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SYMPLECTIC PACKING CONSTRUCTIONS

LISA TRAYNOR

1. Introduction

Let V2n be a symplectic manifold. A symplectic A -packing of V via
equal balls consists of k symplectic embeddings of a 2n-dimensional
ball with disjoint images in the interior of V. If VolV < oo, there
is an upper bound to the radii of the balls which admit a symplectic
A -packing since symplectic embeddings preserve volume. Some natural
questions include: For fixed k, what is the least upper bound for r such
that there exists a symplectic packing via k embeddings of a ball of
radius r? For which k is there a full packing, i.e., for which k can the
volume of the image of the packing get arbitrarily close to the volume
ofV?

Using his technique of pseudo-holomorphic curves, Gromov calcu-
lated that a packing of the 4-dimensional ball of radius 1, £?4(1), via
2, 3, or 4 symplectic embeddings of a closed ball does not exist if
r > χ/Γ/2 and that a packing via 5 or 6 embeddings cannot exist if
r > yββ, [2 (0.3.B)]. McDuff and Polterovich, in [6], combined the
pseudo-holomorphic curve theory with the theory of symplectic blow
ups and proved that a packing of B4(l) does not exist for 7 embeddings
when r > >/3/8 nor for 8 embeddings when r > y^β/17. Moreover,
they proved that these obstructions are sharp: there exist packings of
JE?4(1) via 2,3,4,5,6,7,8 symplectic embeddings of a closed ball of ra-
dius arbitrarily close to y/ϊβ, Λ / Ϊ A λ/ΪA \ββ> \ββ, \ββ, Λ/6/17,

respectively. For higher dimensional balls, Gromov calculated that a
packing of B2n{\) via k < 2n embeddings cannot exist if r > y/T/2.
McDuff and Polterovich proved that for k < 2n, there exists a packing
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via k embeddings of a closed ball of radius arbitrarily close to y Ί / 2 .
This is a consequence of their discovery that i? 2 n ( l) can be fully packed
by kn embeddings, for all k. In other words, it is possible to find a pack-
ing of B2n(l) via kn embeddings of a closed ball of radius arbitrarily
close to y/TJk, the radius given by the volume obstruction.

McDuff and Polterovich discovered the existence of these packings
quite indirectly. In the following, elementary constructions are de-
scribed for most of these maximal packings. In particular, construc-
tions are given for

• full packings of B2n via kn closed balls, VA; 6 Z+ (Section 3);

• the "densest" packings of B4 via k < 6 closed balls (Section 3, Sec-
tion 5).

In dimension 4, the constructions for the above lead to packings via

open balls.

Explicit constructions are useful for visualizing the full and maximal

packings. In addition, it is often easy to study the packing problem

for more general manifolds. For example, a construction is given for

packing a product of two surfaces, Theorem 4.1. The following is a

sampling of some new results. See Theorems 3.7, 3.9, 6.4, 6.3 for precise

statements.

Let E{τι, r2) be the standard ellipsoid of radii

E{τur2) := ( 1 (χ\ + yl) + ±(x2

2 + y2

2) < Λ C (R\

Theorem 1.1. There exists a full packing of B4(l) via two embed-

dings of £(1/2,1).
Theorem 1.2. Int J5(2,1)Π {xλ > 0} is symplectically equivalent

to Int -B4(l), the open ball of radius 1.

Theorem 1.3. For all ε > 0, there exists a symplectic embedding

ψ : E(l/(k + 1), jfc) -> Int B4(l + ε), Vfc G Z + .

Theorem 1.4. There exist full packings of E(2,1) via 2 embeddings
of a ball and via 1 embedding of a ball and 1 embedding of an ellipsoid.
Moreover} these full packings can be constructed so that symplectic em-
beddings of a ball from each packing are symplectically isotopic.
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2. Notation and Definitions

The following subsets of the standard symplectic space (R 2 n ,ω 0 ) ,
ω0 = dxi A dyi + f- dxn Λ dyn, will be encountered frequently:

(2.1) D (ru r 2 , . . . , r n ) := D (r,) x- -xD ( r n ) ,

( ^ + 2/l

2) + . . . + i - ( x ^ + ^ ) <

B2n(r):=E(r,...,r).

Notice that B2n(r) is the closed 2n-dimensional ball of radius y/r and

that

areaJ9(r) = πr, Vo\E(ru . . . r n ) = ^ ^ ^ " ^ ,

The cotangent bundle of Tn will be viewed as a quotient of K 2 n with

the induced symplectic form:

where, for fixed constants c l 9 . . . , cn,

(ari,a?2,...,a?n) ~ (^1 + ci>#2 + c 2 , . . . , z n + c n ) .

In the following sections, packings via balls will be generalized to

packings via ellipsoids and other symplectic manifolds. Thus it will

be important to have the following notion of "shape approximation"

which generalizes a sequence of balls of increasing radius.

Definition 2.2 (Shape Approximation). Given (£/,u;), suppose

that for 0 < r < 1 there are diffeomorphisms φr of U into U satisfying

φ*ω = rω, ψι = id.

Then define U(r) = φr{U). Note that U(r) is conformally equivalent

to U = U(l) and is defined up to symplectomorphism.

Examples 2.3. There exists such a 1-parameter family of diffeo-

morphism φr for any star convex subset of R 2 n

(1) For U = B2n(l) C K2 n, U(r) = B2n(r);

(2) Fort/ = £ ( α 1 , . . . , α n ) c R 2 n , U(r) = E(rau...,ran).
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Definition 2.4 (Packings). Let (V, Ω), (U,ω) be symplectic
manifolds of the same dimension. A symplectic k-packing ofV via U is
a set of embeddings {φiW-i satisfying

ψi'.U -* Int V, ψ*Ω = ω, i = 1 , . . . , k,

ϊmψiΠ Cφj = 0, iφj.

Definition 2.5 (Full Packings). Suppose that U is closed and
Vol V < oo. V is said to have a full k-packing via U if k Vol U = Vol V
and for r arbitrarily close to 1, there exists a symplectic /̂ -packing of
V via U(r). For J7 open, V is said to have a /w/Z k-packing via U if
there exists {^}f=1, a A -packing of V via f/, so that Int V C U ϊmφi.

3. Full Packings of the Ball

McDuff and Polterovich discovered a beautiful pattern for the exis-
tence of full packings of the ball.

(3.1) Theorem (McDuff-Polterovich) [6 (1.5.C)]. For every
positive integer k, there is a full kn-packing of B2n via closed balls.

McDuff and Polterovich discovered the existence of these full pack-
ings indirectly via an algebraic-geometric argument. Later, they discov-
ered an explicit construction along the lines of the construction given
in Section 5. The following, more elementary, alternate construction is
based on the fact that B2n(r) is a subset of D(r,..., r).

Construction 3.2. Full Packings of B2n\ΐ) via kn Closed Balls.
Fix k G Z+. To construct a full packing of Int J52n(l) with kn copies of
B2n(r), for r arbitrarily close to 1/fc, first D ( l , . . . , 1) is packed with kn

copies of -D(r,..., r), r < 1/k. To construct this packing of the polydisc
with poly discs, begin by dividing D(l) into k "pie shaped regions",
Pi(l/k), each of area π/k. More precisely, in polar coordinates,

Pi(l/k) : = | ( p , θ) e D(l) :(i-l)f<θ< ί y } , i = 1 , . . . k.

Given r < £, choose area preserving diffeomorphisms

σ, : D(r) ->

so that if \z\2 := x2 + y2 < a then \σi(z)\2 < ka + (£ - r). There are
A;n distinct ordered index sets {{ii,..., in} ij 6 {1,. ., k}}. For each
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index set I = {i1,..., in}, define

ΦJ = Φϊ< l l... l <. }:/?(r,...,r)
x Pίa(i/fc) x x PiΛW c 2?(i,..., l)

by
Φ/Oi, 2/i, , sn, yn) = (^(a i, ϊ/i),..., σ<n(an, yn)).

Since the images of σz and σ; are disjoint when i Φ j , these embeddings
are disjoint for distinct index sets. Thus it only remains to prove that
the restriction of these embeddings to the 2n-dimensional balls define
embeddings into Int B2n(ϊ).

Lemma 3.2.1. ΦJ (B2n(r)) C Int B2n{l).
Proof. Suppose (xuyu...,xn,yn) G B2n(r), αt := x2 + yf. By

construction, it follows that

and thus, since «i + h αn < r < 1//?,

••• + «„) + f -nr

This completes Construction (3.2).
Remark 3.3. As mentioned in the introduction, Gromov proved

that there does not exist a symplectic packing of B2n(l) with k < 2n

closed balls of radius r > >/l/2. Notice that the full packing of B2n(l)
with 2n balls is done via closed balls of radius arbitrarily close to \/l/2.
Thus any k < 2n of these embeddings gives the maximal packing via k
balls. See Yael Karshon's Appendix, [3], for an alternate construction
of the maximal packing of B2n via k < n + 1 embeddings. o

In particular, the above construction gives full &2-packings of 2?4(1)
via closed balls, for all k G Z+ . In fact, the above construction can be
extended to prove

Theorem 3.4. There exists a full k2-packing of B4(l) via open
balls, for all k G Z + .

One way to construct a symplectic embedding of Int B2n(r) is to
choose a sequence {?j}, r$ < Γ7+1, r = supr j , and construct φ\ a
sequence of symplectic embeddings of B2n(rj), so that
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McDuff proved that all symplectic embeddings of a closed 4-dimen-
sional ball are symplectically isotopic inside Intl? 4(l), [5]. Thus the
following criterion can be used to construct open packings.

(3.5) (McDuff, [5 (Corollary 1.2)]). If there exists a sequence
of symplectic embeddings

φj : B4(rj) -> V, Imφ j C Imψ j + 1 Vj, sup r,- = r,

then Int B4(r) symplectically embeds into V .
Thus Theorem 3.4 follows immediately from the following lemma.
Lemma 3.6. Fix k E Z+ and let Px(l/k),.. ,,Pk(l/k) be as in

(3.2). Given a sequence {r,}, Vj < Tj+ι, supr^ = 1/k, there exists a
sequence of symplectic embeddings

such that Im Ψil)i2 C Im Φ ^ 2 , for all j.
Proof. Let Pi(l/k) c ' ^ l ) , i = 1,.. .,Jfc, be as in (3.2). Given

rι < r2 < - - - < 1/&, there exists a sequence of area preserving diffeo-
morphisms

so that
(1) \z\2<a = >

(2) Imσ/c W + 1 C P , ( 1 A ) ;

(3) σf+1(W) = ^
Construct

as in (3.2). As before, condition (1) guarantees that φ{ maps B4(rj)
into Inti? 4(l). Condition (2) guarantees that the images of the poly-
discs are nested. (3) then guarantees that the images of the balls are
nested. To see this, suppose p G Ψiii2(B4(rj)). Then

P=(σίι(z1),σί9(z2)), N ' + N 2 ^ ,

By (2) and (3), p = (<+ 1(tι;i),<+ 1(u; 2)) where

KΓ + Kl 2 < N 2 + \(rj+1 - rj) + \z2f + I(rJ+1 - r,-) < ri+1,
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and thus p e Φ^+ 1(J9(r J +i)). q.e.d.

Although there are full packings of B2n with kn balls, it is known
that there are obstructions for fully packing B2n with k equal balls, for
some k. However, for a fixed k, it is always possible to choose ellipsoids
which give a full ^-packing of B2n.

Theorem 3.7. There exists a full K-packing of B2n(l) via

E(l/kul/k2,...,l/kn) where fcf C Z + , K = kxk2...kn.
Proof To pack J5 2 n(l) with E(l/ku . . . , 1/Jfen), divide D( l ) C

(xi-> 2/;)-plane into kι "pie shaped pieces" and proceed as in (3.2). q.e.d.
A nice aspect of the construction in (3.2) is that it is easy to visualize

the images of the embeddings. In particular, this leads to information
about "chopped" ellipsoids.

Theorem 3.8. For all n, JB2n(l)n{a?i > 0} and B2n(l)n{x1 > 0}n
{yλ > 0} can be fully packed by £ ( 1 / 2 , 1 , . . . , 1) and £ ( 1 / 4 , 1 , . . . , 1),
respectively.

Similarly both £(2,1) Π {xx > 0} and £ 4 (2) Π {xλ > 0} Π {x2 > 0}
can be fully packed via a ball. Applying the open packing construction
of (3.6) leads to the following result. (See also Proposition 5.2.)

Theorem 3.9. Both

Int £(2,1) Π {x1 > 0} and Int B4(2) Π {xλ > 0} n {x2 > 0}

are symplectically equivalent to Int i? 4 ( l ) .

4. Full Packings of Products of Surfaces

Theorem 4.1. Let Σχ,Σ 2 be oriented surfaces of equal area with
respect to the area form <Xp j = 1,2. Then (Σi X Σ 2 , O Ί φ σ2) can be
fully packed via 2k2 closed or open balls, for all k £ Z + .

McDuff and Polterovich's result that a 4-dimensional polydisc can
be fully packed by 2k2 closed balls, [6], implies the above statement for
closed balls. Theorem 4.1 will be proved by an explicit construction
as opposed to the technique in [6]. In fact, McDufF and Polterovich
proved that a 2n-dimensional polydisc can be fully packed via n\kn

balls, for all k G Z + . A direct construction for this, and thus for the n-
fold product of oriented surfaces of equal area, has been found by Boris
Krouglikov, [4]. Krouglikov's construction is similar to the techniques
found in Section 5. He has also found a beautiful construction that
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gives an alternate proof of McDufF and Polterovich's discovery that
5 2 m i (&i)x ' xB2m'(kr) can be fully packed via ^ Γ ^ Γ ^ Γ 1 ...k?*
embeddings of 5 2 m ( l ) , m := Σm f , k E Z+.

Since each 4-dimensional ball can be fully packed via k2 balls, it
suffices to prove that Σ x x Σ 2 can be fully packed via 2 balls. The idea
of the construction is to find symplectic embeddings of 2 polydiscs into
Σi X Σ 2 so that although the images of the polydiscs are not disjoint,
the images of the embeddings restricted to the balls will be disjoint.

Proof. Without loss of generality, assume Σ l 9 Σ 2 have area π with
respect to σu σ2. Fix 0 < e < 1 and for i, j = 1,2, choose area preserv-
ing embeddings

so that

Then consider the symplectic embeddings Φ l 5 Φ 2 : B
4(l-e) —• Σi X Σ 2 ,

Φi(zi, 2/1,̂ 2,2/2) = {τl{xuyι),τl{x2,y2)) ,

To show this is a full packing, it suffices to prove that these embeddings
are disjoint. Suppose there exist (#1,2/1,2 ,̂2/2)? (wi, ^1,^25^2) G 5 4 ( 1 -
e) such that

r/Oi , 2/1) = r^wx, Vi), r2

2(x2, y2) = τ?,(u2,υ2).

If #1 + 2/1 = ri? then by construction of T^, r 2 , u2 + v2 > (1 — e) — rχ

Since (#i,2/i,#2,2/2), (^1,^1?^27^2) € 5 4 (1 - c), it then follows that

A + y\ < 1 - € - r i , u2 + v2 < rx,

and thus, by construction, r|(a:2,2/2) φ τl{u2,v2). This completes the
construction for the closed ball statement of Theorem 4.1. The open
ball statement follows from arguments as in the proof of (3.6).

5. Maximal Packings of the 4-Ball with 5 or 6 Balls

Next, cases where there are not full packings are examined. In
[2], Gromov proved that there does not exist a symplectic packing of
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BA(l) with 5 or 6 closed balls of radius r when r > Λ/|. By studying
the existence of Kahler structures on CP2 with 5 and 6 points blown
up, McDuff and Polterovich proved that there exists a packing with
5 and 6 closed balls of radius arbitrarily close to Λ/|, [6]. Below are
explicit constructions for these maximal packings via closed balls. A
limit process produces a packing of B4(l) with 5 or 6 open balls of ra-
dius Λ/|. This construction was inspired by McDuff and Polterovich's
construction of full packings of B2n(l) with kn balls, [7].

Definition 5.1. Let

D(π) := {0 < xux2 < π},

Δ(r) := {0 < yu y2 : 2/1 + y2 < r}.

In other words, D(sπ) is an open lagrangian square in the (xi,z2)-
plane and Δ(r) is the open lagrangian triangle in the (yλ, ϊ/2)-plane with
vertices (0,0), (r,0), (0,r). Notice that the volume of D(7τ) X Δ(r) is
the same as the volume of B(r), the ball of radius y/r. Similarly, let

:= {0 < xλ < sλπ, 0 < x2 < s2π} ,

Portions of the following lemma are due to McDuff and Polterovich.
Proposition 5.2. Π(π) X ^ ( r ) Z5 symplectically equivalent to

Proof. There is a symplectic embedding ψ : D(τr) X Δ(r)
Int B4(r) given by

(2x2), -y/y^s'm (2x2)) .

Next, using an argument similar to (3.2), it is shown that ^(D(π) X
Δ(r)), and thus D(π) X Δ(r), can be fully packed with closed balls of
radius arbitrarily close to y/r.

Let SD(r) C D(r) be the "slit disc":

SD(r) = D(r) - {x > 0, y = 0}.

5J9(r, r) will denote the corresponding slit polydisc. Notice that ^(D(τr)
χΔ(r)) = Int BA(r) Π 5jD(r, r). Given p < r, choose an area preserving
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diffeomorphism
σp : D(p) -> SD(r)

sothatifz2 + ΐ/2 < α then \σp(x,y)\2 < a + (r-p). Thus Φ^ : D(p,p)->
SD(r, r) defined by

^p(xuyux2,y2) = (σp(xuy1),σp(x2,y2))

is symplectic. Furthermore it is easy to check that Φp(J94(p)) C
Int B 4 (r)nSJ)(r,r).

Using an argument as in (3.6), for pλ < p2 < < r, there ex-
ists σp* so that the associated Φ̂> satisfy ImΦP j C Im Φ^+ 1 and
U; I m Φ ^ ( 5 4 ( ^ )) = Int B4(r) Π SD(r,r). Thus it follows from (3.5)
that Π(π) X Δ(r) is symplectically equivalent to Int B4(r).

Corollary 5.3. D(θi7r, s2π) X Δ(r/θχ, r/s2) is symplectically equiv-
alent to Π(τr) xΔ(r) and thus to Int£?4(r). Π(π) xΔ(α,/3) can be fully
packed by E(a,β).

Remark 5.4. Higher dimensional generalizations exist. For exam-
ple, the product of a 3-dimensional lagrangian cube and a 3-dimensional
lagrangian tetrahedron can be fully packed by a 6-dimensional ball.
However, since it is not yet known if all embeddings of a 6-dimensional
ball are symplectically isotopic inside Int J?6(l), the proof of (5.2) does
not imply this higher dimensional lagrangian product is symplectomor-
phic to Int£ 6 ( l ) . o

To find the maximal packing with 5 or 6 balls, Π(π) x Δ ( | ) will be
used as the domains. However instead of using Π(τr) x Δ(l) as the
range, a region which is compactified in the (^!,x2)-coordinates will
be used. More precisely, consider the compactification of the square to
the lagrangian torus Γ2,

Γ2 := ({0 < xux2 < TΓ}/ ~) = {xux2}/ (TΓZ x π Z ) .

Then
D(τr) x Δ(r) C T2 x Δ(r) C T*Γ2.

Proposition 5.5. There exists a symplectic embedding ofT2 xΔ(r)
into Int5 4 (r) .

Proof. The map φ of Π(τr) x Δ(r) into Int B(r) constructed in
Proposition 5.2 extends to a symplectic embedding of T2 X Δ(r) into
Int i?(r). Notice that Im^ does not contain any points of the form
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(0,0,£2,2/2) or (#1,2/!,0,0). Thus the problem of packing B4(l) with
copies of B4(r) is reduced to the problem of packing Γ 2 x Δ ( l ) with
copies of D(τr) x Δ(r ) .

Definition 5.6. (ΨM,T) For

let ψM,τ - Π(π) x Δ(r) —• T*T 2 denote the symplectic embedding
defined by

ΦM,T := (dxi - cx2, ay1 + by2 + τu -bxλ + ax2, cyλ + dy2 + r2).

Construction 5.7. Maximal Packings of B4(l) via 5 embeddings.
Combining Proposition 5.2 and Proposition 5.5, it follows that to pack
B4(l) with 5 balls, it suffices to pack Δ ( l ) with 5 disjoint images of
Δ ( |) under the group generated by elements of SL(2, Z) and transla-
tions. For example, one maximal packing is given by ΦM^Π -> -> ΦM5}T5

for

See Figure 1. One can also construct a maximal packing using the

following translations and elements of SL(2,Z):
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See Figure 2.
The above packing of B4 with 5 balls is constructed with elements

of SL(2,Z), and thus the symplectic embeddings of Π(τr) X Δ(r) are
restrictions of symplectic embeddings of Γ2 X Δ(r). In fact, it suffices
to work with elements of SL(2, R), which define an embedding of •(TΓ)
into T2.

Definition 5.8 (/5Z(D(τr))). In the symplectic map ΨM,T defined
in (5.6), the matrix M acts on the (y^^-coordinates and Λf*, the
inverse of the transpose of M, acts on the (x!,^2)-coordinates. Let
pr : R2 -> T2 be the quotient map and define ISL(Ώ(π)) C SL(2,R)

by

JS£(D(π)) := {M e SL(2,R): proM* : D(τr) -> T2 is injective}.

Lemma 5.9. Given M £ ISL(Ώ(π))f τ E R2, the symplectic map
ΨM,T from (5.6) defines a symplectic embedding of Ώ(π) X Δ(r) into
T*T2, for all r.

Clearly SL(2,Z) C ISL(Π(π)). In addition, we have

Lemma 5.10. M = I^) G SL(2,R) is in ISL(Π(π)) if

Proof It is necessary to prove that given M, when (^i,x2)?
(^1^2) ^ D(τr), (^!,x2) φ (x'nx'ϊ), there are no solutions to the system
of equations

d(xι — x[) — c(x2 — xf

2) = ̂ TΓ,

-b(xχ - x[) + a(x2 - x'2) = jπ,

for j,£e Z.
Suppose |α — c| = 1, \d— b\ = 0 and there is a pair of points (xι,x2)i

(x'ι>,x2) E S Π (TΓ) which solves the above system of equations. It then
follows that

| ( * + j ) 7 r | = \ ( d - b ) ( x 1 - x ' 1 ) + ( a - c ) ( x 2 - x ' 2 ) \ < \d- b\π+ \ a - c\π = TΓ.

Thus it is clear that ί — — j . It is easy to check that since M has
a trivial kernel, the only solution to the above system when j = 0 is
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Xι = x[, x2 = x2- So we can assume | j | > 1. Then using the fact that
ad — be = 1, the system

d(x1 - x[) - c(x2 - x2) = -J7Γ

-b(xλ - x[) + a(x2 - x'2) = jπ

implies

\%i - x[\ = \j(c-a)\π = \j\π > π

However since (xι^x2)^(x/

11x
/

2) £ •(TΓ), this is impossible.

A similar argument proves there are no solutions when |α — c| =

0,|rf-δ| = l.
Example 5.11. Given any α G K , the following matrices will be

in ISL(D(π)):

Construction 5.12. Maximal packing of B4(l) via 6 embeddings

It is possible to construct a maximal packing of 5 4 (1) by 6 balls using

the following elements of ISL(Ώ(π)):

See Figure 3. Any 5 of these embeddings give a maximal packing via

5 balls.

Remark 5.13. It is possible to construct a full &2-packing of B4(l)

via embeddings of the type ΦM^Π where M, C SL(2,Z) are either

inclusion or rotation matrices. A full packing of B4(l) can also be

constructed by packing Ώ(π) with k2 copies of D(π/fc). See Figure

4 (a), (b) which illustrate full packings via 4 embeddings using these

two methods. The same ideas can be applied to construct the full

fcn-packings of B2n.
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6. Symplectic Isotopies and Folds

The construction from Section 5 will be extended and used to prove
that there are multiple pairs of objects which can fully pack, say, an
ellipsoid. In addition, it will be shown that the open ball can be asymp-
totically fully packed with "skinny ellipsoids".

The extension of the constructions in Section 5 are based on the
following simple fact.

Lemma 6.1. SL(2,Z) acts on the set ISL(Ώ(π)) by left multipli-
cation: IfMe ISL(Π(π)), Z G SL(2,Z), then Z o M G ISL(Π(π)).

Proof. Since (Z o M)* = Z* o M* it follows that pro(Z o M)* :
D(τr) —> T2 is injective. Proposition 6.2 implies that if the image of
Δ(r) under SL(2,Z) is changed by shearing one vertex along the line
parallel to the opposite side, the resulting triangle can still "represent"
a ball.

P r o p o s i t i o n 6.2. Let Zχ^z2 G Z and suppose there exist 6,d such

that

If zx φ 0, then for all x eR,

( - zλ
_ i_ z 1 e ISL(Π(π)).

z\) \z\^ zi 2 /

If Zι = 0 , then for all Ϊ G R ,

Proof. By the above lemma, it suffices to find Z G SL(2,Z) and
M G ISL(D(π)) so that Z o M equals each of the mentioned matrices.
Note,
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It is easy to check that the other two types of matrices are also in
ISL(D(π)). q.e.d.

The above calculations are useful in visualizing many isotopies of a
ball or ellipsoid. In addition, it becomes apparent how different pairs
of objects can fully pack a given symplectic manifold.

Theorem 6.3. Int JS(2,1) has full packings by

(1) two ellipsoids, E'(2,1/2)
(2) two balls, B4(l);
(3) one ball and one ellipsoid, B(l) and E(2,1/2).

Moreover, the full packings for (2) and (3) can be constructed so that

balls from each packing are symplectically isotopic.

Proof. From Corollary 5.3, D(π) X Δ(α,/3) can be fully packed

with E(a,β). Thus, since T2 X Δ(2, l ) symplectically embeds into

Int E{2,1), it suffices to find M. G /SI(D(τr)), r< G R2 so that

φMitTi : D(π) X Δ ( α f . , # ) - T 2 x Δ ( 2 , l ) , ί = 1,2

are packings, where a,-,/?, are chosen appropriately for (1) - (3). See

Figure 5.

(1) corresponds to α x = α 2 = 2, βx = β2 = 1/2. Consider

(2) corresponds to αx = a2 = β\ = /?2 = l Consider

(3) corresponds to α x = 2, /?i = 1/2, α 2 = 1, /32 = 1. Consider

To construct an isotopy between balls in the packings (2) and (3),

first an isotopy in ISL(Ώ(π)) is constructed between

- (r ?)
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Consider

Then for τt = τ = r\ φt := φMiyTi : D(τr)xΔ(l) C T2xΔ(2,1). Let B

be the image of a symplectic embedding of B4(l — e) into O(π) X Δ(l).
φt(B) is the desired isotopy. q.e.d.

With the above construction, it is possible to see the "symplectic
folding" phenomena described in [1 (1.2)].

Theorem 6.4. For all ε > 0, there exists a symplectic embedding

Proo/. It is easy to check that it suffices to find a symplectic
embedding

φM}T : D(feπ, (1/Λ)π) X Δ ( l , fc/(fc + 1)) - Γ 2 x

Consider

Then M* maps Π(kπ,(l/k)π) injectively into Γ2. Moreover, since
M(Δ(1, k/(k +1))) is the triangle spanned by (0,0), (1,0), and (l/(k +
l),k/(k+ 1)), it follows that lmφMiT C Γ2 x Δ(l).
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