomorphisms. Suppose A is a C* connection on a G' bundle
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P over S%. Let g; be the standard round metric on S* and let § be
the flat metric on S*\ {s} obtained via the conformal identification
;1 S\ {s} = R*. Let V49 denote the covariant derivative on
Q'(S* ad P) defined by the connection A and metric g;, while V4
denotes the covariant derivative on T*(S*\ {s}) ® ad P defined by A
and 4. Define an L? norm on Q!(S% ad P) by

(3-40) [wllzz(s1,4,00) = wllL2(st00) + IV49 0] L2(54,41)-
Similarly, if w has compact support in S*\ {s}, define
(3.41) lwla = VA%l L2(s,8),

wllzzss,a6) = lwllzzsss) + 1VAw] L2 (s14)-

The properties of | - |4 and || - || 12(s4,4,5) are described by the following
result of [22]. Recall that C = Dx T x SO(4) is identified, using
¢n : R* — S*\ {s}, with the subgroup of conformal diffeomorphisms of
(S*, g,) which fix the south pole.

Lemma 3.17. [22 (Proposition 2.4)] Given an L} connection A on
a G bundle P over S*, then the following holds:
(a) |-|a extends to a continuous norm on LiQ'(S* ad P).

(b) The norm |- |4 is C-invariant: for any f € C, |f*w
(c) There ezists a constant 1 < z < oo, which is independent of P,
A, f, and w € Q'(S* ad P), such that

foa=|wla.

27 wllzse,4,01) < |wla < 2llwllL2(s4,4,01)
27 wllezss,a,0) < lwllzasea,s) < 2llwllLz(st,4,60)-

Lemma 3.18. [23 (Lemma 3.1)] Let A be a C*™ connection on a
G bundle P over S* with its standard metric g, and let f : S* — S*
be a conformal diffeomorphism. Then there exists a constant 1 < z <
0o, which is independent of P, A, f, and w € Q'(S*,ad P), with the
following significance:

27 wllpast,a,0) < N wllz2st e a,91) < 2llwllL2(s4,4,90)-

Recall that c, denotes both the dilation z — z/\ of R* and the
conformal diffeomorphism of (S* g,) induced by ¢,. A straightfor-
ward application of Hoélder’s inequality yields the following ‘transfer
estimates’ for the maps c,.
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Lemma 3.19. Let 2 <p <p, <4 and let A € (0,1]. Let U be an
open subset of S*\ B(s, NAY/?) and let P be a G bundle over S%. Then
there is a constant C = C(N) such that the following holds.

(a) If we Q(U,adP), then

leswllr e @),0) < CXNP72P wllor 0,90)-

(b) If ¢ € Q*(U,ad P), then ”c;C“L2(c;l(U),g1) < Cll¢llczw,gn)-

We next consider the action of the conformal group on Q!(S* ad P).
Let f,, denote the lift to S* via the chart ¢,, of the conformal dif-
feomorphism c, o 7, on R*. Let P be a G bundle over S* and suppose
w € Q1(S%,ad P). Then Eq. (3.8) gives

Bf;qu

af;,w 1 * 1 *
q =—Xf,\’q£rw and op =—-):f/\,q£pw,

oA
where 0/0p = p*0/0¢*. 1t will be convenient to express the above Lie

derivatives in terms of covariant derivatives. If A is a C* connection
on P, then Egs. (3.6) and (3.7) imply that

(3.42)

(3.43) Lw=w+VMw and Low=Vi‘w.

This leads to the following estimates for the derivatives of f w with
respect to A and q.

Lemma 3.20. Let A be a C*® connection on a G bundle P over S*,
let U C S*\ B(s, NA\'/2) be an open subset, w € Q! (U,ad P), where w
has compact support in U, and 8/0p = p*d/8q*, |p| < 1. Then there
is a constant C = C(q, N) such that the following bounds hold.

(@) 11053 qw/0M 2572 w),00) < CAV2llwll 2w, a00)5
(b) ”af:,qw/ap”LQ(f;;(U),gl) < C”“’”Lf(U,A,yl)-

Proof.  (a) Observe that U = ¢,(B(0, NA7/?)) and f51(U) =
¢n(B(q, NA/?)). From Egs. (3.42) and (3.43), we have

ofy w C1ge
= LfR g Lew,

- A -
Frolew = fra xaff VY0 + fXw on  fri(U),

where r = y#0/0y* and f; ;,*r = z#0/0z* with respect to the coordi-

nates y = ¢;* on U and = 7,0 ¢;! on fi+(U). Since |f5;,rl, <
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CX/2 on f;:(U), Lemma 3.19 implies

1%, Lewll2(s72 0,00 < IR a@llna (s )00
+ C/\l/z”f;,qVA'Jw“L2(f;;(U),gl)
< CA1/2||UJ||L4(U,91) + CA1/2||VA'6‘U”L2(U,91)
= C)\l/zllw”Lg(U,A,&),

the last step following by conformal invariance. Lemma 3.17 then gives
(a)-
(b) From Egs. (3.42) and (3.43), we have
Ofx w
Opr

where p = p*8/0y* on U and f;.,p = Ap*8/dz* on f;,(U). Since
[frauPlyy < CAon fr:(U), Lemma 3.19 yields

=-A"'fx Low and f;’qﬁpwzf,:;,*p_:f;,qVA"sw on f5.(U),

13 aLowllisszr@wyon S CMEV Y Wlliaszr 0),00)
< OXN|VA0l|2w,5) < CMl|wll L2 (v, 4.6)-

Hence (b) follows from Lemma 3.17.

We will frequently need to compute estimates for families of one-
forms w over connected sums X, and to this end, it will be useful to
define suitable Sobolev norms which depend only on the fixed connec-
tions A; and, in particular, the fixed metrics g; on each summand X;
rather than varying metric g on X. Let P be the G bundle over the
connected sum X = #;c7 X defined in §3.3. Then we may view any
w € Q}(X,ad P) as a collection of w; € 2'(X},ad P;) which agree over
the necks Q; = f;'(Qy,) connecting each pair X;_ and X;:

orwr_ = Ad(p;)fior,wr on Qy,

where f;: Q; — Qj, is the identification map.

From §3.5, we recall that there is a C* metric g on X which agrees,
modulo the conformal factors m;, with the metrics g, on the base
X, and gr ~ g; on the four-spheres X;. Moreover, the L? norms on
Q' (X},ad P), 4 < g < 00, and L? norms on Q2(X},ad P;), 2 < p < oo,
compare uniformly when defined with the metrics g;, §;, or ¢ = m;§; on
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X;. The constants involved in these norm comparisons are independent
of the scale parameters A; for forms supported on X} and independent
of both the A\; and N for forms supported on X}. Thus, we may
conveniently define L? norms on Q'(X,ad P), 4 < q < oo, and L?
norms on Q%(X,ad P), 2 < p < oo, using the metric g on X.

In Chapter 5, we will need to bound the L? norms of solutions
w € Q(X,ad P) to the g-anti-self-dual equation F*9(A' +w) = 0
over X. Unfortunately, since the conformal factors m; have badly
behaved derivatives over the neck regions, the norm comparisons de-
scribed above do not hold for L2 Sobolev norms if n > 1. Of course,
problems of this type are encountered in [3], [7], and [24]. So, given
such an w € Q'(X,ad P), with w = {w;}1ez as above, and 1 < p < oo,
we define

(3.44) |UJ||C"(X) z “wI“LP X1,A1,91)1
IeT

by analogy with Eq. (6.25) in [24].
Recall that a one-form w € Q!(X,ad P) pulls back to a one-form
@ € Q(X,,ad P) defined by

(3.45) @=fo--fijw onfo- f7H(X]) C Xo,

for each J € Z. We will need estimates for the derivatives of @ with
respect to the scales Ay and centres z;. To begin, we need suitable
expressions for these derivatives:

Lemma 3.21. Let w € Q'(X},adP;), 0 < I < J, and 0/0p; =
p0/0qy. Then:

(a) s fofw=fs- fi8, for J<I;

(b) aA,fO e flw = _)‘Ilfg'..ffﬁrw; for J=1;

(c) 3=fs-fiw==Xfs- fFilefi, -+ fiw, for T > I;

(d) ap,fo"‘f;w:f fJ =, for J < I;

(e) amfo---fl*wz—)\ lfo---fj Low, for J=1;

(1) fyfjw=-XJg - [iLofi, - fiw, for > I
Remark 3.22. When I_ = 0, then 0/0p; = p70/0p; and f; =

$imocrogr! is replaced by f1=¢mocror, o¢;" in order to compute
the derivative at p; = 0.
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These expressions lead to the following bounds for the derivatives
with respect to the scales A\; and centres z of the pull-backs fg - - - fjw.

Lemma 3.23. Let w € Q(X},ad P;), where w has compact support
in Xy, U= fglo---of7 (X}) C Xo,0<1I<J, and 8/0p; = p}d/0q
with |pr| < 1. Then there is a constant C = C(go, N) such that the
following hold.

e B )
(a) 229 fO wa L2(U,go) — ” [22¥3 Lz(Xf,,gJ)’ for J < I,
* * —1/2 X
(0) ok ts 159 1y, < OO I0lizons a0, for T 2 1
* Ow .
(c) 391 L fxo. fry LUge) = ’ 301 | 2 g)" for J < I;
(d) %f&f}w L2(Usg0) C“w“LZ(x As,95) for J > 1.

Proof. (a) By repeatedly applying Lemma 3.19, we find that

- fiw

<¢|5m
L2(U,g0) OAs

= fo f*a)‘l

”6)\ L2(X,94) ’

L2(U,g0)

as required for (a). For J = T and U = f;'o--- o ff(X}) C Xo,
Lemmas 3.19 and 3.20 show that

offw
“ - flw =\fo - fi 3)1\
L2(U,g0) I WL2(U,go)
<C Offw
O ez xp) e

~1/2
< O |lwllzaexsargn)-

Let V = fi.lo-- o f71(X}) C X}, s0that U = fg ' o---0 f7 (V) C Xo.
Then for J > I, we have

=\fo-fi (9?\ fro-fiw

0
< Cl’a—)\lflf1+"'wa’|

-~ fiw

” OAr L2(U,go) L2(U,go)

L2(f7H(V),91_)
—-1/2 *

<oxY 177, - Fiwllezvsy, 154000

< C““'J“Lf(X’J,AJ,yJ)’

by repeatedly applying Lemma 3.18 in the last step. This gives (b);
the proofs of (c) and (d) are similar.
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Finally, we obtain our estimate for the derivatives of & with respect
to the scales \; and centres z;.

Proposition 3.24. There is a constant C = (go, T) such that for
any w € Q(X,ad P) and t € T, the following bounds hold.
(0) 118@/01]|z2(x0,00) < CI10w/O |2 (x.0) + A7 2 lwllc2(x))
(b) 110&/0prllz2(xe,00) < C(10w/p1llL2(x,9) + llwll£2(x))-

Proof. By Lemma 3.23 we have

<C Ow

L2(Xo0,90) J<I 8)72 L2(X,90)
-1
+CA2 Y Nwllzaxya0.905

J>I

|5

and so (a) follows from Lemma 3.15. Similarly, Lemma 3.23 gives

CE Oow

L2(Xo,90) J<I apl L%(X,94)

+C Y Nlwllzzxy,a5.90)0

J>I

“ Op;r

and likewise, (b) follows from Lemma 3.15.

3.7. Derivatives with respect to scales and centres. We
obtain L? estimates for the derivatives of the connections A’ and A’
and of the g-self-dual curvature F*9(A’) with respect to the scales A;
and centres z;.

Throughout this section we require that b; = 4N )\IJ/ ? for all J. Let
us first record the following bounds for the derivatives of the cutoff

functions ; for J = I_ or I:

(3.46)
3¢J —1y—1 8d¢J —2\—-3/2 1
—| < CN7A7, <CN~*°X on X/,
My, = d OAr |, d J
Wal <oy, |9 <Nt on X,
9pr |y, Pr g,

where 8/0p; = p}0d/dq; and |pr| < 1. The constant C depends only
on g;. We now begin with the L* estimates for derivatives of the

connections A'.
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Proposition 3.25. Suppose 1 < p < oo and I > 0. Then for
sufficiently small )\, there is a constant C = C(go,p,T) such that for
anyte T,

() 1194’ /OAllir(xq) < ONF" 2,

(6) 110A"/8pil|Le(x.q) < CAT'”.

Proof. (a) Observe that JA'/0A; is non-zero only on the supports
of Ov;_/OA; and Ov;/0);, given by the annuli QI(%bI,bI) in X; and
le(%bj, bI) in X}

Step 1. Estimate of 0A'/OA; over X} . Recall that ¢, = 1 on
the complement of the balls B;(b;) in X;_ , while 0 < 9;. < 1 on
Q(3b1,br), and 9, = 0 on B;(3b;). We have 0jA’' = ¢;_0jA;_ on
Q;(3br,br) and thus o} (0A'/ON;) = (0¢1_/OA;)o;Ar on X} . Since
8v7/8A1] < CA7! by Eq. (3.46) and |0} A,_|,, < CAY* on Q;(Lbs,b)
by Lemmas 3.1 and 3.3, we obtain the pointwise bound

- {CA;W on Q;(1bs,by),
gr - 0 on X}_\Q](%b[,b}).

on
O

Hence, we get the integral estimate

oA’
(3.47) /X e

1
I_

p
dv, < CA\7PP,

9

noting that g = §;_ on X;_ \ B;(3b;) and appealing to Lemma 3.12.
Step 2. Estimate of 0A'/O\; over X;. A similar argument shows
that

(3.48) /X

and combining the integral bounds from Steps 1 and 2 gives (a). For
(b) we use the pointwise estimates |01 ;/0pr| < C)\,_l/ 2 J=1I_1 The
same argument as in (a) then gives the required bound.

Our next task is to obtain a L? estimates for the derivatives of the
g-self-dual curvature F™9(A’).

Proposition 3.26. Suppose 1 < p < 4 and I > 0. Then for
sufficiently small o, there ezists a constant C = C(go,p, T) such that
foranyteT,

(a) NOF*9(A") [0 |lr(x,g) < ONFP7,

4
dv, <X,

9

on
122N

1
I
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(b) [OF*9(A)[3prllinng) < COPH2 4 5Py,

Proof.  (a) We note that F*9(A') = F+37(¢;A;) on X, and so
OF*9(A')/0)\; is supported on Uys; X. It is convenient to obtain
estimates separately over the regions X; , X}, and X/, J > I.

Step 1. Estimate of 0F™9(A')/0A; over X; . On the annulus
Q;(3b1,br) we have F+9(A') = 2(1+ %5, )F(¢1_A;_) and

F(p;_A; ) =41 F(Ar) +dr_ ANojAr
+(7. — i )ot Al Aot AL

Therefore, we see that

OF+t9(A) 1 OF (Yr_Ar)
BF(wa)\fIl ) ) ?)z(pl ) g&\é; ’
_Ar_) I_ I ,..
= on, TAL)+ 5= " NotAr
+(2’l[)1_ — ].) aA AI_ /\O’;AI_.

on X; . The metric §;_ is independent of A;, and so applying the
pointwise estimates of Lemmas 3.1, 3.3, and Eq. (3.46), we find that

< {C)\,‘l on Q(%b,bp),
['2¢

’6F+’9(A’)
0 on X[_ \QI(%bI,bI)-

Consequently, we obtain

(3.49) / |

where we observe that g = §;_ on QI(%bI, br).

Step 2. Estimate of OFT9(A')/0\; over X;. We have Ft9(A') =
L(1 4 %5, )F(¢1A;) and F(yprA;) = $rF(Ar) + dipr A oj,Ar + (97 —
Yr)o} A Noj,Ar on X|. Thus,

, (AI) p
OAr

v, <CX7,

g

oFt3(4A") 13*9, 1 .. OF (¢ A;)
aF(azz\IA ) %gAI F(¢1Aa)d¢§(1+ 91) 3)\1 )
1Ar)  0Yr 1
o~ oa ANt gy Ao

+(2¢r - )81)/\) 01, Ar N ot Ar
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on X;. Applying the pointwise estimates of Lemmas 3.3, 3.12, 3.13,
and Eq. (3.46), we find that

0 on By,(by),
OF (A 2
3 @< {oxr on ullhnb)
o Clz|  on X\ Br,(br).

Now g = g; on X7\ By,(3br), and so applying the above estimates and
Holder’s inequality gives

(3.50) /X

completing Step 2.
Step 3. Estimate of OFT9(A')/0A; over X', J > I. We have

p
dV, < OX/™7,

9

BF+9(A")
oA

'
I

8F+’g('(/)JAJ) _ 16*@1 I
8)\1 - 2 8)\[ F("’bJAJ) on XJ’

since F*9(A') = 2(1+%;,)F(¢;A;). The pointwise estimates of Lem-
mas 3.9, 3.12, and 3.13 show that

(o) < {0 on By,(Lbs),
97 - Cl.’L‘l on XJ\BJs(%bJ).

. OFT9(A)
Jn a)\l

Again, g = §; on X; \ By,(3bs), and so

(3.51) /X

Combining the integral estimates of Steps 1 to 3 then gives (a).

(b) The argument is the same, except that we now use the cutoff
function estimates |9y, /dp;| < CA;Y?, |8dy;/dp;| < CATY, T = 1_,1,
and metric estimates |0g;/0p;s| < C’Nj\_l/z, J>1.

Lastly, we have L? estimates of the derivatives of A’ with respect to
AI and Zy.

Proposition 3.27. Suppose I > 0. Then for sufficiently small ),
there is a constant C = C(go, T) such that for any t € T,

(a) |I0A"' /O ]| L2(x0,90) < C,

p
dv, < C.

9

BF+9(A")
BAr

1
J
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(b) HaA'/amlle(xo,go) <C.
Proof. (a) The connection one-forms over X, having non-zero
derivatives with respect to A; are given by

A,_{f(;"'f;_",bl_Al_ over fo_lo"'o I—;l(‘X}_)CXO)
fe- fré, over X\ BIs(Nfl)\}ﬂ),

where fi’, is the C'™ connection over X;, I > 0, defined by

i - ft. - fisA;  over the regions f,‘+1 o---o fyH(X}) C X;
! YAy over the complement of these regions in Xj.

It is convenient to consider the estimates over these different regions of
X separately. X

Step 1. Estimate of Off--- ff ¥1_Ar_/0A;. We have A' =
f&--- ff wr_A;_, which is supported on U, = fg'o-- -0 f (X} ) C Xo,
and therefore %{—A’ = fo- fI. 5%1,!11_ A;_on U;. Lemma 3.19 implies
that

6’[/)1_ AI_

* * at/)l_ AI_
fiodi 2

<o,

L2(U1,90) L3(X;_.91_)

We have o}, Ar_ = r_ojAr_, where the section oy is chosen so that
o3jA;_ is in radial gauge, and so the pointwise estimates of Lemmas
3.1, 3.3, and Eq. (3.46) yield

’ OMpr_Ar_

O on u(3br,by),
oAy =

0 on Xj_ \B[(b])

Noting that ¢ = g;_ on X;_\ Bi(br), we obtain the integral bound

/ l O Ar_
x, | O

and combining the preceding integral estimates gives || 3—‘21-441'” L2 (U1.g0) <

2
dv, < CAy,

g

C’)\}/ ?, completing Step 1. )
Step 2. Estimate of Of;--- fiv1Ar/OA;. We denote A' =
f& -+ frbr Ay, which is supported on U, = f3'o---o ff1(X]) C Xo,
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and so %fi’ =fr--fr 2 vl YrAr on U,. Repeated application of
Lemma 3.19 then gives the integral bound

AftiprA; OfirAr
fooo 2L §C”—— .
0 -8 L2(Usz,90) Y L*(X};_.91_)

Recall that Eq. (3.9) implies 5%ff¢1A1 = -A7 f1uF(¢rA;) on By.
The curvature F(1;A;) is supported on X, \ Br,(3br), and 3% fi4rA;
is supported on B;(3N; IA\}2). Then,

Bte F (1Al (2) < Ko

and since ¢} f7 . F(Y1Ar)(x) = A7 @}t F (01 Ar)(z/Ar), we obtain

P | I, IN1AY2,
@< {Eoarppe <l

5. 0 if |z > LN;7IAY?,

g A 3f1 ¢1A1

where K = ||F(¢1Ar)||L=(x,,¢;) is bounded by a constant C indepen-
dent of A\; by Lemma 3.9. But ¢ = g;_ on BI( N,l)\l/z) c Xj,
and moreover, the metrics g;_, g;_, and é;_ are equlvalent over the
ball B; (3 Ny IA\}/2) with constants depending at most on z;. Thus, we
obtain the integral estimate

J

and so, combining these bounds, we have ||&A' |2 (Uz,90) < CAp, com-
pleting Step 2.

Step 3.  Estimate of 0f;---f;Ay/0A;. We have A, =
ft - f3sA; over V3 = f1_+1 o---o f7Y(X}) C Bj, C X, with J > I.
We denote A' = fg - -- ff A} and observe that 5%/1’ =fr--fr 2 vl A,
over Uz = fy'o---0 fi*(V3) C Xo. Thus,

2
dv, < CX},

9

afs A’
EJY

ofr A,
0A;

= A\ TP (A]) = =AU fruF(fr - fivaAs)
= =Nl S fIF (Y5 Ay).
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Note that dA}/d); is supported on fri(Bt,) C B;.

As r = y*0/0y* with respect to y = ¢! on X; \ {z,}, we have
filr = z#8/0z* with respect to ¢ = ¢;' on Bj. If |y| < Ry on
Bj, , for some constant 0 < Ry < oo depending at most on z;, then
|z| < RoAr on fi'(By,). Thus, |fr'r|,, < RoA; on fi(Bj,) and so
we have the pointwise bound

DA,

S|SBl GFA).. on f7(BL)

gr_

Therefore, with the aid of repeated applications of Lemma 3.19, we
find that

Al
L*(Us0) Tllea(srr (va),ons)

S CISfT - FIFADN 257 v or )
S CIF(AD) L2 (x,9,)-

Y
fO ...fl_a_AI

and since ||F(A})||z2(x),4,) < C, this gives ”a;f\’lA’ L2 (Us.a0) < C, com-

pleting Step 3. Combining the results from Steps 1 to 3 then yields
(a). For (b) we use the cutoff function estimate |3y ;/0p;| < C)\I—l/ 2
J = I_,I. The vector field r is replaced by p = p7d/dy*, with re-
spect to the coordinates y = ¢;,. Then, fr.'p = A\p}d/0z* with
respect to the coordinates z = ¢;' and we have the vector field esti-
mate |f;,'p| < RoAs on f;'(Bj,). The required bound hence follows
by an argument similar to that of (a).

3.8. Derivatives with respect to bundle gluing parameters.
The purpose of this section is to obtain estimates for the derivatives
of the almost ASD connections A’ and A’ with respect to the bundle
gluing parameters p; € Gl;, I > 0. These estimates may be extracted
from [7 (§7.2)] and we include them here for completeness.

Since we wish to differentiate a family of connections A'(p;) on a
family of G-bundles P(p;) with respect to the gluing parameters p; €
Gl;, we first pull this family back to an equivalent family on a fized
bundle, say P(p;), as described in [7 (p. 296)]. Let p; € Gl be a given
gluing parameter; then points p; in a small neighbourhood of p; in Gl;
can be written in the form p = p;exp(v), where v € V; = ad Py|,,, ~ g.
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One regards the fibres of P;_ and P; as being identified by p; and so
v may be considered as a local section of both P;_ and P;, covariantly
constant with respect to the connections A; , Aj.

We digress in order to construct a set of cutoff functions {y;} on X
such that ) ;.7 v = 1. These cutoffs will be needed here and again in
§5.1 for patching together certain integral operators over the X; to give
an integral operator over X. Choose a bump function y € C*°(R') such
that y(t) = 1if t > 2 and (¢) = 0 if ¢ < ;. Define a cutoff function
7x € C=(R?) by

(3.52) @) =y(el/X2),  seR-.
Now define C'* cutoff functions v; on each summand X; by setting

(3.53) ¥ = (@5)" (=) [1(e5) v, on X,

Iy

where the factor (¢7)!)*(1 — 7,,) is omitted when I = 0. Note that
vr = 0 on the balls B,S(%)\}/z) and BI+(%)\}12) in X;. We extend ~;
to a C* cutoff function on X; by zero on these balls and by 1 on the
complement of the larger balls By, (2A}/?) and BI+(2)\X2) in X;; then
extend by zero outside X} C X to give v, € C*(X). By construction,
we have ) ;.7 = 1 on X, with a slight abuse of notation. Indeed,
note that f; maps the annulus QI(%)\ 1,2A;) around the point z; in X;_
onto the annulus Q 13(%)\ I,2)\;) around the south pole zf; in X;. Thus,
fivr+v. = 1 on each annulus ;. Lastly, note that there is a constant

C, depending at most on the metric gy, such that

(3.54)
- ~2/p—1/2
ldyile < CATY? on Q1 Qs Nldvillir(xsgn < CX/PH2,

for any 1 < p < oo. Define gauge transformations u;_(v) on Aut P;_| X
and ur(v) on Aut Pr|x: by setting

e on 1y,
ur ('U) — Xp(’hv) n I
1 on X; \Qy
U[('U) — exp(—'y,_v) on QIsa
1 on X} \ QIs-

(3.55)
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Note that u; has a natural extension to a gauge transformation of P;
over all of X; — equal to exp(—v) on By,(N; 1/\}/ %), the ball enclosed
by the annulus Q;,. Similarly for the gauge transformation u;_ . After
identifying the bundles and base manifolds over Q = Q; = Q,, we
have u;_u;' = exp((yr. + 71)v) = exp(v). Hence, relative to the flat
connections A; , A7, the gauge transformations u; differ by a constant
bundle automorphism over €2, and so their action on the connection
A'(pr) is the same: u;_(A'(pr))|la = wr(A'(61))|a. Therefore, while the
automorphisms u; do not patch together to give a global automorphism
of P(p;), their actions on the connection A'(p;) do. Indeed, we can
define a connection A'(pr,v) on P(p;) by

ur_(A'(pr))  on Xj_,

ur(A'(pr))  on Xp.

If p; = p;exp(v), the connections A'(pr,v) and A'(p;) are gauge equiv-
alent [7 (p. 296)]. Thus, as desired, we have an equivalent family of
connections A'(pr,v) on the fixed connected sum bundle P = P(p;).
Let L; C Gl; be a coordinate neighbourhood and suppose p; € Lj.
Then

(3.57) ¢g>B; — L; CGl, v +— pr(v) = prexp(v)

(3.56) Apry0) = {

is a coordinate chart centred at p;, where B, is the unit ball in g, and
there is a C*° embedding

(3.58) 9D By — Axp, v+— A'(pr,v).

It remains to consider the derivative of the family A'(py, v) with respect
to v.

Recall that if u = u(s) is a one-parameter family of gauge trans-
formations, B is a fixed connection, and B*(s) is the induced one-
parameter family of gauge transformed connections, then dB*/ds(0) =
dp«(u™'u(0)), where u~'u(0) € Q°(X,ad P). Although the u;_,u;
are not globally defined gauge transformations, this differentiation for-
mula still applies to the one-parameter families u;_(s) = u;_(sv) and
ur(s) = us(sv). Therefore, we have

oA dar(yrv) on X; NQ,

d . _ ,
(3.59) E}—p;) = £A (p;,sv)L_ = —ds(y_v) on X;NQ,
0 on X \ Q.



508 PAUL M. N. FEEHAN

This leads to the following estimate for the derivative of the family
A'(pr) with respect to the gluing parameters p;; a related and more
general estimate is given by Lemma 7.2.49 in [7].

Proposition 3.28. Let 2 < p < 4 and suppose that 4 < q < 00 18
determined by 1/4+1/q = 1/p. Then there is a constant ¢ = c(go,p, T)
such that
(a) co]A/"™" < |04 /v Lax,g) < M UIATTT,

(b) clolXYP7? < ||0A /30|l nx,g) < 7 H NPT

Proof. Note that y;_+v; = 1 on Q and so d 4 (y;v) = —da(yr_v) on
Q. Moreover, da/(y;v) = dyr®v on 2, and so we have ||d4 (Y1)l La(x,9)
= |v| - [|dyr]|La(x,q)- From Eq. (3.54) there is a constant ¢ > 0 indepen-
dent of A; such that

0A'

- < Moy,

- < |24

L(X,g)

since ||0A' /|| La(x,g) = |dar (71)||Ls(x,g)- Then (a) follows since 2/q—
1/2 = 2/p — 1, and likewise for (b).

Using the conformal maps f;, we pull back the family A’ = A'(p;,v)
on the fixed bundle P over X to a family A’(p;,v) on the fixed bundle
P over X,.

Proposition 3.29. If2 < p < 4, there is a constant C = C(go,p, T)
such that for any t € T, ||0A" /30| Lr(x0.00) < CAY/P™ 12,

Proof. Since dA’/dv = 0 outside the annulus ;, C X;, Proposi-
tion 3.28 gives

HaA' < CA?/p—1/2.

LP(XI gr)

But A'=f;---ffA'onU = fg'o--- 0 f{f(X}) C Xo, and so Lemma
3.19 yields

QA

0A'
o fi 5, CH——

L?(U,go) LP(X;vgl)

Combining these estimates gives the desired bound.

3.9. Derivatives with respect to lower moduli. In this section
we obtain L? estimates for the derivatives of the connections A’, fi’,
and the self-dual curvature F*9(A’) with respect to the ‘lower mod-
uli parameters’ t;. The bundle P; carrying the family of connections
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{A:(tr)}erer,, can be assumed to be fixed with respect to the parame-
ters ¢ € T4, since the space T4, — an open ball in H} centred at 0 —
is contractible. However, the local sections oy, (¢;) are defined by the
connections A;(t;) (together a choice of point in Pyl,,, ) and will vary
with ¢;. Thus, the bundle gluing maps for the connected sum bundle
P, defined by oy, (t;) — oy, sp1, (t1) (Suppressing the identification map
fr: Qu, = Qp,), will in general vary with ¢;. We may suppose that
the remaining parameters are fixed and thus we obtain a family of con-
nections A'(¢;) on a family of bundles P(¢;). The difficulty, of course,
is that unless we have a family of connections defined on a fixed bundle,
we cannot define the derivative A’/3t;. Problems such as these are
discussed in [4 (p. 423)]. For our purposes, we note the bundles are
all isomorphic and as T}, is contractible, the connections A’(¢;) could
be pulled back by bundle isomorphisms h; € Hom(P(0), P(¢;)) to an
equivalent family hjA’(¢;) on the fized bundle P(0), and then we could
define

oA _ ohjA
ot; — oty

(3.60)

Since any two such families h;(¢;) of bundle isomorphisms would differ
by a family of automorphisms of the fixed bundle P(0), by using (3.60),
dA'[dt; would give a well-defined tangent vector to Bp at [A'(tr)]-
Naturally, the analogous remarks apply to the family of connections
A'(t7) on the bundles P(t;).

In our case, a family of isomorphisms h;(t;) : P;(0) — P;(t;) may be
described quite explicitly, in a manner similar to that of §3.8, and these
will give a gauge equivalent family of connections h}A'(t;), htA'(t;) on
fixed bundles P(0), P(0) respectively, although just as in §3.8, the iso-
morphisms h;(t;) will not patch together to give a global isomorphism
of P(0) with P(t;) or P(0) with P(¢;). Nonetheless Eq. (3.60) still
makes sense and this allows us to estimate the length of the tangent
vector 0A'/0t; in terms of derivatives of the local connection one-forms,
as desired. Let h;(¢;) : Pr(0) — Py(t;) be a family of bundle isomor-
phisms represented locally by oy, (0) — o, ()01, (¢7). Then h}A;(t;)
is an equivalent family on the fixed bundle P;(0), with

o1, (0)*hy(tr)*Ar(tr) = 0y, (t1) " op, (tr)* Ay ()01, (t1)
+91+ (t[)—1d01’+ (tI)
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Note that while the local connection one-forms oy, (t;)*A;(t;) are in
radial gauge, this will not in general be the case for the one-forms
o1, (0)*hr(tr)*Ar(tr). We next consider the variation in the bundle
gluing maps py, (t;) induced by the variation in oy, (t;) with ¢;. Over
X, we replace 0y, (t;) above by 0p, (t;) exp(vys,vr(tr)) and over X,
define h;(¢;) by right multiplication with exp(yrvr(tr)). Recalling the
notation of §3.8, vy : T4, — g is a smooth map with v(0) = 0 defined
(for small enough Ty,) by the identity py, (¢1) = pr, (0) exp(v;(t5)).
Lastly, for J # I,1,, we set h;(t;) = 1. Then, for the remainder of
this article, we require that the derivatives 0A'/dt; be defined by (3.60).

This understood, we obtain the following estimates for the deriva-
tives with respect to the parameters ¢; of the connections A’ and A’ and
for the g-self-dual curvature F+9(A'). The proofs are straightforward,
following the pattern in §3.7, and so are omitted.

Proposition 3.30. Let 1 < p < co. For sufficiently small by, there
ezists a constant C = C(go,p,T) such that for anyt € T,
(a) OA'/0t; — AL 0t1||Le(xy.6r) < CAY?,
() |0A'/0tr||Lr(x,g) < C.

Proposition 3.31. Let 1 < p < oo. For sufficiently small by, there
is a constant C = C(go,p, T) such that for anyt € T,

OF+9(A") /0t 1o (x,9) < CN/P7/2,

Proposition 3.32. For sufficiently small by, there is a constant
C = C(go, N, T) such that for any t € T, ||0A’/0t1||12(x0,00) < C-
Proof Let U = fy'--- fi'(X}) C X, and note that E‘Al =
3i; D fro frprAr, Wthh is equal to f; - -'f}‘gz—!z,bIA, on U and is zero
elsewhere. Now
oY1 Ar
oty

LOVrAg
fO fI (9t1

2

L%(U,g0) L2(X},91)

by Lemma 3.19 and so the result follows.

3.10. Differentials of the approximate gluing maps. We
close this Chapter by summarising the results of the preceding sections
and record our bounds for the differentials of the approximate gluing
maps J' (which follow by combining Propositions 3.25, 3.30, and 3.28))
and J' (which follow by combining Propositions 3.27, 3.32, and 3.29).
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Theorem 3.33. Let J': T — B ; be the approzimate gluing map
t > [A'(t)]. Assume by = AN AY? for all I. Then for sufficiently small
Ao and any t € T, there is a constant C = C(go,T) such that the
following estimates hold.
(a) |DJ'(9/0t})r2x,9) < C,
(b) |DT"(3/9p))z2(x.0) < CA,
(c) IDJ'(8/0z])lr2(x9) < C,
(@) 1DT0/9M)llzaxg) < C-

Theorem 3.34. Let J': T — B, , be the approzimate gluing map
t s [A'(t)]. Let by = AN{AY? for all I. Then for sufficiently small A
and any t € T, there is a constant C = C(go, T') such that the following
estimates !zold.
(¢) DI'(9/0tF)l12(X0.00) < C,
(5) |IDT"(0/9p7)12(x0.00) < CAY,
(c) IDT'(8/0z)|lz2(X000) < C,
(d) DI (8/0A1)|L2(x0.90) < C-

4. Bubble tree compactification of the moduli space
of anti-self-dual connections

In order to describe the ends of the moduli space Mx, x(go) one cus-
tomarily appeals to the Uhlenbeck compactification m ».k(90). This al-
lows one to give quite explicit descriptions of the parts of the ends away
from the diagonals in the symmetric products Mx, 1(go) X s'(Xo) ap-
pearing in the compactification, as for example in [3 (§V)] and [7 (§8.2)].
These examples consider ideal boundary points of the form
(Ao, 1, ..,;), where the z; are distinct points with multiplicity 1,
and A, is a go-anti-self-dual connection over X,. Open neighbour-
hoods of (Ag,z,...,2;) in Huxo’k(go) are then constructed by gluing
standard one-instantons onto Ag.

In order to construct open neighbourhoods of ideal boundary points
corresponding to the diagonals of mo,k(go) we must employ the iter-
ated gluing construction of Chapters 3 and 5. This strategy is men-
tioned briefly in [7 (§8.2)]. The construction gives a homeomorphism
J : T°/)T =V, where V is an open neighbourhood of a boundary point
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in mo,k(%) — a ‘gluing neighbourhood’. In order to use this proce-

dure to describe the ends of My ».k(90), we need to show that mo,k (90)
is covered by finitely many such gluing neighborhoods. In particular,
we need to show that any point in Mx, , (go) which is sufficiently close
to the ideal boundary (with respect to the Uhlenbeck topology) lies in
the image of a gluing map J. This is accomplished in two steps:

Step 1. We show that any sequence {4, } of go-anti-self-dual connec-
tions over X, converging weakly to a limit (Ag, Zy,. .., Zm,) determines
a sequence of metrics {g, } and a sequence {4, } of g,-anti-self-dual con-
nections over a connected sum X = #jc7 X, which converges strongly
to a limit (A;)ez, in the sense of [7 (§7.3)]. Here, (X, ga) is confor-
mally equivalent to (Xy, go) for all , and is defined exactly as in §3.3
and §3.5.

Step 2. We apply an analogue of Theorem 7.3.2 [7] to show that the
new sequence {A,} is D,-convergent, ¢ > 4, in the sense of [7 (§7.3)].
The appropriate analogue of Theorem 7.2.62 [7] then shows that the
points [A,] € Mx x(9.) lie in the image of some J for sufficiently large
a. Consequently, the points [A,] € Mx, x(go) lie in the image of the
corresponding map J, for some parameter space 7° /T. The choice of
parameter space 7°/T is essentially determined by (Ar)rez, which we
call the strong or bubble tree limit of the sequence {A,}. . In this
Chapter we discuss Step 1 and describe the bubble tree compactifi-
cation of the moduli space of anti-self-dual SU(2) connections — the
extension to the general case of compact, semi-simple Lie groups being
straightforward. Step 2 is discussed in §§5.1 and 5.2 after the necessary
analytical framework has been established. Throughout this Chapter,
we suppose only that X, is a closed, oriented, simply-connected C'*°
four-manifold, g, is a C* metric, and G = SU(2).

4.1. Uhlenbeck compactification. We recall the definition of
the Uhlenbeck compactification [7] and describe some of the related
convergence results we will need for our description of the bubble tree
compactification.

Definition 4.1. An Uhlenbeck ideal go-anti-self-dual connection on
a G bundle P over X, with c;(P) = k > 0 is a pair (Ao, Zo), where
Ao is a go-anti-self-dual connection on a G bundle P, over X, with
c2(Po) = ko > 0 and Z, = {z;}19 is a (possibly empty) set of points in
Xo with multiplicities k; > 1, for i = 1,...,my, such that 37" k; = k.
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The curvature density of (Ay, Z) is defined to be the Borel measure
(4.1) (Ao, Zo) = |F(Ao)[%, + 81267,

where 7, = Y2 kid,,, so that the total mass of u(Ag, Zo) is 872k.
Setting I = k; + - - - + k., and repeating points according to their mul-
tiplicity, one obtains an element (zi,...,z;) of the symmetric product
s'(Xo)-

Definition 4.2. Let {A,}2;, be a sequence of go-anti-self-dual con-
nections on a G bundle P over X, with ¢;(P) =k > 0 and let (Ag, Zo)
be an ideal go-anti-self-dual connection on P. Then the sequence {A,}
converges weakly to (A, Zy) if the following hold:

(a) The sequence {u,}32, converges to (Ao, Zo) in the weak-* topol-
ogy on measures.

(b) There is a sequence of C* bundle maps v, : Po|x,\2, = P|x0\20
such that A, converges in C*° on compact subsets of X, \ Z,
to the connection A,. Equivalently, require that for any integer
n > 1, there is a sequence of L2, bundle maps -y, such that
¥4 Aq converges in L2, on Xj \ Zg to Ay.

Via the natural extension of Definition 4.2 to sequences of ideal con-
nections, the set of all Uhlenbeck ideal gy-anti-self-dual connections of

fixed second Chern class k,

k
IMx, (90) = H(MXo,k—l(go) x s'(Xo)),

=0

is endowed with a metrisable topology. Let mo,k(go) be the closure
of Mx, r(90) in IMx, x(go). According to [7 (Theorem 4.4.4)], any
infinite sequence in Mx, x(go) has a weakly convergent subsequence
with limit point in mo,k(ng), and in particular, the latter space is
compact [7 (Theorem 4.4.3)].

For our description of the bubble tree compactification, we will need
the following minor extension of the convergence result in Theorem
4.4.4 [7) and its cousin, Proposition 9.4.2 [7], which allows for a sequence
of metrics {g,} converging to go in C*®. The proof employs standard
arguments well described in [7 (§4.4)] and is left to the reader.

Proposition 4.3. Let {U,}3, be an ezhaustion of the punctured
manifold X, \ {p} by an increasing sequence {U,}>, of precompact
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open sets, so that Uy € U, € --- € X, \ {p} and U, U, = X, \ {p}.
Let {ga}2, be a sequence of metrics on the subsets U, converging in
C™ (r > 3) on compact subsets of X, \ {p} to a C" metric go on X,.
Let P be a G bundle over X, \ {p} and let {A,}32, be a sequence
of gao-anti-self-dual connections on the restrictions P|y,_ . If there is a
constant M < oo such that

/ IF(AL)2. dV,, <M for all o,

a

then there is a set of points Zy = {z;};~4 C X, and a go-anti-self-
dual connection Ay on a G bundle Py over Xy such that a subsequence
{A,}32, converges weakly to (Ao, Zy).

The mass of the Uhlenbeck limit (Ag, Z,) in Proposition 4.3 is 87
times an integer and may be computed from the weakly convergent
sequence {A,}, by

(4.2) lim lim /V |F(4s) A
where {V,,}22 | is any exhaustion of X, \ {p} by an increasing sequence
of precompact open subsets.

4.2. Conformal blow-ups. Given a sequence of go-anti-self-dual
connections on a G bundle P over X, with curvature densities concen-
trating near a set of ‘singular points’ in X, we define associated se-
quences of mass centres and scales. In a manner analogous to Chapter
3, we then obtain sequences of ‘conformal blow-up maps’ f, (defined
exactly as in §3.3) which resolve these singularities in a sense that will
be made precise below and in §4.3. As will become evident, the pro-
cess of applying conformal blow-ups may need to be iterated before the
singularities are completely ‘resolved’.

Let us commence by defining the first level conformal blow-ups. Sup-
pose {A,}32, is a sequence of go-anti-self-dual connections over X,
with weak limit (Ao, Zy). Let us consider the behaviour of the sequence
{Aa}2, in Mx, «(go) near the singular set Z, = {z;}/2% in more detail.
If the point z; has multiplicity k;, then

(4.3) lim lim |F(A,)[2, dV,, = 8nk;.
B(z;,r)
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Choose constants dg, 7y such that
o |
44) 0<dp< r&l?dlstgo(xi,a:j), 0<ry< 1 min{1, go,do}.

We next define mass centres and scales of go-anti-self-dual connections
restricted to the fixed ball B(z;,79) C X, by appropriately modifying
the previous definitions of mass centres and scales of §3.2 for g;-anti-
self-dual connections over S First, note that

45 lim o [ (IF(Aa)l, - IF(A)],) dVy, = 877k,

B(z; ,’I‘o)

Choose a frame v; in FX;|,, and let ¢ = ¢, be the associated geodesic
normal coordinate chart. For each ¢, define a sequence of mass centres
{Zia}2, in B(zi,70) by Zia = ¢2,(gia), Where g, = Centre[Aq|p(z;,ro)]
€ R* and

Centre[Aq|B(z;,r0)]
(4.6) =

g (IF(Aa)2, = IF(A0)3,) dV,,.

Define a sequence of scales {Xia}32; in (0,00) by setting
Aia = Scale[A,|B(z;,r)], Where

Sca,le2 [Aa IB(:C.' ,7'0)]
1

82k,
B(zi,0)

an = 19— gial* (IF(Aa)I2, = [F(A0)5,) Vs

As in §3.2., Eq. (4.7) leads to a Tchebychev inequality:

(IF(A)E, ~ IF(A0)2,) dV,

(4.8) B(2:,70)\B(Tia,RAia)
< 8r?k,R-2, R> 1L

Hence, if R > 1 and « is sufficiently large, the balls B(z;,, RAiy)

contain most of the 872k; quantity of A,-energy bubbling off at z;,.
Remark 4.4. Other choices of scale function are possible. For

example, we might have chosen \;, to be the radius of the ball centred
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at z;, containing A,-energy 8n*(k; — 1). A cutoff function is required
in order to regularise this definition.

Thus, we obtain a sequence of scales {\;,}32, associated to the se-
quences of mass centres {z;,}3, and connections {A,}32,. More-
over, Eq. (4.3) implies that the sequence z;, converges to z; and that
the sequence of scales );, converges to zero. Choose a sequence of
frames v;, € FXp|,,, converging to the frame v; € FXy|,, and let

z.. be the corresponding geodesic normal coordinate charts. Let
via = Pin © Cr, © 7L, where ¢, is the dilation of R* given by
z — z/Xis, and let §;, be the approximately round metric on X],
defined as in §3.5. Let P, = (f;;!)*P be the induced G bundle over
X|, and A;, = (f;!)*Aq be the induced §i,-anti-self-dual connection
on P,,. We call the maps f,, conformal blow-ups.

We obtain a sequence of open subsets X/, which exhaust X; \ {z;,},
a sequence of metrics {g;,}32;, and a sequence of §;,-anti-self-dual
connections {A4;,}32,; over the X!, . The sequence {gi,}5>, converges
in C* on compact subsets of X; \ {z;;} to the standard round metric
gi on X; = S* Let {g,}32; be the sequence of C* metrics, defined as
in §3.5, on the connected sum X = #,-9 X/, defined as in §3.3, and let
{A,}2, be the induced sequence of g,-anti-self-dual connections over
X. We call the connected sums (X, g,) conformal blow-ups of (Xo, go)-

There is a uniform upper bound on the L? norms || F(4;q.)|lz2(x_ 5:0)

since

@) [ 1P, = [ F(A)2, dV,,

B(zia,NA?)
< 8n?(k; +1/2),

for sufficiently large a by Eq. (4.3), while Egs. (4.5) and (4.8) give a
lower bound

(4.10)
/.

Proposition 4.3 provides a subsequence {4, }3; which converges weak-
ly to an ideal g;-anti-self-dual connection (A;, Z;) over X;, where Z; =
{z:;}j=,. The energy bound of Eq. (4.8) ensures that Z; C X; \ {z;,}.

P4, Vi, = [

B(ia,NAM/?

> 8n?(k; — 1/2).

) |F(Aa)lg, Voo

'
i
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Let p; = u(A;, Z;) be the associated singular measure on X;, and note
that its mass may be computed by

/ dy; = lim lim IF(A)2_dV,..
X

R—o00 =00 JB(z,..R)

Since this must be 872 times an integer, Eqs. (4.9) and (4.10) imply

that p; has mass 87°k;, where k; = 37" kij, A; is a g;-anti-self-dual

connection on a bundle P; over X; with c;(P;) = k;, and each point

z;; has multiplicity k;;.

Remark 4.5. It is not strictly necessary that we construct a se-
quence of honest metrics g, over the connected sums X = #.29X],
above; a sequence of conformal structures [g,] constructed as in §3.5
would suffice and this would eliminate the need for the choice of con-
formal factors over the necks. In any case, the actual limits obtained
are independent of such choices.

The above conformal blow-up construction produces a sequence of
0z, -anti-self-dual connections A,,, on increasing subsets X of the
four-sphere X; with weak g;-anti-self-dual limit (A;, Z;). With the in-
verse process of gluing in mind, we describe a modified choice of con-
formal blow-ups which yield centred limits (A;, Z;). First, a technical
lemma concerning the variation of geodesic normal coordinate charts
with their coordinate centres is required. The proof uses Taylor’s the-
orem and is left to the reader.

Lemma 4.6. Let X, be a closed C*™ n-manifold with metric go and
injectivity radius go. Let o € X and x = exp! be the geodesic normal
coordinate chart on B(zy, 00) defined by a choice of frame vy € F X |y, .-
Suppose x; € B(xo, 00/4) and p = exp,'(z,), so that dist,,(z1,z0) =
|p|. We now define two coordinate charts on B(zy,00/2):

(a) Let v, € FX|, be the frame obtained by parallel translating
v along the geodesic joining zo to x,, and let w = exp,! on
B(z1,00/2).

(b) Let 1, be the translation on R™ given by ¢ — g—p, and let w = 7,0
exp,, on B(z1,00/2). Then the coordinates w converge to w in
C®> on B(zg,00/4) asp — 0: |0* —w*| = O(Jw||p|), |0w* /Ow* —
0%l = O(p), and for all m > 2, ™w*/Ow®* - - - Qw*~ = O(p).

Next, we define the mass centre and scale of a positive Borel measure
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u on R* by

(4.11) p = Centre[u] = /

z du,
R4

A% = Scale’[u] = / |z — p|? dp.
R4

Let © be the product connection over X;. The proof of the follow-
ing lemma describes how to choose conformal blow-ups which produce
centred limits.

Lemma 4.7. Let {A,} be a sequence of go-anti-self-dual connec-
tions over X, with weak limit (Ao, Zy), where Zy = {z;}12 is non-
empty. Choose 1y as in Eq. (4.4). Then for each x; € Zy, the sequence
{A,} determines a sequence of points {w;,} converging to z;, a se-
quence of frames v, € FXyl,,, converging to a frame v; € FXy|,,,
and a sequence of scales {k;o} converging to zero such that the fol-
lowing holds. Fiz N > 4, let f,. be the corresponding sequences of
conformal blow-ups, and let A, be the induced sequence of gy, -anti-
self-dual connections with weak g;-anti-self-dual limit (A;, Z;) over the
four-sphere X;. The limit (A;, Z;) has the following properties:

(a) If A; # O, then A; is centred;
(b) If A; = ©, then the corresponding singular measure fi; is centred.

Proof. (a) We begin by defining, exactly as before, a sequence of
points {z;,} converging to z;, a sequence of frames v;, € FXol,,.
converging to a frame v; € F Xy|,,, and a sequence of scales {\;,} con-
verging to zero. Let f,, be the corresponding sequences of conformal
blow-ups and let A,, be the induced sequence of g, -anti-self-dual
connections with weak g;-anti-self-dual limit (A;, Z;) over X;. Suppose
Center [A;] = p; and Scale [4;] = v;.

Case 1. Z; is empty. Recall that f,,, = im0 cr, 0@, Az, =
(fs:l)*Aa, and g, = Ao (fs:1)*go. Define h; = ¢in oy, 0 Tp; © ¢in and

Tia Tia

set fu,, = hio fz,,. Then
.fw.'c. = Pin © Criars © Tpidia © ¢::,t = Pin © Cx;, © ‘»51;.-10’

where wio = s, (Pidia); Kia = Miali, and @y, = @g,, 07,5, . Thus,
fuw.. provides a diffeomorphism from the small ball B(w;q, N n%z) in
X, to the open subset B(z;,, N n{al/ 2) of X;. The sequence of points

{wia} converges to z; and the sequence of scales {k;,} converges to
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zero. As in §3.5, define a sequence of metrics on the increasing subsets
B(zin, Nk, 1/2) by Gu., = K; 2hz(f - )*go. Then g, converges to the
standard metric g; in C* on compa.ct subsets of X; \ {z;,}. Define a se-
quence of g, -anti-self-dual connections over the balls B(z;,, Nx./?)
by Ay.. = (f51)*Aa, and observe that A4,,, = (hy 1)*Az¢¢.- The se-
quence {A,,_} converges to the centred connection (h7')*A; in C* on
compact subsets of X; \ {z;s}-

It remains to replace the chart W = ¢3! on B(wia,00/2) by a
geodesic normal coordinate chart w = ¢;! . Choose a frame v, €
FXg|w,, by parallel translating the frame v;, € FXy|,,, along the
geodesic connecting ;, and w;,, noting that disty, (Zia, Wia) = |Pi|Nia-
Thus, as A — 00, the coordinate chart @ converges in C* on B(z;, 0/4)
to the geodesic normal coordinate chart w in the sense of Lemma 4.6.
Define a new sequence of conformal blow-up maps by setting f,.. =
Pin © Cx,., © ¢35, and define corresponding sequences of connections
and metrics on the balls B(z;,, Nk, 1/2) by A.. = (f;.)*A, and
Guia = Kiah3(f3l)*g0. Lemma 4.6 implies that the sequences {gu,, }
and {Aw c.} converge in C* on compact subsets of X \ {.’I)w} to the
metric g; and centred g;-anti-self-dual connection A; = (h;!)*A;. This
completes the proof of (a) in Case 1.

Case 2. Z; is non-empty. The proof is similar to that of Case 1.
Let Z; = h;*(Z;). Then the sequences {4, } and {4, } converge in
C* on compact subsets of X; \ (Zi U {z;s}) to the centred connection
(hi')A

(b) One sets Centre[u;] = p;, Scale[u;] = v;, and essentially repea.ts
the proof of Part (a) for the sequence of measures p,,, = |F (A, )|,

Remark 4.8. In the sequel, we require that the conformal blow-up
maps be chosen as in Lemma 4.7. However, to conserve notation, we
will relabel the points w;, and scales &;, by z;, and );,, respectively,
and the limit (4;, Z;) by (4;, Z;).

A technical point that we have not addressed above is that, just as
in [17], the weak limit of the sequence {A;,} apparently depends on
certain choices of parameters in the conformal blow-up construction:

(1) Neck width parameter N. This was only included in this Chapter
for the sake of consistency with the gluing construction of Chapters 3
and 5: we could just as well have set N = 2, say.

(2) Radius ro. Following [17], the dependency is removed by letting
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ro — 0. The conformal blow-up process gives a sequence of points
{Zia(r0)}, scales {Xix(70)}, blow-up maps {fz,. (o)}, metrics {gia(r0)},
and connections {A;,(r)}. The sequence of connections {A;,(ro)} con-
verges to an ideal g;-anti-self-dual limit (A4;(ro), Zi(ro)), for any fixed
ro > 0. We now let r, -+ 0 and by a standard diagonal argument,
we obtain a weakly convergent subsequence {A4;,(ro)} with weak limit
(A, Z;), say.

(3) Frames v;, and v;. The construction is SO(4) equivariant: Ro-
tating the frames v;, € FX|,,, and v; € FX,, by elements of SO(4)
induces an SO(4) action on the connections A;, and A; as described
in §3.2.

There is one final issue which will be important in our later discus-
sion of alternative modes of convergence for sequences of anti-self-dual
connections: We must exclude the possibilty that curvature is lost over
the necks (Q; arising in the conformal blow-up process described above.
Of course, the curvature can only bubble off with masses equal to an
integer multiple of 872, so it suffices to show that we can choose the
neck parameters to ensure that the curvature masses over the necks
are strictly less than 872. So, consider again the sequence {A4,}5; of
go-anti-self-dual connections over X, with weak limit (A, Z,), where
Zo = {z;}i=,, and let {A;,}32; be the corresponding sequences of §;,-
anti-self-dual connections over X|, having weak limits (4;, Z;), where
Z; = {zy};2). Let {Xia}3, be the sequence of scales associated to
the sequence of connections {A4,}52, and the singular point z; € Z,.
Given this situation, standard arguments yield the following curvature
estimates near z;:

Lemma 4.9. Given ¢ > 0, there exist positive constants Ry, 1, and
oo with the following significance. For large enough Ry, small enough
r1 and large enough op, then Rol;, < 71 for any a > op and the
following hold.

(a) |”F(Aia)”iz(B(z;,Ro),g;n) — 8%k < €?,
(b) |||F(Aa)||2Lz(B(z.~,Ro,\.~a),go) — 8m?ks| < €,
(c) “F(Aia)||L2(n(z.-,Ro,r1,\;l),g.»a) <¢g,

(d) |1F(A)llz2@(z:,Roriarr),g0) < E-

Thus, we have the following curvature estimate which ensures that
in the limit there is no ‘curvature loss’ over the necks €};. (In particular,
if A;o converges weakly to (A;, Z;), then the singular set Z; C X; does
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not contain the south pole z;,.)

Corollary 4.10. Given € > 0 and N > 4, there is an oy > 0
with the following significance. If Q;y = Q(xm,N‘l)\}f,N/\xz) and,
B, = B(xia,N)\:éz), then for any a > oy, we have
(a) “F(Aa)HL2(Q.'a,go) <¢, and
(0) IIF(Aa) s, g0 — 877K <e.

Lastly, we note that the conformal blow-up process may of course
be iterated if the singular sets Z; are non-empty. In the next section
we show that after repeating the conformal blow-up process at most k
times, we obtain a sequence of g,-anti-self-dual connections { A, } which
is strongly convergent. Indeed, given the weakly convergent sequence
{Aia}, over the X near a point z;; with multiplicity k;; in the
singular set Z; C X;, the second-level process differs from the first-
level only in minor technical details: We define sequences of centres
Tija = Pu.;(gija) converging to z;; and scales \;j, converging to zero,
now using the metrics g;, and a coordinate chart ¢.,; on X; given by
Poi; = Pin © 'rq“,jl where ¢;,(g;;) = z;;. The blow-up maps are defined
using coordinate charts on X; given by ¢, ., = ¢in 0 T(;J_la and setting
foija = Pijn O Cry © gb;éa. We then proceed exactly as before and
similarly for all higher-level blow-ups.

4.3. Bubble tree compactification. By analogy with the ar-
guments of [23 (§5)] and [17], we define a bubble tree compactification
for the moduli space Mx, 1(go) of anti-self-dual connections. First, we
need an appropriate notion of an ‘ideal connection’:

Definition 4.11. A bubble tree ideal go-anti-self-dual connection A
of second Chern class k over X is determined by the following data.
(a) An oriented tree Z with a finite set of vertices {I}, including

a base vertex 0, and a set of edges {(I_,I)}. Each vertex I is
labelled with an integer £; > 0 such that:

(1) ZIEI kr = ka
(ii) if I > 0 is a terminal vertex, then k; > 0,
(iii) there are at most k terminal vertices, excluding

the base vertex.

(b) A (2m — 1)-tuple (As,zr) ez, where m is the number of vertices
in 7.
(c) IfI =0, then Ay is a go-anti-self-dual connection on a G' bundle
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Py over Xy with ¢3(Pp) = ko > 0.
(d) IfI>0,then

(i) Ay is either the product connection © or a centred
gr-anti-self-dual connection on a G bundle P; over the
sphere X; = S* with ¢,(P;) = k;, where g; is the stan-
dard round metric,

(ii) zr is a point in X, if I_ = 0 and a point in
X]_ \ {ZEIS} if I_ > 0.

() IfI > 0and A; = O, then there are at least 2 outgoing edges
emanating from that vertex.

Definition 4.11 should be compared with the construction of ap-
proximately anti-self-dual connections in §3.3. The ideal connection
(Ar,z1)1ez is often written as (A;);ez. Heuristically, we may view an
ideal go-anti-self-dual connection A = (Aj)sez as a ‘connection’ over
the join V;cz X, where each sphere X is attached to the lower level
X;_ by identifying the south pole z;, with the point z; € X;_. Let
Z;_ C X;_ denote the set of ‘attachment points’ z; in X,, if I_ =0,
or points z; in X;_\{z,,}, if I_ > 0. Let m; be the number of points
in Zj, i.e., the number of outgoing edges emanating from vertex I.

Second, we need an appropriate notion of convergence. Let X =
#1717 X be the connected sum defined in §3.3 by a set of scales { A7, }rez,
with A, = 0 as @ — oo, and a fixed neck parameter N. Similarly, if
{9a} is the corresponding sequence of C* metrics on X defined in §3.5,
then g, converges to g; in C*® on compact subsets of X;\(Z; U {zs})
for each I > 0. As in [7 (§7.3.1)], we consider the following modes of
convergence for sequences of anti-self-dual connections over X.

Definition 4.12. Let {A4,}3, be a sequence of g,-anti-self-dual
connections on a fixed bundle P with c;(P) = k over the connected
sum X = #;7X7.

(a) Let Y € s*(X) be a multiset in UrezXs \ (Zr U {z15}). The
sequence {A,} converges weakly to ((Ar,z1)1ez,Y), if the gauge
equivalence classes [A,] converge in C™ to ([Af]) ez over compact
subsets of Urez X1\ (ZrU{zr,}UY), and if the curvature densities
converge, then

|F(A)IZ, — D IF(Ar)2, +8n°dy,

Ja
IeT
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over compact subsets of Urez X1 \ (Z1 U {z5})-

(b) The sequence {A,} converges strongly to the limit (A, z;)ez if
it converges weakly to (A;,zr)ez (With no singular set Y) and
Yrez C2(Pr) = c2(P). Here, the A; are g;-anti-self-dual connec-
tions on G bundles P; over X; with cy(P;) = kj.

We let BMx, (go) denote the set bubble tree ideal go-anti-self-dual
connection over X, of total second Chern class k. Thus, each point
of BMx, (go) is represented by a (2m — 1)-tuple (A, z1)1ez, With m
being the total number of vertices of the tree 7.

Definition 4.13. We say that a sequence {A4,}32,; of go-anti-self-
dual connections on a G bundle P over X, with c;(P) = k converges
strongly to a bubble tree ideal go-anti-self-dual connection (zr, Ar)rez
in BMx, +(go) if there exist sequences of conformal blow-ups {frs}res
with the following property. Let {g,} be the induced sequence of C'*°
metrics in the conformal class [go] on the connected sum X = #;7 X7,
and let {4,} denote the induced sequence of g,-anti-self-dual connec-
tions over X. Then we require that the sequence of metrics {g,} con-
verges in C* on compact sets of X; \ (Z; U {z;5}) to the metric gy,
I > 0, and that the sequence of connections {Aa} converges strongly
to the ideal go-anti-self-dual connection (A, z;)rez-

This definition of convergence extends to the space of bubble tree
ideal connections BMx, (go), which is then endowed with a second
countable Haussdorf topology. Define the bubble tree compactification
M—;o’k(go) to be the closure of M, x(go) in BMx, x(go)-

Theorem 4.14 The space ]Tf;o’k(go) is compact.

The result follows from the special case below.

Theorem 4.15. Any infinite sequence in Mx, 1(go) has a strongly
convergent subsequence with limit point in M}o,k(go)-

Proof. The argument is similar to the proof of Proposition 5.3 in
[23]. Fix a G bundle P over X, with c;(P) = k > 0 and let {A,}32, be
a sequence of go-anti-self-dual connections on P. The main point is to
repeatedly apply conformal blow-ups f;, until we obtain a sequence of
induced metrics g, over a connected sum X, with (X, g,) conformally
equivalent to (X, go), and a sequence of induced g,-anti-self-dual con-
nections over X, denoted by {A,}, which is strongly convergent. We
adopt the convention below that subsequences are immediately rela-
belled.
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Step 1. There is a subsequence {A,} which converges Wea,kly to
an ideal go-anti-self-dual connection (Ao, Zy), with Z, = {z;};= corre-
sponding to a point in the symmetric product s*(X,). If Z, is empty
then we are done, so assume that my > 1. Let k; be the multiplicity of
z; and note that 0 < k; < k. For each ¢ and large enough a, the con-
nection A, determines a set of mass centers {z;, }iny, with z;, — z;,
and a set of scales {\;o}iny with A\;, — 0 as @ — oo. Fix a neck
width parameter N > 4, choose a sequence of frames v;, € FXy|s,,
converging to a frame v; € FXy|,,, and let {fi,}»4 be the conformal
blow-up maps defined by these centres, frames, scales, and parameter
N. If X = #7 X!, then (X, g,) is the conformal blow-up of (Xo, go)
determined by the maps f;,. Let P now denote the induced G bundle
over X, let A, denote the induced go-anti-self-dual connection over X,
and let A;, be the restriction of A, to the open subset X,

The sequence [A;,] has a weakly convergent subsequence, again de-
noted [A;,], with weak limit (4;, Z;), where Z; corresponds to a point
in s*¥(X;). Corollary 4.10 implies that no mass is lost over the neck (2;.
Hence, if Z; is empty for ¢+ = 1...m;, then we have }_ " k; = k, the
sequence [A;,] converges strongly to [A4;], and we proceed to the Final
Step. Otherwise, Z; is non-empty for some 7 > 0 and we proceed to
Step 2.

Step 2. For some i > 0, Step 1 produces a non-empty singular set
Z; = {x;;}7%,. Let k;; be the multiplicity of the point z;;, let c;(A4;) =
ki, and note that 37" ki; = ki > 0. Let yu; be the singular measure
associated with (A;, Z;). We now consider two cases, depending on
whether or not A; is the flat product connection © over X;.

Case (a). A; = 0. Since Scale[y;] = 1, the diameter of the set Z;
must be positive and so this case can only occur if m; > 1. Let k;; be
the multiplicity of the point z;; and note that as m; > 1 we must have
max; kij < k—1.

Case (b). A; # O. Therefore, kjy = c3(A;) > 0 and so we again
must have max; k;; < k — 1, since 37V ki; = ki < k.

For large enough «, the connection A;, determines a set of mass
centres {Z;jq}ivy, With z;;o — z;;, and a set of scales {)\;jo}in;, with
Aija — 0 as o — oo. Let {fo};~; be the conformal blow-up maps
defined by these centres, scales, and parameter N. Let P denote the
induced G bundle over the new connected sum X = #29 X #72, X/, ,,
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let A, denote the induced g,-anti-self-dual connection over X, and let
{Aija} be the induced sequence of g,-anti-self-dual connections over
the open subsets X, of the spheres X;;.

The sequence [A;;,] has a weakly convergent subsequence with weak
limit (A;;, Z;;) and no loss of mass over the necks €;;,. If Z;; is empty
for j = 1,...,m;, then we have Z;’;‘o ki; = ki, the sequence [A;j,]
converges strongly to [A;;], and the blow-up process terminates at the
vertices A;;. Otherwise, Z;; is non-empty for some j and we proceed
to Step 3.

Step 1. 3 <! < k. For some multi-index I of length |I| =1 —1,
Step | — 1 produces a non-empty singular set Z; = {z;;};, contained
in the sphere X;. The sequence [Aj,] has a weak limit (A;, Z;), where
Z; corresponds to a point in s* (X ). Let k;; be the multiplicity of the
point zy;, let c;(Ar) = kjo, and note that E;"___'o kij = kr > 0. Let p;
be the singular measure associated with (A, Zp).

Case (a). A; = 0. Since Scale[y;] = 1, the diameter of the set Z;
must be positive. Hence, m; > 1 and so we have

(4.12) maxky; Sk-1+1,  |lj|=1, 1<I<k.

Case (b). A; # ©. Therefore, kjp = c3(A;) > 0, and Eq. (4.12)
again holds, since 372 kr; = ki < k.

Eq. (4.12) implies that the conformal blow-up process terminates
completely after at most k steps.

For large enough «, the connection A, determines a set of mass
centres {zjo}je; in X;\ {z;,}, with ;0 = z;, and a set of scales
{Arja}idi, with Arje — 0 as o — oo. Let {frjo}j2, be the con-
formal blow-up maps defined by these centres, scales, and parame-
ter N. Let P denote the induced G bundle over the connected sum
X = #1 X1, #5721 X ja» let A, denote the induced g,-anti-self-dual con-
nection over X, and let {Ay;,} be the induced sequence of g,-anti-self-
dual connections over the open subsets X;;, of the spheres X;.

The sequence [Aj;,] has a weakly convergent subsequence with weak
limit (Ay;, Z;;) and no loss of mass over the necks Qp;,. If Zj; is
empty for j = 1,...,m;, then we have Z;’;’O krj = ki, the sequence
[Arja] converges strongly to [A;;], the blow-up process terminates at
the vertices A;;, and we proceed to Step [ + 1.

Final Step. After performing at most k¥ conformal blow-ups, we
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obtain a sequence of g,-anti-self-dual connections {fia} over a con-
nected sum X = #;¢7 X}, . The sequence {A,} converges strongly to
a bubble tree limit (Aj, z;) ez, since the singular points have all been
blown up and there has been no mass loss over the necks (.

Plainly, the compactification mo,k(go) is ‘larger’ than the Uhlen-
beck compactification mm «(90)- Indeed, there is an obvious surjective
map

(4.13) L mo,k(go) — mo,k(go)
obtained by sending a bubble tree ideal connection (Aj,z;)rer to the
corresponding Uhlenbeck ideal connection (Ao, Z1, ..., Zm,). The mul-

tiplicity of z; € X, is the sum of the second Chern classes of the
anti-self-dual connections A; attached to the subtree lying above the
vertex 1.

Corollary 4.16. The map 7 : H;O,k(go) — mo’k(g(,) is continu-
ous.

4.4. D, convergence and strong convergence. We will need
one further notion of convergence in order to show that every point
of the moduli space Mx ;(g) lies in the image of the gluing map J
constructed in Chapter 5. Let P be a G bundle over a closed manifold
X with metric g. Following [7 (§7.2.4)], fix 4 < g < oo and let D, be
the distance function on the space Bx p given by

(4.14) D,([4};[B]) = inf |A — u(B)lz,(x.0)-

We recall the following definition of Donaldson and Kronheimer.

Definition 4.17. [7 (p. 308)] Let {A\;a}3,, for each I > 0, be
sequences of scales satisfying o, — 0, where Ao = max; A1, and let
{Aa}, be a sequence of connections on a fized G bundle P — X,
where X = #1¢7X; and X; = S* if I > 0. The connected sum X has a
sequence of metrics {ga}, defined by the sequence of scales {\14}52,,
a sequence of points {:c;a}g‘;l, where the x;, converge with respect to
the fized metric g; to a point x; € X;_, and a neck width parameter
N. Assume that the connections A, are go-ASD with respect to the
sequence of metrics {ga}3%, on X. Then the sequence {A4}3, is D,-
convergent to (Ar,z1)1ez #f Do([Aalxs]; [Arlxy]) = 0 as @ — cc.

D, convergence is called ‘L? convergence’ in [7]. The result below
explains the relationship between strong convergence and D, conver-

gence.
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Theorem 4.18. [7 (p. 309)] Let {A,}32, be a sequence of connec-
tions on a bundle P — X which are ASD with respect to the sequence
of metrics {9}, determined by the sequences of scales {\1,}, where
Ao — 0. Then the sequence {A,}2, is strongly convergent if and only
if it is D,-convergent.

5. Differentials of the gluing maps

In this Chapter we obtain L? estimates for the differentials of the
gluing maps J : 7/T — M, - These give C° bounds for the compo-
nents of the L? metric g on the bubbling ends of M, ,(go) and allow us
to complete the proofs of Theorems 1.1 and 1.2. In particular, for the
remainder of the article, the hypotheses of Theorem 1.1 are assumed to
be in effect.

5.1. Construction of the gluing maps. In this section we con-
struct the gluing maps J : 7/T' — M ,(g) and J:T/T - M, +(90),
and set up the analytical framework required for the later sections. Our
first task is to construct a right inverse to the linear operator d;¢ and
so we choose suitable Sobolev spaces L?, L} and for the remainder of
this Chapter, we fix

(6.1) 2<p<4 and 4<qg< oo sothat 1/4+1/q=1/p.

By hypothesis, H = 0 for all I and thus the operators d};'¥" have
right inverses P;. More explicitly, if A}'¥" is the Laplacian d;*" (d}:")*
and Gj’lg’ is the corresponding Green’s operator, we may set P; =
(d59)*G¥". A standard application of the Calderon-Zygmund theory
and the Sobolev inequalities gives the following bounds.

Lemma 5.1. Assume H3, = 0. Then the operators Pr : LP —
LY and Py : L — L% are bounded and there are constants C; =
Ci(Ar,91,p), 1 = 1,2, such that for all £ € LPQ?*(X;,ad P;),

| Préllzexr,angn < CillPréllexs,0r) < ColléllLe (x1.01)-
We next define the C* cutoff functions to be used in the construction

of a right parametrix @ for d};Y by patching together the operators P;
over X.
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Lemma 5.2. [7 (Lemma 7.2.10)] For any A > 0 and N > 4, there
ezxist a C™ function By v on R* and a constant K independent of A\, N,
such that By n(z) = 1 for |z| > 1A/2, By n(z) = 0 for |z| < N7IAY/2,
and ||dB v Lawss) < K (log N)=3/4.

Define C* cutoff functions 3; on each X by setting

(52) :HI = (¢I_81)*ﬂ)\I,N H(¢I_+1)*ﬂz\1+ LN On XI,
I,

where the factor (¢7,')*8, ~ is omitted when I = 0. Here, the cutoff
functions comprising G; have been extended so that 8; = 1 on the

complement in X; of the balls st(%)\}/ %) and B,A%A}i %). Also, By =0

on the balls B, (N~'A;?) and B,+(N_1)\}iz) in X;; thus, we may
extend f; by zero to give 8; € C*(X). The L* estimate of Lemma 5.2
implies that

(5.3) ldB1l|zaxs.01) < cK (log N)~*/4,

for some ¢ = ¢(go, k). For the cutoff functions {7,} defined by Egs.
(3.52) and (3.53), we recall that > ,7; = 1 on X. Note also that
Br = 1 on the support of v;.

Define operators Q; : LYQ+9 (X;,ad P;) — LPQ (X[, ad Pr) by set-
ting Q; = BrPryr. Define a right parametrix @ : £{Q9(X,ad P) —
LPQ (X, ad P) for the operator d;;° by Q = 3°, Q;. The error operator
R: LPQ™9(X,ad P) — LPQ™9(X,ad P) is then given by

(5.4) di’Q=1+R.

Lemmas 3.15 and 5.1 thus yield the following estimates for the opera-

tors Q; and Q.

Lemma 5.3. There are constants C; = C;i(go,p,T), 1t = 1,2, such
that for any t € T, the following bounds hold.
(a) For any & € LPQT91 (X ad Py),

1QréllLexs,0r) < CillQrélle(xs,4r.9r) < CalléllLe(x1,0r)-
(b) For any £ € L*PQ™9(X,ad P),

1Q€llLa(x.9) < CllQEllcr(x) < Coll€llLe(x,9)-
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Next, there is an analogue of Lemma 7.2.14 [7] (see also [7 (p. 294)]),
giving an L? bound for the operator R. The proof follows easily from
Lemmas 3.9, 3.12, and 5.1, and Eq. (5.3). In [7] it is assumed that the
metrics g; are flat in small neighbourhoods of the points z;, but this
restriction is easily removed by using Lemma 3.12.

Lemma 5.4. There is a constant € = e(b, N,p), with ¢ — 0 as
N — 0o and b — 0 such that for any t € T and £ € LPQT9(X,ad P),
| REl e (x.0) < Ell€llLr(x,0)-

Thus, for the remainder of this article, we choose N, > 4 large
enough and by < 1 small enough so that (b, N,p) < 2/3 for all b <
b and N > Np, and fix N = Ny and by = 4NA})? for all I € T.
We now construct a right inverse P for d};. Lemma 5.4 yields the
(L?, LP) operator norm bounds ||R|| < 2/3 and ||(1 + R)™!|| < 3. Since
Qr = BrPivyr, we have the (L?, L?) operator norm bound ||Q,|| < Ci,
say, giving the (LP, L?) operator norm bound ||Q|| < C = Y ;C;. In
summary, there is the following version of Proposition 7.2.35 [7].

Proposition 5.5. There are constants Ny and by such that for
any N > Ny, b < by, and t € T, the operator P = Q(1 + R)™! :
L£rOH9(X,ad P) = LPQY(X,ad P) is a right inverse to diy’ and there
are constants C; = Ci(go,p,T), ¢ = 1,2 such that for any
& e LPQH9(X,ad P),

1P€l|La(x.0) < Cill PEllcr(x) < Colléllr(x,g)-

We next construct families of solutions to the full non-linear anti-
self-dual equation over connected sums. For each ¢t € T we seek a
solution A(t) = A'(t) + a(t) to FT9(A’' + a) = 0, or equivalently

(5.5) difa+ (aha)™ = —FH9(4"),

where a € Q!(X,ad P). If a = P¢, with £(t) € Q79(X,ad P), then this
equation becomes

(5.6) €+ (PEAPE)TI = —F+9(4").

With the aid of Lemma 7.2.23 [7 (p. 290)] (an application of the Con-
traction Mapping Theorem to Eq. (5.6)) and Proposition 5.5, one easily
obtains the following version of Theorem 7.2.24 [7].
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Theorem 5.6. For sufficiently small Ay < 1, sufficiently large Ny >
4, and sufficiently small Ty, , I € Z, the following holds. For anyt € T,
there ezists an LY g-anti-self-dual connection A(t) = A'(t) + a(t) over
X, with a(t) = P£(t). There are positive constants C; = C;(go,p,T),
1=1,2,3, such that

T4/
lallLacx.g) < CilléllLex.g) < Coll FH9(A")||r(x.9) < Csb "

We pull back the g-anti-self-dual connections A on P — X via the
cpnformal maps fr to give go-anti-self-dual connections A = A’ + a on
P — X,, where A is defined by

(5.7) A=f3---fiA over f5t-- fH(XD),

and similarly for A’ and é. In particular, A = A’ 4+ @ is a solution to
the go-anti-self-dual equation F*9 (A’ + a) = 0 over X,, or explicitly

(5.8) difa+ (@ana)he = —FHe(4),

where & € Q'(X,,ad P). Standard arguments show that the anti-self-
dual connections A and A are actually C® and that they are smooth
points of the moduli spaces Mx x(g) and Mx, x(g0) [7]:

Lemma 5.7. Let A be the g-anti-self-dual connection over X pro-
duced by Theorem 5.6 and let A be the corresponding go-anti-self-dual
connection over Xo. Then the following hold:

(a) The connections A and A are C*,

(b) Hj =0 and H} =0, for small enough by and large enough N,
(¢) Hj=0and H; =0.

From §4.4, we recall that D, is the distance function on By, given
by D,([A],[B]) = inf,eg ||A — u(B)||L,(x,q)- In particular, we have the
following version of Theorem 7.2.62 [7] (compare also Theorem 4.53
3)-

Theorem 5.8. Let A; be gr-anti-self-dual connections on G bundles
Py over manifolds X;, I € Z. If I = 0, then X, is a closed, oriented,
C*™ four-manifold with generic C*® metric g, and negative definite in-
tersection form. If I >0, then X; = S* with standard round metric g,
of radius 1. Let X = #;c7X;, the connected sum four-manifold with
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C*> metric g (conformally equivalent to go) determined by the choice
of points {z;}, frames {v;}, scales {\}, and neck width parameter N.
Let P be the connected sum bundle over X, where c;(P) = k > 1.
Let \ = mazrezAr. Let T4, be open balls centred at 0 € H}h,I eI
I'=Tl;ezT4, and T =Ta, X [1;c7(Ta, x Gl;,), as in Eqgs. (3.25) and
(3.26). Then, for sufficiently small Ay < 1, sufficiently large Ny > 4,
and sufficiently small Ty,, I € I, the following holds. There is a C*
homeomorphism onto an open subset:

J:T|T — UCMxplg), t—I[A)],

where A(t) = A'(t) + a(t), a(t) = PE(t), and &(t) are as in Theorem
5.6. For any v > 0 and 4 < ¢ < 0o, the manifold T and constant
Xo(v) can be chosen so that, for all X < Ao(v), U = {[A] € Mx p(g) :
Dq([Alxy], [A[]) < 1/}, forall I €T.

Proof. This is a straightforward generalisation of Theorem 7.2.62 [7]
to the case of multiple connected sums (see [7 (§7.2.8)]) and a restriction
to the case where G = SU(2) and b*(X,) = 0. The metric g, is not
required to be flat in small neighourhoods of the gluing sites z; € Xj.
Lemma 5.7 implies that the image of J lies in the dense open subset
M5 p(g9) C Mx p(g). The fact that J is C* is a calculation of the type
that appears many times in §§5.3, 5.4, and 5.5. See also Appendix A
[22] and Remark 4.24 [3].

We refer to J as a gluing map over the connected sum and its image
U C Mx ,(g) as a gluing neighbourhood. Moreover, J extends to a C*
gluing map on the larger parameter spaces 7 and T° of Egs. (3.27)
and (3.30). Further properties of these maps are described in the next
section. Lastly, for the original metric g, on the base four-manifold X,
Theorem 5.8 takes the following form.

Corollary 5.9. Given the hypotheses of Theorem 5.8, there is a
homeomorphism onto an open subset

J:TIT — VCMy (), t— [A®)),

where V. C M;‘(o’j,(go) is obtained by pulling back the subset U C
M3 p(g) of Theorem 5.8.

Again, J extends to a C* map on the larger parameter spaces T and
T°, and additional properties of J are discussed in the next section.
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5.2. Structure of the compactified moduli spaces. The
bubbling ends of mo,k(go) away from the diagonals are described in
[7 (§8.2)]. We extend this description to neighbourhoods of points in
the diagonals of the Uhlenbeck compactification. For related construc-
tions and some further details, we refer to the papers of Taubes and
Donaldson.

The proposition below is the basic result we require in order to
parametrise neighbourhoods covering the ends of M} ,(g) away from
the reducible connections. See also [3 (§IV)], and [22 (p. 529)] for vari-
ous special cases of the following statements. The following proof is sim-
ilar to the arguments used in the proof of Theorem 4.53
[3 (p. 316 & p. 325)].

Proposition 5.10. Given the hypotheses of Theorem 5.8, the fol-
lowing hold:

(a) The approzimate gluing map J' : T/T — By, is a C*™ embed-
ding.

(b) The gluing map J : T/T — U C Mx ,(g) is a diffeomorphism
onto an open subset.

(c) The extended gluing map J : T/T — U C Mx,(g) is a C
submersion onto an open subset.

(d) The extended gluing map J : T°/T — U° C Mx ,(9) is a diffeo-
morphism onto an open subset.

Proof. (a) The proof is essentially the same as the argument required
for (b) and so is omitted. (b) From Theorem 5.8, J is a C* homeo-
morphism, and so it is enough to show that J is also an immersion,
since T/I" has dimension equal to that of Mx ,(g). From the proof of
Theorem 5.8, there is a C* I'-equivariant gluing map J:T— A% k>
t — A(t). So, we first show that J is an immersion and then conclude
that the induced map on quotients is a diffeomorphism. The constant
Ao may be chosen as small as desired and in (a) and (b), the A; and z;
may be held fixed.

Step 1.  Definition of restriction maps. Choose cutoff functions
%y, as in §3.3, which are zero on the balls By,(b;/2), By, (bs, /2) and
equal to 1 on the complement in X of the slightly larger balls By,(br),
By, (b1, ). Define a map x, : L*Q*(X,ad P) — L*Q!(X,ad Pr) by left
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multiplication with 1;, so that
(5.9) lw = 7x,wllL2xs6r) = O),  w € QY(Xy,91),

since 1y is equal to 1 on the complement of a set in X; of g;-volume

O(—)?). Next, for I > 0, choose a cutoff function, which is zero out-
side the annulus Q;, = Q(m,s,N‘l)\}/z,N/\}ﬂ) in X, and is equal to 1
on the slightly smaller annulus Q(z;;, %)\}/ 2, 2)\}/ 2) containing the sup-
ports of the derivatives of the cutoff functions 7;_,~;. Define a map
mo, : L*QY(X,ad P) — L?*Q'(Qy,,ad Py) by left multiplication with
this cutoff function. Lastly, let IT = 7y @150 (7x, ® 7q,) be the induced
map

L*Q'(X,ad P) — L2Q(X,,ad Pp)
D150 (L2 (X1, ad Pr) & L*Q(Qy,,ad P)) .

Step 2. Partial derivatives with respect to lower moduli parameters.
We have C* T ,,-equivariant maps 9; : Ty, — A%, by tr = Ag(ty)
given by the Kuranishi model. Let v be a tangent vector to T}y,, i.e.,
suppose [v] € H} . Then Eq. (5.9) and the estimates of §5.4 give the
following bounds for the differentials with respect to the lower moduli
parameters:

1/2

(5.10) Imx, DI (v) = DI (v)ll22(x1,01) = O ).

The map J; is an immersion and so the range of Dd; has dimension
equal to dimHY, . For small enough A, Eq. (5.10) implies that the
range of mx, DJ also has dimension equal to dim H,

Step 3. Partial derivatives with respect to gluing parameters. Let
v be a tangent vector to Gl;. The estimates of §5.5 give the following
bounds for the differentials with respect to the gluing parameters:

2

(5.11) |70, DT (v) = DT (0)l|zs(xs,6r) = OV),
recalling that DJ'(v) is supported on € 1(%)\}/ 2 227/%). But from Propo-
sition 3.28 we have

(5.12) IDT" (0)lLsxr.0r) 2 €l

for some constant ¢ > 0 independent of X. In particular, the range
of mq, DJ' has dimension equal to dimGl;. So, for sufficiently small
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X, Egs. (5.11) and (5.12) imply that the range of mg, DT also has
dimension equal to dim Gl;.

Step 4. The quotient map. Combining these observations, we find
that the range of IID.J has dimension equal to dim H 4,+3 ;5o (dim H},
+dimGl;) = dim7, so that kerIIDJ = 0 and J is an immersion.
From Theorem 5.8, the open subset U = J(T) in A i projects to an
open subset U = J(T') in M ;(g) and composing J with the projec-
tion A, — Ax,/G, we obtain a submersion Z : T — M} ,(g). The
group T' acts freely on T, J is I-equivariant, dimT/T' =dimM x.x(9)s
and the gluing map descends to a diffeomorphism Z : T/T' — Mk ,(9),
as required. (c) This follows from (b). For the derivatives with re-
spect to A; or z;, the cutoff functions required to define IT should be
replaced by cutoffs with similar supports and which are fized with re-
spect to small variations in the scales and centres. (d) This is similar
to the proof of (c) and uses Proposition 3.5.

In order to parametrise neighbourhoods of boundary points in
mo’k (g0), we use the following corollary to Proposition 5.10.

Corollary 5.11. Given the hypotheses of Theorem 5.8, the following
hold:

(a) The approzimate gluing map J' : T/T — Bk, is a C® embed-
ding,

(b) The gluing map J : T/T =V C M5, «(g0) is a diffeomorphism
onto an open subset,

(c) The extended gluing map J : T/T = V C My, 1(g0) is a C*°
submersion onto an open subset,

(d) The estended gluing map J : T°/T = V° C My, +(90) is a dif-
feomorphism onto an open subset.

Taken together, Theorems 7.3.2 and 7.2.62 in (7] imply that if A is
any g-anti-self-dual connection on a fixed G bundle P over the con-
nected sum X and the necks Q are all sufficiently pinched (so that X is
small), then [A] lies in the image of the gluing map. The corresponding
statement in our application is given below.

Theorem 5.12. Given the hypotheses of Theorem 5.8, then the fol-
lowing holds. Let {A,}, be a sequence of connections on a G bundle
P over the connected sum X = #1c7X; which are anti-self-dual with
respect to the sequence of metrics {g,}, determined by the sequences
of scales {\jo} with X, = 0, a fized neck width parameter N, sequences
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of points {z,} converging to {z,}, and frames in FXy|,,, converging
to frames in FX,|,,. Suppose the sequence {A,}32, is strongly conver-
gent to (Ar)rez, where Ar is a gr-anti-self-dual connection over each
summand X;. For ay sufficiently large, there exists a gluing neighbour-
hood U such that [A,] € U, for all a > ay.

Proof.  See [7 (§7.3.1)]. Theorem 4.18 implies that the sequence
{A.} is D, convergent (for any 4 < g < 00) to (As)sez. So, Theorem 5.8
implies that the points [A,] are contained in a gluing neighbourhood
U, for all a > ay if oy is sufficiently large.

Recall that Gl,, = SU(2) ~ S3, a copy of the standard three-sphere,
and let GI,, be the closure of Gl,, x (0, \o) in the cone (Gl,, x[0, X))/ ~,
where (p,0) ~ (0',0) if p,p' € Gl,,. Then, by analogy with [7 (§8.2)]
and [3 (§V)], we set

(5.13) T=Tax[] (TA, x B(zy,mo) X mz,)) ,

I€T
and likewise, define T°. Tt is also convenient to define
(5.14) 0T = {to = (t1,y1,p1,A\1)1ez € T : Ay = 0 for some I},

where the 4-tuple (t;,yr, pr, A;) above is replaced by t°, if I = 0. The
space OT? is defined similarly. Moreover, the gluing map J has a
natural definition on the boundary 07T. Suppose t,, € 97 and let
(A1,---,A.) denote the corresponding scales in Eq. (5.14) which have
been set equal to zero. By cutting the edges with A\; = 0, we may
view the tree T as a union of subtrees US_,Z¢. If to, € 0T, we write
too = (t4,...,%°), with ¢! € T, and set

(5.15) T(te) = (), T(E),  to €T,

where each J(t) is an anti-self-dual connection over a connected sum
Y; = #1e1: X1, say, and X = #1c2 X1 = #5.,Y;. The relationship
between the gluing maps J and J* is explained by the continuity result
below, which we just state in the special cases X = Xo#X;#X,, for
the sake of clarity. The argument required for this case carries over
with no significant change to the more general cases just described.
Proposition 5.13. Let X = Xo#X 1#Xo, let Y = Xo#X,, and
let Y' =Y\ B(z, %)\}/2). Assume that the hypotheses of Theorem 5.8
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hold and let Jx, Jy be the gluing maps over the connected sums X
and Y, respectively. Then there is an € = €(q¢) > 0 and a constant
C = Clg0,9,T) such that | Tx(B)ly — Ty lagra) < CX.

The proof is similar to that of Proposition 7.2.64 [7] and the ar-
guments in §5.3, and so is omitted. It now follows that J extends
continuously to 7.

Proposition 5.14. Assume that the hypotheses of Theorem 5.8
hold. Let {t,}3, be a sequence in T which converges to t, € OT.
Then the sequence {J (ta)}, converges strongly to J (teo)-

Proof. Let {\;}{_, denote the scales, determined by t.,, which have
been set equal to zero in Eq. (5.14). The points ¢, € T are then nat-
urally written as ¢, = (£,...,%5), with the sequences t’ converging to
t' € T, say. According to Proposition 5.13, the sequence J(t,) is then
D, convergent to (J(¢'),...,J(t°)) and hence, strongly convergent by
Theorem 5.18.

It remains to show that My, x(go) has a finite cover consisting of
gluing neighbourhoods. Of course, away from the bubbling ends, the
moduli space is covered by the standard Kuranishi charts. In addition,
the geometry of these charts around the reducible connections has al-
ready been analysed in [14], so our focus here is on the bubbling ends.
Given any Uhlenbeck boundary point (Ao, zi,...,7;) € mo,k(%)’
where c;(Ayp) = k — [ and each z; has multiplicity 1, Theorem 8.2.3
[7] provides an open neighbourhood V of (A, 71, ..,z;) in 1\—/11;{0,,c (90),
a parameter space 7°/T', and a gluing map J giving a homeomorphism
of T°/T with V =V N M, ,(g0). Theorem 8.2.4 in [7] states that this
gluing map extends to a homeomorphism 7 : 7 /T = V. Thus, away
from the diagonals, the ends of M—?(o,k (go) are covered by gluing neigh-
bourhoods. The generalisations below provide a covering of the ends
of mo’k(go) which includes the diagonals.

Theorem 5.15. Let (Ao, Z1,..-,Zm,) be a boundary point in
mo’k(go). Under the hypotheses of Theorem 5.8, there ezist neigh-
bourhoods ¥V C mo,k(go) of (Ao, Z1,...,Zm,) and a parameter space
T° such that if V =V N My, (g0), then the gluing map J:T°/T -V
is a diffeomorphism.

Proof. Suppose {[A,]}32, is a sequence in My, x(go), converging
weakly to the Uhlenbeck limit (Ao, 21, .., Zm,). Let {[A,]}22, be the
corresponding strongly convergent sequence in Mx ;(g,) with the bub-
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ble tree limit (A7, zs)sez. Then Theorem 5.12 produces a gluing neigh-
bourhood J(7°/T") =U C Mx 4(g,) and an o, such that [A,] € U for
all o > ap. Let V be the corresponding neighbourhood in Mx, (go)-
Then the conclusions follow from Corollary 5.11.

Theorem 5.16. Given the hypotheses of Theorem 5.15, the gluing
map J eztends to a homeomorphism of 7_'0/F with a neighbourhood V
of (AgyT1y. ..y ZTmy) N —]\/T;(o’k(go).

Proof. This follows from Proposition 5.14 and Theorem 5.16.

Remark 5.17. So, every boundary point in ma,k(QO) has a
neighbourhood constructible by gluing. Plainly, the same statement
holds for boundary points in M}o,k(go).

5.3. Derivatives with respect to scales and centres. The
main purpose of this section is to obtain L? estimates for the partial
derivatives of the family of gy-anti-self-dual connections A with respect
to the scales A\; and centres z;.

Unless noted otherwise, throughout this section and for the remainder
of this article, we assume that p and q are Sobolev exponents satisfying
the strict inequalities 2 < p < 4 and 4 < ¢ < 00, where ¢ is determined
by 1/p = 1/4+ 1/q. The constant Ay > 0 is assumed small and may
be decreased as needed. We use C = C(go,p,T) to denote constants
which are independent of the points ¢t = (¢, pr, 5, A1) € T. As usual,
we abbreviate the derivative with respect to the centre parameters,
p70/0q; (where |p;| < 1) by 0/0p;.

Denoting n = —F19(A’) in Eq. (5.6), we have the following prelim-
inary estimate for the derivatives of @ with respect to the parameters
A[ and Iy.

Lemma 5.18. Let £ and a = P be as in Theorem 5.8, and assume
that the conditions of that theorem hold. Then, for small enough Ao >
0, there is a constant C = C( go,T) such that for anyt €T,

(a) “8>\1 o ,\x”?),

+X).
(®) H Opr ' L2(x,, 90) (H apl L*(X,g) “ Opr lL2(x,9) )
Proof. From Proposition 3.24, we have
+ O lall 30,

5], <€
O lla(xo,00) —  NOALlL2(x )

where a = P¢ and O(P¢)/0A; = (OP/0A1)€ + P(9€/0Ar). The esti-

L2(Xo, 90) (” 3)\1 L2(X,g) “ 6>\1
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mates of Proposition 5.5 and Theorem 5.6 then give (a). The proof of
(b) is similar.
We now differentiate the g-anti-self-dual equation and obtain a priori
estimates for the partial derivatives of ¢ with respect to A; and z;.
Lemma 5.19. Let £ be as in Theorem 5.8 and assume that the
conditions of that theorem hold. Then, for small enough Ay > 0, there
is a constant C = C(go, T) such that for any t € T,

() 10¢/0Mllz2xq) < C (1+X A7+ XN(OP/OAEll1ecx,s))

(6) 119¢/0pillizcxg) < C (1+ N(OP/3pr)Ellacxs)-
Proof. Differentiating Eq. (5.6) with respect to A; gives

0¢ 67) Ox,
(aA /\P§) (pgA ax,) .

The estimates of Lemma 3.14 and Proposition 5.5 imply that

0
’— “ ’7” + ClElAT
0 OP
+C"€“L2<a—f” 'a—x, u)'

Proposition 3.26 and Theorem 5.6 yield ||0n/d)\;||r2 < C, and ||€]|r2 <
C\ respectively. Thus, for A, small enough, we may assume C||¢||z2 <
1/2. Part (a) then follows by combining the above estimates and rear-
rangment, and the proof of (b) is similar.

To complete our task, we need an estimate for the derivatives of P
with respect to A\; and z;. Before proceeding, we first record some
bounds for the derivatives of the cutoff functions 8; and ;. Sup-
pose 1 < p < oo. From the definition of B; there is a constant
C = C(gr, N, p) such that

(5.16) ldBi],, < CATY? on Q4, Qs
”dﬂIHLP(XI,QI) S C/\Z/p-—l/Z.
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Second, for the derivatives of 3; with respect to \;, one has

(5.17)

OAr L>(X;,95) OA; L>(Xy,95)
‘ Q& < )\?/p—l’ ”adﬁJ < C)\i/p—3/2
O llLe(xs.90) ~ OAr Lo (xs00) — ’

for J = I_ or I, these derivatives being zero otherwise. Third, for the
derivatives of 3; with respect to z, one has

(5.18)
08y _ od, _
”—— < o2, “—ﬂi < OXfY,
01 |l pee(x;,90) 01 |l pee(x,.,91)
‘ 0Bs < \2/P-1/2 ) 0df3; < O)/P1
Opr LP(Xs,95) T ’ Opr LP(Xs,95) ! ’

for J = I_ or I, these derivatives being zero otherwise. The cutoff
functions -y, also satisfy the bounds of Egs. (5.16), (5.17) and (5.18).
Proposition 5.20. For any 0 < 6§ <  and 2 < p < 4 defined by
p = 4/(1+26), and small enough X, there is a constant C = C(6, 9o, T)
such that for anyt € T and £ € LPQ™9(X,ad P),
(a) 11(OP/OADEl|Lscxq) < CAT* 7 IEllLr x,0)5
(b) 11(8P/0p1)€llnecx,e < CXN€NlLr (x,9)-
Proof. (a) As P = Q(1+ R)™!, we first obtain operator bounds for
0Q/d\;, OR/I)\;, and then deduce an operator bound for dP/dA;.
Step 1. Estimate for 0Q/0\;. Recall that Q¢ = Y ; Q,&, where
Qs = B P~y is independent of A\; for J # I_, I, and so

0Q _0Qr 00
OAr O0A; o’

where 90 o8 5
I T Cr
ZxI _“Flp p =L
W WU v
with the analogous expression for dQ;_/0)\;. Choose 4 < ¢,¢; < o0

and 2 < p,p; < 4 by setting

(5.19) p=4/(1+26) and q=4/(1—25),
1/p=1/4+1/qu and 1/2=1/p +1/qi,
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and observe that 1/4 = 1/q¢+1/q, and 1/2 = 1/p + 1/q, while 2/p =
1/2+ 6 and 2/q = 1/2 — 6. Applying Holder’s inequality, the opera-
tor bounds for P; of Lemma 5.1, and the fact that ||06;/0A;||L. and
[|0v1/0As||Ls are bounded by C)\z/q ! from Eq. (5.17), we find

oQ: % o
7)Y,

OAril Mz

Combining the above estimate with the analogous bound for the
0Q;_/0Ar term, we see that

<C

L4

el +C H

I€llz» < CATY€]I 2o

(5.20) H a” < OXTg,

completing Step 1.
Step 2. Estimate for 9R/0A;. We have R = d};°Q — 1 on X, and
so differentiating with respect to A\; gives

OR, 0, oA 1t L ,0Q
St = Qe+ 51,08 +dirgEe

Using our L™ bound for 8 %, /0A; of Lemma 3.14, the L* bound for
0A'/d)\; of Proposition 3.25, and the operator norm bounds for @ of
Lemma 5.3, we obtain

(5.21)
@i dtea == 0Q
As A" 9N,

For the d4 @ term above, noting that do Q¢ = 3 ; da, Q¢ and writing
' =Aj;+ay over X lead to

da,Qs€ = dBy A Prys€ + Bsda, Prvs€ + Bslas, Prvs€]-

By the bounds ||dB; ||z« < C of Eq. (5.16), ||as|lz« < CX of Lemma 3.9,
Holder’s inequality, and the operator bounds for P; of Lemma 5.1, we
find that

(5.22) llda: Q€L < Cll€]| 2.
For the d};°0Q/0); term, note that

. < CX?)|da QE| Lz + C|€]| 12 +

0Q 0Qr_ 0Qr
d+’y +,g +9
any T oy, T



GEOMETRY OF THE ENDS OF THE MODULI SPACE 541

We use djf"PI =1 and B; = 1 on supp~y; to get

29
d+,96_Qi§ - (daﬂl A Py ,{) + g—gi[az,PI’Yzf]’L'g

i 3)\] oA +,9 +.9
0 ’ 0 v ’
'11—5) 715 + Br [ahPI B3} 5]

+'——I(*y — *g,)da, Pryi€

oy
+_ﬂI(*g gl)dAlPIa)‘Ig

with the analogous expression for dj,;” 0Qr_/0)\;. From Lemmas 3.14
and 5.1, it follows that

aQI 6:31 aIBI
+g ‘ R
ot e g v ML
VI VI
+CdBi 2 L‘” e+ |52 et
+Cllaslze |2 lellzs
o, | 1 d
+x| o) e+ OX| 2| el

Now ||a;||z+ £ CX by Lemma 3.9, and because of Eq. (5.17), ||881/0A1|| L
and ||@y;/0A;||L« are bounded by CAY7" . Hence,

d:ﬂaQ’é < ORI e,

with the analogous bound for the d};" 0Q1_/0A; term. Therefore,

(5.23)

0
4 et < O el

Combining the above inequalities and noting that |[|€]|z2(x,q)
< Cliéllzr(x.0), yield

< OXY Y€ s,

L4(X.9)

(5.24)

|5,

which completes Step 2.
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Step 3.  Estimate for 0P/0)\;. Differentiating P = Q(1 + R)™!
with respect to A; gives

P 9Q OR
= o, TR -+ R o

and thus applying the bounds from Steps 1 and 2, we have

221+ R)

2 1
< CAY M€l Lo (x.0)5

b

4

which yields (a) since 2/qg —1 = —1/2 — 4. For (b), the strategy of
(a) shows that [[(0Q/0pr)¢||L+ and ||[(OR/Opr)&||L4(x,e) are bounded by
CAY 2| 1¢ | 1», leading to

(5.25) < OXYV2 g gn,

“ Op;

L4(X.,9)

and so (b) follows.

As is readily verified, Lemma 5.19 and Proposition 5.20 then provide
the following estimates for the derivatives of £ and a with respect to
Ar and z;:

Corollary 5.21. Let £ and a = P£ be as in Theorem 5.8 and assume
that the conditions of that theorem hold. Then, for small enough Ao >
0, there is a constant C = C (0,90, T) such that for anyt € T,

(a) I'aé/a)‘IHLZ(X,g) < C(l + )\3/2-1-5)\1 1/2— 6)’
(b) ||3§/0pI]|L2(X,g) < C(l + )\3/2+6 6)’
(C) ||3a/8/\,||Lz(X 9) < C(

(4) 118a/0pillizceg) < C1L+X7*72F0).

With bounds for the derivatives of £ and P with respect to A\; and
z; at hand, we obtain our final estimates for the derivatives of the anti-
self-dual connections A and A. Since A = A'+a, combining Proposition
3.25 and Corollary 5.21 gives

Corollary 5.22. Assume that the conditions of Theorem 5.8 hold.
Then, for any 0 < § < 1/2 and small enough Ao > 0, there is a constant
C = C(d,90,T) such that for any t € T, the following bounds hold:

(a) 110A/OA |12 (x.q) < C(1+N/2HA;Y/270),
(b) 110A/dprlliax.q) < C(1+X"2059).

1/2+6 1/2_5)
7

~1/2+6
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Theorem 5.23. Assume that the conditions of Theorem 5.8 hold.
Then, for any 0 < § < 1/2 and small enough Ay > 0, there is a constant
C = C(4,90,T) such that for any t € T, the following bounds hold:

(a) 1193/0Aslz2(x5.00) < C(1+ X 2AT270),
5. _1/2—
(6) 10A/ON||Laxoa) < C(L+XTTNT2),
~1/2+6

(c) 110a/0p1llz2(xo,00) < C(L+XTTXF7),
(& 104/0prllacnog < CL+XTTATY).

Proof. Using the bound ||£]|» < CN'? of Theorem 5.6, the equality
2/p = 1/2 + 4, the L? estimate for da/0X; in Lemma 5.18, the L?

estimate for 3¢/0A; in Corollary 5.21, and the operator estimate for
OP/0d\; in Proposition 5.20, we obtain

which yields (a). Then (b) follows from (a) and the estimate
10A" /OX1||L2(x0,00) < C of Proposition 3.27. The proofs of (c) and
(d) are similar.

5.4. Derivatives with respect to lower moduli. In this
section we obtain estimates for the derivatives of the family of go-anti-
self-dual connections A with respect to the lower moduli parameters
t; € T4,. Just as in §5.3, the strategy is to use the g-anti-self-dual
equation of Eq. (5.6), together with its derivatives with respect to the
t; parameters, to first obtain estimates for the derivatives of a and &,
and then the required derivatives of a and A'. The Sobolev exponents
p, q are fixed so that 2 < p < 4 and 4 < g < 0o, where q is determined
by 1/p = 1/4 + 1/q. We have the following preliminary estimates for
the derivatives of £ and a.

Lemma 5.24. Let £ and a = P¢ be as in Theorem 5.8, and assume
that the conditions of that theorem hold. Then, for small enough Ao >
0, there is a constant C = C(go,p,T) such that for any t € T,

(a) 10a/dtrllLr(x,q) < CNOE/Ot1|Lr(x,9) + [|(OP/O1)€|| Lo (x.9)>

(b) 110¢/0t:Is ) < C (X777 4 X710 /081l 11,0 ) -

da

oa < C (X1/2+5/\_1/2 _5 1+ A3/2+6/\I 1/2—6 + /\1/2+6A 1/2) ’
OAr

LZ(XO )go)
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Proof. Differentiating Eq. (5.6) with respect to t; gives

-a—g— _ _@_7__ apf +.9 aPE +.9
oty ot ( Oty " P{) <P§ " Oty ) ’
opP¢ _ opP o¢
F TR

The proofs of (a) and (b) are then similar to those of Lemmas 5.18 and
5.19.

Thus, an operator estimate for dP/dt; is required. As P =
Q(1+ R)™!, we have

oP _ 4Q ,OR

(526) 5= (+R) T -QUAR) T (1+R)

We recall that P; = d G§¥. Differentiating with respect to t;, we
obtain

3P1 — adl}ql +g: ygl +91 6Aj4_191 +!JI
oty ot Tt O~ i Ca ot; ot Car

The derivatives of d};’" and d;’" with respect to t; are given by

3d+ g1 B % ] +,91 [3441 ] +,91
T ot @
*I,yz

Lo g -

for any w € Q'(X;,ad Pr) and ¢ € QP97 (X, ad P;). Therefore,

3A+§I _ [614] .]+’g1dxgl d.}.g, [aA[ .]*
ot otr’ oty’ ]’

and so we find that

P -y [0, ) e -y [0, ]
(6527) Zt = (1= Pudf?) | 57| G | P

Note that 1— P,-d+’g’ is a bounded (L, L?) operator on Q+97 (X, ad Pr)
by the Calderon-Zygmund theory.

Lemma 5.25. There is a constant C = C(go,p,T) such that for
anyteT,
(a') “(aPI/atI)flqu(Xuyl) < C”§”LP(X1,91)7 for & € LrQyter (XI,QI);
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(®) 11(0Q/0tr)€llLax,g) < Clléllr(x,5), for & € LPQ9(X, g).
Proof. Since 1 — P;d}*" is bounded on L4(Xy,g;), Eq. (5.27) and
the Holder inequalities show that

oP; < ' 0A;
La

3t1é Otr

But G} and P; are bounded (L?, L?) operators and noting that the
family AI(tI) is smoothly parametrised by t; € T4,, we obtain (a).
Since Q; = BrPryr and Q = Y_; Qy, inequality (b) follows.

It remains to estimate the derivative of R with respect to ¢;.

Lemma 5.26. There is a constant C = C(go,p,T) such that
for any t € T and £ € LPQY9(X,g), we have ||(OR/0tr)||Lr(x,9) <
Clélr -

Proof. We recall that R = d};°Q — 1 over X and R = d;°Q; — 1
over X;. Writing A} = A; + a;, we find that !

0A;

1G5l + c|

IPiEle

R =dB; A Pryr + Brd " Pryr + Brlar, - 179 Pryr

1
+§(*g — %g,)Brda, Pr — 1.

Noting that d};‘” P; =1 and differentiating with respect to ¢;, we have

§ dpr A ’Ylf + Br [ Pﬂ’zf] "

8P +9
(5.28) +Br [al, T%—I’)’If]
I
1 0A
+§(*y — *,)Pr [(%I,Pﬂlf]
1 oP;
+§(*Q - *gI)IBIdAI 5;7]6')

and therefore

aR 8P T Ba 1

— d C P, q
’at, . <C||dBr||z+ ’715 T 3 1. || 1€l
3P aA
(5:29) + Clasllus | 570 +cx‘ e
3PI
+C)\ dAl at '716 )
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where ay = (vr—1)o} A and dar/0t; = (Yr—1)o;0A;/0t;. Aside from
the self-dual projection and factor Gy, the last term on the right-hand
side of Eq. (5.28) is given by

OP, 0A 0A .
dga, 6_tI£716 = —dy, * [8t1 +’g”yz€] +da, Prd®" [BtI Gy {]
—dy, P [6 ! , P, ]+9
A LT ot; 18743

Since P; is a bounded operator from LP to LY, using the bounded
inclusion LY — L7 we see that

R
<c|%| sl
VAI 6812[1 Lo ||G+’917]£lILP
0|5 _Ivr e el
I
|5 et

Since the family A,(t) is smoothly parametrised by ¢; € T4,, and G+’g’

is a bounded operator from L? to L}, we have

op;

< Clféllz»-

Egs. (5.29), (5.30) and Lemma 5.25 then yield the required bound for
OR/0t;.

Thus, Eq. (5.26), together with Lemmas 5.25 and 5.26, provides an
estimate for the derivative of P with respect to #;:

Proposition 5.27. There is a constant C = C(go,p,T) such that
for any t € T and £ € LPQY9(X,ad P), we have ||OP/0t1€||Le(x,9) <
Cllelzrx.a)
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This leads to our final estimates for the derivatives of £ and a with
respect to t;.

Corollary 5.28. Let £ and a = P& be as in Theorem 5.8, and as-
sume that the conditions of that theorem hold. Then, for small enough

Xo > 0, there is a constant C = C(go,p,T) such that for any t € T,
~2/p—1/2

(a) 0¢/0t;||Le(x,9) < CA ,
(b) 10a/dts|Lr(x.g < CX/PT2,

Proof.  Inequality (a) follows from Lemma 5.24 and Proposition
5.27, since ||€]|L» < ox’? by Theorem 5.6. Inequality (b) then follows
from (a) and Lemma 5.24.

By combining Proposition 3.30 and Corollary 5.28 we obtain an es-
timate for the derivatives of the connections A = A’ + a over X:

Corollary 5.29. Assume that the conditions of Theorem 5.8 hold.
Then, for any 2 < p < 4 and sufficiently small Ao > 0, there is a
constant C = C(go,p, T) such that for any t € T,

(a) 10A/0t; — BAL/0t|lzocxy oy < CXPT7,
() 10A/0t|Le(x,) < C-

We now come to the main result of this section.

Theorem 5.30. Assume that the conditions of Theorem 5.8 hold.
Then, for any 2 < p < 4 and sufficiently small Ay > 0, there is a
constant C = C(go,p,T) such tha/t foranyte T,
2/p—1/2

(a) (18a/0t1||e(xo.00) < CX

(0) 110A/8t1)|Lr(x0,00) < C-
Proof. Let U = f;'--- fi'(X;) C Xo and note that 9a/dt; =
S fe--- fr0a/0t; on U. Lemma 3.19 gives

!aa <oy
I

aty
and so Part (a) follows from Corollary 5.28. Part (b) follows from (a),
and the estimate ||0A’'/dt,|| L?(Xo,90) < C' of Proposition 3.32.

5.5. Derivatives with respect to bundle gluing parameters.
We obtain estimates for the partial derivatives of the family of go-anti-
self-dual connections A(t) with respect to the bundle gluing parameters
pr € Gl;. The Sobolev exponents p, q are fixed so that 2 < p < 4, with
4 < g < 0o determined by 1/4+41/q = 1/p. We first recall the estimate
of Donaldson and Kronheimer for the derivative of a = P¢ with respect

da

< -z
C’ Oty

LP(Xo,90)

* *aa’
forfige

b
L?(Xo,90) Lr(X,g)
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to the gluing parameters p;. As described in §3.8, we work with an
equivalent family of g-anti-self-dual connections A = A’ + a on a fixed
bundle P. Thus, considering only the gluing parameters, we have a
diffeomorphism By 3 v — A(p;,v) € Ak p (where By is the unit ball
in g), giving a family of C* connections on a fixed bundle P = P(p;), as
in Eq. (3.58). Here, B, 3 v = p;(v) = prexp(v) € Gl; is a coordinate
chart centred at p; € Gl;, as in Eq. (3.57). This understood, one has
the following bounds.

Proposition 5.31. [7 (p. 303)] Let a be as in Theorem 5.8, and as-
sume that the conditions of that theorem hold. Then, for small enough

Ao > 0, there is a constant C = C(go,p,T) such that for any t € T,
2/p+1

10a/0v]|Le(x,9) < CA

Proof. The proof in [7] deals only with single connected sums X =
Xo#X1, but the argument adapts without significant change to the
general case of multiple connected sums #;c7X;. Likewise, the as-
sumptions in [7] that I'; = 1 and HY, = H}, = 0, for all I, do not
affect the relevant estimates.

Corollary 5.32. Let A be as in Theorem 5.8, and assume that the
conditions of that theorem hold. Then, for small enough Ao > 0, there is

a constant C = C(go,p, T) such that for any t € T, ||0A/0v||L»(x,9) <
~2/p—1/2

C\

Proof. Combine Propositions 3.28 and 5.31.

Moreover, we have the following estimates for the derivatives of the
go-anti-self-dual connections A = A'+ 4 on the fixed bundle P over Xo.

Theorem 5.33. Assume that the conditions of Theorem 5.8 hold.
Then, for small enough Ay > 0, there is a constant C = C(go,p,T)
such that for any t € T,

~ ~2/p+1

(a) 0a/0v||Lr(x,q) < C )
() 1104/80]|s(x,e) < OX"7.

Proof. Sincea = f;---ffaonU = fy'o---0 ff'(X}), Lemma 3.19
gives

da

< bl
Cav

LP(Ung)

. ,0a
fo"'fl%

)
L?(X7,91)

and Proposition 5.31 gives (a). Similarly, (b) follows from (a) and
Proposition 3.29.
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5.6. Differentials of the gluing maps and final arguments.
We summarise the results of the preceding sections and record our
bounds for the differentials of the approximate gluing maps J and J.
The estimates for D.J then give bounds for the diagonal (and so all)
components of the L? metric g and completes the proof of Theorem 1.1.
Combining these metric bounds with results of Donaldson in [5] then
completes the proof of Theorem 1.2. The following two theorems sum-
marise the estimates obtained in §§5.3 to 5.5, the first following from
Corollaries 5.22, 5.29, and 5.32 and the second from Theorems 5.23,
5.30, and 5.33.

Theorem 5.34. Let J : T/T — My ,(g9) be a gluing map and
assume that the conditions of Theorem 5.8 hold. Then for sufficiently
small Ao > 0 and any t € T, there exists a constant C = C(go,T) such
that the following bounds hold:

(a) |DJ@/0t)||bcx.q) < C,
() DI B/} |r2x.0) < CN7,
(¢) |IDTB/0z%)i2xg < C(L+X A5,

~1/248 | —1/2—
(4) DT B/0A)Iz2xg) < CL+X A7),
Theorem 5.35. Let J : T/T — My, (g0) be a gluing map and
assume that the conditions of Theorem 5.8 hold. Then for any 0 < 6 <

1/2, sufficiently small Ay > 0 and any t € T, there exists a constant
C = C(8,90, T) such that the following bounds hold:
(a) IDI(8/0tF)|lz2(x0,90) < C,
. ~1/2
(b) 1D (8/0p7)l|z2(x0.00) < CX,
(¢) IIDJ(8/0zt)ILs(x000) < CL+XTT"AF?),
. ~1/246 \ _1/2—
(d) IDF(B/0A)l2(x0.g0) < CL+X*TINFH2),
It remains to reinterpret the bounds of Theorem 5.35 in terms of the
corresponding bounds for the diagonal components of the L? metric g.
Corollary 5.36. Under the hypotheses of Theorem 5.35, the follow-

ing bounds hold:

(a) g(a/0ty,0/0t7) <C,

(b) g(3/0pf,08/9p7) < CX,

(c) g(d/ox¥,8/0c) < C(1+X "Ar%),
“1+25)‘I-1—26)‘

(d) g(8/0A1,0/0A) <C(1+ A

1/246
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Recall that the g-length of a path (so,s;) 3 s = A(s) € M%, 4(90)
is computed by

51 0A 0A 51
=z <
/so ‘/§<BS’ 33) ds“/so

The proofs of our main results are now essentially complete.

Proof of Theorem 1.1. Since 0 < § < 1/2, the bounds of Theo-
rem imply that the gluing neighbourhoods V = J(7°/T) have finite
g-volume and g-diameter. Therefore, the bubbling ends of M, ,(g0)
have finite g-volume and g-diameter since the entire moduli space is
covered by finitely many such neighbourhoods. Away from the Uhlen-
beck boundary, gluing neighbourhoods consist simply of C° Kuranishi
charts. The conical ends corresponding to Kuranishi charts around the
reducible connections have finite g-volume and g-diameter by Theo-
rem 1 [14].

Next we consider the relationship between the metric completion and
the Uhlenbeck compactification of the anti-self-dual moduli space. Let
dy be the distance function on M, ,(go) defined by the L? metric g.
Thus, if [A], [B] are two points in Mk, ,(go), then dy([A],[B]) is the
infimum over all g-lengths of paths in Mk, ,(go) joining [4], [B]. If
the two points lie in different path components of the moduli space,
then set dy([A4],[B]) = oo. Since b*(X,) = 0, the moduli space has at
most finitely many path components; we say that M ,(go) has finite
g-diameter if the sum of the g-diameters of the connected components
is finite. In [5], Donaldson constructs two other distance functions, D,
and D3, for any fixed € > 0. First, given points [A], [B] in Bk, ;, set

0A

s ds.

L2(Xo,90)

D([A}, [B]) = inf || 4 — u”Bl| 12(x0,60)-

Lemma 2 [5] (or Lemma 4.2.4 [7]) shows that D, is a well-defined dis-

tance function on B, ,. Moreover, Lemma 1 [5] implies that D, ([A], [B])
is equal to the distance function defined in the usual way by the L? met-

ric on By, , as the infimum over g-lengths of paths in B, , joining [A]

and [B]. One then obtains a second distance function on M, ,(go) by

restriction. Define an e-neighbourhood of M}, ,(go) in B, ; by

Bion = {[A] € Bx, s : IF{* ll12(x0,00) < €}-
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Then Dj5([A],[B]) is defined as infimum of the g-lengths of paths in
BY; , joining two points [A] and [B] in BY; ,. One now obtains a
third distance function on M%_ ,(go) by restriction. The three distance
functions dp, D,, and D5 on Mk, (go) are related by

(5.31) Dy([A], [B]) < D5([4], [B]) < d>([4], [B]),

for all [A], [B] € M%, (go). To show that the dy-completion of My, ;(go)
is homeomorphic to the Uhlenbeck compactification moyk(go), it is
enough to prove that a sequence [A®] in M, ,(go) is dz-Cauchy if and
only if it is convergent in the Uhlenbeck topology. For the metric D3,
one has

Theorem 5.37. [5 (Theorem 4)] For any € > 0, the Dj-completion
of M, «(g0) is homeomorphic to mo,k(go)-

Thus Donaldson’s result gives part of the proof of Theorem 1.2:
Suppose a sequence [A%] in Mk, ,(go) is dz-Cauchy. According to Eq.
(5.31), it must also be D5-Cauchy and so is convergent in the Uhlenbeck
topology by Theorem 5.37 or simply by Proposition 6 [5]. The proof of
the reverse direction, namely that a sequence [A®] which is convergent
in the Uhlenbeck topology is also dy-Cauchy, is included in [9].
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