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Dedicated to S. S. Chern and W. Klingenberg

ABSTRACT. The injectivity radius of any simply connected, even dimen-
sional Riemannian manifold Mn with positive sectional curvature equals
its conjugate radius. So far the corresponding result in odd dimensions
has only been known under the additional hypothesis that Mn is weakly
\ -pinched. Moreover, some famous examples due to M. Berger show
that the statement is even false, unless Mn is at least |-pinched. It
has been a longstanding problem whether the pinching constant can be
pushed below | for odd dimensional manifolds or not. In this paper
we prove that this is indeed possible. The pinching constant δ G [£ , \)
that is needed in our main theorem does not depend on the dimension.
As an application we obtain a sphere theorem for simply connected, odd
dimensional, δn -pinched manifolds where the pinching constant δn is
strictly less than \ and up to now still depends on the dimension.

1. Introduction

By the Theorem of Bonnet and Myers any complete Riemannian mani-
fold (Mn, g) with sectional curvature KM > λ2 > 0 is compact. Its
injectivity radius inj Mn is bounded from above by its conjugate radius
ρc. If Mn is even dimensional and simply connected, equality holds. This
has been shown by Klingenberg [16] using Synge's Lemma in combination
with a lifting argument:

(1) 'm]Mn = ρc > π/y/maxKM.

We are going to concentrate on the odd dimensional case which is much
more subtle.

By the Long Homotopy Lemma in Klingenberg's proof of the Sphere
Theorem [17], the injectivity radius and the conjugate radius are still equal,
provided that Mn is simply connected and |maxΛΓM < mmKM. This
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condition on KM is customarily referred to as strict quarter pinching. It
has been proved by Cheeger and Gromoll [7] and also by Klingenberg and
Sakai [19] that (1) continues to hold in the weakly quarter pinched case,
i. e., for manifolds with \ m a x ^ < minKM.

The main purpose of this paper is to relax this pinching condition even
further.

Theorem 1.1. There exists a constant ε > 0 such that the injectivity
radius of any complete, simply connected Riemannian manifold Mn with

1 ^-pinchedsectional curvature KM is controlled by its conjugate radius

ρc as in {I):

The estimates given in our proof show that the theorem actually holds
for ε = 10~ , which is certainly not optimal. It is known that the optimal
pinching constant for the preceding theorem must be > ^ . The standard
examples are the Berger metrics gε, 0 < ε < 1, on odd dimensional
spheres. They are obtained by shrinking the length of all Hopf fibers to
2πε. The resulting manifolds (Sn

 9 ge) are weakly ε2/(4-3ε2)-pinched.
The conjugate radius of gε is π/y/4-3ε2, and its injectivity radius equals
its conjugate radius, if and only if ^ < ε2 < 1.

The Aloff-Wallach examples [2], [9] show how delicate the odd dimen-
sional case is. They are constructed from a particular left invariant metric
g0 on SU(3) that is preserved under the right action of a fixed maximal
torus T2 c SU(3). The embedded, 1-parameter subgroups ik ,(§*) c T2

define a family of pairwise nonisometric, homogeneous, 7-dimensional
quotient manifolds MΊ

k ι := (SU(3)/ik / S 1 , g0). This family contains an

infinite sequence of manifolds Af! , with positive sectional curvature
such that the corresponding pinching constants δv converge to ^37 and
such that the injectivity radii injΛ/^ ι approach zero [15]. Aloff and
Wallach have already pointed out that infinitely many of these 7-mani-
folds are topologically different. Recently Kreck and Stolz discovered that
some of these examples are homeomorphic but not diffeomorphic [21].

Some partial results for almost \ -pinched manifolds have been ob-
tained by Klingenberg and Sakai in [20] using convergence methods. In
contrast the proof of our estimate is based on direct comparison methods.
Therefore our pinching constant is independent of the dimension.

Theorem 1.1 has strong implications when viewed in the context of the
Berger Rigidity Theorem [3] and the Pinching Below- \ Theorem [4]. In
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fact, we can deduce the following sphere theorem.
Theorem 1.2. For any odd positive integer n there is a number εn > 0

such that any complete, simply connected Riemannian manifold Mn with
—-—Ί-pinched sectional curvature KM is homeomorphic to the sphere Sn .

For the discussion of this result we scale the metric of Mn such that
the sectional curvatures satisfy 1 < KM < 4(1 +εn)

2. Our estimate for
the injectivity radius translates into jζT+Γ) - ίn-jM" < d iamM Λ . The
result is well known, provided that the diameter of the manifold under
consideration is > § . If diamM* > § , the Diameter Sphere Theorem
due to Grove and Shiohama [13] applies. If diamM" = § , we can refer
to the Diameter Rigidity Theorem by Gromόll and Grove [11].

In fact, the proof in [11] works for C 1 '"-manifolds with diamAf" = §
and curvature > 1 in distance comparison sense. Therefore this result
can be combined with the C 1 '"-convergence theorem of Peters [25], and
Theorem 1.2 follows in the standard way upon considering appropriate
sequences of pinched manifolds. These arguments have been carried out
in full detail by Durumeric [8].

Due to the use of the convergence theorem the pinching constant in
Theorem 1.2 depends on the dimension of the manifold. It is an interest-
ing question whether our estimate for the injectivity radius can be used to
obtain a sphere theorem with a pinching constant below | that is inde-
pendent of the dimension.1

The paper is organized as follows: in §2 we introduce special, finite di-
mensional approximation spaces of the free loop space ΩΛf. These spaces
play a crucial role in the proof of Theorem 1.1, and to our knowledge they
have not been considered in the literature so far. The purpose of §3 is
to present the basic holonomy estimates. In §4 we recall the Long Homo-
topy Lemma and summarize the ingredients from Morse theory that our
argument depends on. In §5 we use this material to construct two spe-
cial homotopies that serve as the starting point for an indirect proof. The
contradiction is achieved by analyzing the geometric properties of a new
lifting construction. The details of this construction, which is independent
of the material in §§2, 4, and 5, are presented in §6.

The next paragraphs describe the basic idea for the proof of Theo-
rem 1.1. As usual we normalize the sectional curvature of Mn such that

ιNote added in proof. In the meantime the authors have established such a result. It will
be the subject of a forthcoming paper.
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We assume that the theorem were wrong. This means that there ex-
ists a closed geodesic of length 2injM" < 2ρc. We combine the prop-
erties of this geodesic, the Long Homotopy Lemma, and some arguments
from Morse theory, in order to study shortly null homotopic, closed curves.
These are rectifiable, closed curves c 0: R/Z -» Mn that are freely null ho-
motopic through a family of curves that are strictly shorter than c0 itself.
By Proposition 4.8 the set of all shortly null homotopic, closed curves c0

has a nonempty boundary in the free loop space ΩM*. On this boundary
there exist points that are represented by shortly null homotopic curves in
Mn . Such a point is a closed geodesic c0 of length > 2ρc >2π. In fact,
c0 is a saddle point of index < 1 for the energy functional E: ΩM —> R,
and thus it has length < 2π(l+ε) and first holonomy angle > j ^ .

Among these closed geodesies c0 we can find one that is of minimal
length. In Proposition 5.3 this geodesic is then deformed in two consec-
utive steps into a shortly null homotopic, closed, piecewise C2-curve cτ

which has length < 2π, total absolute curvature < κo< j , and first holon-
omy angle > f, provided that ε = ε(κ0) is sufficiently small. A schematic
picture of the whole deformation process is given in Figure 1 (p. 670). Up
to slight modifications the first homotopy is defined by the gradient flow
of the energy functional. If ε is sufficiently small, it leads to a shortly
null homotopic curve cT which has length < 2π and total absolute cur-

0

vature < ^ . There is no way to ensure directly that the first holonomy
angle remains large under this deformation. However, if it gets small, we
can stop the deformation at an earlier curve cτ with first holonomy angle
equal to f . This curve then serves as a starting point for a second spe-
cial homotopy ct that decreases energy and length by some a priori given
amount for all ε that are sufficiently small. On the other hand it can be
estimated that this deformation only spoils the total absolute curvature
and the first holonomy angle by some amount that is proportional to ε.
The construction of the second deformation relies on the fact that the first
eigenvalue of the Hessian of the energy functional at c0 = cχ is bounded
from above by a strictly negative constant. It moves in the direction of
a corresponding approximate eigenvector which is defined in terms of the
holonomy. The estimates for the latter deformation are based on the fact
that there is an upper bound for ^E{ct) which is strictly negative at
t = 0 and for which we can establish a modulus of continuity without
using bounds for the covariant derivative of the curvature tensor.

The contradiction in our indirect argument is obtained by means of a
new lifting construction. It shows that any shortly null homotopic curve
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cτ of length < 2π is the boundary of an immersed ruled surface Σ with a

conical singularity consisting of radial geodesies which are shorter than f .

The details are given in Theorem 6.8. A small upper bound for the total

absolute curvature of cτ implies that the intrinsic and extrinsic geometric

data are close to those of a totally geodesically immersed hemisphere of

curvature KΣ = I. In particular, the first holonomy angle of the bound-

ary curve cτ must be small. In fact, Theorem 6.1 asserts that the first

holonomy angle of cτ must be < \ , provided that its absolute curvature

is < η.

Hence Theorem 1.1 holds with ε = ε(j). This number turns out to be

slightly greater than 10~6 .

2. The free loop space ΩM and its finite dimensional approximations

The purpose of this section is to introduce the appropriate spaces for
the Morse theory and the deformation arguments in §5. In the first two
subsections we collect some facts which are very close to the results in the
book by Milnor [22, Chapter III]. Our presentation parallels that in [22]
as closely as possible. The third subsection is devoted to the basic esti-
mates for the gradient and the Hessian of the energy functional on our
approximation spaces.

2.1. Basic facts. Let (Mn, g) be any compact, w-dimensional Rie-
mannian manifold. The free loop space ΩM* of Mn is the space of
C°-maps from R/Z into Mn equipped with the compact open topology
which is the standard choice in homotopy theory. For analytical purposes
it is better to consider the subspace

(2) ΩM := \c:R/Z^M'
c is absolutely continuous and

c := e V f

and work with the H{ -topology on ΩM. Then the energy functional and

the length functional

E(c) := \ ί \c\s)\2ds = i / \c'(s)\2ds,
JR/Z JO

L(c) := ί \c'(s)\ ds
JR/Z
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are both continuous. The following result may be found in [22], [23]:
Theorem 2.1 (Milnor). The canonical embedding Ω.M -> ΩΛf* is a

homotopy equivalence. Moreover, the critical points of E are the closed
geodesies in Mn.

In the language of global analysis the free loop space ΩM* can be
considered as the space of C°-sections of the trivial fiber bundle R/Z x
Mn —• R/Z. A more general homotopy equivalence theorem that holds for
inclusions 371(2?) -* C°(E), where 9Jt is an appropriate section functor
and E is a smooth fiber bundle over a compact manifold, is due to Palais
[24, Theorem 13.14].

Milnor's proof makes use of the following spaces of broken geodesies

r cL , is a geodesic with length ^
( 3 ) Q k M := i c e SIM T

[/\i+l] * . . _ _ „ , - . A ,fc I L(c\[sjtSi ,) <injAf forO<κk}'

where the numbers s. = j-> 0 < / < k, define the customary subdivision
of [0, 1]. It is actually shown that the embedding of the direct limit
liπ}fcΩfcM of these λ H-dimensional manifolds into ΩM is a homotopy
equivalence.

2.2. Spaces of long broken geodesies. Since in our context we are as-
suming in addition that KM < 1, we shall find it more convenient to work
with the sets

, c is a geodesic with lengths

,4, φ , { Ω M ^

where 0 < I < π. Using the map j k : c *-> (c'iSj))^ , we identify each

of these sets with its image Cl[M := jk(Ω£

kM) in the /c-fold Cartesian

product TM x x TM. Note that

(5) ίl[M = {(vtf:* e Πfo TM I pM = «pP |(i i;,), i \vt\ < t).

Here pt stands for the footpoint of the tangent vector vi e TM. By our
hypotheses on KM the conjugate radius of Mn is > π, and hence the

set Clπ

kM turns out to be a kn-dimensional submanifύld in ΓljzΓo1 TM.
In fact, the standard projection nk: TM x x TM -> M x -- x M
restricts to a tocα/ diffeomorphism of Ω^Λf onto an open subset in the
A:-fold product of the manifold Mn . We shall think of CfkM and Ωπ

kM
as equipped with the metric gk := \ π*k(g Θ Θ g) and its pullback
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gk := j*kgk, respectively, rather than working with the restriction of the

H dinner product. The induced topologies are the same though, since we

are dealing with finite dimensional manifolds.
The geodesies in {Ωπ

kM, gk) will be called ^-geodesies in order to
distinguish them from geodesies in Mn. Note that the metric spaces
(Ω^M, gk) are not complete, yet the following compactness result holds:

Lemma 2.2. Let k e N, and let (Mn, g) be a Riemannίan manifold

with sectional curvature KM < 1. Let c0 e Ω£

kM, I e (0, π], such that

it represents a closed geodesic in Mn . Then for any ζ < -A^(^ - %L(c0))

the ball B(c0, ζ) is relatively compact in (Ω^M, gk).

Proof Each segment of c0 has length ί^O) := %L(c0). Consider a

#£-geodesic c: [0, T] —• (Ω^M, gk) that begins at the given cQ. For

each / e {0, . . . , k - 1} we let L{ denote the length of the geodesic

φ . ,.):[0,T]-+ (Mn, g) defined by c. Then the length of c as a curve

in Ω£

kM C Ω£M is bounded by ζ, if and only if

1=0

By hypothesis C < -Aj(^ - ^z(0)), and hence we compute that

for 0 < t < T and 0 < / < k. q.e.d.
The next objects of interest are the sublevels ΩΛf. := ΩM n

^ " ' ( [ O , \η2]) and Ω.π

kM^η:=Ωπ

kMnE~ι([0, \η2}) of the energy func-
tional. The corresponding open domains are denoted by ΩΛf := ΩM n

E~l{[0, \η2)) and Ωπ

kM<η := Ωπ

kM Π E~ι ([0, \η2)).

Proposition 2.3. L^ί ΛfΛ te Λ compact Riemannian manifold with KM

< 1, and let k e N α«rf -ί G (0, π]. Then for any η < ί\fk the sublevel

Ω£

kM<η c Ωπ

kM is compact, and the canonical embedding

is a homotopy equivalence, and so is the direct limit
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of these embeddings. Moreover, the critical points of E in ΩM < f | and of

Ek := E\ΩπM in the subset Ω^M. c Ω^Λf. coincide. They are closed

geodesies c in Mn, and, in fact, hess£]c and hessEk\c have the same
Morse index and nullity.

Proof Just as in [22, §16] we estimate that for any c € ΩM<η the
length of its segments with respect to the subdivision of [0, 1] given by
the points s. = | are bounded by

Hence Ω£

kM<η is a compact subset in Ωέ

kM. Moreover, .under the ex-

ponential map each of the segments c|Γc c Ί can be lifted to a curve

c : [ί, , J/ + 1] -> ΓφjAf" which begins at c^s^ = 0. Using these lifts

we can define a retraction map rk χ: ΩM < —> Ω^.Λί< and a continuous
family of maps t *-+ rk t connecting rk 0 = id Ω M to rk { as follows:

for

for

The rest of the argument can be carried over verbatim from the proof of
Theorem 16.2 in [22]. q.e.d.

The fact that such a ruled surface construction works up to the conjugate
radius essentially goes back to Klingenberg's proof of the Long Homotopy
Lemma. In particular, this construction is crucial for introducing the ap-
propriate product of short loops in the proof of the Almost Flat Manifolds
Theorem [14, 5].

2,3. Gradient and Hessian. Recall that any differentiate map t *-+
ct e Ωπ

kM can be interpreted as a 2-parameter map c: (s, t) »-• ct(s) e
Mn . The first two derivatives of the energy functional Ek along this
path in the loop space can be expressed in terms of the tangent fields
c'(s, t) := -§jC(s, t), the broken Jacobi fields c(s, t) := §-tc(s, t), and

their derivatives:

5=^+0
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and

£ W = fjl}^2+ <%%£„€',)) ds
k-\

l(9) - ^Γlc ^-c ) \s=Si^
\y> - 2s\Ct> dtLtl lj=j.+

/0
/=0

(\lct\
2-{R{ct,c't)c't,ct))ds.

R/Z v '

The preceding equations are known as the first and the second variation
formulas. Note that in (9) we have kept track of the boundary terms at
the k corner points of ct, when performing the partial integration. As
a result this formula is valid for any broken geodesic ct and not just for
one that is a critical point of the energy functional and thus a geodesic in
disguise.

We shall find it convenient to identify the broken Jacobi field s \-+ ct(s)

that represents a tangent vector to Ω^M at ct with its image ( c ^ . ) ) ^ 1

under dπk o djk .
The subsequent calculations make substantial use of the metrics gk that

we have put on the spaces Ω^Λf. Note that a homotopy t *-> ct is a gk-
geodesic in Ω^M, if and only if the k curves t •-> c^s^ , 0 < i < k, are
geodesies in Mn . Hence (8) and (9) can be rewritten as

(8') grad£,|C( = -{kc't{Si^)-kc't{Si-Q)))^

and

(9')

hessEk\c(X,Y) = ^([%X,%Y)-{R(X9c't)ct9Y))ds9

where X and Y are arbitrary broken Jacobi fields with respect to the

partition s0 < sχ < ...sk_ { < sk = s0 + 1.

Remark 2.4. Because of formulas (8) and ($') we only need the con-

dition η < πVk to make sure that the flow of -gradEk preserves each

subset Ω£

kM<ηcΩπ

kM<η.

Proposition 2.5 (Gradient and Exterior Angles). Let c e Ωπ

kM. Sup-
pose that none of its k segments is a point curve. Then all its exterior
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angles

are well defined, and the total absolute curvature κ(c) := Σ^=Q Θ^C) can
be bounded in terms of the velocity and the gradient of the restricted energy
functional:

κ{c) min|c (s)\ < jπ

Proof Since the exterior angles take values in the interval [0, π ] , it is
clear that £0 f (c) < sin^θ^c) for 0 < i < k. Thus, using just (8') and
the definition of the metric gk on the space of broken geodesies, it is
straightforward to compute that

k-\ . 0 k-\

)
i=0 i=0

Σ{l -cosθ^^c'ist+otf + \c
i=0

k-\

(Si-0)\2)

i = 0

Proposition 2.6 (Bounds for the Hessian of Ek). Let c e Ω^/2M f and

let Y e TcΩ
π

k

/2M be a broken Jacobi field along c. Suppose that 0 <
KM < 1. Then

-ΈEk(c)gk(γ>γ) ϊ hessEk\c{Y9Y) < 4k2gk(Y,Y).

In order to prove this proposition, it is sufficient to apply the the fol-
lowing lemma to each segment of c separately.

Lemma 2.7. Let c: [a, b] —• (Mn, g) be a geodesic in a Riemannian
manifold with 0 < KM < 1, and let Pc: Tc{a)M -> Tc{h)M denote the
parallel transport along c. Suppose that L(c) ΞΞ (b - a)\c'\ < π. Then for
any Jacobi field Y along c the following inequality holds:

\c\ cot(L(c))\Y(b) - Pc Y(a)\2 - 2|c'| tan($L(c)) ( Y{b), Pc Y(a))



PINCHING BELOW \ , INJECTIVITY RADIUS, AND CONJUGATE RADIUS 653

Proof. Since by hypothesis Y is a Jacobi field along c, we know that

(10)

,Y) := [b(\%Y\2-(R(Y,c')c,Y))ds
Ja

inf [b(\%X\2-(R(X,c)c,X))ds.
Cι{c*TM) Ja v y[

X(a)=Y(a), X(b)=Y(b)

Hence the assumed bounds for the sectional curvatures of Mn imply that

jπf l\\lX\2-\c\2.\X\2)ds
XeC\c TM) Ja v 7

X(a)=Y(a), X(b)=Y(b)

inf
XeCι(c*TM) Ja

X(a)=Y(a), X(b)=Y(b)

Using the standard arguments from the calculus of variations, it follows
that the infima on the left- and right-hand sides of (11) are attained at the
vector fields

Ok'l . Ϋ ίs\ _|_ sin(s-a)\c'\ # Ϋ / ^

ή\c I a^ ' sin(b—a)\c \ b^ ' '

a{s) -h ̂ ^ ib(s).

Here we have used the symbols Ϋa and yft to denote the parallel vector

fields along c that are determined by the initial data Ϋa(a) = Y(a) and

Ϋb(b) = Y(b), respectively.

Now it is a simple calculation to evaluate the integrals from (11) for
l̂ower a n ( * ̂ upper' respectively, thereby concluding the proof of the lemma,

q.e.d.
The lower bound for the Hessian of the restricted energy functional

deserves particular interest for estimating the gradient of Ek itself.

Proposition 2.8 (Gradient Lines). Let (Mn, g) be a complete mani-
fold such that 0 < KM < 1, and let c: [a,b] -• Ωπ

k

/2M, t ι-> ct, be a
gradient line for the restricted energy functional Ek . Then

llβrad l̂cjl2 ^ \\&^Ek\cf^τ(EM-Ek^b)) vn^bEk{ct).

Proof We may reparametrize the gradient line t\-*ct such that j\Ek(c^

= - 1 . Then we are dealing with an arc in Ω£ / 2M, that is a solution of
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the differential equation

Because of the lower bound for the Hessian of Ek provided by Proposi-
tion 2.6 we conclude that

S g S g < ψEt(c,).
Since by our normalization b - a - Ek(ca) - Ek(cb), the proposition
follows upon integration.

3, Basic holonomy estimates

By definition the holonomy of a closed curve c0: R/Z -> Mn is the
endomorphism U : Tr mλM —> T , m M which carries the information by
how much the parallel vector fields W along c0 fail to close up. In more
technical terms one introduces Uc as the unique linear map such that
Uc -WQ=W(l) where s *-> W{s) is the vector field along the curve R —•

R/Z -Λ Mn that is obtained by solving the ordinary differential equation
^ W{s) = 0 with initial value W(0) = WQ . Clearly, Uc is an orthogonal
endomorphism, and, since in this paper we only care about orientable
manifolds Mn , we even know that Uc e SO(Tc {0)M) ^ SO(/i).

0

3.1. The first holonomy angle. There are a number of scalar invariants

attached to the holonomy U by means of the Jordan canonical form

theorem. Using the notation D{ψ) as a shorthand for the 2 x 2-matrix

(sΓn^ ~ c o ^ ) ' t h i s t h e o r e m states that Uc is conjugate within the orthog-

onal group O(«) to some block diagonal matrix

or

D&(n-X)ll) J

where 0 < ψχ < ••• < ψn/2 < π or 0 < ψχ < < Ψιn_χ\n ^ π>
respectively, depending on whether the dimension n is even or odd. The
numbers ψχ, . . . , ψ[n,2] obtained in this way are uniquely determined by
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the endomorphism Ur , and they will be called the holonomy angles of the

closed curve c0 ?

We are particularly interested in the first holonomy angle ψ{(c0). Note

that this quantity can also be characterized in terms of the action of

Uc on the unit sphere Sn~ι c Tc ,Q*M. In this picture the eigenspace

{Y eTc{0)M\Uc -Y =Y} corresponds to the fixed point set Fix(t/.) c

S"" 1, and

(12)

{ { CQ \ " 1 } foτn = 0 (2),

Mί(XUX) X e S ; n X ^ } for » S 1(2).some Y e Fιx(Uc)/ v J

As it turns out, the properties of the holonomy Uc of a curve c0, that are
essential for our argument, are measured precisely by the first holonomy
angle wx(c0).

It is straightforward to control the change in the first holonomy angle
when the closed curve c G ΩΛf varies.

Proposition 3.1 (Continuity). Let {Mn , g) be a Riemannian manifold
with 0 < KM < 1, and let c: [a, b] -+ ίlM, t *-> ct, be a differentiable
map of class C 1 . Then

Proof Consider the parallel transport Pc: Tc (0)Λf —> Tc (0)Λf along the

curve t »-> ct(0). Clearly,

(13) \ΨM-Ψx(ca)\ < d™n)(UCa,Pc-
lUCbPc),

where d^n) is the biinvariant metric on the orthogonal group given by

(14) d^H)(Ux, U2) := sup <(UXX, U2X), Vt/t, U2 € O(/i).

In order to bound the right-hand side of (13), it is sufficient to consider
all unit vector fields X along c|[0 l]x[a b], that satisfy ^ X(s9 t) = 0 and

2Note that we have allowed for conjugation by orientation reversing elements. This gives
some extra flexibility in the case of an even dimensional manifold, where otherwise the sign
of the product sin ψ{ (c0) sin Ψn/2(c0) could be determined by means of the Pfaffian of

log( Uc ) , once the orientation of Mn has been fixed.
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j-t X(0, t) = 0. An easy computation shows that

fb\%X{l,t)\dt < sup\\R\φ0||.Area(c(R/Zx[fl,6])).

Our bounds for KM imply that sup||i?|| < \ , hence the proposition.
3.2. Bounds for the first holonomy angle. Our next goal is to bound

the first holonomy angle ψx for a single closed curve cQ e ΩM. Such an
estimate can be accomplished in terms of the total absolute rotation

(15) rot(W) := / \
JR/Z

of some appropriately chosen, closed unit vector fields W along c0. The
relevant arguments are summarized in the following lemma and its corol-
lary.

Lemma 3.2 (Closed Vector Fields). Let c0: R/Z->(Mn, g) be a closed,

rectifiable curve, and let W be a closed unit vector field of class C 1 along

c 0 . Then

, UCW{Q)) < rot(JF).

Proof. Consider the solution W: [0, 1] x [0, 1] -• co*ΓM of the ordi-

nary differential equation ^ W(s, t) with initial values W{s, s) — W{s),

0 < s < 1. Evidently, s h-> W(s, 1) is a path in S""1 c Tc {0)M which

connects ^ ( 0 , 1) = U W(0) to W{\, 1) = W{\) = W(0). A straight-

forward computation shows that

and therefore <(W(0)9 U W(0)) < L(s *-+ W{s, 1)) = vol(W) as re-

quired.
Corollary 3.3. Let c0: R/Z -+ (Mn, g) be a closed, rectifiable curve.

(i) Suppose that the dimension n is even, and let W be a closed unit

vector field of class C 1 along c0. Then

ψx(cQ) <τot(W).

(ii) Suppose that n is odd, and let Wa, ae R/lnZ, be a family of closed

unit vector fields of class C 1 along c0 such that Wa^π = —Wa for
each a. Then

< sup
α€R/2πZ



PINCHING BELOW \ , INJECTIVITY RADIUS, AND CONJUGATE RADIUS 657

Proof. Because of the variational characterisation of ψx(c0) given in
(12) the corollary follows in the even dimensional case directly from the
preceding lemma.

In the odd dimensional case the minimax characterisation of ψ{(c0)
from (12) ties in nicely with an elementary degree argument, which again
reduces the claim to Lemma 3.2.

Corollary 3.4. Let c0: R/Z -> {Mn, g) be a closed, rectifiable curve in

an (odd dimensional) Riemannίan manifold, and let W be a closed unit

vector field along c0. Suppose that τo\(W) < ψ{(c0). Then there exists a

closed, parallel unit vector field w" along c0, which is unique up to sign,

and the angle between W and Mr is bounded as follows'.

(16) sin<(W(s),whs)) < S ί

s

Proof Requiring that rot(W) < ψλ{cQ), means that we are just consid-
ering odd dimensional manifolds Mn . Thus the existence and uniqueness
of the parallel unit vector field w" are evident from the Jordan canonical
form of the holonomy U .

In order to obtain inequality (16), we note that Uc extends to a par-

allel field of orthogonal endomorphisms ϋc ^ : Tc ,,M -+ Tc (j)Λf along

c0 and that each of these endomorphisms can be interpreted in exactly

the same way as U = ϋ m.. We shall consider the isosceles triangle

W(s), Wlί(s), Uc {s)W(s) in the unit sphere Sn~ι c Tc {s)M. Clearly, its

angle at Wιι(s) is > ψ{(c0), the edge W(s)9 Uc^{s)W(s) has length <

τot(W)9 and the edges W(s)9 Wιι(s) and Wιι(s), UCQ{S)W(S) have length

equal to <(W(s), w\s)). Hence inequality (16) follows upon applying
the Law of Sines from spherical geometry. q.e.d.

In fact, the first holonomy angle ψx of a closed curve c e ΩM is
even more significant when considered in the case that c itself is a closed
geodesic and that the sectional curvature of Mn is pinched just below \ .
This fact has already been observed in [20].

Proposition 3.5 (Morse Index). Let c: E/Z -> (Mn, g) be a closed

geodesic in an odd dimensional, complete Riemannian manifold with * 2

< KM, ε > 0. Suppose that c has Morse index indE(c) < 2. Then

(17) WϊΓ)L(c) < ψχ{c) < π.
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Note that the Morse index does not change when we think of c as a
curve in some space Ωĵ Λf of broken geodesies and consider the restricted
energy functional Ek instead. To put it differently, inάE{c) = ind^ (c).

Proof. The second inequality is clear by the definition of the first holon-
omy angle. For the first inequality, we observe that there exists a family
Wa, a e R/2πZ, of closed unit vector fields along c, that rotate with
constant speed ψχ (c). In a more formal way these fields can be described
by the equations

%Wa(s) = Ψι(c) • Wa+i(s)

and

WJjs) = cosα W0(s) + sina- Wπ/2(s).

Since c is parallel, we conclude that Wa(s) _L c(s) for all s. Evaluating

the index form as given in (9 ;), we see that hessE\c(Wa, Wa) < ψx{c)2 -

* ,2 L(c) . This inequality contradicts the hypothesis that indF(c) < 2,

unless (17) holds. q.e.d.

It should be understood that this proposition is most interesting, if the
closed geodesic c has length > 2π. In this special case the geometry of a
neighborhood of c appears to be fairly rigid. With just a little more effort
we could for instance show that the sectional curvatures of the planes in
c*TM that contain the tangent vector c(s) are on the average not much
larger than \ .

4. On the connected components of the sublevels of ΩΛ/

As pointed out in the introduction, the classical approach to a lower
bound for the injectivity radius of Mn is to study the connected components
of an appropriate sublevel of the energy functional. This is actually the
sublevel ΩM<2 that is determined by the conjugate radius ρc of Mn .
Let ΩM < 2 ρ 0 be the connected component of ΩΛf<2ρ that contains the
space Ω ¥ < 0 of point curves.

4.1. The^Long Homotopy Lemma. The basic results about null homo-
topic, short closed geodesies are due to Klingenberg. At first they had been
established for geodesic loops with some fixed base point [17]. We need
the version for the free loop space ΩM < 2 ρ 0 .

Lemma 4.1 (c.f. [18],[7]). Let (Mn , g) be a compact Riemannian
manifold, and let ρc denote its conjugate radius. Then the connected
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component ίlM<2ρ 0 c ΩM<2ρ does not contain any nontrivial, closed

geodesic.
The proof of either version of this lemma involves a lifting construc-

tion. In the next section we are going to modify this lifting construction
substantially in order to normalize the free homotopy t*->ct to the extent
described in Theorem 6.8. For this reason we find it convenient to include
the short proof of the preceding lemma.

Proof. The argument is by contradiction. Suppose that there exists a

nontrivial closed geodesic cQ e ΩM<2ρ 0 . By definition such a geodesic c0

is null homotopic in ΩM < 2 ρ , i. e., there exists a path c: [0, 1] —> ΩΛf<2 ,

t\-+ct, that begins at the given c0 and ends at some cχ e Ω M < 0 . Without

loss of generality we may assume that each ct: R/Z -> Mn is parametrized

proportional to the arc length. In particular, for any t e [0, 1] both the

arcs, cj[_i 0 ] and c j [ o u , are strictly shorter than ρc. Since the mapping

(18) π x e x p : Bρ TM = {{p,v)e TM \ \v\ < ρc}-+M x M

is clearly a local diffeomorphism, there exists a lift c: [—j, j] x [0, 1] —>
B TM of the mapping (s, t) ι-* (^(0) , ct(s)) under π x exp such that

6 "
In particular, the curves t •-> c ( - ^ , ί) and £ »-• c(^, ί) must coin-

cide, since by construction c(-j, 1) = ί ( j , l ) = θ € Γ,(1 0)ΛfΛ and

(c,(0) , ^ ( - i ) ) = (c,(0) , c/^)) for all t e [0, 1]. This property contra-

dicts the fact that by construction the points c(-\, 0) and c{\, 0) must

also be disjoint. q.e.d.
The Long Homotopy Lemma has two immediate consequences that are

useful in our investigation of the injectivity radius.
Corollary 4.2. Let c0 £ ΩM<2ρ 0 , and let c°, cι: [0, 1] -> ΩM < 2 ρ te

two null homotopies of c0. Then c° and cι can be connected through a

continuous family of null homotopies cτ: [0, 1] —• SlM<2ρ that is defined

for all τ e [ 0 , 1].

Proof. It is sufficient to show that the path obtained by composing the

inverse of c° with c1 can be retracted inside Ω ¥ < 2 ρ into the space

Ω M < 0 of point curves. By Morse theory the obstacle to the existence of

suchΓa retraction map is a closed geodesic γ e ΩΛ/<2ρ 0 which cannot

exist by Lemma 4.1.
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Corollary 4.3. Let (Mn, g) be a compact Riemannian manifold, and
suppose that its injectivity radius inj Mn is strictly less than its conjugate
radius ρc. Then the sublevel ΩM<2ρ consists of at least two connected
components.

Proof Consider a point p G Mn where the injectivity radius function
attains its minimal value. By hypothesis this value is strictly less than ρc,
and hence it is not hard to see (c.f. [6, Corollary 5.7]) that there exists a
closed geodesic c0 of length equal to 2injΛ/n < 2ρc through this point.

Remark 4.4. The Long Homotopy Lemma and the preceding corollary
are the crucial steps in Klingenberg's bound for the injectivity radius in
the strictly \-pinched case. The proof is indirect, and the contradiction is
obtained using the standard saddle point arguments from Morse theory. In
fact, a calculation similar to that of Proposition 3.5 shows that any closed
geodesic of length > 2ρc > 2n/V^uc has index > 2, and thus ΩM<2ρ

should be connected if nχ(Mn) = 0.
4.2. Some ingredients from Morse theory. Recall that we are working

with C°°-metrics g, and hence the energy functional E: ΩM -+ R as
well as its restrictions Ek: Ω^M —• R is smooth. However, they may
have degenerate critical points. Since the hypotheses of Theorem 1.1 con-
stitute an open condition, we could avoid these degeneracies referring to
the Bumpy Metrics Theorem due to Abraham [1]. The degenerate Morse
lemma from [12] provides a much more direct approach. Cheeger and
Gromoll [7] have based their proof of the injectivity radius estimate in the
weakly \ -pinched case on this lemma.

Our proof of Theorem 1.1 follows from the arguments in [7] fairly
closely, as far as the ingredients from Morse theory are concerned. In
particular, we shall make use of the following two lemmas:

Lemma 4.5 (c.f. [7, Lemma 2]). Let f be a smooth function on a fi-
nite dimensional differentiate manifold X, and p a possibly degenerate
critical point of index > 2 {or a regular point) with f{p) = a. Then there
exists a neighborhood N of p such that N Π X<a is (pathwise) connected
and dense in N Π X<a.

Lemma 4.6 (c.f. [7, Connectedness Lemma]). Let f be a smooth
proper function on a finite dimensional manifold X. Suppose, for some
regular value b, all critical points of f in X<b^X<a have index > 2 (but
are possibly degenerate). Let Cλ, . . . , CN be the connected components of
X<b. Then Cχ Π X<a, , CNΓ) X<a are the connected components of
X<a. In particular, if X<b is connected, so is X<a.

"We want to apply these lemmas to the finite dimensional approximation
spaces of the free loop space ΩM that have been introduced in §2.
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Proposition 4.7. Let ε > 0, and let (Mn, g) be a simply connected,

odd dimensional Riemannian manifold with sectional curvature KM be-

tween ι

 2 and 1. Then for each η > 2π(l + ε) the sublevel ΩM<η

of the free loop space is connected, and so are all its finite dimensional

approximation spaces Ω^Λ/. with k > η2/π2.

Proof By Proposition 2.3 all these spaces are homotopy equivalent.

Consider an arbitrary broken geodesic c0 e Ωj^M. , and let cχ: R/Z —•

{p0} c Mn be the point curve corresponding to the base point of Mn.

We just need to show that c0 and cx lie in the same connected component

of some Ω\M<η where A: is a multiple of k.

Since the manifold Mn is simply connected, there exists a piecewise

differentiable map c: M/Z x [0, 1] -• Mn such that c0 = c(., 0) and

Cj = c(., 1). We pick ή > 0 and k e k N so large that max 0 < / < 1 E(ct) <

\ή2 < jkπ2. This ensures that each curve cχ = c(., t) is contained in

ΩM<fj. Since Ωj^M<^ is contained in the fixed point set of the retrac-

tion map t*-* rp. t used in the proof of Proposition 2.3, we conclude that

c0 and Cj lie in the same connected component of ίl\M<fι c ΩA/<..

By Proposition 3.5 all closed geodesies in Mn that have length > η >

2π(l + ε) have Morse index > 2, and therefore we can apply the Con-

nectedness Lemma to deduce that c0 and cχ are in fact contained in the

same connected component of the space Ω^M< . q.e.d.

We shall find it convenient to set things up for an indirect proof of
Theorem 1.1. For this purpose we are interested in the properties of

(19) £, :=
1

ΩM nΩM

is not connectedcted J

By Proposition 2.3 this set can be characterized in terms of the finite
dimensional approximation spaces of ΩΛf as follows:

(20) fi.nΓO.VJkπ) = lη>0 " ^ naΐM<i.o } , \/k e N.1 L ' \ is not connected J

Note that the Ω^Λf< 0 that occur in this formula are compact subsets of

the finite dimensional manifold Ω^M. Since (ΩjjM, gk) is not complete,

compactness would not necessarily hold, if η were greater than \ίkπ.
Proposition 4.8. Let ε > 0, and let (Mn, g) be a simply connected,

odd dimensional Riemannian manifold with ι

 2 < KM < 1. Suppose
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that its injectivity radius inj Mn is strictly less than its conjugate radius
ρc. Then £χ is a nonempty, finite set that is contained in the interval
[2ρc, 2π(l + ε)]. In particular, ρc < π(l + ε).

Before we give the proof of this proposition, let us indicate why infor-
mation about the set £x is useful.

Lemma 4.9. Let ηχ e £x, and let (Mn, g) be a Riemannian manifold

with sectional curvature KM < 1. Then for any k > 4(1 + ε)2 the closure

Ω^M<η0 is contained in Ωπ

kM<η 0 . Moreover, its boundary with respect

to the relative topology of Ωπ

kM<η 0 is nonempty, and it consists of closed

geodesies c0 with length L(c0) = ηx and Morse index ind£(c0) < 2.
Proof of Proposition 4.8. Let k be any integer that is greater than the

maximum of 4(1 +ε) 2 and 4ρ2/π2 , and set £χ k := £x Π [0, Vkπ). It is
clearly sufficient to show that all these sets £χ k are nonempty, discrete
subsets of the interval [2ρc, 2π(l + ε)].

So we can use the characterization of £χ k given in (20), and hence
the connectedness lemma quoted above can be applied. We conclude that
for any η e £x k the number \η2 is a critical value of Ek such that

Ek

ι(\η2) contains a closed geodesic of index < 2.
Since the critical values of proper C°° -functions are discrete, we see

that £χ k is indeed a discrete subset of [0, Vkπ). Using the information

about the index obtained in Proposition 3.5, we conclude that 2π(l + ε)

is an upper bound for £j k . The Long Homotopy Lemma on the other

hand states that the domain Ωπ

kM<lρ 0 does not contain any nontrivial,

closed geodesic at all, and therefore 2ρc is in fact a lower bound for £χ.

It remains to show that £χ k is nonempty. By Proposition 4.7 the sets

Ωπ

kMκ , η G [2π(l + ε), \fkπ), are connected. Since the union of any

family of nested connected sets is connected, we conclude that the do-

mains Ωn

kM< where η varies in (2π(l 4- ε), Vkπ), are also connected.

However, by Corollary 4.3 the set Ωπ

kM<lρ is not connected. Hence

ρc < π(l + ε), and the number

ηχ := supjί7 e [0, Vkπ) Ωπ

kM is not connected!

is contained in the interval [2ρc, 2π(l + ε)]. Evidently,

k <η. II k <η

is connected, and thus we conclude that indeed ηχ e Zx k
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Proof of Lemma 4.9. It follows directly from the definition of £χ that

the open set Ωπ

kM<η n Ωπ

kM<η 0 \ Ωπ

kM<η 0 is nonempty. Clearly,

this domain does not contain any adherence point of Ωπ

kM<η 0 . Since

ΩlM< Q is connected, we conclude that the closure of Ωn

kM<η 0 has a

nonempty boundary with respect to the topology of Ωπ

kM<η 0 . The prop-

erties stated for the elements contained in this boundary follow directly

from Lemma 4.5.

5. Special homotopies

In this section we put things together to perform a major step in the
proof of Theorem 1.1. We have already indicated that we want to pursue
an indirect approach. The key point is that in Proposition 5.3 we shall
exhibit a broken geodesic c0 e Ω*/2M<2π 0 with very special properties.
The proof of Theorem 1.1 can then be accomplished in the next section
showing that a curve with these properties simply does not exist in Mn .
In order to construct the broken geodesic c0, we shall employ two quite
special homotopies in the free loop space ΩM or rather in the finite di-
mensional approximation space Ωπ

5

l2M.

Proposition 5.1 (First Special Homotopy). Let ε > 0, and let {Mn , g)
be a simply connected, odd dimensional Riemannian manifold such that

A/Λ

x * < KM < 1. Suppose that its injectivity radius injMn is strictly
4(1 +ε) m j

less than its conjugate radius ρc. Then for any ζ > 0, k > 4(1 + ε) ,
and any ^ € ( ^ ( l + ε ) , § ] there exist a piecewise differentiate homotopy
c: [0, T] -• Ω[M, 11-> ct, and a partition 0 = t0 < tx < < t3m = T
such that the following hold:

(i) Ek(cto)>Ek(ctι)>- ->Ek(cτ)=O,

(ii) each ct , v = 0 mod 3, is a closed geodesic in Mn or a point curve,

(iii) L(c0) = inf £j < 2π(l + ε) where £x is as in (19),

(iv) ind^(c o )< 1,

(v) the segments c\[t t ] where I / Ξ O , 2 mod 3 are gk-geodesics in

the space (Ωέ

kM 9 gk) that are shorter than ζ,

(vi) the segments c\[t t , where v = 1 mod 3 are integral curves of

the vector field - g r a d ^ e C°° {TΩ[M),

(vii) ψ{ (ct) > Ϊ ^ - f ζ for any te[O,t{],

(viii) for any te[tχ9 T] the curve ct lies in Ωt

kM<ΪDSZ 0 , and, moreover,
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| |grad£JJ < 4k2ζ + 4v^(l + ε) ^4π 2 ( l + ε)2 - 2Ek{ct).

We think of c as an approximate gradient line. Indeed, if ζ is tiny,
the segments of c that are ^-geodesies in the space Ω^M have for
instance almost no impact on the bound for Hgradis^ || given in (viii).
We merely use these segments in order to avoid the more subtle discussion
of the behavior of Morse trajectories in the neighborhood of a (possibly
degenerate) critical point.

Proof. By hypothesis any closed geodesic cQ e Ωπ

kM<2π^έ) *s subdi-

vided into so many segments that it actually lies in Ω^Λf<2π(1+ε). More-

over, we may assume that ζ2 < π(l - f ) .
The first step is to argue that by decreasing ζ if necessary, it is possible

to assume in addition that

(a) the distance tube of radius ζ around the set of critical points of Ek

in Ωέ

kM<2π^+, i s relatively compact in the domain Ωέ

kM c Ωπ

kM

(b) for any pair of distinct critical values \η2, \η2 < 2π(l + ε) the
distance between the preimages Ek

ι(jη2) and Ek

x{\η2) is greater
than 2ζ.

In fact, the first statement follows directly from Lemma 2.2, and the second
one is a consequence of the compactness of Ωπ

kM<2,χjtε) as asserted in
Proposition 2.3.

The second step is to construct a piecewise differentiable homotopy c

satisfying conditions (i)-(vi). By Proposition 4.8 the set £ t introduced

in (19) is nonempty and bounded from above by 2π(l + ε). We set η{ :=

min£j. By Lemma 4.9 there exists a closed geodesic c0 e Ω£

kM<η c

ζfkM<η such that L(c0) = ηχ, mάE (c0) < 2, and such that it can be

approximated by elements of Ω£,M^ n . We pick a broken geodesic ct e

Ωέ

kM<η 0 such that dist(c0, ct ) < ζ, and define c\[Q t, to be a minimal

gk-geodesic in the space Ω£

kM from c0 to ct . The remaining segments

of the homotopy c will be constructed inductively.
Suppose that we already know c| f0 t, for some v = 1 mod 3, and

suppose that ct € Ωe

kM<η 0 . At ct we start an integral curve of the
vector field -gradi^. Since Ek is monotonically decreasing along such
an integral curve and yet bounded from below, it must eventually reach a
value tv+x > tv such that
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is at least as small as specified in (22), and

• there exists a critical point ct of Eh with distance distfc, , ct )

< ζ and energy Ek(ct ) <Ek(ct ) .

By property (b) the curve ct lies in Ωf M. n , and by property (a) it

is possible to connect ct to c, by a ^-geodesic that is contained in

Ω^Λf<?/ 0 . In this way we extend the definition of c from [0, tu] to the

interval'[O,*^].

If ct turns out to be a point curve, we stop and set T := t , 0. Other-

wise, the minimality of r\λ implies that ct can be approximated by bro-
1 'i/+2

ken geodesies which are strictly shorter. In particular, there exists a curve
c t £ Ω έ

k M < r i 0 s u c h t h a t E k ( c t ) < E k ( c t ) a n d d i s t ( c , , c t ) < ζ .
Using the g, -geodesic from ct to ct , we extend the homotopy c con-

κ Lv+2 Ί/+3

structed so far to the interval [0, tu+3], and the induction step is complete.
The recursive construction of c that we have set up by now terminates,

since there are only finitely many critical values of Ek below \r\χ .
The third step is to verify properties (vii) and (viii) for this particular

path c.
Using Proposition 3.5 we deduce from property (iv) that the first holon-

omy angle of the closed geodesic c0 is > ^ . We want to use the conti-
nuity properties of ψx as established in Proposition 3.1. Since KM < 1,
a standard comparison argument shows that

k-\ , k-\ x 1/2

where for each i e {0, , k - 1} the number L{ denotes the length of
the geodesic c{si, .): [0, tλ ] —• Mn . To finish the proof of (vii), we merely
need to combine the preceding estimates.

It follows directly from (i), (vi), and (b) that the curve ct lies in

Ωi

kM< 0 for any te[tx,T] Moreover, the upper bound for the Hessian

of Ek established in Proposition 2.6 implies that

(21) Ek(ct) < Ek{ct) + \k2ζ2

for te \tv, tv+λ\, v = 0, 2 mod 3. Since ||gradf^|cJ| vanishes at t = tv

or t = t x, Proposition 2.6 enables us to compute for any t as above that
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||grad£fcy| < C.max{f(^(^) + i/c2C2) , 4k2}

{ 2 ^ 2 2 fc2} < 4k2ζ.

The remaining segments of c are integral curves of -gradEk . They

are contained in Ωέ

kM c Ω [ M < 2 π ( 1 + e ) , and the bound for HgradisJ^ ||

provided by Proposition 2.8 settles the proof of (viii). q.e.d.
Recall that the total absolute curvature κ(c) of a broken geodesic c is

just the sum of its exterior angles 0 (c), 0 < i < k.
Lemma 5.2. Let (Mn, g) be a complete Riemannian manifold with

sectional curvature KM < 1. Let fc > 3, 0 < (fc—1)A < -^, and set
£ := 2π(i+Λ). Then χhe toχaι absolute curvature κ(c) of any broken

geodesic c e Ωe

kM that has energy E(c) > 2π 2(l - ^ ) is bounded as
follows:

κ(c) <

Proof Note that minlc'^)! =min{fc^0, •• , k£k_χ} where I. denotes
the length of the segment cl s ,. By hypothesis these numbers are

bounded by ψ(l + λ), and hence a direct computation shows that

k-\
2 < 2k-Ek{c) = Σikίf

i=0

' ^ ) ! 2 ^ ^ - l ) max|c'(ty)|2
n ' 56R/Z1 '

< min|c/(.si)|2 + 4π2

Finally, we conclude that

> 2π-J&-2(k-l)λ-(k-l)λ2 > \n ,

and the claimed bound for κ(c) follows from Proposition 2.5. q.e.d.
The next result is the first major step in the proof of Theorem I. I. It will

be necessary to restrict to broken geodesies with a small, a priori bounded
number of corners. We are going to work in the space Ω*/2M.

Proposition 5.3. Let 0 < ε < lθ~ 6 , and let (Mn, g) be a simply con-
nected, odd dimensional Riemannian manifold such that x

 2 < KM < I .
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Suppose that its injectivity radius inj Mn is strictly less than its conjugate
radius ρc. Then there exists a broken geodesic cQ £ Ω*/2M<2π Q such
that its first holonomy angle and its total absolute curvature are bounded as
follows:

W Ψx(cQ) > f ,
(ii) κ(cQ) < \.

In Theorem 6.1 in the next section we shall see that such a curve c0

does not exist if 0 < KM < 1. This is the contradiction that is necessary
to settle the indirect proof of Theorem 1.1.

Proof. The inequalities which we use to estimate the total absolute cur-
vature of the broken geodesic c0 which we are going to construct require
that the order of magnitude of ε is as small as 10~6 . A number of other
inequalities depend on ε as well; however, for these estimates it would be
sufficient to have ε < ^ .

Let c denote the piecewise differentiate homotopy that is obtained by
specializing Proposition 5.1 to the case that k := 5, t := ^f{\ + 2ε) <
| | π , and ζ := -^Vs. Then 5.1(vii) implies that

(23) ΨM > τ^-f^ C > ψ , WeKUj.

Consider τ0 := inf{* e [tx, t] | Es(ct) < 2TΓ2(1 - ^ ) } . By (21) the curve
ct has energy E5(ct) > 2π2 - 12.5ζ2 > 1.99π, and hence E5(cτ ) >
1.99π, no matter whether τ0 > t{ or τ0 = tλ. Thus Lemma 5.2 applies,
and the gradient bound in Proposition 5.1(viii) yields:

(24) ||grad£5|^|| < 100ζ + 8π^π(l + ε)J

< 50 y/2ε < ^

2ε + ε2

and

for all t £ [tχ, τ 0 ] . If ψχ (cτ ) > f , then we may set c0 := cτ . By the very

definition of £j this curve lies in the domain Ω£

5M<2π0 c ^5M<iniSi 0 ,

and we are done.
Otherwise, tx < τ 0 , and by an intermediate value argument there exists

some τχ e (tχ, τ0) with Ψx{cτ) = f. Note that κ(cτ^) and ||grad£5|^ ||
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FIGURE 1. Special homotopies

are bounded as in (24). If E{cτ) < 2π2 we set c0 := cτ , and again the

proof is finished referring to the definition of £{.

It remains to handle the case that E(cT) > 2π2 . In this case we want

to use the curve cτ e Ω5^ < i n f £ 0

 c Ω52Λ^<inf£ ,o a s i n i t i a l P o i n t f°Γ

another homotopy c: [0, T] -> Ω5/ 2M< i n f £ 0 , which is better adapted to

the geometry of Ωj/2AΓ. The basic idea is to work with a g^-geodesic c in

the space Ωπ

5

/2M such that hessi?5|e is quite negative on the initial vec-

tor §-tct\t=0. The details of this construction are given in Proposition 5.4

below. The interplay between the two homotopies viewed as curves in the

free loop space is illustrated in Figure 1.
Here we are dealing with the case that k = 5. The upper bound for

ε implies that T := ̂  < jm+ε) > a n c * ^ e n c e Proposition 5.4(ii), (v), and
inequality (24) yield

Ψx{et)>% and | |grad£ 5 y < ^-h 75 / < \

for 0 <t < T. Moreover, by Proposition 5.4(iii) we have E5(cf) < 2π2 .

Since E5 (c0) > 2π2, there must also exist some τ2 e [0, T) such that

1.99π2 < E5{cτ ) < 2π2. Hence Lemma 5.2 is applicable, and the total

absolute curvature K (cτ ) is bounded by

*(c l 2 ) < < i
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as claimed. Since c0 e Ω5/2Λf<inf 2 0 , we deduce from Proposition 5.4(iv)

that cτ G Ω*/2M<in{ £ 0 as well, and we conclude the proof setting cQ :=

c v

 2q.e.d.

In order to pinpoint the places where the bound on the number k of
corners enters, we shall give the estimates for the second special homotopy
for generic k e N again. Wherever possible, we provide bounds that are
stable when increasing k.

Proposition 5.4 (Second Special Homotopy). Let ε > 0, Tε := 24(1* ,

k e N, and suppose that i := ψ(l + 2ε) < ffπ. Let (Mn, g) be a

compact Riemannian manifold with sectional curvature 1

 2 < KM < 1,

and let c0 e Ωfc^<2π(i+ε) be a broken geodesic with first holonomy angle

Ψι(O) Ί
Then there exists a gk-geodesic c: [0, Tε] —> Ω%/2M, t \-> ct, which

begins at the given c0, and which has the following properties:

(i) ψ) := L(ct\lSiSJ < (*,«» + ft ί)(l + <2) < f >

(ii) | ^ i ( C / ) _ | |

If, moreover, the total absolute curvature κ(c0) is bounded by ^ , then the
following estimates hold in addition:

Ek(c,)<

(iv) ίtEk(ct) ^ °> Provided that Ek(ct) > τt2(l + e)2,

(v) ||grad£JcJ| < Hgrad^JI + lS^, ifε < £ .

Remarks 5.5. a) The estimates (ii) and (v) control how much the
properties of ct deviate from those of c0, and they are uniform in ε, at
least as long as ε is small. In the proof of Proposition 5.3 it has therefore
beer possible to make these deviations as small as necessary by restricting
t to a smaller interval.

b) Inequality (iii) implies that, no matter how small the parameter t > 0

is, one can guarantee that Ek{ct) < 2π2 , if one picks ε sufficiently small.

c) It seems inevitable that the bound for grad2?Jc gets worse when k

increases.
The #£-geodesic c: [0, Tε] -• Ωπ

k

/2M is constructed in a straightfor-
ward manner. The hypothesis that ψ{(cQ) = f means that there exist
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closed, rotating unit vector fields Wa along cQ such that

and

Wa(s) - cosα W0{s) + sinα Wπ/2(s).

Shifting a e R/2πZ if necessary, we may assume that gk(βχadEk, WQ)\C

= 0, which is in a sense the worst possible case. Now the idea is to require
that

(25) ct{st) = exp c ( 5 ) (ί H^0(^)), Vi e Z/fcZ

Proof, (i) Clearly, the first issue is to show that formula (25) defines
indeed a map c: [0, Te] -+ Ωπ

kM. Since π x exp: BπTM -• M x M is a
local diffeomorphism of the ball bundle in TM onto a neighborhood of
the diagonal in Mn , we could apply the usual lifting arguments, provided
we knew inequality (i) in advance.

Note that by hypothesis ^(0) < I < \ . So our plan is to employ a
continuity argument. For this purpose it is sufficient to prove (i) for the
largest interval Ie c [0, Te) on which we already know about the existence
o f the m a p t \-> cte Ω^M.

For this purpose we shall consider in addition the unit vector field W
along c: R/Z x /e -+ Mn that is defined by

By the first variation formula we see that

( 2 7 ) ίMO =
<

where

It is straightforward to compute the derivative of this function:

ί,β,{t) < P+[\%%W(s,t)\dS

(28)

< f'+'\R(ct,c't)W\ds < \f'*l\cthc't\ds.
JS; JS:
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The construction of c asserts that |c,(^ )| = 1. Therefore the upper cur-

vature bound for Mn implies that the Jacobi field ct along c,L c Ί is

controlled by

(29)

and hence

(30) ζM \ct A c't\ ds < Jζ = * g $ */,(,) do < 2 . tan | W

Combining this inequality with (28), we get that - ^ ( 0 < f tan \l.{t). In
order to integrate this differential inequality, we introduce the nondecreas-
ing functions ί.(t) := max{^.(τ) | 0 < τ < t} . Since we have initial values

co) = Ίk ' w e c o n c l u d e t h a t

<

If we restrict our considerations to the interval Ir

e := {t e Iε \ ift) < f } ,
we can simplify the right-hand side of the preceding differential inequality,
and obtain

itψ) < W < ft + ̂ ' ^O

This inequality can be integrated explicitly in consequence of /((0) =
£,.(0):

Here we have simplified the resulting formula using the fact that the inte-

grand on the right-hand side of the first line is bounded by 1. Moreover,

we have used the inequality exp(^/ 2) < 1 + t2, which holds at least for

all ί e [ 0 , j ) . In this way we have proved (i) for all t e l'ε, and the

standard continuity argument implies that l'e = Ie. Referring to the conti-

nuity argument once more, we conclude that eventually Ie = [0, Te), and

therefore c is indeed defined on the closure of this interval.
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(ii) This inequality is an easy consequence of what has already been
established. Using (30) and (i), one computes that

A i e & ( ( j ) [ [S'+(c([si9sM]x[O,t]j) = [ [S'+l\cτΛcτ\dsdτ
v ' J O Jsi

Taking the sum over all k segments of ct, yields that

(31) Area(c(R/Zx[0,/])) < £L(c0) . ί(l + $ t1) + t\\ + \ t2).

Since L(cQ) < 2π(l + ε), inequality (ii) follows from Proposition 3.1.
(iii), (iv) Here the idea is to set up an appropriate system of differ-

ential inequalities, which relies on a negative pointwise upper bound for
JJE^C^ along the initial segment of the deformation t »-> ct. At t = 0
this bound can be computed explicitly. In order to obtain such a bound
at some t > 0, we cannot refer to a modulus of continuity of hess Ek ,
since bounds for the covariant derivative of the curvature tensor are not
at our disposal. We avoid this problem by using a pointwise upper bound
for jiEk(ct) which is based on the /^-seminorm of the vector field
W{., t) and on the total absolute curvature of the broken geodesic ct it-
self. The amount by which the //^-seminorm of ίV(., t) differs from the
/^-seminorm of Wo = W(., 0) can be controlled—just like the path de-
pendence of parallel transport—in terms of a two-sided curvature bound
and of an upper bound for the area of the surface c: R/Z x [0, t] —• Mn .

Recall that t ι-> ct e Ωl/2M is a g^-geodesic. Moreover, ct is a bro-
ken Jacobi field along ct, and it coincides with the unit vector field W
constructed in (26) at all k corners c r(^). Hence

(32)

$Ek{ct) = hessEk(ct,ct)

[ \
R/Z
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where

/R/Z

We claim that

(33) &h#{t) <

(34) Ji9#(t) < 2(ϊTi) M 0 > M ° ) < πΛ/2.sinιc(c0).

Let us postpone the proofs of these formulas. We shall explain first
how (iii) and (iv) follow from (32)-(34). In fact, it is evident that in-
equality (iii) holds at t = 0. Moreover, its right-hand side is < 2π2(l + ε)2

for any t e (0, Tε]. Referring to the standard continuity argument, it is
therefore justified to evaluate the differential inequalities (32)-(34) assum-
ing that Ek(ct) < 2π2(l 4- ε) 2, even though we are still in the process of
proving (iii). Thus we conclude that

(33')

(34')

and therefore (32) implies that

(35)

for 0 < t < ΰijϊΓ) By hypothesis Ek(c0) < 2π2(l + ε)2 and j-t Ek{ct)\t=Q

= 0. Moreover, Tε is much smaller than ^-(1 + e), and hence the Sturm

Comparison Theorem yields that j-tEk(ct) < 0, as long as Ek(ct) > π2(l +

ε) 2, and that

Ek{ct)-π2{\+εf < π2

for all t E [0, TΛ. Hence inequalities (iii) and (iv).
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It remains to verify (33) and (34). A straightforward calculation shows
that

d (

\R(ct,ct)W(s,t)\2ds)
1/2

The integrand on the last line can be evaluated by means of (29). Thus

k-l - i v 1/2

as required. In order to determine the initial value h^{ϋ), we note that
WQ = W(., 0) represents the first holonomy angle ^ ( c 0 ) , and the argu-
ment for (33) is complete.

For the proof of (34) we note that j-tW vanishes identically. Hence

1/2
ds)

The estimate for the initial value ^ ( 0 ) is again based on the fact that
the unit vector field WQ = W{.9 0) represents ψx(c0). This means that

<(W(s,0),c'0(s)) > $-<(wHs),c'0(s)). Since ψ{(co) = f, Corol-
lary 3.4 implies that

cos2<(W(s,0),c'0(s)) < sin2<(W l l(s), c'0{s)) < 2 sin2κ(c0),

so that

s i n 2
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(v) Clearly

Ji\\vadEk\et\\ =hessEk\c(cn yfggfo) < | |hess^ |^έ t \\.

It remains to show that the right-hand side is bounded by 15k. Proposi-

tion 2.6 asserts that α < hess£J c < b where α = -%Ek(ct) and b = 4k2.

Thus it is straightforward to show that Hhessls^ - \{α + b) Id| | <

j(b - α), and hence

|| hess^ | C f cf <(α + b) hess£^(<:,, ct) - αb . gk{ct, έt).

By construction gk(ct,ct) = I. Since /: > 5 and ε < ^ , the bound for

£ Λ | from (iii) yields that α + b = 4k2- %Ek\c > 100 - 16π(l + ε)2 > 0.

Hence we can use the bound for j~iEk\c = hessEk(c t, ct) from (35) to

conclude that

C; cf < (4k2 - \Ek(ct)) - (\n2 - 2

- ^ - 4π) Ek(ct)

Here the coefficients of Ek(ct) is positive, and hence we can employ the

bound for Ek\c from (iii) to estimate the right-hand side. Upon collecting

terms we obtain

c ctf < 64k2π(l + ε)2 - 2k2π2 + 8π 3(l + ε)2

where the last two inequalities hold, since k > 5 and ε < ^ .

6. Shortly null homotopic curves with small total absolute curvature

In this section the central theme is to obtain some relationship between
the holonomy and the total absolute curvature of a closed, piecewise regular
C2-curve c0: )R/Z —• (Mn, g) in some Riemannian manifold with 0 <
KM < 1, provided that the curve under consideration is strictly shorter
than 2π and is null homotopic in this class of curves.

Recall that the total absolute curvature κ(c0) of a closed, piecewise

regular C2-curve c 0 : E/Z -> Mn is given by
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(36) κ(cQ) := / \k (s)\.\c'0(s)\ds + £ 0, (co),

where kc (s) := ICQC?)!"1 j-s -^r- denotes the curvature vector of c0, and

the sum is taken over the exterior angles at all the corners at which c0 fails

to be of class C 2

Theorem 6.1. Let c0: R/Z —> (Mn , g) be a piecewise regular C -curve

in a compact Riemannian manifold with 0 < * 2 < ^ M < 1. Suppose

that L(c0) < 2π and that κ(cQ) < | . Suppose also that there exists a free
homotopy from c0 to a point curve which consists entirely of curves ct of
length strictly less than 2π. Then the first holonomy angle of c0 can be
estimated as follows:

rκ(c0) forn = 0(2),

W) forn=l{2).

The preceding estimate asserts in particular that ψx(c0) < f , provided
that κ(c0) < η . These are the numerical values which contradict Propo-
sition 5.3 and are therefore used to conclude the proof of Theorem 1.1.

It seems just fair to point out that the even dimensional case is easy. It
is the odd dimensional case, which requires all the elaborate constructions
in the subsequent subsections, and is only settled in Proposition 6.16 at
the end of the entire section.

6.1. Basic reduction steps. The first observation is that it suffices to
prove Theorem 6.1 for regular closed C2-curves. The apparently more
general version for just piecewise regular curves c0 is then a consequence
of the following well-known approximation result.

Lemma 6.2. Let η>0, and let c0: R/Z -+ (Mn, g) be a closed, piece-

wise regular C2-curve. Then there exists an approximating sequence of

closed, regular C2-curves cμ: R/Z -+ (Mn, g) such that

(i) d i s t ^ ί ^ , c0) = sup dMn (cμ{s), co(s)) —^ 0,

(ii) KmL(O = L(c0),

Moreover, for any sufficiently large μ, it is clear that the minimizing geo-
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desks t •-•• cμ{s, t) from cμ(s, 0) := cμ(s) to cμ(s, 1) := co(s) are uniquely

determined, and they define a piecewise regular C2-map cμ: R/Z x [0, 1]

-> (M", g) such that

(iv)

L(s~cμ(s,t)) < (l + η).$(L(cμ) + L(c0)),

(v) Area^) < (1 + *) £(L(cμ) + L(c0)) d i β t ^ , cQ) — 0,

(vi)

Here P : Tc ,Q,M —> Tc ,Q,M denotes the parallel transport along the

geodesic segment t ^ cμ{0, ή, and again d^{n) stands for the angle dis-

tance on the orthogonal group as defined in (14).
The precise meaning of the condition that μ be large can be figured out

in terms of d i s t ^ c ^ , c0) and the local geometry of Mn in a neighborhood
of c 0 . In fact, the properties (iv)-(vi) follow from (i) by the standard
comparison arguments. The standard approach to constructing a sequence
c which obeys conditions (i)-(iii) is to round off the corners of c0 by an
explicit local formula.

Note that for any C2-curve c0 the total absolute rotation of its unit
1 (\

tangent field to(.s) := ψ^- is just the total absolute curvature of the curve

c0 itself:

(38) rot(t0) =

Hence in the even dimensional case Theorem 6.1 follows right away from
Corollary 3.3(i). In the odd dimensional case we want to apply Corol-
lary 3.3(ii). For this purpose we need to construct an appropriate family
(^α/α€R/2πz °^ c l ° s e d un^ vector fields with small total absolute rotation.
Extending the unit tangent field t0 of c0 to such a family is precisely the
nontrivial step in the proof of Theorem 6.1.

The idea is to span c0 by some ruled surface with a conical singularity,
which is approximately an immersed, totally geodesic hemisphere of cur-
vature « 1. Then a natural candidate for Wa can be defined in terms of
the unit tangent field t0 and the gradient of the intrinsic distance to the
center of this hemisphere.
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The construction of this ruled surface depends crucially on the hypoth-
esis that c0 is null homotopic in ΩΛ/<2π. It is based on an elaborate
lifting argument which makes use of circumscribed balls to define the
center of a subset C contained in some local unwrappings (Λf, g) :=
(BπTpM,eχP;g) ofM".

So our plan is to recall some basic facts about such circumscribed balls in
§6.2, to continue with the details of the lifting construction in §6.3, and to
study the geometry of the ruled surface in §6.4. Proposition 6.16 eventually
provides the rigorous estimates for the family (Wα)α€R/2πz °^ c l ° s e d u n i t
vector fields along c0. It is only then that the proof of Theorem 6.1 is
complete.

6.2. Circumscribed balls of compact subsets C C M. By construc-
tion the space (M, g) is simply connected and has curvature K^ < 1.
However, it is not complete. In order to deal with this problem, we shall
assume that the subset C is contained in the ball B ( 0 , f ) c M . Then
all the necessary constructions can be done inside some compact subset of
M .

In fact, all balls B(p, ρ) c M with 0 < ρ < § and p e B{0, π - ρ)
have compact closure and are strongly convex. This means that for any
two points pχ, p2 in such a ball B(p, ρ) there exists a unique geodesic
γ: [0, 1] -> B(p, ρ) such that γ(0) = pχ and y{\) =p2. It is known that
γ has minimal length in the class of all those curves which connect pχ to
p2 and stay inside the ball B(p, ρ ) .

We define the radius rad(C) of a closed subset C c 5(0, f) c M as
the infimum of some function rad c : M —• [0, oo) where

(39) radc(<?) := inf{ρ | C c B(q, ρ)}.

Evidently, radc(0) < f , and by the triangle inequality radc(<3f) > f at all
points q eM\B(0,§ + rad c (0)). Thus

rad(C) = min{radc(<?) | q e M) ,

and the set {q e M \ rad c(^) = rad(C)} of all points where this minimum
is achieved is a compact subset in M. Evidently rad is continuous with
respect to the Hausdorff distance:

\md(C{)-md(C2)\ < sup|radc (q) - radc (q)\
(40) *€XJr ' 2

< di*tH(Cl9C2).
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The fundamental ingredient in discussing the set of the points q € M
where radc is minimal any further is'the following lemma.

Lemma 6.3. Let p x , p 2 € 5 ( 0 , f ) c M, and let ρχ, ρ2 e ( 0 , § ) .
Suppose that the distance d := d^(px, p2) satisfies the inequality

(41) 2 sinV) >
(41) sin( 4 ) > 1

Then

, ρχ) n B(p2, ρ2)) < minί^j , ρ2}.

Proof. By hypothesis d < π, and hence cos 2 ( |) > \. Using inequal-
ity (41), we conclude that sin2(f) > 2sin2(^) > sin 2 | i(ρj - ρ 2 ) | , and
therefore all three triangle inequalities hold:

(42) \Qi-Q2\ < d < βι + 02

Thus we can define a number ρ e (0, f) by means of

(43) cosρ cos(f) =

Since

cos(min{ρ15 ρ2}) =

= cosρ cos(f)

. (1 + tan\±(ρχ - ρ2)\. tan \{ρχ + ρ2)),

inequality (41) implies that the number ρ defined in (43) is in fact strictly
less than min{ρj, ρ2} .

We consider the unique geodesic γ: [0, 1] —• B(0, f) c M connecting
P\ — 7(0) t 0 P2 — ?(1) 9 a n d introduce its midpoint fh := y{\). By the
preceding discussion it is sufficient to show that

(44) d^(m, q) < g , V<? € U ^ , ρx) Π 5(p 2 , ρ2).

We shall first establish this claim in the special case that K^ = 1. This
means that M is a punctured sphere. Given any point q e
B(P\ > £?i) Π B(p2, ρ2), we apply the Law of Cosines to the hinges pχfnq
and qfnp2 as depicted in Figure 2 (next page). Then we obtain

(45) cosρ^ < cosd(pμ,q) = cos(f)cosd(m, q)

+ cos φ sin( \) sin rf(m, q)
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Pi=γ(0)

FIGURE 2. Configuration of the hinges

for μ = 1, 2. Here φχ and φ2 stand for the angle of the first and second
hinge, respectively. Since φχ + φ2 = π, the two inequalities add up to

cosρχ + cosρ2 < 2 cos(^) cosdf(ra, q) ,

which indeed proves inequality (44).
In order to handle the generic case, we observe that K^ < 1 and that

the triangles pχfhq and qmp2 can both be spanned by ruled surfaces.
Hence the Alexandrov-Toponogov Triangle Comparison Theorem can be
applied to both the hinges, pχmq and qfhp2, and we can proceed with
inequalities (46) as above. q.e.d.

Proposition 6.4. The function rad c : M —> [0, oo) achieves its mini-
mum rad(C) at precisely one point m(C) e M, which we shall call the
center of C. Moreover, m(C) depends locally Holder continuously on the
closed set C. In fact, for any ρ e (0, f) and any two closed subsets
Cj, C2 e 5(0, ρ) c M the distance of their centers is bounded as follows:

(46)

Λ / tanρ tan i d i s t ^ C , , C,)
<4arctanW 2 HK { v

(C 1 , C2)

Proof To demonstrate the uniqueness of the minimum, we set ρ{ :=
ρ2 := rad(C) and let pχ, p2 be two points where the minimum is achieved.
With these choices the right-hand side of (41) vanishes, and therefore
Lemma 6.3 contradicts the definition of rad(C), unless px = p2.

Moreover, it is straightforward to compute (46) from (40) and (41).
This proves local Holder continuity of the map C »-* rad(C) as claimed,
q.e.d.

In our applications the closed subset C c B(0, \) is always the image
of some closed curve ct: R/Z —• 5(0, ξ ) . One of the standard proofs of
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the Fenchel inequality for C2-curves in Rn makes use of the following
property of closed curves in the standard sphere S"" 1 .

Lemma 6.5. Let c: R/Z -> Sn~ι be a closed curve of length L(c) < 2π.
Then c is contained in a hemisphere.

Here we need a more general and quantitatively more precise statement.
Lemma 6.6. Let ct: R/Z -• 2?(0, §) c M be a closed curve of length

L(ct) < 2π. Then the radius of the smallest circumscribed ball is bounded
by

rad(c,(R/Z)) < \L(ct).

Proof Suppose that the curve ct is parametrized proportional to the
arc length, and let γ: [0, 1] -> 5(0, f) be the unique geodesic from pχ :=
ct(0) to p2 := ct{\). Note that d := d^(px, p2) < \L(ct). Again we let
m := y(\) be the midpoint of γ. We consider an arbitrary point q := ct(s)
and set ρχ := d^(pχ, q) and ρ2 :- d^(p2, q). Clearly,

\Qχ-Q2\ < d < ρχ + ρ2 < jL(ct) ,

and as in the proof of Lemma 6.3 we compute that

cosd(m,q)> /
C0S(2J

Q2) > \L(ct)

6.3. Spanning shortly null homotopic curves by ruled surfaces. Now for
the null homotopies contained in ΩM<2π we are in a position to describe
the lifting construction which we have mentioned at the beginning of this
section. The central result of this subsection is stated in Theorem 6.8
below.

Lemma 6.7. Suppose that (Mn, g) is complete and has curvature KM

< 1, and let c0 € ΩΛ/<2π 0 . Then for any null homotopy c: [0, 1] ->
ΩM < 2 π 0 , t\-+ct, which begins at the given curve cQ there exists a uniquely
determined pair (mc, c) consisting of a path mc: [0, 1] —> Mn and a lift
c: R/Z x [0, 1] -* Bπ/2TM of the mapping (s,t)*-+ (mc(t), ct(s)) under
the local diffeomorphism π x exp: BπTM -* M x M such that

(i) {wc(l)} = c1(R/Z) ,

(ii) c(s, l) = 0eTm {t)M for all s, and

(iii) 0eBπTm {t)M is the center of the lifted curve ct = c(., 0 .



682 UWE ABRESCH & WOLFGANG T. MEYER

We postpone the proof of the lemma for a moment, and recall that by
Corollary 4.2 any two null homotopies of c0 inside ΩM < 2 π may be con-
nected through some path of null homotopies, which is entirely contained
in ΩΛf<2π . Hence the pair (m 0 , c0) := (mc(0), c(., 0)) does not depend
on the particular choice of the short null homotopy t H-» ct, and thus the
lemma immediately implies

Theorem 6.8. On any complete Riemannian manifold (Mn, g) with
KM < 1 there exists a natural continuous map

< 2 π 0 - Mn x ΩTM

c0^ {mo,co)

such that the following hold:

(i) the curve c0 is a lift of c0 under expm : Bπ/2Tm M -• Mn, and

(ii) 0 e BκnTm M is the center of c0. In particular, c0 does not lie in

any open half space in T M.

Remarks 6.9. (a) Property (i) means that there is a possibly singular
ruled surface c 0 : R/Z x [0, 1] -> Mn given by ϋQ(s,σ) :=
e χPm (σ ' ^o^) which spans the original curve c 0 . Saying that the map

hmXtά is continuous is equivalent to saying that this spanning ruled surface
depends continuously on c0. In §6.4 we shall bound the total absolute
curvature κ(c0) in order to do the final computations on a ruled surface
with a nondegenerate metric which has just a single conical singularity.

(b) In (ii) it does not matter whether we ask 0 e B%,1Tm M to be the

center with respect to the Euclidean metric on Tm M or with respect to

the induced Riemannian metric exp* g.
m o

Since KM < 1 9 it is clear that ρc > π. In the proof of Lemma 6.7 we
shall make use of the precise structure of the fiber bundle π: Bn TM —>
Mn , where we think of each fiber BπTpM as a Riemannian manifold
with metric exp* g. In the proof of the Long Homotopy Lemma we have
made use of the fact that the map π x exp: Bπ TM -> M x M is a local
diffeomorphism. This means that there is some nice additional structure
which can be summarized as follows

Proposition 6.10. The sets (exp"1(q)) q£Mn define a foliation of BπTM
which induces a pseudogroup of isometries between the nearby fibers
(BπTp M , exp* g) and (BπTp M , exp* g) of the standard projection

n
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In fact, for any (p,v)e BπTM there exists an isometric immersion
π

C

such that

(ii) i^>0) = i d ^ ^ for any p e Mn,

(iii) i^ vj depends continuously on the point (p, v) e BπTM.

Moreover, the family (i^ yX *eB TM of isometric immersions is uniquely

determined by properties (i)-(iii).
All these statements follow directly from the standard lifting arguments.
Proof of Lemma 6.7. All the essential ingredients have been provided

in the previous subsection. The idea is to set up a continuity argument.
We set

/ •= //• G r o 11 t h e P a i r ( m c ' e ) e x i s t s o v e r c l R / z χ [ ί o , i ] a n d 1
\ ° ' satisfies conditions (i)—(iii) as far as it exists/'

Clearly, / c [0, 1] is an interval and 1 e / . Hence it is sufficient to find
some δ > 0 such that B(t0, δ) Π [0, 1] is contained in / for any toe I.

Since I := sup{L(c,) | t e [0, 1]} < 2π, it is possible to combine the
bound for rad(c, (M/Z)) from Lemma 6.6 and the modulus of continuity

of the path t H-> ct e Mn , t € [0, 1], in order to define some δ = δ{ί)

such that there exists a unique lift t \-+ (ct t: R/Z -> Bπ,2Tm ,t ^M) of
the path t ι-* ct restricted to the interval (/0 - δ, t0 + δ) Π [0, 1]. In
particular, for these values of t the centers m(ct ,) are all well defined
and depend continuously on t. By Proposition 6.10 we find that mc(t) :=
e χPmc (r0)(^(^0,r)) a n d ^ : = ί κ(/ o ) ,m(e / θ ) / )) °^ o , ί are indeed the lifts asked
for in the lemma, at least on the interval (tQ - δ, t0 + δ) Π [0, 1].

6.4. On the geometry of the spanning ruled surfaces cQ . In this subsec-
tion we are going to investigate the ruled surface cQ: R/Z x [0, 1] -+ Mn

obtained in Theorem 6.8 above in more detail. We shall find it convenient
to work with its lift c0: R/Z x [0, 1] —• M, which is given in terms of the
linear structure of Tm M by cQ(s, t) = t co(s), instead. By hypothesis

c0 is a closed regular C2-curve in ΩΛ/<2π 0 . Clearly, the lifted curve

c0: R/Z -> B(0, f ) c ¥ has the same regularity properties, and the total

absolute curvatures of c0 and c0 coincide:

(47) #c(c0) := κ(c0).
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In Corollary 6.13 we shall see that the ruled surface Σ described by the
map c0: R/Z x [0, 1] -+ M = BπTm M, (s9t)*->t c{s), is in fact regular
except for the conical singularity at the origin, provided that κ(c0) < \.

The function ρ: M —• [0, π) defined by ρ(q) := tf^(0, #) will play a
crucial role in investigating the properties of the map c0. It is known to
be a smooth function outside {0} = ρ~ι(0), where it induces the tensor
fields

ϋ := gradρ = grada?^(. , 0) and A := Vϋ = Hess^.

The integral curves of ϋ are the radial geodesies in M, and A\~ extends
the Weingarten map of the distance sphere around 0 through q to all of
T~M. It is a solution to the Riccati equation VϋA + A2 + R(. , v)υ = 0
where R denotes the Riemann curvature tensor of M. By the hypotheses
of Theorem 6.1 we know that 0 < \ ~-^τ < K^ < 1, and hence we have

Lemma 6.11 (Bounds for Ά). The Hessian of the distance function ρ
introduced above is bounded by

(i) cotβ (.,Pΰ.) <

where Pϋ := Id - {. , ϋ) ϋ denot

over, for any pair of orthonormal vectors ξ{, ξ2ev± there is the estimate

where Pϋ := Id - {. , ϋ) ϋ denotes the orthogonal projector onto v± . More-
±

(ϋ) <(ρ l-cotρ) (ζ2,{A-cot(ρ)Pϋ)ξ2)

<l {ξ2,Aξ2).

Proof Inequality (i) is just a specialization of the standard Riccati Com-
parison Theorem using 0 as a lower and 1 as an upper curvature bound.
In order to prove (ii), we merely observe that (. , [A - cot(ρ)P~).) is pos-
itive semidefinite, and hence it is possible to apply the Cauchy-Schwarz
inequality. Note that the function ρ ι-> (ρ" 1 - cotρ), ρ e [0, π] , is
monotonically increasing and concave, and its values at the boundary of
the interval [0, π] are 0 and \ . q.e.d.

It seems easiest to limit our investigation of the curve cQ to the domain

(i) co(s) φ 0 and \

(48) I := {seR (ϋ) *(*) •= \ { s ) and c'0(s) \

are linearly independent J
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0

FIGURE 3. The ruled surface Σ = co(I x [0, 1]).

for a first approach. This restriction will be removed in Corollary 6.13.
Note, however, that / contains all the critical points of the function s ι->
ρ o co(s), s G R, where this particular function is nonzero. Actually
s ι-> ρ o co(s) is periodic and does not vanish identically. Hence it always
has a positive maximum. In particular, / is always nonempty.

Clearly, the ruled surface Σ is smooth along co |7 . We may thus intro-
duce a smooth function β: I -> (0, π) and a unit vector field s »-» ξ(s)
along co\j , which is orthogonal to ϋ(s) for all s e I, requiring that

(49) c'0(s) = \!fo(s)\ {cσiβ{s) ϋ{s) + ώiβ{s)-ξ(s)).

Note that £ρ o co(s) = \co(s)\ β(s). A straightforward computation
shows that the curvature vector k~ can be expressed as follows:

co

+ β'(s) - (- sin β(s) ϋ(s) + cosβ(s) • ξ(s)).

Since the vectors ΰ(s) and 1̂ (5) span the tangent space T£. ,Σ, it is

clear that the unit normal field

(51) n(ί) := -smβ(s) ϋ{s) + cosβ(s)-ξ(s)

defines a transverse orientation on the segment co(I) c Σ. We may thus
consider its geodesic curvature k? , which is the signed quantity given by
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(52) = β\s) _ sin2 β(s). <ϋ(s), £ {(*)) + cos2 /?(*) ( « * ) , I ϋ(s))

= β'{s) + \co(s)\ sin/?(*) (ξ(s), >ί |W j )ί(5))

In fact, k£(s) n(s) is the tangential component of the curvature vector

Λ:~ (s), and therefore |fc/(s)| < \kd (s)\. The size of the normal component

k^(s) e T~ f xΣ"1 of the curvature vector is also easy to compute; however,

we do not need this quantity here.
Lemma 6.12. Let [bo,b{] be some interval contained in I. Then

(53) β(b{)-β(bQ) < [blk*(s)-\c'o(s)\ds < κ(c0).
Jbo

Proof. By definition sinβ(s) > 0 for all s e / . Moreover, the bilinear
form (. , A\~.) is positive definite for any q € 5(0 , f) \ {0} , and thus
the lemma follows directly from (52).

Corollary 6.13. Suppose that κ(c0) < f . Then I = R, and there is the
following estimate for the angle:

(54) \β{s)-\\ < κ(c 0 ), VseR.

In particular, the set Σ = co(R/Z x [0, 1]) c M is a smooth surface with
boundary dΣ — co(R/Z) and one conical singularity at 0, and has curva-
ture < 1 in the distance comparison sense.

Proof The first step is to establish inequality (54) for all s e I. We
shall give an indirect proof.

Suppose that there were some b0 e I with β(bQ) < § - κ(c0). Us-
ing Lemma 6.12 we conclude that the function s ι-> ρ o co(s) is strictly
increasing on [b0, oo), since by the continuity of

£ρoc0(s) = \c'0(s)\-cosβ(s)>0

there is simply no way to reach a point b{ e [b0, oo) \ / with ^ o

^o(5)l5=6 = ~l^ό(^i)I Of course, this monotonicity property contradicts

the periodicity of the curve c0 .
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The case that there exists some bχ € / with β(bx) > § 4- κ(c0) can be
handled similarly.

The second step is to show that / = R. We already know that / is a
nonempty, open subset. So let us suppose that / has some boundary point
b0. The idea is that this possibility can be ruled out by inequality (54).
Because of the continuity of the derivative j-sρ o co(s) at all points co(s) Φ
0, it remains to consider the case co(bo) = 0, which is equally bad, since
b0 is an isolated zero of the function ρ o c0 and Iim5_^ +0(L(c0\[b s])~ι

ρocQ(s)) = l.

By now we have shown that Σ is a smooth ruled surface with boundary
and one conical singularity at 0. So the last step is to establish the upper
curvature bound. Since Σ is a ruled surface, the Gauss equations imply
that KΣ < KM < 1 at all regular points. We claim that Σ has curvature
< 0 at the singularity as well. In fact, the intrinsic total angle <0(Σ)
at this point can be computed as the length of the curve s ι-> ^ ( J ) ! " 1

co(s) € Tm M with respect to the Euclidean metric in the tangent space.
By Theorem 6.8 the curve in question does not lie in any open half space,
and hence Lemma 6.5 implies that

(55) <0(Σ) > 2π. q.e.d.

Remark 6.14. By construction all the segments t»-» co(s, t) on Σ are
strictly shorter than f . Since K^ < 1, it follows directly from the Rauch
Comparison Theorems that Area(Σ) < L(c0). Hence, the local Gauss-
Bonnet formula yields

(<0(Σ)-2π) + (2π-L(c0))

(56) < 2 , + K ( Σ ) - 2 , ) -

= / k*(s)-\i?0(s)\ds < κ(c0).
JR/Z °

By (55) the first term on the left-hand side of this inequality is nonnegative,
and by the hypotheses of Theorem 6.1 the second term on the left-hand
side is nonnegative as well. Actually, (56) is quite a strong statement about
the shape of Σ, if the total absolute curvature κ(c0) is small.

For instance, the fact that the tangent cone to Σ at 0 is not contained
in any open half space ties in nicely with a small bound for the difference
<0(Σ) - 2π . It is possible to deduce that the tangent cone of Σ at 0 lies
in a small neighborhood of an approximate tangent plane.
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Inequality (56) reveals its full power in the discussion of the limiting
behavior when the total absolute curvature of some sequence of null ho-
motopic curves cμ e Ω.M<2π 0 converges to 0 . In that case a suitable
subsequence of the ruled surfaces c : R/Z —• Mn converges to a totally
geodesically immersed hemisphere.

However, the behavior of the ruled surface Σ near its boundary can be
more easily controlled by direct estimates.

Proposition 6.15. Suppose that the total absolute curvature κ(c0) is
strictly less than f. Then the unit vector field s H β(i) along c0 has
total absolute rotation:

rot(β) <

Proof. By Corollary 6.13 formulas (49)-(52) hold for all s e R/Z. After
decomposing % ϋ(s) into its tangential and normal components, we may
use Lemma 6.11 to bound the second piece:

\%ϋ{s)\ < \(ξ(s),%v(s))\+ sup (X,%ϋ(s))

xe^Σ, \x\=ι

= \c'0(s)\.sinβ(s) (ξ(s),A\do{s)ξ(s))

(57) + sup (X,%ΰ(s))
V ; XZT^Σ, \X\=\

< \cf

0(s)\ sinβ(s) ((ξ(s),A\dQ{s)ξ(s))

As in the proof of Lemma 6.12 we integrate this estimate, and com-
bine (52) with the Cauchy-Schwarz inequality to conclude that

rot(i)) = / \%ϋ{s)\ds < κ
JR/Έ

where

κτ (c0) := / k8{s) \c'Q{s)\ds.
JR/Z °

The latter quantity is bounded by the total absolute curvature of c0, and
by hypothesis the length of this curve is < 2π . q.e.d.

Next we shall consider a particular family of closed unit vector fields
Wa along c0 where a varies in R/(2πZ). Roughly speaking, we are
going to interpolate the field ϋ and the unit tangent field of c0. The



PINCHING BELOW \ , INJECTIVITY RADIUS, AND CONJUGATE RADIUS 689

precise definition is as follows:

(58) WJβ) := i

where

Evidently, Wa+π = -Wa, and thus Corollary 3.3 can be applied, provided
we find some uniform a priori bounds for rot(W^) for all a e R/(2πZ).

Proposition 6.16. Suppose that the total absolute curvature κ(c0) is
strictly less than | . Then for each a e R/(2πZ) there is the following
bound on the total absolute rotation of the unit vector field Wa along c0:

ΐ0X{W) <
- sinκ{c0)

Proof. Using the bounds for the angle β(s), that have been obtained
in (54) in Corollary 6.13, it is easy to see that

(s) > l - s i n κ ( c 0 ) > i .

Differentiating (58) yields that \% Wa(s)\ < \υ^(s)\-1 l ^ t i ; ^ * 1 ^ ! .

Since by Proposition 6.15 integrals over the derivative of tυ™ugh can be

bounded in terms of the total absolute curvature κ{c0), we conclude that

It remains to determine the maximum of the right-hand side of this in-
equality with respect to the parameter a e R/2πZ. q.e.d.
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