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BROWNIAN MOTION ON ANOSOV FOLIATIONS
AND MANIFOLDS OF NEGATIVE CURVATURE

CHENGBO YUE

Abstract

We study ergodic properties of Anosov foliations. Some rigidity results
are obtained, including applications to manifolds of negative curvature,
and an integral formula for topological entropy. We also show that the

in

function c{x) in Margulis's asymptotic formula c(x) = l im^^^ e
S{x,R) is almost always not constant. In dimension 2, c(x) is a con-

stant function if and only if the manifold has constant negative curvature.
Generally, if the Ledrappier-Patterson-Sullivan measure is a flip invari-
ant, then c{x) is constant. Our entropy formula yields an upper bound
of Gromov's simplicial volume in terms of scalar curvature.

0. Introduction

We generalize Lucy Garnett's ergodic theory for C3 foliations to foli-
ations &" of class C^r (for definition see §1.1), and apply it to study the
ergodic properties of Anosov foliations. In §1.3 we prove

Theorem 1. The horocycle foliations (Wsu or Wss) of a C*-transitive
Anosov system with leafwise Riemannian metric of class cf (i = su, ss)
are uniquely ergodic (i.e., they have precisely one harmonic measure).

Then we generalize the integral formulas in [27] to Anosov foliations to
obtain the following rigidity result:

Theorem 2. For an Anosov system with its unique harmonic measure
wss, the following properties are equivalent:

1 ° wss is an invariant measure of the Anosov system.
2 ° / " is constant along Wss-leaves.

We apply the above theory to the geodesic flow on a compact Rieman-
nian manifold M of negative curvature. We give an explicit description
of the harmonic measure wss as the weak limit of the normalized spheri-
cal measure of geodesic balls. This settles a problem raised by Katok. We
also derive two formulas for the topological entropy.
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Theorem 3. Let R be the scalar curvature of M, and RH the scalar
curvature of the horospheres. Let Ric be the Ricci curvature of M, and
tr U be the mean curvature of the horospheres. Then the topological entropy
h satisfies

1.° h = fSMtvUdwss,

2. ° h2 = fSM(RH{υ) - R(π(υ)) + Ric(v)) dwss,

where π(v) is the base point of the vector v .
Using A. Connes' Gauss-Bonnet theorem for foliation we get
Corollary. For a 3-dimensional closed Riemannian manifold of negative

curvature,

h2 = ί(Ric(v)-R(π(v))dwss(v).

SM

In §4, we study the Margulis' asymptotic formula

^^Si, R) = c(x)

for the volume of geodesic spheres. Twenty years ago, Margulis [18] ob-
tained this celebrated formula. He commented on the first page of his
short paper that c(x) is a positive continuous function. A. Katok conjec-
tured that c(x) is almost always not constant and not smooth. We now
prove

Theorem 4. For any compact manifold M of negative curvature, the
following hold:

1° c(x) is smooth.
2° If c(x) is a constant function, then for each x in M,

-L tτU(x,ξ)dμχ(ζ),
dM

where μχ is the Bowen-Ledrappier-Margulis-Patterson-Sullivan mea-
sure at infinity.

Theorem 4 implies particularly
Theorem 5. If dim M = 2, then c(x) is a constant function if and

only if M has constant negative curvature.
In §4.3 we discuss the flip-invariance of Patterson-Sullivan measure, and

§4.4 contains some applications to Gromov's simplicial volume.

1. Preliminaries and Anosov foliation

1.1. Ergodic properties of foliations. In this section we review the main
results in [4] and generalize them to foliations & of class c j r .
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Let & be any foliation on a compact manifold M equipped with a
Riemannian metric on its tangent bundle. We assume that both & and
the Riemannian metric on its tangent bundle are of class C 3 . Each leaf
L of the foliation inherits a C 3 Riemannian structure making it into
a connected C 3 Riemannian manifold. The induced geometries on the
leaves are uniformly bounded because M is compact. Thus each leaf L
is complete for diffusion (i.e., the integral of the heat kernel over the whole
space equals one).

We have a Laplace-Beltrami operator ΔL on each leaf L. The measure
on the leaf L induced by the Riemannian metric is denoted by dx . Let
Pt(x,y) be the heat kernel of the operator Δ L . Then there is a one-
parameter semigroup of operators Dt corresponding to the diffusion of
heat in the leaf directions:

Dtf(x)= f f{y)Pt{x,y)dy,
J L

where / is a global function / : M —> R. If m is a measure on M, the
measure diffused along the leaves of the foliation D(t)m is defined by

/ fd(D(ήm)= ί DJdrn.
JM JM

The set of probability measures on a compact finite-dimensional foliated
manifold M is a nonempty convex set. The leaf diffusion operator D(t) is
a continuous affine mapping, and any fixed point will be diffusion invariant
for the time t. The Markov-Kakutani fixed point theorem insures that a
fixed point exists for all times.

Definition, (i) A probability measure on M is said to be diffusion in-
variant if the integral of / with respect to that measure equals the integral
of Dtf with respect to the measure for any continuous function / .

(ii) A diffusion invariant measure is said to be ergodic if the manifold
M cannot be split into two disjoint measurable leaf saturated sets with
intermediate measure.

(iii) A probability measure m on M is harmonic if fM ALf dm = 0,
where / is any bounded measurable function on M, which is smooth in
the leaf direction, and ΔL denotes the Laplacian in the leaf direction.

Let E be any flow box of the foliation &. The quotient of such
an E by the local ^-leaves is called the quotient transversal / = I(E).
If P : E —• / is the projection, then by the classical measure theory,
any measure m on E may be disintegrated uniquely into the projected
measure v on the transversal / and a system of measures σ(s) on the
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leaf slices p~\s) = E(s) for each s in / . These measures satisfy the
following conditions:

(i) σ(s) is a probability measure on E(s).
(ii) If S is a measurable subset of / , then v(S) = m(p~ι (S)).

(iii) If / is m-integrable and supp(/) c E, then

f(x)dm(x) = j f{y)dσ{s){y)dv{s).

The following theorem is due to Lucy Garnett.
Theorem ([4]). Let M be a compact foliated manifold with C*-foliation

£F and a C3-Riemannian metric on the tangent bundle of £F. Let m be
any probability measure on M, then the following conditions are equiva-
lent:

(i) m is diffusion invariant, i.e., D(t)m = m for all t.

(ii) m is harmonic, i.e., fMΔLφ dm = 0 for any bounded measurable
function on M, which is smooth in the leaf direction.

(iii) For any flow box E of the foliation £?~ and v, almost all s (see
the above construction), σ(s) is a harmonic function times the Rie-
mannian measure restricted to E(s).

Recall that a holonomy invariant measure of the foliation &~ is a fam-
ily of measures defined on each transversal of the foliation &, which
is invariant under all the canonical homeomorphisms of the holonomy
pseudogroup (see [19]). Given any transverse invariant measure, a global
measure may be formed by locally integrating the Riemannian leaf mea-
sures with respect to the transverse invariant measure. Such a measure is
said to be completely invariant. Obviously, any such measure disintegrates
locally to a constant function times the Riemannian leaf measure and thus,
by Theorem 1, is an harmonic measure for the foliation &.

If L is a leaf of ^ , let x e L and let B(x, R) denote the ball in
L of radius R around x under the leaf Riemannian metric. Define the
growth function of & at x by GX(R) = vol B(x, R) where vol denotes
the Riemannian volume on the leaf L. L is said to have exponential
growth if

and nonexponential growth otherwise.
Every foliation admits a nontrivial harmonic measure. But the following

theorem tells us that there are many foliations which have no holonomy
invariant measure at all.
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Theorem ([19]). For a codimension-one foliation & of class C1 of a
compact manifold M the following are equivalent.

(i) & has a leaf with nonexponential growth.
(ii) & has a leaf with polynomial growth.

(iii) & has a nontrivial holonomy invariant measure.

For arbitrary codimension, we have

Theorem ([19]). Let & be a foliation of class C 1 of a compact man-
ifold M. If L is a leaf of £F having nonexponential growth, then there
exists a nontrivial holonomy invariant for ^ , which is finite on compact
sets and has support contained in the closure of L.

As a direct corollary of Yosida's ergodic theorem for Markov processes
(see [25]), one has the following.

The foliation ergodic theorem ([4]). Let M be a harmonic probability

measure. For any m-integrable function f there exists an m-integrable

function f which is constant along the leaves and satisfies the following:

(i) f(χ) = l i m , ^ ψ /0

Γ Dtf(x) dt for m almost all x.

(ii) ff(x)dm = ff(x)dm.

(iii) If m is ergodic, then f — J f(x) dm(x).

Let us denote by {wJ the set of Brownian paths lying on the leaves of
the foliation & (induced by the Riemannian metric on each leaf). Then
we have another interpretation of the foliation ergodic theorem.

The leaf path ergodic theorem ([4]). Let m be any harmonic probability
measure. For any m-integrable function f on M, the limit

exists for m-a.e. x and almost any path w (in the sense of Wiener mea-
sure) starting at x and lying on the leaf on x. This limit is constant on
leaves and equals the leaf diffused time average off.

Finally, we have the Kryloff-Bogoluboff theory of harmonic measures.
Theorem. There is a leaf saturated measurable set R in M having the

following properties:

(i) For any x e R the diffused Dirac measure δχ exists, is ergodic and

contains x in its support where δχ is defined by f fdδχ = f(x)

for any continuous function f: M —• R.

(ii) Any two points on the same leaf in R have the same diffused Dirac

measures.
(iii) R has full probability (i.e., u(R) = 1 for any harmonic probability

measure).
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If one checks carefully all the steps of [4] (particularly the proofs of
Facts 1-4 on pp. 289-292), one easily sees that all the results in [4] are
true for foliations with C3-leavesand C 3 Riemannian metric on each leaf
whose 3-jets depend continuously on the points in M.

Let us be more specific about the regularity requirements for the folia-
tions and the leafwise Riemannian metrics. We say that a foliation & has
Ck leaves and Ck Riemannian metric on each leaf whose /c-jets depend
continuously on the points in M if for each point in M there is a local
parametrization of the & foliation φ : U x V —• M (where ί / c R
and F c l c are open sets, d = dim J?~ and c = c o d i m ^ ) , such that the
following hold:

(i) φ is a homeomorphism from U x V to an open set in M.
(ii) For each y e V, φy : U -> M given by φy{x) = φ(x,y) is

a Ck immersion whose image is an open subset of a leaf of the
^"-foliation, and, moreover, for any 1 < a < k9 daφ/dxa is
continuous on U x V .

(iii) For each y e V, the pull-back of the Riemannian metric g on
the leaf φ (U) is a Riemannian metric on U satisfying φ*(g) =

gijdx1 Λ dxj, 0 < i, j < d, such that for each 1 < a < k,

dagij/dxa is continuous on Y x V .

Such a foliation is said to be of class C^ . Such a Riemannian metric

on leaves is also said to be of class c£-. We will say that a function

ψ : M —> R is o f c lass C#-, 0<j<k9ifψoφ:UxV-+R h a s

derivatives of orders 1 < a < j with respect to the arguments in U and

that these derivatives are continuous.
1.2. Entropy properties of foliations. We review the main results in

[10]. Our setting is a C^ foliation / o n a compact manifold M and
leafwise Riemannian metrics of class C^ . Let Pt(x, y) be the heat kernel
of the leaf Lχ . For any harmonic ergodic measure m , the densities φ of
the conditional measures m on the ^-leaves are uniquely determined up
to a scalar multiplication. Then we have a biased random motion (the φ-
process) corresponding to the second order operator Δ L +2V L log φ , where
VL is the gradient operator on L. The transition probability densities for
this ^-process are

P't(χ,y) = Pt(χ,y)φ(y)/φ(χ).

Theorem (Kaimanovich, [10]). For m-a.e. x in M the following lim-
its exist [not depending on x)\
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where h{^ 9 m) is called the entropy ofBrownian motion on the foliation
y with respect to m.

We list the following facts in [10] by recalling that a Riemannian man-
ifold M is said to be Liouvillian if there are no nonconstant bounded
harmonic functions on M:

1° hψ-, m) = h'{9-, m) + fM\\VL log φf dm .
2° h{^ 9 m) = 0 (or h'fJT' 9 m) = 0) if and only if m-a.e. leaf is

Liouvillian.
3° If h{&~9 m) > 0 (or h'{^9 m) > 0), then for m-a.e. leaves of

the foliation, the space of bounded harmonic functions is infinite-
dimensional.

4 ° Every harmonic ergodic measure with almost all leaves Liouvillian
leaves is completely invariant.

5 ° If m-a.e. leaf of the foliation has subexponential growth, then
m-a.e. leaf is Liouvillian.

Note that if the foliation & is trivial (i.e., the manifold M itself),
then for all x e M, the following limit exists:

h(M) = -Um -t I Pt{x, y) logPt(x, y) dm(y).

Moreover, the following hold:

1 ° M is Liouvillian if and only if h(M) = 0.
2 ° If M has subexponential growth, then M is Liouvillian.

1.3. Harmonic measures for Anosov foliations. In this section we con-
sider a transitive Anosov flow gt on a closed manifold M (or a transitive
Anosov diffeomorphism / o n M ) . We denote by Wsu (resp. Wss) the
strong unstable (resp. strong stable) foliation of the Anosov flow gt or
the Anosov diffeomorphism / . These foliations are also known as horo-
spheric foliations. For Anosov flows, we also get the weak stable foliations
Ws (resp. weak unstable foliations Wu ):

W\x) = U Wss(gtx) ( resp. WU = \J Wsu{gtx)).

All these Anosov foliations are always Holder continuous but may fail to
be C 1 , even if the flow (or the diffeomorphism) itself is C°° . But it is well-
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known that if the Anosov flow gt (or the Anosov diffeomorphism / ) is
Ck (k > 2 is any integer or oo), then each Wι-\taί (i — s, u, ss, su) is a
Ck immersed manifold (see, e.g., [21]). Moreover, the four foliations have
Ck leaves whose /c-jet continuously depend on the point. As remarked by
R. De La Llave, J. M. Marco, and R. Moriyon in their fundamental work
([17, pp. 578]), their regularity results for the Livsic cohomology equation
can also be stated in terms of functions and flows or diffeomorphisms of
class Ck by using the Sobolev embedding theorem.

Let us consider any Riemannian metric gι defined on the W'-foliation
(/ = s, u, ss, su) of class cf (note that for any C3-Riemannian metric
on M, the induced Riemannian metrics gι (/ = ss, su, s, u) are of class
Cf ). By Proposition 1.1, each of these foliations has nontrivial harmonic
measures.

Theorem 1.1. The horocy defoliations (Wsu or Wss) of a C*-transitive
Anosov system with leafwise Riemannian metric of class cf (i = su, ss)
are uniquely ergodic in the sense that there is precisely one harmonic prob-
ability measure.

Proof We consider only the Wsu foliation (the Wss foliation can be
treated similarly). According to a result of D. Sullivan and R. Williams
[24], the leaves of any strong Anosov foliations have polynomial growth.
By Fact 4° of 1.2, any W5M-harmonic ergodic measure m is completely
invariant. Now Theorem 3.1 follows from Bowen and Marcus' result that
the horocycle foliations have unique holonomy invariant measure [1].

We denote this measure by wsu . It has a local description as the product
of Lebesgue measure msu on Wsu and Bowen-Margulis measure μss on
Wss (in the diffeomorphism situation) or μs on Ws (in the flow case):

Ί SU SU SS / SU S ., n x

aw = m x μ (or m x μ in the flow case).
Note that the unique harmonic measure wss of the W^-foliation has a
similar description:

dwss = mss x μsu (or mss x μu in the flow case).

Recall that a flow φt on a compact metric space X is uniquely ergodic
if any only if the sequence

M*) = l [Tf(<Pt(x))dt
1 Jo

converges uniformly for any continuous function f on X:

f(x)dμ(x) (Γ->oo),J
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where μ is the unique ergodic measure. We have an analogous result for
the Wss (or Wsu) foliation.

Theorem 1.2. For any continuous function f on M,

dm\y) -

uniformly on M, where Bs

χ

s(R) is the ball on Wss(x) with respect to the
gss metric.

Proof By the arguments of Sullivan [22] and Plante [19], for any foli-
ation 9" with subexponential growth, the normalized measures

—~ / dm (y)
Bζ{R) J

is weakly coverging to some harmonic measure of the foliation. Our the-
orem follows from the following facts:

(i) Wss is a foliation with polynomial growth.
(ii) The harmonic measure on Wss is unique.

As is remarked in [1], the weak stable (or weak unstable) foliation IVs

(or Wu) for an Anosov flow has no completely invariant measure. How-
ever, they have at least one nontrivial harmonic measure.

Conjecture. The weak stable {or unstable) Anosov foliations are uniquely
ergodic in the sense that they have a unique harmonic measure.

This is true in the special case of geodesic flows on manifolds with
negative curvature (see §2).

1.4. Integral formula and rigidity. We continue to use the assumptions

and notation of §3. For a C 3 Anosov flow gt or an Anosov diffeo-

morphism / with leafwise Riemannian metrics gι on Wι of class cf

(i = ss, su), we define

(*

d

{x)=άt\dg\wsu(χ)),
1=0

logj;\x) (/,(*)= det
t=o

for a flow. For a diffeomorphism, we define
u ί \ i τsu/ \ ( τsuί \ Δ j ,

φ (x) = -log/ 1 (x) (Jt (x)=det

φ (x) = \ogjχ (x) (Jt (x)=det

It is well known that φu (resp. φs) is Holder continuous and has a
unique equilibrium state m+ (resp. m~ ) which is an invariant ergodic
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measure of the Anosov system [2]. It is also uniquely determined by the
fact that it disintegrates into absolutely continuous measures along the
Wsu (resp. Wss) leaves.

If we denote by psu (resp. pss) the local density of conditional mea-
sures of m+ (resp. m~ ) with respect to the Riemannian volume msu

(resp. mss), then psu (resp. ρss) is of class C]u (resp. c £ ) (see [17],
[16], [27]), and V™log/" (resp. Vss\ogpss) is a continuous vector field
on M of class C)u (resp. c]s).

Theorem 1 in [27] can be generalized to an arbitrary Anosov system.
Theorem 1.3. (i) For any C 2 function φ on M, we have

ί (Δ φ + (V φ,V log/? ))dm = 0.
M

(ii) For any C 2 function φ on M, we have

L (A"φ + (V"φ, Vss log/')) dm" = 0.

We have the following rigidity results.
Theorem 1.4. For an Anosov system (flow or diffeomorphism), the fol-

lowing properties are equivalent:

(a) The measure m+ (resp. m~) and the measure wsu (resp. wss)
coincide.

(b) wsu (resp. wss) is an invariant measure of the Anosov system.
(c) Js

t

u(x) (resp. J's(x)) is constant along Wsu (resp. Wss) leaves.

Proof (a) = > (b) is obvious.
(b) = Φ (a). The measure wsu is invariant and absolutely continuous

along the ^"-foliation. By the uniqueness of the Bowen-Sinai-Margulis
measure, we have wsu = m+ .

(a) = > (c). Consider all those φ with compact support in a local
W5M-flow box P. Then m+ = wsu implies

0 = [Asuφdm+ = ί ί (Asuφ)psudmsu(y)
J JpJw™(x)np

φ(A p )dm (y).
ff

= / /
JpJw

By the arbitrariness of φ, Asupsu - 0. On the other hand, according to
[16],

psu(y) C '
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Thus psu is a bounded harmonic function along each Wsu-leaf, and must
be constant along each Wsu-leaf.

(c) =*• (b). Obvious by the description of the Bowen-Margulis mea-
sure.

2. Applications to manifolds of negative curvature

Let^Λf be a closed C°° Riemannian manifold of negative curvature,
and M be its universal covering. The geodesic flow g* on the unit tangent
bundle SM is Anosov. We list the following notation:

• π : SM —• M is the canonicaljprojection.

• dM: the ideal boundary of M. ^

• v(t) = π(gtυ) is the geodesic in M with initial velocity v .

• P : SM -> 9 ¥ is the projection P(υ) = ?;(oo)=lim/_+oo?;(/) €

ΘM. _ _ _
• i^ : SχM -> 9M is the restriction of P to SχM.
• (x, ξ): the vector t; in SχM such that v(oo) = ξ .
• pυ : the Busemann function at v(oo) such that /?υ(t;(0)) = 0.

• Hv : the horosphere at v(oo) € 9Λf passing through v(0) e M.
• μ, v, m are the Bowen-Margulis, the harmonic, and the Liouville

measure of gι, respectively.

The canonical projection π: SM -> M maps W\v) (i = s, ύ) diffeo-

morphically onto M. Thus the Riemannian metric on M lifts to a

Riemannian metric gι on W'(t ), which induces a Riemannian volume

m\i = s, w). π also maps WZ(Ϊ;) (/ = su, 55) diffeomorphically to horo-

spheres on M. The induced Riemannian metrics on horospheres lift to

Riemannian metrics gsu (or gss) on Wsu(v) (or Wss(v)), which induces

Riemannian volumes m5" (or mss).

Note that all the foliations FT1 and the metrics gι are of class C°° , / =
5, w, 55, 5W (see for example [27]). Thus all the results in §1 apply here,
and by summarizing we have

Theorem 2.1. The Wsu foliation has a unique harmonic measure wsu

and, locally, dwsu = dmsu x dμ . Moreover, the following properties are
equivalent:

su(a) w = m.
su(b)

(c) wsu = v.
(d) wsu is gι-invariant.
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(e) Horospheres in M have constant mean curvature.

A similar result can be stated for the Wss foliation and the measure
wss.

The purpose of this section is to prove that the weak stable or unstable
foliations are also uniquely ergodic. But first let us recall some basic facts.

Let Ω = C(R+, M) be the space of continuous paths in M, and

{Px, x e M] the family of probability measures on Ω which describe

the Brownian motion on M. Let Ω = C{R+, M) be the space of contin-

uous paths in M, and Π : M —• M the covering map. For each x e M

and w e Ω such that w(0) = Π(JC) , there is a unique path w e Ω such

that Π(w(t)) = w(t) for all t > 0. We denote the polar coordinates about

x of the path w(t) by (r(w, t), θ(w , t)).

1 ° For all x in M and Pπx-a.e. w e Ω, θ(w, t) '^? θ(w, oo) e

dM ([20]). We denote by vχ the hitting probability measure on

dM of Brownian motion starting at x, and

for all x, y £ M and almost all ξ € M. k(x, y ,ξ) is called the

Poisson kernel.

2° [14] For all x e M and P^-a.e. w e Ω,

\ , (r(w,t), θ{w9oo))) = 0.
I—U

3 ° [9] For all x e M and ^-a .e . w e Ω,

lim-r(w, /) = α.
t—κx> ί

4 ° [9] α = / M rfm(x) / ^ trί/(x, {) rfι/χ({),
where dm is the Riemannian volume on M, and U(x, <!;) is
the second fundamental form at x of the horosphere H(x, ξ).
trl/(jc, ί ) = -j-t\t=o^ogJ^s{x, ξ) is the mean curvature of H(x, ξ)
at x . _

5 ° [9] For every x 6 M and ^ - a . e . tx; G Ω,

lim \\ogP{t,x,w{t)) = -β.

6° [9] β = fdm(x)fSM\\Vlogk\\2dvχ(Pχ(v)) = hua, where hv is

the metric entropy of v .
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Note the measure dm(x) x dvχ{ξ) which appeared in 4 ° , 6 ° . We
prove that this is the only harmonic measure of the Ws foliation.

Theorem 2.2. The weak stable foliation of the geodesic flow has a unique
harmonic measure ws, described by fSM -dws = fM dm(x) Js M -dvχ(v).

Our proof is inspired by Garnett's proof of a special case where M is
a surface of constant curvature - 1 .

Proof Let us consider a FΓ5-flow box of the form

E = { ( x , ξ ) \ x e B , ξeU},

where B is a ball in M centered at a point xQ, and U is a open set

in dM. For any continuous function / with compact support in E, we

have

j s = jdm{x)jfdvχ{ξ)
B dM

= IJf(x, ζ) k(x0,x,ξ)dm(x)duχQ(ζ)
B U

= fdvXQ(ξ)Jf(x, ξ) k(x0, x, ξ)dm(x),
U B

which means that dws disintegrates locally into the harmonic function
k(x0, x, ξ) times Riemannian volume of the Ws leaf. Thus ws is a
harmonic measure of the Ws foliation.

Given any other ergodic harmonic measure σ and any continuous func-
tion / on SM, by the leaf path ergodic theorem, for σ-a.e. leaf Ws(x0, ξ),
for all points (y, ξ) e Ws(x0, ξ) and P almost any path w starting at
y, we have

^j f(w(t),ξ)dt.
>T JQ

SM

Given any other tί/-typical leaf W\x0, η), for P almost any path w
starting at y we have

SM

Consider a typical path w starting at y such that w(t) —> e e dM, e Φ
ξ, e Φ η . By comparison with manifolds of constant negative curvature,
it is easy to see that

dS(t)((w(t),ζ), {w(t),η))^0 ( ί - o o ) ,



172 CHENGBOYUE

where d~,t) is the induced Riemannian metric on S~,t,M. Thus

lim i f [f(w(t), ξ) - f(w(t), η)]dt = 0,f
s

and fSMfdσ = fSMfdws, which proves the uniqueness of harmonic
measure of the weak stable foliation.

Note the following:

(i) For any function φ on SM of class C2 , we have

0= dm{x)A / φdvΎ

J \ J
M \SχM

= Jdm(x)A\y=χ I φk(x,y,ξ)dvχ(ξ)
M \SXM J

= f(Asφ + 2(Vsφ, Vs logk))dm(x)dvχ.

SM

(ii) We also have

0 = ίdm{x)diw ί
M \SXM

= Jdm(x)div\y=χ Jvsφ k(x,y, ξ) dvχ{ξ)
M \SχM j

= /(ΔV + (V>, V\o%k))dm{x)dvχ.
SM

Combining (i), (ii), we get JSAfA
sφ dm(x) dvχ - 0. This gives another

proof of the fact that fSM 'dm(x)duχ is a harmonic measure of the Ws-
foliation.

Theorem 2.3. Let M be a compact manifold of negative curvature.
Then the following properties are equivalent:

(a) ws = m.
(b) ws = u.
(c) ws = v .
(d) ws is g*-invariant.

(e) Horospheres in M have constant mean curvature.
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Proof. See [26].
A similar result can be stated for the unique harmonic measure wu of

the weak stable foliation.

3. Integral formulas for topological entropy

We continue to use the symbols and notation of §2. Let wss be the
unique harmonic measure of the strong stable foliation Wss of the geodesic
flow. By Theorem 3.2, wss is a limit of the average measure on balls
Bs

χ

s(R) in Ws\x):

1
.Mpjj/m / dmss(y)-^ws

mssBs

χ

s(R)
BS

X

S(R)

On the other hand, we know that horospheres in M can be approximated
by geodesic spheres, H(x, ξ) = l i m ^ ^ 5 ^ ( 0 , where υ(t) is the geodesic

in M satisfying υ(0) = x and v(oo) = ξ. Thus the harmonic measure is
the weak limit of the averaged measures on geodesic spheres.

To be more specific, let φ be a continuous function on SM, and x

any point on M. We define a function φχ on M by φx(y) = φ{v(y))

where v(y) e SM is the unique unit vector such that v(y)(0) = y and

v(y)(t) = χ.
For any e > 0, by Theorem 3.2, there exists R{ > 0 such that

- s j — / φ(w)dmss(w) - φdi
Bv (R) JBS

V

S(R) JSM

for all R> R{ and υ e SM. According to the estimates in [8], for a fixed

Ro > 0 there exists R2> R{ such that for all R> R2 and y € ^ ( i ? ) ,
where Sχ(R) is the geodesic sphere in M, we have

1 /• , , , _ J Γ

K\y)(Rθ) JB"

ws

< e

voW(y,
Λ*)dz- φx{z)dz <€,

where £>(y, i?0) is the ball in Sχ(R) of radius RQ, and dz is the volume
element of the induced Riemannian metric on SX(R).

But since \φ(w) - φχ(π(w))\ —• 0 uniformly for all y e Sχ(R) and

w e w e c a n a s s u m e s o

-ί»_ (π(w)))dmss(w) < e.
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So for all R>R7,
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J f
*,R)JsjR)

φdws
< 3 e ,

where we denote the volume of SX(R) by S(x, R).
Proposition 3.1.

S{x, S(R)

r

R—^ I φdw
JSM

uniformly on M for any continuous function φ on SM.
Now we are ready to prove
Theorem 3.2. Let R(x) be the scalar curvature at x in a closed nega-

rr

tively curved Riemannian manifold M. Let R (υ) be the scalar curvature
of the horospheres H(υ), and let Ric(v) be the Ricci curvature of v. Then
the topological entropy h of the geodesic flow satisfies

ι ° h = fSMtrU(v)dwss(v),

2° h2 = fSM{RH(v) - R(π(v)) + Ric(v))dw s s(υ).

Proof Margulis ([18]) proved that for any closed Riemannian mani-
fold M of negative curvature,

(*) r S(x,R) , ,
hm v ' J = c{x)

p h R

for some positive continuous function c on M. Let us calculate the
derivatives of the function

G(R) =
S(x,R)

~ ehR Is dy.

Then we have

G'χ(R) = -hGχ(R) + - L ί trUR(y)dy,

G"χ(R) = -h2Gχ(R) - 2hG'χ(R) +-L ί [-tτUR(y) + (tτUR)2] dy,
e J SX(R)SX(R)

Ct"{R) = -h3Gχ(R) - 3h2G'χ(R) - 3hG"(R)

JRI R R R y ) + (trUR)3) dy,
e Jsx(R)

where UR(y) and XτUR(y) are respectively the second fundamental form
and the mean curvature of SX(R) at y .
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Note that tτUR(y) —• tτU(υ(y)), as R —> oo, uniformly. Using Propo-
sition 6.1 and (*), we get

lim G'(R) = -hc{x) + c(x) [trUdwss,
R^oo Λ J

SM

lim G"(R) = -h2c{x) - Ih lim G'(R) + c(x) [ [-trt/ + (trC/)2] dwss,
R—KX> Λ Λ—>OO Λ J

lim G"'(R) = -h3c(x) - 3/z2 lim OUR) - 3/2 lim

' /
[trC/ - 3trί/trί/ + (tr[/)3] rfi

SM

But since lim^^^ G"(R) is bounded and l i m ^ ^ Gf"(R) exists, we must
have

lim Gf

χ(R) = lim G?(R) = lim C/"(R) = 0.
R—•oo R—•oo R—•oo

Thus
(i) h = fSMtτUdwss,

Let us recall some geometry of submanifolds. If we denote by K

the Gaussian curvature of H(v) with respect to the induced Riemannian

metric, then for any two orthonomal vectors X, Y in T,,H(v)9 the

Gauss equation tells us

KH(X, Y) = K(X, Y) + (U(v)X,X)(U(v)Y, Y)

-(U(v)X,Y)(X,U(v)Y),

where Uυ is a positive symmetric operator. Let eχ, , en_χ be its unit

eigenvectors with eigenvalue λχ, , λn_χ. Then KH(ei, eβ = K(ei, ej)+

μ , and Σ / . ^ V / ^ y ) = ΣiJKie^eβ+λ λj). Thus ^ ( v ) =

Λ(π(ϋ)) + (tr U)2 -XrU2- 2Ric(v).
Remember that t/ satisfies the Ricatti equation -ί7+f/2-h5' = 0 where

S(v)X = i?(X, v)v, R being the curvature tensor. So trS(ϊ ) = Ric(v)
and RH(v) = R(π(υ)) -f (trU)2 -XrU - Ric(v). Combining this with (ii)
yields

A2 = ί[RH(υ) - R(π(v)) + Riφ)]rfw55.

Remark. By our proof, there is another integral formula for the en-
tropy:

h3 = ί[tτϋ + 3 trί/tr U + (tr *7)3] rfw;55.
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Actually, one can get a family of integral formulas for hn in terms of a
polynomial combination of tr U and its derivatives.

Corollary 3.3. For a 3-dimensional closed Riemannian manifold of neg-
ative curvature

h2= ί (Ric(v) - R(π{υ))) dwss(v).

SM

Proof By A. Connes' Gauss-Bonnet theorem ([3]) for two-dimensional
foliation (see also [5])

J k(x)dμ(x),

where μ is a completely invariant measure of the foliation, k(x) denotes
the Gaussian curvature function of the leaves, and β0, βλ, β2 are the
"average Betti numbers" of the leaves relative to μ. Note that in our case,
the Wss -leaves have polynomial growth, each of which is conformally
equivalent to and diffeomorphic to the Euclidean plane. Thus

βo-β{+β2 = O.

Now Corollary 3.3 follows from the fact that in dimension 3, RH(v) =

2KH(π(υ)) and formula 2° in Theorem 2.2.

4. Margulis' function and applications

4.1. Patterson-Sullivan measure. We continue to use the symbols and
notation of §3. In [14], Ledrappier constructed a family of finite measures
{βx}x(ΞM

 o n t h e sphere at infinity, satisfying the following property:

and called them the Bowen-Margulis measures, because Pχ{μx) and

P\*wsu(χ)(μsu) are in the same measure class (recall that P : SM —• dM is

the canonical projection, and μsu is the Margulis measure on Wsu(x)).
To be more specific, let us recall Ledrappier's construction. Take a small

open subset A of SχM, and consider the following transversal T of the

T =
-δ<t<δ

for δ small enough. By the unique ergodicity of the W55-foliation, one
can obtain a measure μτ on T by sliding along Wss leaves the Margulis
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measure dμu = dμsudt on Wu(x) which satisfies

dμτ = e ' dt dμA

for some measure μA on A; μA is exactly the measure μχ\A (up to
a scalar constant). By the unique ergodicity of the FT55-foliation and
the reversibility of Ledrappier's construction, it is easy to see that any
family {τx} ej% of finite measures on dM satisfying (*) must coincide
with {μ\ ~ up to a scalar constant. For example:

(1) The Patterson-Sullivan measure [23]: Fix a point x e M and
consider the Poincare series

sd{y,σy)

<τ€Γ

where Γ is the fundamental group of M. It converges for s > h
and diverges for s < h . Now consider the family of measures

-sd{x ,σy) s / >.

where δ(σy) is the unit Dirac mass at σy. Let μχ be a weak
limit of the family {μx(s)} as s —• h , then it is easy to see that

(a) μχ is defined on dM,

(b) jjfβ) = e~hPχ't{y). By the above remark, they coincide with

{μx}xejύ up to a scalar constant.

(2) (Idea comes from a comment by A. Katok). Via the canonical pro-

jection Sχ(R) -* dM, y —> υ (oo), where v is the unit normal

vector of the geodesic sphere SX(R) at y, we have a sequence of

finite measures defined on dM:

By the Margulis asymptotic formula, it is easy to see that any weak
limit μχ as R —• oo satisfies

(a) μχ is a measure on dM with μχ(dM) = c(x),

(b) £ « ) = *-*'-<w

Thus they also coincide with {μχ} _jj up to a scalar con-
stant.

Proposition 4.1. 7/*we denote the normalized Riemannian volume on M
by dm(x)t by μχ and the normalized Patterson-Sullivan measure. Then
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the unique harmonic measure wss of the Wss -foliation can be described as

C ί dwss = ί c(x) dm(x) I [ dμ(v)\
JSM JM VSχM J

for some constant C (C = JM c(x) dm{x)).
Proof Let {μx}γa^ be the family of Ledrappier-Patterson-Sullivan

measures. Then

(i) Let X be the geodesic spray. Then for any function / of class Cλ

ss,
we have

0= / dm(x)άi\[ j fXdμ\
JM ysxM J

= fdm(x)div\y_χ([ {fX)e-hp^{y)dμ\

= J[f+(h-trU)f]dm(x)dμχ,
SM

where we define JSM φdm{x)dμχ = f JMdm{x)(Js Mφ{x,ζ)dμx{ξ)).

(ii) For any function / of class C5

2

t,

0 = jdm{x)Λ j fdμχ

M \SX

M

2hf)dm(x)dμr
JSM

= ί [ΔS7 + ( / + ( * - trί/)/) + *(/ + (A - trl/)/)] dm(x) dμχ.
JSM

Combining (i) and (ii) yields JSMAssf dm(x) dμχ = 0. By the unique-
ness of the Wss-harmonic measure, dwss = dm(x)dμχ , up to normal-
ization. Using Proposition 6.1 and Margulis' asymptotic formula, one can
see that

M
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where μχ is the normalized Ledrappier-Patterson-Sullivan measure.
4.2. Margulis function. The following theorem implies that for com-

pact manifolds with negative curvature, the function c(x) is almost always
not a constant function.

Theorem 4.2.
(i) c(x) is smooth, if the Riemannian metric is smooth.

(ii) If c(x) = C, then for each x e M,

h= (\xU{x,ξ)dμx{ξ).
JdM

Proof. Note that

dμy _ φc) -hPχξ{y)

Then (i) follows from the fact that c(y) = c(x)fd~e~hPχ><{y) dμχ(ξ). If

c(x) = const., then / e~~hpχξ{y)dμχ{ξ) = 1. Taking the Laplacian on
both sides yields

h(h - XτU)e~hPχ^y)dμ(ξ) = 0.

Thus A = /a

Theorem 4.3. If dimM = 2 and c(x) = const., then M has constant
negative curvature.

Proof According to Theorem 3.2, h2 = f(-tτϋ + (trU)2) dwss. Using
the Ricatti equation -U+U2 + S = 0, and noting that tr U2 = (tr U)2 in
dimension 2 we have

h2 = ί -trSdwss = - ί K dm{x) = -2πE,

where E is the Euler characteristic of M, and K is the Gaussian cur-
vature. Hence Theorem 4.3 follows from A. Katok's result [11] that
h2 = -2πE if and only if M has constant negative curvature.

The following corollary measures the deviation of metrics from constant
negative curvature.

Corollary 4.2. // dim M = 2, then

h2 = ±J -c(x)k(x)dm(x).
M

Due to the above facts, it makes sense to have the following conjecture.
Conjecture. For a compact Riemannian manifold M of negative cur-

vature, c(x) = const, if and only if M is locally symmetric.
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4.3. Margulis function and ίlip-invariance of Patterson-Sullivan measure.
Recall that the strong unstable foliation Wsu also has a unique harmonic
measure wsu . By the flip map, we get

C dwsu(x, ξ) = c(x) dm{x) dμχ{-ξ).

Thus wsu = wss if and only if dμχ(-ξ) = dμχ{ξ). Ledrappier [15] proves
that if dim M = 2, then wsu = wss if and only if M has constant
curvature. The following result indicates that in higher dimensional case,
locally symmetric spaces might be the only manifolds of negative curvature
for which wss = wsu .

Corollary 4.4. // wss = wsu, then c(x) = const.

Proof. Any C 2 function φ on M can be lifted to a function on SM
which we denote by the same symbol. By the proof of our Proposition 7.1
or by Corollary 1 of [15], we have

/
Δφc(x) dm = C / Asφ dwss

JSM
M

= C ί {Assφ + φ- XrUφ) dwss

JSM

= C\f Ass<pdwss+[ (ψ + (h-trU)φ)dwss - ί hφ dwss]
USM JSM JSM J

= -hjc{x) dm(x) I φ(x, ζ) dμχ(ζ),
M

 ΘM

where dμχ{ξ) = dμχ{-ξ) and φ{x,ζ) = -φ{x, -ξ). Thus

Δφ c(x) dm{x) = 0
JM

for all C 2 function φ on M. It follows that c(x) = const.

4.4. An upper bound of Gromov's simplicial volume. Following [6], if

c = Y%=1 CZ Si is the decomposition of a real chain c in terms of

the elementary simplices Si9 then the ίj-norm of c is defined to be

llcll = ΣJLi I^Ί I F°Γ every homology class σ, one can define ||σ|| =
inf{||c|| I [c] = σ}. Thus the simplicial volume of a closed manifold M
is, by definition, equal to | | [M]| | , where [M] is the fundamental class
of M. Roughly speaking, simplicial volume is the minimal number of
simplices needed to triangulate the fundamental classes of M. From now
on we denote it by \\M\\. For a closed manifold M of negative curva-
ture, Gromov proved that (see [6]) there exists a constant C = c(n) which
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depends only on n = dim M, such that

(**) \\M\\< ChnV(M),

where V(M) is the volume of M, and h is the topological entropy of
the geodesic flow on M.

If the Ricci curvatures of M are bounded from below, i.e., Ric(Λf) >

-A Q , then by the Bishop volume comparison theorem, it is easy to see that

h < y/n - \rQ . It follows that

\\M\\<C rn

0V(M).

Therefore the simplicial volume is controlled by the lower bound of Ricci
curvature. Gromov raised the following conjecture.

Conjecture (Gromov [7, p. 117]). Every n-dimensional closed manifold

M with R{M) > -a1 satisfies \\M\\ < C(n)σnV(M).
Here R(M) denotes the scalar curvature of M. Actually, Gromov

made a stronger conjecture that

\\M\\<C(n) f \R (x)\n/2dx,
JM

where R (x) = min(0, R{x)), and dx is the Riemannian volume. As
is pointed out in [7], one does not know if every hyperbolic 3-manifold
admits a sequence of metrics such that fM \R\ ' —• 0, even if one insists
on K < 0 for these metrics.

By Theorem 3.2 and (**) we have
Theorem 4.5. Let M be a closed Riemannian manifold of negative

sectional curvature, and c(x) be the Margulis function. Then

\\M\\<C(n)V(M)
JM(H{x) + \R(x)\)c(x)dx

fMc(x)dx

where H(x) is the suppremume of the scalar curvatures at x of the how-
spheres through x. In particular, if dim M = 3, then

UMII < C • V(M) • Γ/Λ,(^W + I « W I W ^ 1 S C . ¥{M)a>,

w/z^r^ <J = s u p χ € Λ / I
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