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SYMMETRIES OF FIBERED KNOTS

MONICA NICOLAU & SUSAN SZCZEPANSKI

Let 2 c Cn+ι be an algebraic (analytic) hypersurface with an isolated
singularity at the origin, which is given as the zero set of / : Cn+ι —> C. Re-
call that the link of such a singularity (5 2 / I + 1 , K2n~ι) consists of a highly
connected manifold K, embedded in the sphere S, as a codimension-
two submanifold. Moreover, the complement S - K of this embedding
fibers over the circle, with the projection map given by the Milnor fibration
/(z)/|/(z). Thus these knots belong to a larger class of knots known as
simple fibered knots. From one point of view, simple fibered knots are
more general than the objects of study in spherical knot theory, since the
submanifold K need not be a sphere; yet they are also more refined, since
they are fibered knots.

Here we begin our investigation of finite cyclic actions on simple fibered
knots (S2n+ι, K2n~{) of dimension n > 3. Recall that a high dimensional
knot is simple if its complement has the homotopy type of Sι up to but
not including its middle dimension. In particular, we consider simple
fibered knots for which the submanifold K is a rational homology sphere.
The more general situation, which requires modification of the proofs and
techniques given here, as well as the introduction of some further invari-
ants will be discussed in a separate paper [15]. We consider both the free
and the semifree cases. We obtain a classification of both types of ac-
tions, as well as a determination of the number theoretic conditions which
guarantee their existence.

We say that (S, K) admits a free Zm action if Zm acts freely on S
leaving K invariant; we say that (S, K) admits a semifree action if the
action on S is semifree with fixed set precisely K. Our results mirror
those concerning spherical knots, found in [8], [13], [14], and [17], re-
flecting the fact that the objects of study are a generalization of these; the
methods of proof necessarily address the nonvanishing of the homology
of K and exploit the existence of the fibration of the complement.
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In § 1 we establish a connection between the two types of actions (com-
pare [14].) We identify a large class of free actions on (S, K) which can
be related to and classified in terms of semifree actions on (S, K). We
observe that every semifree action on (S, K) can be used to construct free
actions. Each free action so constructed has the following two properties:
1) the restriction to the invariant set K is a homologically trivial action,
and 2) the action on K x Sι = d(N(K)), the boundary of the equivariant
tubular neighborhood of K, projects to a free action on Sι. We say that
an action with the first property is homologically trivial and one with the
second property is normally free. We show that to every free Zm action
on (S, K) which is homologically trivial and normally free, we may asso-
ciate a semifree Zm action on a manifold pair (M, K), which we call the
derived semifree action. We will show that whenever K is a Zm homology
sphere, the manifold M is a sphere.

Theorem 1-7. A simple fibered knot (S, K) with K a Q homology
sphere admits a semifree Zm action if and only if it admits a free Zm action
which is homologically trivial and normally free. Moreover, the restrictions
of these actions to the knot complement may be assumed to be the same.

Of course, by Smith theory we know that the existence of a semifree
action implies that K is a Zm homology sphere. Our techniques establish
that a homologically trivial free Zm action which leaves invariant a codi-
mension two Zm homology sphere is necessarily normally free. Hence,
we obtain:

Theorem l-7b. A simple fibered knot (S, K) with K a Zm homology
sphere admits a semifree Zm action if and only if it admits a homologically
trivial free Zm action.

This correspondence between semifree actions and free actions which
are homologically trivial and normally free leads (via Smith theory) to
nonexistence results (Theorem 1-2). For example, consider the link of the
Ak singularity

f(z,wx, , w2n) = zk + w] + 4- w2

2l.

The link AT is a rational homology sphere and so (S, K) does not admit
a free homologically trivial normally free Zm action unless k and m are
relatively prime. (Here άimK = 1 (mod 4).) For the other stabilization

f(z,wl9~ , w2M) = zk + w\ + + w2

2M

dim K = 3 (mod 4) and K need not be a rational homology sphere. For
certain m, there may indeed exist free Zm actions which are homologi-
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cally trivial normally free, but the derived semifree action is defined on a
nonspherical manifold M. As one further example, consider the link of
the singularity of

f { z Q 9 z l 9 . . . , z n ) = z k

o + z \ + + z k

n , k > 3 .

Note that for this singularity, the link K is never a rational homology
sphere. The familiar Sι action on C π + 1 certainly restricts to a homolog-
ically trivial free Z m action on (S, K) for each m . However, these will
be normally free if and only if m and k are relatively prime. Further,
if the free action is normally free, the manifold M on which the derived
semifree action is defined is necessarily nonspherical [15].

The main tool used to obtain the existence and classification results
here is the derived knot, as defined in §1 (compare [13] and [14]). This is
identified as the quotient space of the derived semifree action associated
to the free, homologically trivial normally free Z m action on (S, K). We
show that, if (as is true for algebraic knots) (S, K) is a fibered knot, then
so too is the derived knot. Consequently, the equivariant classification,
as well as the realization result for Z w actions, can be stated in terms of
the invariants associated to the derived knot. Specifically, we make use
of the monodromy operator h , the intersection form Q, and the Seifert
form B , all of which are defined on the homology of the fiber. It is often
convenient to use (integral) μ x μ matrices to represent these invariants;
here μ is the Milnor number, i.e. the middle Betti number of the fiber. We
will also make use of the fact that the Seifert linking form is unimodular
in the case of a highly connected fibered knot (see [4] and [10].)

Theorem 3-l(A). Let (S, K) be a simple fibered knot with intersection
form and monodromy operator given by matrices Q and h0 respectively.
Then (S, K) admits a semifree rLm action if and only if there exists hχ e
GLμ(Z) such that:

i)*Γ = V
2)h[Qhx = Q,

1

In light of Theorems 1-7 and l-7b, the three conditions above are
necessary and sufficient to determine:

1) the existence of homologically trivial free Zm actions when K is
known to be a Z w homology sphere and

2) the existence of free homologically trivial normally free Zm actions
when K is known to be a Q homology sphere.

We also obtain a statement about the existence of free Z w actions for
a more general class of knots.
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Theorem 3-l(B). Let (S, K) be a simple fibered knot with intersection
form and monodromy operator given by matrices Q and h0, respectively.
Then (S, K) admits a homologically trivial normally free Z m action if
and only if there exists hχ e GLμ(Z) such that:

1) h? = hQ,
2) h[Qhx = Q,

3) coker(/ + hx+--- + h™~x) = ΘkZm, where k = mnkHn+χ(S-K).
There is a strong relationship between our results (Theorem 1-7 and

Theorem 3-1) and the Durfee-Kauffman [5] description of the link of
g(z, w) = f(z) + wm as the m-fold branched cyclic cover of S2n+ι with
branching set the link of f(z). We mention this in the following:

Theorem. Let f(τ) be algebraic (analytic) with an isolated singularity.
A) If the link of /(z) + wm is spherical, then the link of /(z) is the

derived knot for a homologically trivial free TLm action which is normally
free.

B) Suppose that the link of /(z) is the derived knot for a homologically
trivial free Z m action which is normally free. Then, the link of /(z) is a

rLγn homology sphere if and only if the link of f(z) + wm is spherical.
Our classification of equivariant simple fibered knots is stated in terms

of the notions of equivariant homeomorphism, action equivalence, and
the Seifert pairing of the associated derived knot. Two knots (S, Ko)
and (S, Kχ) with Z m actions denoted by To and Tχ are said to be
equivariantly homeomorphic if there exists an orientation-preserving (PL
or smooth) self-homeomorphism θ of the sphere, such that θoTQ = Tχoθ,
and such that Θ(KQ) = Kχ. We say that the free actions Γo and Tχ

are action-equivalent if the normal bundles v(K^ S) are equivariantly
isomorphic.

Theorem 2-la. Two simple fibered knots admitting homologically triv-
ial free Z m actions which are normally free are equivariantly homeomorphic
if and only if a) they are action-equivalent andb) the (unimodular) Seifert
forms of their associated derived knots are equivalent. Two simple fibered
knots admitting semifree Zm actions are equivariantly homeomorphic if
and only if the (unimodular) Seifert forms of their associated derived knots
are equivalent.

In §4 we consider several types of singularities and the Z m actions
which they admit. The main invariant we investigate is the Alexander
polynomial, which for simple fibered knots is the characteristic polynomial
of the monodromy operator h . By the Monodromy Theorem, in the case
of algebraic knots this polynomial is a product of cyclotomic factors; thus,
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its rich structure enables us to unravel the number theoretic conditions in
Theorem 3-1 (existence), and identify all possible actions for a large class
of algebraic knots.

Theorem 4-1. Let (S, K) be an algebraic knot with Alexander polyno-
mial A(t) = \[cd (t) such that {dt} are distinct and not 1. Then (S, K)
admits a homologically trivial free Zm action which is normally free if and
only if (m, dt) = I for each i. Moreover, if m is odd then A(t) = AD(t).
If m is even, there always exists an action for which A(t) = AD(ή, and in
general AD(t) = ΓK.</.(*)» where

if dx is a prime power,

or 2 otherwise.

Here AD(t) is the Alexander polynomial of the derived knot, and cd(t)
is the cyclotomic polynomial for d. Notice that the condition in Theorem
4-1 is generic, in that the set of Alexander polynomials with distinct roots
is a Zariski open set.

We mention two examples (for a much more extensive analysis see §4):
1) Characterization 2-A. The link of singularity for the polynomial

a{ relatively prime, aχ > 2, admits a (free, homologically trivial and
normally free, or semifree) Zm action in precisely the following situations:

a) k even: if and only if m is prime to each a{

b) k odd, at odd: if and only if m is odd and prime to each ai

c) k odd, a0 even, n > 0: if and only if m is prime to each aχ..
Moreover, when m is odd, the action is uniquely determined on the knot
complement.

Thus, except possibly when k is even and every ai is odd, each Z m

action on the complement is uniquely determined by the integer m .
As an example, consider the polynomial

6 5 , 2 , 2
7 - 1 - 7 - 4 - ?/) - I- 111

This admits Zm actions if and only if m and 30 are relatively prime.
Moreover, m uniquely determines the action on the knot complement.

In the one remaining case [15],
c') k odd, a0 even, n = 0:

A(t) = (t - l)cd(t)c2d(t), where a0 = 2d.

Hence K is not a Q homology sphere, and semifree Zm actions never
exist; homologically trivial free Z actions can exist, but only if m is
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prime to aQ. The derived semifree action is defined on a nonspherical
manifold, M.
2) Example 5-a. The unimodal singularity

x3z + az3 + w2 + + Wfc , α ^ 0.

i) When the number of squares k is odd, Δ(t) = c2(t)cιs(t), and so
actions exist if and only if m and 6 are relatively prime; m uniquely
determines the action on the knot complement.

ii) When the number of squares k is even, A(t) = c{(t)c9(t), and so
the above theorem does not apply.

Finally we remark that our methods in the first three sections use only
the fibered structure of the knot (S, K) together with the topological prop-
erties of the manifold K. In the last section, the only extra condition used
is the factorization of the Alexander polynomial into cyclotomic factors.
This property is shared by algebraic knots and many fibered knots. Hence
our results hold for this more general class of knots.

1. The work which follows is motivated by our interest in algebraic
knots, that is, pairs (S2n+X, K2n~x) which are realized as the link of an
isolated singularity of a function / : Cn+X -» C. Such knots are always
simple, and the knot complement always fibers over the circle. These two
features and their consequences will be utilized below. Hence, our results
pertain to simple, fibered knots.

Let (S2n+X ,K2n~x), n > 3, be a knot admitting a free or a semifree
Zm action T. If T is semifree, it follows from Smith theory that K is a
mod p homology sphere for every prime p dividing m (see for example
[1]). Here we will establish conditions under which the existence of a free
Zm action has a similar consequence for the case of a simple fibered knot
(S, K). In particular, we establish that for K a rational homology sphere,
the existence of a semifree Z w action is equivalent to that of a free Zm

action of a certain type.
We begin by noting some of the properties of a simple fibered knot. The

tubular neighborhood v of K in S2n+X is a trivial 2-disk bundle. Denote
by X the closed knot complement of v then X fibers over the circle with
highly connected fiber F (that is, nt(F) is trivial for i < \ dim(F)). The
boundary of F is diffeomorphic to K, which is highly connected as well.
The restriction of the fibration to the boundary dX is the trivial fibration.
In particular, if the monodromy on F is denoted by h , then the restriction
h\dF = id.

We introduce the following two notions. A Z w action on (S, K) is
homologically trivial if the induced action on the homology of the invariant
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submanifold K is trivial. A Z w action is normally free if the action on
dX = K x Sι projects to a free action on Sι. Both of these properties
are possessed by every semifree Zm action.

Let T be a homologically trivial normally free, free or semifree Z m

action on (S, K) with equivariant exterior pair (X, dX), and quotient
pair {X/T, dX/T) = {X*, dX*). We begin by establishing that the quo-
tient pair is the exterior pair of a simple fibered knot. We start with the
following:

Proposition 1-1. The quotient X* fibers over Sι, with fiber F.
Proof. By the tubular neighborhood theorem, we have the identifi-

cation dX* = S xτ K. By assumption, the action is normally free,
and so there is a fibration K xτ Sι -• Sι with fiber K. Since K is
highly connected, in particular simply connected, π{(dX*) = Z . (Actu-
ally, by Remark 1-3.3, in the case of a free action, the action is normally
free if and only if πχ(dX*) = Z.) As T acts freely on X, and since
H((X9 dX) = 0 for i < 2, it follows from [1, Chapter III, Theorem 5.5]
that H^X*, ΘX*) = 0 for i < 2 as well. Hence, Hχ(X*) £ Z and the
map Hχ(X) —> H{(X*) is injective. Consideration of the diagram:

1 > π{(X)

1 . Hχ{X) - ^ Hχ(X*)

shows that π{(X*) is abelian, hence Z . For if x e [πχ(X*), πx(X*)],

then x = p{(y) and p2hχ(y) = 1. Finally, since the inclusion dX -̂> X

induces an isomoφhism on πχ, so does the inclusion dX* ^> X*. It

now follows from [2] that the fibration Sι χτ K extends to a fibration of

X*. q.e.d.
Note that since the following diagram commutes up to homotopy,

i [-•

we may assume (after perhaps replacing π by a homotopic fibration) that
the diagram is a fibered square. Notice too that the generator of a Z m

action can be identified with hχ, the monodromy map of the fibration
π : X* -• Sι. And so we have that the monodromies of the two fibrations
in the above diagram satisfy hT1 = h .
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We now concentrate on the case of free actions. Notice that if T is
a semifree action then, by the equivariant tubular neighborhood theorem,
the quotient boundary dX* = SxxτK = SιxK. If X* arises as a knot
complement, then it is necessarily the case that dX* is homeomorphic to
the product K x Sι. We now set about showing that, under our assump-
tions, the same is true of a free action T which is homologically trivial
and normally free.

Theorem 1-2. Let (S, K) be a simple fibered knot which admits a free
Zm action T. Then the following hold:

1) If K xτS
ι « K xSι, then the action is normally free and homolog-

ically trivial
2) If the action is normally free and homologically trivial with K a Q

homology sphere, then KxτS
ι&KxS .In this case,

i) K is a mod p homology sphere for each prime p dividing m,
and

ii) hx\κ is homotopic to the identity map.
3) If the action is homologically trivial with K a Zp homology sphere

for each prime p dividing m, then K xτS
x « K x Sι. In this case,

i) the action is normally free, and
ii) hχ I κ is homotopic to the identity map.

Proof We will show subsequently (Remark 1-3.3) that the normally
free condition is equivalent to πχ (dX*) = Z. Assume this for the moment.
The monodromy hχ of the fibration X* —• Sι, identified as the generator
of the Zm action, satisfies h™ = h, and (h{\ κ ) m = h\κ = id. (Recall that
h is the monodromy of the fibration X —> S ) . To obtain the necessity of
the homological triviality of hχ\κ (statement 1)) we argue as follows. If
dX* « K x Sι, then πχ (dX*) = Z, and hence the action is normally free.
Calculating the homology of Sι χτ K = dX* via the Wang sequence of
the fibration K xτ Sι —• Sι produces the homology of K x Sι precisely
in the case that {hχ - id)JK is trivial. Statements 2) and 3) are deduced
from the following lemmas.

Lemma 1-3. If the action is homologically trivial and normally free,
then Toτ(Hn_χ(K), Zp) = 0 for all p dividing m. In particular, if K is a
Q homology sphere, then K is a mod/7 homology sphere for p dividing
m.

Lemma 1-4. If the action is homologically trivial and normally free,
and K is a Q homology sphere, then hχ\κ is homotopic to the identity.
Also, if the action is homologically trivial and K is a mod p homology
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sphere for primes p dividing m, then the action is normally free and hχ\κ

is homotopic to the identity.

Lemma 1-5. If the action is homologically trivial, K is a Z m homology

sphere, and hχ\κ is homotopic to the identity, then K xτS
ι « K x Sι.

We choose to segment the proof of Theorem 1-2 in this manner, as the
proof of each of these lemmas requires some effort, and the techniques in
each proof are different. This also enables us to address the redundancy
of the homologically trivial and normally free conditions in certain cases,
and to make note of some more general cases in which partial results hold.
The assumption common to all of these is that (S, K) is a simple fibered
knot admitting a free Z m action T, with invariant submanifold K.

Proof of Lemma 1-3. Recall that K is a highly connected, closed
{In - l)-dimensional submanifold of S2n+{. Using duality and the ex-
act cohomology sequence of the pair (S, K) we can identify the only
two interesting homology (cohomology) groups of K with the homology
(cohomology) groups of X that is:

Hj_{{K) £ Hj(S -K)* H.(X) for j = n, n + 1,

and

Hj~\κ) £ H\S -K)* Hj(X) for j = n, n + 1.

We note that rank//Λ+1(ΛQ = rank//"(X); we let TOR(A:) denote
Exi(Hn(X), Z), which is identified, by the Universal Coefficient Theo-
rem, with the torsion subgroup of Hn+ (X) and also with the torsion
subgroup of Hn_{(K). The result will follow once we have shown that

Ίoτ{HH+ι(X), Z J s Tor(TOR(*), Z J = 0.
We now consider the cohomology spectral sequence of the homotopy

fibration

X - ^ ΛΓ* — BZm.

Since (hx\κ)^ = id can be identified with the generator ofπx(BZm), the
coefficient system is simple, hence we have:

' HJ{X)

zm
Hj(X) €

Tor(Zm

0

if i = 0
if / Φ 0, even, j —

iZm if / Φ 0, even, j =

,Hn+ιX) if i odd, j = n+I

otherwise.

0,

-n,

1

n+ί
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Consideration of the cohomology spectral sequence leads to the following:
i) By virtue of the cup product, the map

E2Λ -Zm-*E2+2'°-Zm f θ Γ ' > °
is determined by the map, for / = 0,

δ:E^1 *Z-+E2'0^Z.
2 2 m

Moreover, the cokernels of these maps for i > 0, / even are isomorphic.
(For i odd, the groups are zero.) Therefore the following hold:

a) £ 3 2 ' 0 ^ ^ ' 0 ^ c o k e r n e U ^ i / 2 ( X * ) ;

b) p\ : ker<J s HX(X*) <-+ HX{X) is the inclusion dZ^Z and so
defines the integer d
and

c) H2(X*) ~ Ext(H{(X*), Z) s Ext(Z θ Zm/d , Z) * Z w / | | . In fact,

//'(**) s Z w / | / for 2 < i < Λ - 1.
The integer rf can be understood as follows: for the projection of the

action onto the circle, the subgroup Z.d «-• Zm fixes Sι and Zd acts

freely on the Sι. Thus, the action is normally free if and only if d = m .
ii) We now develop some consequences of the fact that the cohomology

of X* must be finitely generated.
a) For i odd, we have that the differential

Eι

2'
n+ι * Tor(Zm , Hn+l(X)) - E*2'n * 0.

So, the group on the left is identified as Eι

3'
n+ι. By part i), it must be

finite cyclic of order t < m/d, or else the cohomology of X* would fail
to be finitely generated. Further, if the action is normally free, this group
must be trivial, since in this case, Eι

k'
J= 0 for k > 3, j < n , and / > 1.

b) For / even, / > 2, we deduce properties of the kernel and the
cokernel of the maps

E^n+l * Zm®Hn+l(X) -> E?2'n * Zm®H"(X).

We note that the target group in this case is a direct sum of a finite number

(at most μ, the Milnor number) of copies of Zm and that the source group

is isomorphic to the direct sum of this with Tor(Zw , H
n+{ (X)). Again, by

the finiteness of the cohomology and part i), the cokernel of this map must

be a finite cyclic group of order q < m/d, and the kernel must be a finite

cyclic group of order tq = m/d. These observations are consequences of

the fact that the kernel and cokernel of these maps are identified as E1^ π + 1

and El+2'n , respectively. (The last statement is clear for n > 3, but also
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follows for n = 3.) We conclude that the action is normally free if and
only if this differential is an isomorphism. Thus, if the action is normally
free, then Tov(Hn_{(K), Z J 2 Tor(Zw , Hn+ι(X)) * 0.

iii) Finally, if a homologically trivial free action leaves invariant a Q
homology sphere K, then Hn(X) ^ 0 and Tor(Hn_{(K), Zm) is a sub-
group of Z m , in fact, a subgroup isomorphic to Zm.d. Hence, if the
action is normally free, then K must be a Zm homology sphere, q.e.d.

We mention, for further reference, the following:
Corollary 1-3A. If (S, K) admits a homologically trivial free Zm ac-

tion, then Tor(TOR(A^), Zm) is isomorphic to a subgroup of Zm .
Proof. This follows from step ii) of the proof of Lemma 1-3.
Corollary to 1-3B. Let T be a free, homologically trivial normally free

Zm action on a simple fibered knot {S, K). Then X*, the quotient of
the knot complement, fibers over the circle with hλ, the monodromy of the
fibration, satisfying h™ = h. Further,

i) the map

is an injection with cokernel = Hn+ι(X) Θ Zm .

ii) det(α) = det(7 + hx + h\ H h h™~1)^ = ±1 z/αm/ only if K is a
mod/? homology sphere for all primes p dividing m.

Proof of Corollary to 1-3B. The statements of the corollary follow from
Theorem 1-1, Lemma 1-3 and their implications for the following com-
mutative diagram relating the homology of X, and X* and the fiber F :

O Ί-I ( V\ v U ( J7\ ~ *_v Ί-J ( T7\ l v ZJ ( V\ v Π

/?-{*, Λ+1} α /W P,,J
ψ 4- Φ 4-

0 — "„+!(**) —» //«( jF) i ί Z ^ HniF) -^ «n&) — 0

Note that the horizontal rows are given by the appropriate Wang sequence,
and that

since h™ = h . The spectral sequence argument in the proof of Lemma
1-3 establishes that p^ n and p - {*, n + 1} are injective. Hence, p^ n

is an isomorphism and α is an isomorphism if and only if p — { * , « + ! }
is an isomorphism, q.e.d.

We will return to this result in §§3 and 4, where we discuss the existence
of actions on algebraic knots.
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Remark 1-3C. The cohomology spectral sequence for the homotopy
fibration

X -iU dX* —> BZm

can be analyzed in an identical manner. We readily deduce the equivalence
of the normally free condition and the fact that Hχ(dX*) = Z . As K is
simply connected, we conclude that, in the case of a free action, πx(dX*) =
Z if and only if the action is normally free.

Proof of Lemma 1-4. By assumption, we have that hx\κ is a periodic
degree-one map which induces the identity homomorphism on homology.
We consider the extension problem:

Kx{l}

Once defined, the obstructions σt will lie in

HM(K xI,Kx{0}uKx{\}\ nt{K x I)) £ H\K\ πέ(K)).

By assumption, K is a Q homology sphere, and hence, by Lemma 1-3,
a mod p homology sphere for p dividing m. The nonzero vanishing
obstruction groups are

Hn(K',πn(K)) 3 Hn_χ(K; πH{K)) - Hn_χ(K) ® πn(K),

and

H2n-l(K π2n_χ(K))^π2n_χ(K).

All of these are m-torsion free. The first is m-torsion free as a consequence
of Lemma 1-3; the second and third are consequences of the generalized
Hurewicz Isomorphism Theorem which implies that πn(K) and π2n_{(K)
have no m-torsion.

Next note that if the ith obstruction to a homotopy from the identity to

hχ\K is σz, then the rth obstruction to a homotopy from hχ\κ to {hχ\κ)
2

i s (h\ I jr)*(°Ί ) = σi By ^ e general principle of additivity of obstructions,

the obstruction to a homotopy from the identity to (hχ\ K)J is jσi. Finally,

since hχ \ κ has period m , mσ = 0, and so ai = 0. q.e.d.
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Remark. The above ideas can be applied to the case of Hn(K\ Q) ψ
0. Again there are three nonvanishing obstruction groups. As above, in
dimension n, the cohomology group has no m-torsion. In dimension
n + 1, the homotopy excision theorem implies that πn(K) can have only
2-torsion, and the generalized relative Hurewicz theorem establishes that
the torsion of π2n_ι(K) is "bounded" by the torsion of πln_x(Sln~ι) and
π2n-\(Sn~l) Hence, for certain m , it can be argued in this case as well,
that hx\K is homotopic to the identity. For details, see [15].

Proof of Lemma 1-5. Let H:KxI-+KxI be a homotopy from the
identity to ΛJ κ . If H is in fact a diffeomorphism, we can deduce our
claim by way of the following diagram:

Kxl —^ Kxl

I _ I
KxS{ —Z-> K xτS

ι= K x Il(x, 0) - (hχ(x) , 1)

Here H is the map induced on the quotient. In other words, it will suffice
to show that under the stated assumptions, hχ\κ is pseudoisotopic to the
identity, and hence, K xτ Sι « K x Sι. To begin, we note that each
homotopy H represents an element in the structure set S?(Kxl, d(Kxl)),
since H\ K x (j), j - 0, 1 is a diffeomorphism, where the structure set,
S?(K xl, d(KxI)), can be given a group structure by "stacking" two maps
Hi : X. -> K x I, / = 1, 2, and glueing the domains of these maps along
the appropriate pieces of the boundary via the diffeomorphism (δ^y^δl.
Our notation is understood as δj = H~ι\K x (j). Lastly, recall that [H]
is the class of homotopies between the identity on K and hx\κ which are
homotopic to H, relative to the boundary, K U K.

Consider the surgery exact sequence for this structure group:

, d(KxI)) —?-+ [KxI/d(KxI),G/PL]

Since L2n+χ(πx) = 0, the map η is an injective homomorphism; in par-
ticular, S?\κ x I,d(K x I)) ^ kerσ. The equivalence class, [H], is
represented by a diffeomorphism if and only if η([H]) = 0. If η([H]) is
realized as the normal invariant of a homotopy from the identity to itself,
/ , then H and -J can be "stacked" as described above, and, by virtue
of the additivity of obstructions, η([H U -/]) = 0. The resulting map,
H U - / , is another homotopy between the identity and hx\K9 where - /
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denotes

( i d κ x (I - t)) o J : X -+ K x [ 0 , 1]-+ K x [ 0 , 1 ] .

It suffices to show that [H] is realized as an element of S*(K x / ,
d(KxI)), the subgroup of the structure group which is generated by the
homotopies from the identity to itself.

First we notice that, since (h{\κ)
m = id\κ , we can "stack" the homo-

topies (h\\ Kxid o H, j = 1, , m) to obtain H1. Clearly, [//'] e S?,

and η[H'] = mη[H].
Next we show that the group S?(K x /, d(K x / )) , and hence its sub-

group, S*(K x I, d(K x /)) , are finite and m-torsion free. This follows
from the obstruction theory. An element of [K x I/d(K x / ) , G/PL] can
be viewed in terms of the obstructions to a representative of the class being
homotopic to the trivial map. In particular, S?{K x I, d(K x /)) = kerσ
is related to the cohomology groups of K by the exact sequence

Hn(K; πn+ιG/PL) - kerσ -> Hn~l(K; πkG/PL),

since there are in fact only two dimensions in which these cohomology
groups are nonzero. (Note that the top dimensional obstruction is zero
as it is detected by the surgery obstruction.) As a consequence of our
assumptions, it follows from the previous lemmas that these cohomology
groups have no m-torsion. The same is therefore true of ker σ, and of

This implies that the map (xm) on S? is injective. The finiteness of
xl,d{KxI)) follows from the fact that G/PL®Q can be identified

with the product of Eilenberg-MacLane space, ΓL ^(Q> 4/), and hence,
[K x I/d(K x I), G/PL] 0 Q = E, H4i(K x I/d(K x I) Q). For K
a rational homology sphere, these will all be zero and the set of normal
maps into G/PL is finite. It follows that the map (xm) on S?(K x I,
d(K x I)) is an isomorphism, and so [H] is realized as a homotopy from
the identity on K to itself. Hence, Hχ \ κ is pseudoisotopic to the identity,
and K xτS

ι = K x Sι. This finishes the proof of Lemma 1-5, and hence
of Theorem 1-2.

Remark. In the case where K is not a Q homology sphere (that is,
Hn(K) is nontrivial), the above arguments establish that the map (xm)
is injective. In some cases, iHs possible to show directly that the groups
3?{K xI,d(Kx /)) and S?{K x I,d{K x I)) are in fact finite. For
example, for the singularity, /(z) = Z\ + Z\Λ + z2

n , the groups in ques-
tion are finite for n Φ 3(4), and hence, in these cases, hx\κ is necessarily
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pseudoisotopic to the identity for m odd. For n odd, the link of the sin-
gularity, K, is not a rational homology sphere. These examples illustrate
the possibility that although the corresponding spaces X* fiber over the
circle, and have boundary diffeomorphic to K x Sι, the derived semifree
action is defined on a nonspherical manifold, M. Refer to [15] for details.

We are now ready to construct the derived knot for a Zm action T.
Let T be either free or semifree, acting as before on (S, K) with equi-
variant exterior pair (X, dX) and quotient pair (X*, dX*). Our aim is
to construct a manifold M, with a semifree Zm action, Tχ, which fixes
K <-* M and which is related to the original action by the condition that
the closed complement of K in M/τ is diffeomorphic to X*. Hence

we consider those actions, T, for which dX* « K x S . For example,
T can be any semifree action, or any free, homologically trivial, normally
free action with invariant K a Q homology sphere. By Theorem 1-2,
a free action here is necessarily homologically trivial and normally free.
Form £ = X* ΌdX* (D2 x ί ) . W e examine (X*, dX*) and show that in
the cases under study, it is a knot exterior pair. That is, we show X] is a
sphere. Note that if T is semifree, then £ « S2n+ι/τ.

Proposition 1-6. The quotient of an equivariant knot exterior pair is a
knot exterior pair so long as the action satisfies one of the following:

i) T is a semifree Zm action
or,

ii) T is a homologically trivial Zm action which is normally free with
invariant submanifold a Q homology sphere.

Proof In each of the cases listed in the theorem, dX* « K x Sι. We
will show that Σ is diffeomorphic to a sphere. In each case, it follows that
K is a Zm homology sphere. It is readily deduced from the Mayer-Vietoris
sequence for the decomposition S2n+X =X\jKxSι and the exact sequence
for the pair that H.{X, dX\ Zm) = 0 for i < In - 1. Once again, by
virtue of the result in [1, Chapter III, Theorem 5.5], the above implies
that the homology of the quotient pair (X*, dX*) is likewise trivial for
i < In - 1. Thus, H^dX* Zm) = 0 except for / = 0, In - 1, and In.
In particular, if n > 2 , then H2n_2(dX* Zm) = 0. Further, the inclusion
map induces an isomorphism

the boundary map

H2n{X

is an isomorphism and the connecting homomorphism in the Mayer-
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Vietoris sequence

is an isomorphism as well. So the exact sequence of the pair gives:

) 2<i<2n.

Hence / / , ( £ ; Zm) = //z(5 f2/2+1 Zm). Also, using the spectral sequence of
the ra-fold cover (X, dX) —• (X*, dX*), we obtain that Σ m u s t be a
Z[l/ra] homology (2/2+1) sphere. Hence it remains to show that Σ i s

simply connected. But this follows immediately from our discussion of
the proof of Proposition 1-1 in which we establish that πχ (X*) = Z . We
conclude that Σ is a PL sphere, and so it can be made into a smooth
sphere after changing its smoothness structure (if necessary) at a point
outside X*. q.e.d.

It follows from the above proof and the fact that X —• X* is a covering,
that π.(X) = π.(X*) for all i . Therefore the exterior knot pair (X*, dX*)
is fibered and highly connected, and so by [4], the knot (Σ > K) is deter-
mined by its knot exterior pair. We now define the derived knot of an
equivariant simple fibered knot (S, K T) (with free action T homolog-
ically trivial normally free) to be this highly connected fibered knot with
exterior pair (X* ,ΘX*).

If we consider the m-fold branched cover of Σ > branching over K,
we obtain a manifold M, with, T{, a semifree Zm action fixing K. We
define the derived semifree action of a homologically trivial free Zm action
which is normally free to be (M, K; T). In particular, we may identify
M = XUψ(KxD2), where ψ : KxS1 -> KxS1 is a diffeomorphism. Note
that if the Zm action, T, is semifree, then (5, K; T) « (M, K\ Tχ). If
the action T is a free, homologically trivial normally free Zm action with
K a Q homology sphere, then M is also a sphere. In this case as well,
the complement of the knot pair (M, K) fibers over the circle and so
determines the knot (M, K). Hence, (M, K) is equivalent to the knot

OS,*).
Remark. We have already noted the possibility of free, homologically

trivial normally free Zm actions in the case of Hn(K) Φ 0. Here too we
can deduce that (X*, dX*) is a knot exterior pair provided that we know
that dX* w K x Sι. It will still hold that Hn_{(K) is m-torsion free.

But, since Hn(K) φ 0, we have that Ht{K x Sι Z w ) s i/.(dX* Z w ) is
nontrivial in dimension i = /i - 1, n, n + I as well as in dimensions
ι = 0 , 2 / i - l and 2/z, as above. In general, whether or not a union such
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as J2 = X* Uφ K x D2 is a homology sphere depends upon the choice
of the diffeomorphism φ. We claim that since the action is necessarily
homologically trivial normally free, there is always a diffeomorphism, φ,
which is obtained from a pseudoisotopy of h{\κ to the identity as in the
proof of Lemma 1-5, and the resulting £ is a sphere. In this case, it is also
possible to define the derived semifree action. However, a careful review
of the discussion, in particular, the "weave diagrams" for the homology of
the decompositions

= XUψ(KxD2)

and

establishes that M is definitely not a homology sphere. (This is, of course,
consistent with the results of Smith theory.) As this is not needed for the
main results here, we do not include a proof. Details of the argument can
be found in [15]. This phenomenon is illustrated by

Example. For the link of the singularity, /(z) = z\ + z\ + + z\ ,

there is a free Sι action on the knot (S, K), with K invariant, and which

is given by multiplication of the coordinates z. by λ e Sι, that is,

A o ( z 0 , z 1 ? ••• , z n ) = ( λ z 0 , λ z { , ••• 9 λ z n ) .

Any restriction of the Sι action to a finite cyclic group Zm e Sι gives
a homologically trivial, normally free Zm action on (S, K), provided
m is odd. We consider the two cases, n odd and n even. First, for
n odd, recall that the link, K, is not a Q homology sphere. In fact,
Hn(K) = Hn_{(K) is free of rank one. The derived semifree action is
defined on (M, K). The manifold M is nonspherical and depends upon
the restriction of the free Z w action to the submanifold K. For n even,
the link, K, is a Q homology sphere with Hn_χ(K) = Z 2 . In this case,
the branched cover of the derived knot is a sphere, and so the derived
semifree action is an action on (S, K). Before we prove classification
results, we make the following remark:

Remark. If k \ m and (S, K) admits a Z w action, then it trivially
admits a Zk action. The properties of homological triviality and normally
free are inherited by the Zk action. The existence of the derived knot
allows us to break down a Zm action into pieces, each of which is a Zp

action for a prime p . Note that this is a consequence of the special nature
of the actions considered (free and semifree), and because of the existence
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of the derived knot at each stage. In particular, since K x Sx « dX*,

for each p \ m , for any other prime factor of m , say q , the Z^ action

on the quotient of X by the Z p action, X*, extends to an action on

K xD . This observation is useful in §4, when we calculate the Alexander
polynomial.

The existence of a derived knot for a free or a semifree Zm action also
gives, as in [14], the following:

Theorem 1-7. A simple fibered knot (S, K) with K a Q homology
sphere admits a semifree Z m action Ts if and only if it admits a free,

homologically trivial normally free rLm action Γ Λ Moreover, Ts and T*
may be assumed to agree on an equivariant knot complement.

The proof is almost identical to that in [14]. To construct a free action
on (S, K) from a semifree action, the existence of a free Z m action on
the submanifold K is required. By Smith theory in the semifree case
and Theorem 1-2 in the free case, K is a Zp (hence rational) homology
sphere, and is simply connected. By [11] and [19], homologically trivial
free Z m actions exist on all simply connected Q homology spheres.

2. We reduce classification and existence questions to the nonequivari-
ant case. In the previous section, we discussed the existence of the derived
knot for semifree Z m actions and homologically trivial free Z m actions
which are normally free; we also discussed the existence of the derived
semifree action. Here, for K a Q homology sphere, we use the derived
knot to reduce classification and existence questions to the nonequivariant
case. In the more general situation (see [15]), the derived semifree action
is the appropriate generalization of the derived knot. For the classifica-
tion we need to consider, in the free case, the derived knot together with
the following normal bundle information: we define two invariant knots
(S, Ki Γ7) i = l , 2 to be action-equivalent if (compare [13]) there exists
an equivariant normal bundle isomorphism θ : v(Kχ, S) = v{K2, S).

Theorem 2-1. Two simple fibered knots admitting free, homologically
trivial normally free rLγn actions are equivariantly homeomorphic if and
only if they a) are action-equivalent and b) have isotopic derived knots.
Two simple fibered knots admitting semifree rLm actions are equivariantly
homeomorphic if and only if they have isotopic derived knots.

Before giving the proof of 2-1, we mention as a corollary the classifica-
tion in terms of Seifert linking forms. We define a derived Seifert form for
(5, K T) to be a Seifert form for the derived knot [13]. It was shown, by
J. Levine [10] for simple spherical knots and by A. Durfee [4] for fibered
knots, that the isotopy classification is equivalent to the ^-equivalence of
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the Seifert matrix. Moreover, in the fibered case, it follows from Alexan-
der duality that the Seifert form corresponding to the fiber is unimodular,
and so the relations of ^-equivalence and equivalence coincide [18], [4].
Using this unimodular Seifert form we have:

Theorem 2-la. Two simple fibered knots admitting free, homologically
trivial normally free Z m actions are equivariantly homeomorphic if and
only if a) they are action-equivalent and b) the unimodular derived Seifert
forms are equivalent. Two simple fibered knots admitting semifree Z w ac-
tions are equivariantly homeomorphic if and only if the unimodular derived
Seifert forms are equivalent.

Proof of 2-1. Clearly if (S,Kλ\Tλ) and (S, K2; T2) are equivari-
antly homeomorphic, conditions a) and b) are satisfied, since the de-
rived knots are simple and fibered, hence [4] determined by their ex-
terior pair (Xj , dX*). To show that an isotopy of the derived knots

lifts to an equivariant homeomorphism we use the fibration to 5 1 . Let
( Σ j Kj) > 7 = 1, 2, be the derived knots. By [4] we may assume these to
be isotopic through fibered knots, in particular that the final equivalence
Ψ* : (X*,dX*) -> (X*9dX2) preserves the fibration to Sι. Then Ψ*
lifts to Ψ : (X{, dXχ) -• (X2, dX2) such that Ψ preserves the equivari-
ant fibration to Sι. In particular, Ψ|d Λ^ : Sι x Kχ —> Sx x K2 preserves
the equivariant product structure. Hence by the equivariant tubular neigh-
borhood theorem, Ψ extends equivariantly to the normal bundles (̂AΓZ)
if and only if these are equivariantly isomorphic. In the case of a free Z m

action this happens exactly when the knots are action-equivalent. If the
action is semifree, an equivariant isomorphism of the normal bundles of
the fixed knots is equivalent to an isomorphism of the normal bundles in
the derived knots. But the latter is ensured by the isotopy of these derived
knots.

3. Let ( 5 2 Λ + 1 , K) be an algebraic knot, hence a simple fibered knot,
with (unimodular) Seifert form B for a Seifert manifold Fln, and as-
sociated intersection form Q on Hn(F), Q = B + (-l)nBt. Let h0 e
AutHn(F) be the monodromy operator. (Recall that in §1, h was used to
denote the monodromy map h : F -> F while the monodromy operator
was h^. For simplicity of notation, we now use h for the monodromy op-
erator.) First, we discuss the situation when K is a Q homology sphere,
and then state a result for more general simple fibered knots.

If (5, K) admits a Z w action such that the derived knot is defined
(see §1, Proposition 1-6), then F can be taken to be a lift from the
derived knot, since the fibration (S2n+ι -K) -> Sι may be assumed to be
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equivariant. Suppose the corresponding derived knot invariants are: hχ

the derived monodromy operator, B* the derived Seifert form, and Q*
the derived intersection form. Then Q = Q*, and h™ = hQ. (Compare
[17], [13]). Note too that Q = B(I- h0) = B*{I - hχ), and that both hQ

and hχ are β-isometries; that is:

Q(hix,h.y) = Q(x,y) i = 0, 1,

or in matrix notation

h\Qh{ = Q.

If K is a mod p homology sphere for each p \ m (in particular a rational
homology sphere), we conclude from the Wang sequence of the fibrations
that det(/ -hj)φθ for j = 0, 1. Thus, since

Q = B*(I-h{)=B(I-h0)

= B(I - hm

χ) = Λ ( / - A 1 ) ( / + A 1 + - . - + O

and since both B and B* are unimodular,

The above also follows from the Corollary 1-3B which establishes that for
simple fibered knots admitting homologically trivial normally free actions,

coker(/ + hx + + h™~X) = ΘkZ
m

where k = rank/ίπ + 1 (S - K).
Finally, note that, since both (S, K) and its derived knot are fibered,

the monodromy operators ho,h{ e Aut(Hn(F)). In matrix notation,
h0, hχ € GLμ(Z), where μ, the Milnor number, equals the rank of Hn(F).
We now show that the above conditions are also sufficient for the existence
of an action. Notice that, if det(/ - Λz) Φ 0, the isometry (Q, ht) deter-
mines the knot. We state the result in matrix notation:

Theorem 3-1. Let (S, K) be a simple fibered knot with K a Q homol-
ogy sphere K, with isometry (Q, h0). Then {S, K) admits a (semifree
or free, homologically trivial normally free) Z m action if and only if there
exists hx e GLμ(Z) such that

1) h? = h0,

2) h[Qhχ = Q,

3) ; w 1
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Proof. We need only show the sufficiency. In the process, we will also
establish that the three conditions imply that K is a mod p homology
sphere for p \ m . Note that (/ - hQ) = (I - hχ)(/ + hχ + + A™"1). Since
K is a Q homology sphere, det(/ - Ao) Φ 0. Hence it follows from 3)
that det(/ - hχ) = ±det(7 - Λo) / 0, and (7 - hχ)~ι e GLμ(Q). Define

B* = Q(I- hχ)~ι, and recall that B = Q(I-ho)~ι where B is the Seifert
form for (S 9 K). Then 5* is a unimodular integer matrix, for

and both 5 and (/ + hx H h Aj""1) are unimodular integer matrices.
Hence the Kervaire construction produces a (derived) knot ( Σ , K) with
Seifert form B*, intersection form β , and monodromy operator hχ.

Let (X*, dX*) (respectively (X, 0*)) be the exterior pair for ( £ , K)
(respectively (S, K)). By lifting to the universal abelian cover we see
that, since Aj" = Ao, (S, K) is an m-fold branched cover of ( Σ , K)
with branching set K. Hence a semifree Z w action T exists. (By Smith
theory, K must be a mod p homology sphere for p\m.) Moreover
dX -> a x * is the m-fold cover SιxK -+ Sι/Z x K. Define the following

natural Z m action τ on D2 x K : τ acts on D1 via a rotation by some
(any) primitive mth root of unity, and on K via some (any) homologically
trivial free Zm action. (The latter always exist [11], [19] since K is a
rational homology sphere.) Then τ\d(D2χK) is equivalent to the standard
Z m action on Sx x K the quotient Sι x z K is equivalent to the quotient
space of T_dX. This follows from the homologically trivial condition as
in the proofs of the lemmas in § 1. Glueing the free actions T restricted
to (X, dX), and τ on (D2xK, d(D2 xK)) gives the desired free action.

Remark. For homologically trivial normally free Z w actions on simple
fibered knots (S, K) we have established the necessity of the certain con-
ditions. Namely, if a simple fibered knot (S, K) with isometry (Q, Ao)
admits a homologically trivial free Zm action which is normally free, then
the following hold:

A. Tor^.^ZJ^O.
B. There exists A, e GLμ(Z) such that

1) A^ = A0,

2) h[Qhχ=Q,

3) the map a = (I + hχ + + Aj""1) induces an injection with
cokerα^ = ΘkZm , where k = rankHn(K).
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We have considered the sufficiency of these conditions. Of course, if
k = 0, this is just a restatement of the theorem. For k Φ 0, we must have
some condition which replaces the result of [18], [10], and guarantees the
existence of a homologically trivial action on K and that the natural action
o n ί x f l 2 restricts to an action o n ί x S 1 with (K xSι)/τ = K x Sι.
In certain cases, the latter will follow from the conditions listed above by
arguments similar to those in the proof of Lemma 1-5. In any case, once
it is known that K admits a homologically trivial free Zm action with
generating difFeomorphism isotopic to the identity, the sufficiency of the
conditions listed above follows.

4. Let (S, K) be an algebraic knot admitting a Z w action. Recall
that Proposition 1-6 and subsequent discussion establish conditions which
ensure the existence of the derived knot. Here, we restrict our attention
to those actions which satisfy one of the following:

i) T is a semifree Z w action;
ii) T is a homologically trivial normally free Zm action with a Q

homology sphere as its invariant submanifold;
or

iii) T is a free Zm action with dX* « K x Sι.
Let Ao, and hχ denote the monodromy operator of the knot (S, K)

and the derived knot Q3, K), respectively. We now consider the two
Alexander polynomials: Δ(ί) = det(t - hQ) for (S,K) and ΔD(t) —
deψ - hχ) for the derived knot. When (S, K) is algebraic, Δ(/) is a
product of cyclotomic polynomials [12], and the rich number theoretic
properties of these allow for concrete computations covering a multitude
of examples. In what follows, all examples are stabilized so that the di-
mension of K is at least 5, and K is simply connected. The stabilization
is accomplished by considering polynomials of the form

f ( z 0 , 9 z k ) + w* + wl + -- + wf.

The relationship between the algebraic invariants of

and

f(z0, , zk) + w2

{+wl + -' + wf

is well understood [7]. In particular, for / = 0(4), the algebraic invari-
ants (namely, the intersection form, the Seifert form and the monodromy
operator) of / and its stabilization coincide.

We start with the following:
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Observation. If (S, K) is an algebraic knot with Alexander polyno-
mial Δ(ί) such that Δ(l) = 0, then

i) (S, K) admits no semifree Z m actions;
ii) (S, K) admits no homologically trivial free Z m actions if

Ύor{Hn_{{K),Zm)

is not cyclic;
iii) (S, K) admits no free, homologically trivial normally free Z w ac-

tions if
Ύoτ{Hn_χ{K)9Zm)φ0.

Proof. Statement i) is a consequence of Smith theory. Statements ii)
and iii) follow from our computations in the proof of Lemma 1-3.

Example 1. Brieskorn polynomials. Recall the Alexander polynomial
for the singularity

is

where p. runs through all α;th roots of unity other than 1 [11]. We
already have considered the singularity with ai = 2 for all /. In this case,
A(t) = t - (-1) / + 1 and Hn_χ(K) = Z or Z 2 , depending upon the parity
of /. In particular, we saw that the homologically trivial actions given by
restricting the Sι action, Λ,

λ o (z 0 , z{, , z7) = (λzQ, λz{, , λzt)

are normally free precisely when m is odd.
Now consider the case ai = p for p prime. For all /, Δ( 1) Φ 1. A ho-

mologically trivial action obtained by restricting the S action is normally
free if and only if (p, m) = 1. It follows from the above that the finite
subgroup of Hn_{(K) is necessarily cyclic of order p . (This is consistent
with the result of [9] which can be used to compute the homology of K/A

as a subspace of CP" and so the homology of K.)

There are many cases where free, homologically trivial normally free
actions exist, and, as we will show, the Alexander polynomial encodes
most of the information. Denote by cd(t) the cyclotomic polynomial for
d.

Theorem 4-1. Let (S, K) be a simple fibered knot with Alexander poly-

nomial A(t) = Y[cd(t) such that {d(} are distinct and not 1. Then (S, K)

admits a Z m action if and only if (m, dt) = 1 for each i. Moreover, if m
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is odd, then A(t) = AD(t). If m is even, there always exists an action for
which A(t) = AD(t), and in general AD(t) = Y\cεd(t), where

ifdi = prime power,

or 2 otherwise.

Remark. The condition that (m, dt) = 1 for each i is stronger than
the condition (see Theorem 3-1) that K be a mod p homology sphere
for each prime p dividing m . For the latter only requires m to be prime
to the collection {dj} for which cd (1) Φ ±1 (equivalently when d- is a
power of a prime.)

Proof Part 1: Suppose (S, K) admits a Z w action.
First note that we may assume m to be a prime p. For if the result

holds for Zp actions, and (S, K) admits a Z m action with m divisible
by a prime p , then (S, K) admits a Zp action whose derived Alexander
polynomial will again be a product of distinct cyclotomic polynomials.
Now the derived knot for the Zp action (which is a highly connected,
fibered knot) will admit a Z , action and so on.

Let h0 be the monodromy operator for (S, K), and for

= Π cΛt)

assume dχ >d2>...>dk > 1. Let {ξij\i= 1, . . . , fc y' = 1, ...,</>(rfz)} be

the primitive rff.th roots of unity, hence the eigenvalues of h0. Suppose

(S1, A:) admits a Z p action with derived monodromy operator hχ. Then

h\ — h0. If we denote the eigenvalues of hχ by r\t- where ηp

tj = ί/7 , then

since p is prime, either O(I/J7) = o(ί/ y) = rf., or o(?/l7) = po{ξu), where

o denotes the order.

Claim 1. For p odd, (p, rf.) = 1 and o(?/l7) = o( ί j 7 ) .

Proo/ Suppose o(ι/υ ) = pd{. Then cpέ/ (ί) |Δp(0, so that all the

primitive (pd{)th roots of unity occur among the {η.j} . Since there are

φ{pdχ) > φ(d{) of these, there exist / > 1 and j such that o^(j) = pdχ.

But o(η.j) = pdt or dt, neither of which is equal to pdχ since dχ > di.

Hence o(ηχj) = dχ, and since rfχ. = ξXj and ηχj are both primitive ^ t h

roots of unity, we see that (p, dχ) = 1. Now cd (t) divides both AD(t),

and Δ(ί)- Let AD2(t) = AD{t)/cd(t), and A2(ή = A{t)/cd{t), apply the

above argument to see that o(η2j) = d2 and that (/?, d2) = 1. Iteration

of this procedure yields the desired result for all i.

Claim 2. If p = 2, then (/?, rf.) = 1, and ΔD(0 = \[cεd {t), where

ε. = 1 or 2.
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Proof. We first show that 2\dx. As before, o{ηχj) = dχ, or o(ηXj) =

2dχ . If o(ηυ) = dχ , then 2\dχ. If o(ηXj) = 2dχ, then cld(ϊ)\AD{t),

hence the φ(2dχ) primitive (2ί/j)th roots of unity occur among the {fy. } .

If 21 rfj, then φ{2dχ) = 2φ(dχ), and this is impossible as in the proof of

Claim 1. Thus 2\dχ. Again, as for Claim 1, let Δ2(f) = A(f)/crf (0 , and

Application of the above argument to η2j, Δ2(ί) and ΔD2(t) produces the
result for / = 2. Iteration of the procedure completes the proof of Claim
2. To complete the proof of Part 1 we simply note that if ε/ = 2, then di

cannot be a prime power. Recall (Theorem 3-1) that Δ(l) = Δ£)(l) and
so cld (1) = cd (1) whenever εi = 2 and cd{\) Φ ±1 if and only if d is
a prime power.

Part 2. Suppose conversely that (m, dt) = 1 for each /.
We produce an operator hχ satisfying the conditions in Theorem 3-1.

Notice first that since the Alexander polynomial is a product of distinct
cyclotomic polynomials

the monodromy operator h0 is periodic with order

where "l.c.m." denotes the least common multiple. Choose / such that

Im = 1 (mod d), and let hχ = hι

Q. Then hχ satisfies conditions 1) and 2)

of Theorem 3-1. Moreover, we know that K2n~x is a rational homology

sphere, since Δ( 1) Φ 0. We need only show that for each prime p dividing

Ή 5 Hn_x(K2n~ι) has no p torsion. But this is equivalent to (m, dt) = 1

for each i with cd (1) Φ 1. Since by assumption (m, dt) = 1 for every i,

it follows that AT is a mod p homology sphere for each prime p dividing

m. Finally, condition 3) is equivalent to:

chha(l) = ±chhι(ί).

Here ch denotes the characteristic polynomial, and of course A(t) =

chh (t). But in fact hx = hι

0, and

and (/, dt) = 1. Hence by a straightforward argument, each ηtj = ξL is

a primitive rfzth root of unity and chh (t) = chh (t). Thus condition 3) is

also satisfied.
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This finishes the proof of the theorem.
As a consequence of the proof of Theorem 4-1 and the Classification

Theorem 2-1, we have the following:
Corollary 4-2. Let (S, K) be a simple fibered knot with Alexander

polynomial A(t) = Ucd(t) such that {dt} are distinct and not 1. If (S, K)
admits a Z m action and m is odd, then the restriction of this action to the
knot complement is uniquely determined by m.

Proof Consider the monodromy operator h0 of (S, K), and the de-
rived monodromy operator hχ = hι

0 as in Theorem 4-1. Suppose h2 is
another derived monodromy operator satisfying the conditions in the Ex-
istence Theorem 3-1. Then chh (t) = chh (t), so that o(h2) = o(h0) =
o(h{) thus h2 = hχ. Uniqueness of the action on the knot complement
follows from the Classification Theorem 2-1.

Example 2. More Brieskorn singularities. Consider the Alexander poly-
nomial A(t) of the singularity for

/ ( z o , - ,zn,wl9... ,tι;fc) = zJ> + . + z^+ti ; f + + tί;ί,

where the exponents at are coprime and aι > 2. It is easy to see that, in
this case, A(t) is a product of distinct cyclotomic factors. In fact, from the
formula for the Alexander polynomial of a Brieskorn singularity (Example
1), a direct computation shows the following:

a) If k is even

where d- - bOjbχ. bnj , for each /, b. running through all divisors of
a{, except 1.

b) If k is odd, and each αz is odd, then

where d. are exactly as in a) above.
c) If k is odd, and a0 is even, then

where d = bOjb{j bnj , btj as above for / > 0, and bQj running through
all divisors of aQ, including 1, but excluding 2. Notice the special case
n = 0. This is the only case in which d = 1 occurs, hence the only case
in which K fails to be a Q homology sphere.

Characterization 2-A. The link of singularity for the polynomial

/ ( z 0 , , zn , w{, , wk) = za

0° + + za

n

n + wf + + w\,
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a relatively prime, at > 2, admits a (free, homologically trivial normally
free or semifree) Z m action in precisely the following situations:

a) k even: if and only if m is prime to each a.
b) k odd, at odd: if and only if m is odd and prime to each ai

c) k odd, aQ even, n > 0: if and only if m is prime to each at.
Moreover, when m is odd, the action is uniquely determined on the

knot complement.
Thus, except possibly when k is even and every a{ is odd, each Z m

action on the complement is uniquely determined by the integer m .
As an example, consider the polynomial z\ + z\ + w\ + w\ . This admits

Z m actions if and only if m and 30 are relatively prime. Moreover, m
uniquely determines the action on the knot complement.

In the one remaining case (see [15]),
c') k odd, a0 even, n = 0:

Δ(ί) = (t - \)cd{t)c2d{t), where a0 = Id.

Here K is not a Q homology sphere, and semifree Z m actions never
exist; homologically trivial free Z m actions can exist but only if m is
prime to a0. Then, the derived semifree action is defined on a nonspher-
ical manifold, M.

Example 3. Z2 actions where Δ(/) Φ ΔD(/).
Consider (S, K) a spherical simple fibered knot, whose Alexander poly-

nomial splits, as in Theorem 4-1, into distinct cyclotomic factors

Suppose further that (S, K) admits a Z 2 action, or equivalently every d-
is odd. Such is the case, for instance, when / is as in Example 2 above
with: ai odd, k even, and n > 1. (The condition n > 1 is needed to
ensure sphericity.)

Let h0 denote the monodromy operator of (S, K). Since chh = Δ(t),

h0 is periodic (its eigenvalues are distinct), and its order o(hQ) is odd.

Thus there is a power of h0 , say, h{ = h0, (in fact, 2/ = o(h0) + 1) such

that h] = Λo . Then

det(/ - Ao) = det(/ - hx) det(/ + hx),

and by sphericity of (S, K), all three determinants must be ± 1 . Hence
both hx and -hχ satisfy the conditions of Theorem 3-1, thus exhibiting
two different Z 2 actions. It is now easy to see that
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and

In particular, the Z 2 action with derived monodromy —hχ has derived
Alexander polynomial Ah (t) Φ A(t).

Example 4. Let (S, A") be the link of singularity for the polynomial

q an odd prime, k odd. Then (S, K) admits a Zm action if and only if
(m,2q) = l.

Proof. The Alexander polynomial is

Notice that in this case Theorem 4-1 does not apply.
Denote the eigenvalues of the monodromy operator h0 by ξq . and

ξ2 , depending on whether ξ is a primitive 2qth root of unity or square
root of unity. Suppose Zm acts with derived monodromy operator hx,
and let ηq . and η2 . be the eigenvalues of hχ, where η™ = ξφ. If p is
any prime dividing m , then (S, K) must admit a Z action. We show

that {p, 2q) = 1. Notice first that p φ 2, since Δ(l) = 2q~ι . We now
claim that p φ q. For if /? = q, then ^ must be a primitive 2#th

root of unity, and thus η is a primitive 2g2 root of unity. In particular,
c2q2(t)\ΔD(t), where Δ£)(/) is the derived Alexander polynomial for the
Zp action. But this is impossible, since degc2^(/) > degΔ(ί) = degAD(t).
Hence if a Zm action exists, m and 2q must be relatively prime.

Conversely, suppose (m,2q) = 1. We know [12] that Λo must be
periodic, and thus its order is o(h0) = 2q. Hence for each m with
(m,2q) — 1, there exists an appropriate power hχ of Λo, such that
h™ = h0. In this case chh (t) = chh (t) = A(t), and thus, the algebraic con-
ditions of Theorem 3-1 (Existence) are easily seen to be satisfied. Hence
a Zm action exists, with derived monodromy operator hχ. q.e.d.

As a special case we mention:
Example 4-A. For / = zj] + z\ + w2

χ , a Zm action exists if and only
if m = ± 1 (mod 6). In this case:

a) the derived knot is isotopic to the original knot, and
b) m uniquely determines the action on the knot complement.
Proof. The first part is simply a restatement of the general result above.

To obtain conditions a) and b), it suffices to deduce, from the Alexander
polynomial and the periodicity of hQ, that o(h0) = 6. For then hQ = hf{

for m = ± 1 mod 6, respectively and a) and b) must hold, q.e.d.
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Consider now an arbitrary algebraic knot (S, K). The Seifert matrix
B and monodromy operator h0 can in principle be calculated from a
Dynkin diagram in a distinguished basis. (See for example Husein-Zade
[7] for definitions of these.) Often, these diagrams can be used to compute
all possible Z m actions, either by using the Alexander polynomial or by
investigating the monodromy operator h0, together with its rath roots hχ.
We give one more class of examples.

Example 5. f(x, z,w{, ...w^ = xkz + azn + Σw2 {k > 2, n >

2 , α / 0 . )

The Dynkin diagrams of these singularities were calculated by Gabrielov

[6]. We used these to compute, for some k and n, the Alexander poly-

nomials which we give below. Note that there are two different Alexander

polynomials, which we will denote by AE(t) and A0(t), corresponding to

an even and odd number of squares, w2 .

a) jfc = 3,/i = 3.

AE(t) = (t - I)c9(ή.

No semifree actions, since Δ( 1) = 0 a free, homologically trivial normally
free Z w action only if m = ±1, ± 2 , ± 4 , (mod 9).

Δ o ( 0 = c2(t)cιs(t).

Zm actions (all unique) exist if and only if m = ± 1 , ± 5 , ±1, (mod 18).

b) k = 4,n = 3.

and

= (t-l)2[c2(ή]2c3(t)[c6(ή]2

= (t-l)2[c2(t)]2[c3(t)]2c6(t).

No semifree actions, since Δ(l) = 0 a free, homologically trivial normally
free Z m action exists only if m = ±\ (mod 6 ) .

c) k = 3, n = 8 .

No semifree actions exist, since Δ(l) = 0; a free, homologically trivial
normally free Z m action exists only if m = ± 1 , ± 5 , ±1, ±11 (mod 24).

Δ 0 (0 = c2(t)c3(ήc6(ήcn(t)c24(ή.

Z actions (all unique) if and only i f m = ± l , ± 5 , ± 7 , ± l l (mod 24).
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