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SESHADRI CONSTANTS, GONALITY OF SPACE
CURVES, AND RESTRICTION OF STABLE BUNDLES

ROBERTO PAOLETTI

1. Introduction

There exist many situations in algebraic geometry where the extrinsic
geometry of a variety is reflected in clear restrictions in the way that it can
map to projective spaces. For example, it is well-known that the gonality
of a smooth plane curve C of degree d is d - 1, and that every minimal
pencil has the form (9C{H - P), where H denotes the hyperplane class
and P e C.

In fact, there are to date various statements of this kind concerning the
existence of morphisms from a divisor to P . The first general results in
this direction are due to Sommese [37] and Serrano [55]. Reider [34] then
showed that at least part of Serrano's results for surfaces can be obtained by
use of vector bundle methods based on the Bogomolov-Gieseker inequality
for semistable vector bundles on a surface.

In [3], a generalization of these methods to higher dimensional varieties
is used to obtain the following statement:

Theorem 1.1. Let X be a smooth projective n-fold, and let Y c X be
a reduced irreducible divisor. If n > 3 assume that Y is ample, and if
n = 2 assume that Y2 > 0 (so that in particular it is at least nef). Let
φ: Y -» P 1 be a morphism, and let F denote the numerical class of a fiber.

(i) // F Yn~2 < VΨ* - 1, then there exists a morphism ψ: X -• P 1

extending φ. Furthermore, the restriction H°(X, ψ*^\(\)) —>

H°(Y, 0*^pi(l)) is injective. In particular, ψ is linearly normal

if φ is.

(ii) // F Yn~2 = yJΨ - 1 and Yn φ 4, then either there exists an

extension ψ: X —• P 1 of φ, or else we can find an effective divisor

D on X such that {D. Yn~1)2 = (D2 γn~2)γn and D. Yn~x =

, and an inclusion φ*0pι (1) c @γ (D).
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However, a much less understood range of situations is the one where
codim(Γ) > 2. In some particular cases there are rather precise state-
ments. In curve theory, in particular, one has a clear picture of the gonality
of Castelnuovo extremal curves [1]. In even degree, for example, C c P 3

is a smooth complete intersection of a smooth quadric and a hypersur-
face of degree a > 2, and the gonality is attained by restricting to C the
rulings on the quadric. More generally, unpublished work of Lazarsfeld
shows that if C c P 3 is a smooth complete intersection of type (a, b),
with a>b, then gon(C) > a(b - 1). Lazarsfeld's argument is also based
on Bogomolov's instability theorem. In a somewhat more general direc-
tion, Ciliberto and Lazarsfeld have studied linear series of low degree on
various classes of space curves. Their method is based on the number of
conditions imposed by a linear series on another.

Naturally enough, one is led to investigate more general situations. We
shall focus on the gonality of space curves, and then show how the meth-
ods developed apply to other circumstances as well. In the codimension-1
case we have seen that the self-intersection of the divisor governs the nu-
merical constraint on a free pencil on Y. Loosely speaking, in the higher
codimension case a similar role is played by the Seshadri constant of the
curve, which is defined as follows. Consider a smooth curve C c P 3 , and
denote the blowup of P 3 along C by / : Xc —> P 3 , and the exceptional
divisor by E = f~xC. The Seshadri constant of C is

ε(C) = suρ{*7 e Q\f*H - r\E is ample}.

This is a very delicate invariant, and it gathers classical information such as
what secants the curve has and the minimal degree in which powers of J^.
are globally generated. For example, if C c P 3 is a complete intersection
of type (a,b), with a > b, then ε(C) = 1/α. More generally, if C c P 3

is defined as the zero locus of a regular section of a rank-two vector bundle
&, then we have an estimate ε(C) > γ(£?), where y(β) is the Seshadri
constant of %, defined as

y(|?) = s\ip{n/m\Sn&(m) is globally generated}.

It is always true that ε(C) > l/d. However, the problem of finding general
optimal estimates ε(C) for an arbitrary curve seems to be a hard one.
Something can be said, for example, as soon as C can be expressed as an
irreducible component of a complete intersection of smooth surfaces.

Interest in Seshadri constants, of course, is not new. In fact, if Y is a
subvariety of any projective variety X, one can define in an obvious way
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the Seshadri constant of Y with respect to any polarization H on X. Se-
shadri constants of points, in particular, have received increasing attention
recently, partly in relation to the quest for Fujita-type results. A differen-
tial geometric interpretation has been given by DeMailly [9]. Seshadri
constants of points on a surface have been investigated by Ein and Lazars-
feld [11], who have proved the surprising fact that they can be bounded
away from zero at all but countably many points of S. However, Seshadri
constants of higher dimensional subvarieties have apparently never been
put to use.

What a bound on the gonality of a space curve might look like is sug-
gested by Lazarsfeld's result. In fact, we may write a(b - 1) = deg(C) -
l/ε(C), so that for a complete intersection we have the optimal bound

gon(C)>rf- l/β(C).

Keeping the above notation, let us define

Hη = fH- ηE and δη(C) = η -deg(#) - d,

where N is the normal bundle of C. For example, for a complete inter-
section of type (a, b) with a > b we have δι/a(C) = b2, and δη(C) has
a simple geometric meaning, that we explain at the end of §3. Our result
is

Theorem 1.2. Let C c P 2 be a smooth curve of degree d and Seshadri
constant ε(C). Set a = min{l, Vd(ί - ε{C)yfd)}. Then

This reproduces Lazarsfeld's result if a > b + 3. As another example,
it says that if a > b and C is residual to a line in a complete intersection
of type (a, b), then gon(C) = ab - {a + b - 2) (consider the pencil of
planes through the line). In view of the above, one would expect the above
bound to hold with a = 1 always, but I have been unable to prove it.

The idea of the proof is as follows. If A is a minimal pencil on C,
and π: E —> C is the induced projection, one can define a rank-2 vector
bundle on Xc by the exactness of the sequence

The numerical assumptions then force & to be Bogomolov unstable with
respect to He/C) ( s e e §2)> a n d therefore a maximal destabilizing line bundle
(9X (-D) c & comes into the picture. D and A are related by the
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inequalities coming from the instability of J?", and from this one can
show that deg(A) is forced to satisfy the above bound.

By its general nature, this argument can be applied to the study of linear
series on arbitrary smooth subvarieties of P Γ . We will not detail this
generalization here.

In another direction, similar methods have been used by Bogomolov [4],
[6] to study the behavior of a stable bundle on a surface under restriction
to a curve C that is linearly equivalent to a multiple of the polarization
at hand. For example, it follows from Bogomolov's theorem that if S is a
smooth surface with Pic(S) ~ Z, and <§* is a stable rank 2 vector bundle
on S, then %?\c is also stable, for every irreducible curve C c S such
that C2 > 4c2(^)2. A more complicated statement holds for arbitrary
surfaces. One can see, in fact, that this result implies a similar one for
surfaces in P 3 .

In the spirit of the above discussion, one is then led to consider the
problem of the behavior under restriction to subvarieties of higher codi-
mension. The inspiring idea, suggested by the divisor case, should be that
when some suitable invariants, describing some form of "positivity" of
the subvariety, become large with respect to the invariants of the vector
bundle, then stability is preserved under restriction. Furthermore, if in
the divisor case one needs the hypothesis that % be ^(C)-stable, in the
higher codimension case one should still expect some measure of the re-
lation between the geometry of subvariety and the stability of the vector
bundle to play a role in the solution of the problem.

In fact, in the case of space curves the same kind of argument that
proves the theorem about gonality can be applied to this question. Before
explaining the result, we need the following definition. Recall that if X is
a smooth projective threefold, & is a vector bundle on X, and L and
H are two nef line bundles on I , / is said to be (H, L)-stable if for
every nontrivial subsheaf 9 c SF we have (fc{ (&) - gcχ (&)) >H L<0,
where / = rank(J7") and g = rank(^). Let then % be a rank-two vector
bundle on P 3 , and consider a curve C c P 3 . Let us define the stability
constant of & with respect to C as

γ(C, ε) = suv{η e [0, ε(C)]|/*gr is (H, //^-stable}.

For example, if C is a complete intersection of type (a, b) and the re-
striction of % to one of the two surfaces defining C is stable (with respect
to the hyperplane bundle, then γ(C, I?) = e{C).

Then we have
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Theorem 1.3. Let & be a stable rank-2 vector bundle on P 3 with
cχ(%) = 0. Let C c P 3 be a smooth curve of degree d and Seshadri
constant ε(C), and let γ = γ(C, &) be the stability constant of % with
respect to C. Suppose that l ? | c is not stable. Then

where a =: min{l, Vd(y/3/4 - γVd)} .
The problem of the behavior of stable bundles on Pr under restric-

tion to curves has been studied by many researchers. In particular, a
well-known fundamental theorem of Mehta and Ramanathan [25] shows
that ίf | c is stable if C is a general complete intersection curve of type
(ax, a2,...), and all the #z > 0. Flenner [12] has then given an explicit
bound on the ats in term of the invariants of I?, which makes the con-
clusion of Mehta and Ramanathan's Theorem true. On the other hand,
here we give numerical conditions that imply stability for ί ? | c , with no
generality assumption and without restricting C to be a complete inter-
section.

We have the following applications.
Corollary 1.1. Let & be a stable rank-2 vector bundle on P 3 with

cχ{%) = 0 and c2(&) = c2. Suppose that b > c2 + 2. // V c P 3 is
a smooth surface of degree b, then %\v is {?v(H)-stable.

Corollary 1.2. Let & be a stable bundle on P 3 with c{(^) = 0. Sup-
pose that C = Va Π Vb c P 3 is an irreducible smooth complete intersection
curve and that Va is smooth. Assume furthermore that a > 4b/3 + 10/3
that and that b>c2(&) + 2. Then %\c is stable.

Corollary 1.3. Let c2> 0 be an integer and let Λf (0, c2) denote the

moduli space of stable rank-two vector bundles on P 3 . If a > b > c2 and

C c P 3 is an irreducible smooth complete intersection of type (a, b), then

Jί (0, c2) embeds in the moduli space of stable vector bundles of degree 0

on C.
This paper covers part of the content of my Ph.D. thesis at UCLA.

I want to thank Robert Lazarsfeld, my advisor, for introducing me to
algebraic geometry and taking continuous interest in my progress. This
work was inspired by his approach to complete intersections, and it owes
a lot to his geometric point of view and to his suggestions.

I am also endebted to a number of people for valuable comments and
discussions; among them, O. Garcia-Prada, D. Gieseker, M. Green, J. Li
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and A. Moriwaki. Finally, I am very grateful to the referee for some useful
remarks that have significantly simplified some of the arguments.

2. Preliminaries

In this section we state some results that will be used in the sequel. The
following fact is well known.

Lemma 2.1. Let X be a smooth projective variety and let Y c X be a
divisor. Suppose that we have an exact sequence 0->^—•g 7—•^4-»0,
where A is a line bundle on Y, and <£ is a rank-2 vector bundle on X. Let
[Y] e A\X) be the divisor class of Y, and let [A] e A2{X) be the image
of the divisor class of A under the push forward Aι(Y) -» A2(X). Then &
is a rank-2 vector bundle on X, having Chern classes cx (&) = cχ (ί?) - [Y]
and c2(&*) = cΎ(β) + [A] - Y. cx{&).

Lemma 2.2. Let X be a smooth projective threefold, and let C c X be
a smooth curve in X. Denote by f:Xc^X the blowup of X along C,
and let E be the exceptional divisor. Then E3 = - deg(JV), where N is
the normal bundle of C in X. Furthermore, let A be any line bundle on
X, and by abuse of language let A also denote its pullback to Xc. Then

E2 A = -C-A.
Proof Both statements follow from a simple Segre class computation

(see, for example, [14]). q.e.d.
We now recall some known results about instability of rank-2 vector

bundles on projective manifolds, which are one of the main tools in the
following analysis. Recall the following notation.

Definition 2.1. If S is a smooth projective surface, N(S) is the vector
space of the numerical equivalence classes of divisors in S; K+(S) c
N(S) is the (positive) cone spanned by those divisors D such that D2 >
0 and D H > 0 for some polarization on S. In general, if X is a
smooth projective «-fold and H is a polarization on it, we shall denote
by K*(X9 H) the cone of all numerical classes D in N{X) such that
D2 . Hn~2 > 0 and D Hn~ι > 0 (or, equivalent^, D - R Hn~2 > 0 for
any other polarization R on X).

Definition 2.2. Let X be a smooth projective Az-fold, and let & be a

rank-2 vector bundle on X, with Chern classes c{(&) and c2(^). The

discriminant Δ(ί?) e A2(X) is
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Lemma 2.3. Let X be a smooth projective n-fold, and let % bearank-2
vector bundle on X. Fix a polarization H on X. Suppose that 3*χ, &2 c
% are two line bundles in %. Let us denote by lχ and l2 their H-degrees,
respectively (i.e., /,- = ^ Hn~x) and let e = άe%H{%) = Λ2 & Hn~ι be
the H-degree of %. Suppose that 2/z > e for i = 1 and i — 2 (in other
words, S*x and 3*2 make % H-unstable). If 3*2 is saturated in %, then

Proof Set / = min{lχ, / 2 } . By assumption, we have 2/ - e > 0.
Claim 2.1. If the statement is false, the morphism of vector bundles

φ: oŜ  φ£?2 —• % is generically surjective.
Proof. Set β = &/&e . Then β is a rank-1 torsion free sheaf. The

morphism Sfχ -> & is therefore either identically zero or generically
nonzero. If Ĵ J (jL <Sf2 the morphism Sfχ —• f̂ is then generically nonzero.
But this implies that φ is generically surjective. q.e.d.

Therefore, /\2 & Θ-S^"1 O-S^"1 is an effective line bundle; it follows
that 0 < e - (lχ + /2) < e - 21, a contradiction.

Corollary 2.1. Lei Z α«rf ^ 6^ as above, and let sf c % be a satu-
rated H-destabilizing line bundle. Then s/ is the maximal H-destabilizing
line bundle.

Corollary 2.2. Let X be a smooth projective n-fold, and fix a very
ample linear series \V\ on X, with V c H°(X, H). Suppose that %
is a rank-2 vector bundle on X which is H-unstable. Let C c X be a
general complete intersection of n-\ divisors in \V\. Then the maximal
destabilizing line bundle of &\c is the restriction to C of the maximal
destabilizing line bundle of %.

Proof Let J / be the maximal destabilizing line bundle of &. Then
the inclusion ψ: J / —• I? drops rank in codimension 2, because sf is
saturated in &. Let Z be the locus where ψ drops rank. For a general
complete intersection curve, we have C Γ\ Z = 0. Hence sf\c is the
maximal destabilizing line bundle of W\c . q.e.d.

The basic result is the following.
Theorem 2.1 (Bogomolov). Let S be a smooth projective surface, and

let % be a rank-2 vector bundle on S. Let cx(%?) and c2(^) be its Chern
classes, and suppose that cχ(%)2 - 4c2(&) > 0. Then there exists an exact
sequence O - ^ - x ^ - ^ J ^ φ l ί - ^ O , where A and B are line bundles on
S, and Z is a codimension-2 (possibly empty) local complete intersection
subscheme, with the property that A- B e K+(S).

For a proof, see [5], [27], [33], [15], or [22].
Corollary 2.3. Let S and % be a smooth projective surface and a rank-

2 vector bundle on it such that the hypothesis of the theorem are satisfied.
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Let s/ and 38 be the line bundles in the above exact sequence. Then the
following inequalities hold: (si - £B) H > 0 for all polarizations H on
S, and (si - &f > cx (g7)2 - 4c2(g).

Proof The first inequality follows from the condition A-B e K+(S).
To obtain the second, just use the above exact sequence to compute cx (ί?)
and c2{β?): we obtain

cx{gf - 4c2(<T) = (A + B)2 - 4A B - 4deg[Z] <(A- B)2.

Corollary 2.4. Let S and 8? satisfy the hypothesis of Bogomolov's the-
orem, and let H be any polarization on S. Then & is H-unstable, and
si is the maximal H -destabilizing subsheafof &.

Recall the fundamental theorem of Mumford-Mehta-Ramanatan (cf.
[27]).

Theorem 2.2. Let X be a smooth projective n-foldf and let H be a
polarization on X. Consider a vector bundle % on X. If m > 0, and
V e \mH\ is general then the maximal H\v-destabilizing subsheafof %\v

is the restriction of the maximal H-destabilizing subsheafof &.
This theorem is very powerful, because it detects global instability from

instability on the general complete intersection curve.
Theorem 2.3. Let X be a smooth projective n-foldf and let H be a

polarization on X. Consider a rank-2 vector bundle % on X, and suppose
that {cχ{^f - 4c2(£7)) Hn~2 > 0. Then there exists an exact sequence
0 -• s/ -• ί? -• 3B® J ^ -+ 0, where stf and & are invertible sheaves, and
Z is a locally complete intersection of codimension two (possibly empty)
such that stf -38 e K+{X, H) and

2 Hn~2 > (cχ(β)2 - 4c2{?)) Hn~2.

Furthermore, si is the maximal (//,-•• , H, L)-destabilizing subsheafof
I?, for every ample line bundle L on X.

Proof The case n = 2 is just the content of Theorem 2.1; for n > 3,
the statement follows by induction using Theorem 2.2. q.e.d.

Definition 2.3. If & satisfies the hypothesis of the theorem, we shall
say that % is Bogomolov-unstable with respect to H.

Lemma 2.4. Let / : X —> Y be a morphism of projective varieties. Let
9~ and A be, respectively, a vector bundle and an ample line bundle on
X. For yeY, let Xy = f~xy and denote by <JX the ideal sheaf of Xy.

Then there exists k>0 such that H\X ,SΓ^An %J"X ) = 0 for all i>0,

n>k, and for all y eY.
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Proof. For all y e Y, there is an exact sequence

/ n
-+ \y

Xy Λy

Furthermore, there exists a flattening stratification of Y with respect to / ,
Y = \Yι=ι Yt, with the following property [28]. The Yι are locally closed
subschemes of Y, and if Xι := f~lYn / = 1, ••• , r, and / z: Xι - Yι

is the restriction of / , then ft is a flat morphism. Let us then start by
finding kχ such that for all n > kχ we have

Hi(X,&'®An) = 0 and H\X,!?®An ®Sx) = 0

for all i > 0 and all / = 1, , r. Then it is easy to see that the
statement is equivalent to saying that there is k > kχ such that for all
n > k the restriction maps φy: H°{X, & ® An) -> i / 0 ^ , & <g> Λ \ )

are all surjective, and that Hί(Xy,&'®An\x) = 0, for all y e Y and all

i > 0. If y e Y,, and J ^ z denotes the ideal sheaf of X in Xt, then we
' x

have an exact sequence 0 —• X —• J ^ -* X ' -• 0.
Λl Λy Λy

Claim 2.2. The lemma is true if there exists k such that for all n>k,
for / = 1, , r and for all y e Yι we have that H\Xι, & ® ̂ 4W|X ®
J ^ 7 ) = 0 for / > 0.

Proof. It follows from an obvious exact sequence, q.e.d.
This means that we can reduce to the case where / is flat. For y0 e Y,

we can find k0 such that for n > k0 and, i > 0 we have Hι(X, & %

An ® <yχ ) = 0. Therefore, the morphism

βya \r

is onto, and then so is

Ψyg =: βyo®k(yo): ft{P ® An){y) - 7/0(X,,0, ̂ ® An\χJ.

By Grauert's theorem [21 ], ψv is an isomorphism, and that the same holds

for ψy , for y in a suitable open neighbourhood Uo of y 0. Therefore the

restriction morphism H°(X, &®An) -* H°(Xy ,9Γ®An\χ) comes from

a morphism of sheaves, and hence they are onto for all y e VQ, for a

suitable open set VQ c Uo . We can then invoke the quasi-compatness of

Y to conclude that there exists k such that Hι (X, 9* ® Λ" ® J ^ ) = 0

for all y G Γ. As to / > 2, we have isomorphisms

y \χyt X/
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for all i > 0, and so we need to show that H\X , & <g> An) = 0 for

n > 0, / > 0 and all y e Y. But for n > 0 we have Rlf^ <8> An) = 0

if i > 0 and then this implies A'(Jif , & ® An\χ ) = 0 for all y e Y [28].

q.e.d.
We record here a trivial numerical lemma that will be handy in the

sequel.
Lemma 2.5. If s>a, a>2s and b>as-s2, then b>aa-a2.
Proof, as - s2 is increasing in s if a > 2s. The statement follows.

3. Seshadri constants of curves

Let C c P be a smooth curve and let H denote the hyperplane bundle
on P 3 . We shall let / : Xc -> P 3 be the blowup of P3 along C, and
E = f~xC be the exceptional divisor.

Definition 3.1. The Seshadri constant of C is

e(C) := sup{η e Q\f*H - ηE is ample}.

In other terms, ε(C) is the supremum of the ratio n/m, where n and
m are such that mH-nE is ample (or, equivalently, very ample). In the
sequel we shall use the shorthand H := H - ηE for η € Q furthermore,
we shall generally write H for f*H (as we just did).

Lemma 3.1. H is ample if and only if 0 < η < ε(C). It is nefif and
onlyifηe[0,ε(C)].

Proof Since the ample cone of a projective variety is convex, the line
H-tE CN\X) intersects K+(X) in a segment (H-tχE, H-t2E). Let
F denote the numerical class of a fiber of π: E -> C. Then Hη- F = η,
and therefore if H is ample we must have η > 0. Hence ^ > 0. On the
other hand, it is well known that H-tE is ample for t > 0 sufficiently
small, and therefore tx = 0. By definition, £2 = ε2(^) The remaining
part of the statement is clear.

Corollary 3.1. We have

β(C) = swp{η\Hη -D>0for all curves D c Xc}.

Lemma 3.2. Let C c P 3 te α smooth curve, and let J^ be its ideal
sheaf Let M and n be nonnegative integers. Then @χ (mH - nE) is

globally generated if J^(m) is.
Proof. Suppose that J^(m) is globally generated, and let Fχ, , Fk

e H°(P3 ,J^(m)) be a basis. Let P e C and let U be some open
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neighbourhood of P. By assumption, Fχ, , Fk generate J ^ in U.

By abuse of language, let us write Ft for the pullbacks f*Fi. If e is a

local equation for is in a Zariski open set V c f~lU, then the ideal

generated by the F ^ is ({FJ) = (en). Hence we can write

for some P. regular on V. However, by construction we can write F. =

F{e
n, and therefore we have

in V. Hence the F. are base point free, and they can be extended to
global sections of ffχ (mH - nE), which is therefore globally spanned.

Corollary 3.2. Let C c P 3 be a smooth curve. Then

e(C) > sup{π/m|J^(m) is globally generated}.

Let us look at some examples.

Example 3.1. If L c P3 is a line, then J ^ ( l ) is globally generated.

Therefore &(L) > 1. On the other hand, let Λ c Π 3 be a hyperplane

containing L, and let D c Λ be any irreducible curve distinct from L.

Then HχD = deg(D) - L Λ D = 0, where D c BlL(P3) is the proper

transform of L. Hence ε(L) = 1. As we shall see shortly, this generalizes

to the statement that if C c P 3 is a smooth complete intersection of type

(a, b) and a > b, then β(C) = 1/α.

Example 3.2. If C c P3 has an /-secant line, then ε(C) < 1//. To

see this, let L be the /-secant; denoting by L c Xc the proper transform

of L in 5/ c (P 3 ) we have H. Z = 1 and £ . Z = /. Hence 0 < Hε Z

implies ε < 1//.

Lemma 3.3. Lei C c P 3 be a smooth curve of degree d. Then l/y/d>

Proof. It is well-known that a smooth subvariety of degree d of pro-
jective space is cut out by hypersurfaces of degree d. Hence ^c{d) is
globally generated, and this proves the second inequality. As to the first,
we must have 0 < H i/ε

2 = 1 - ε2d, by a simple Segre class computa-
tion, q.e.d.

The right inequality is sharp if the curve is degenerate; the left one is
sharp for a complete intersection curve of type (α, a). If the curve is
nondegenerate, however, one can say something more.
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Definition 3.2. Let C c P3 be a smooth curve, and let J ^ be its ideal
sheaf. C is said to be /-regular if i / ' (P 3 , J ^ ( / - /)) = 0 for all / > 0.
The regularity of C, denoted by m(C), is the smallest / such that C is
/-regular [7], [29], [16].

Remark 3.1. By a celebrated theorem of Castelnuovo, we have m(C) <
d-\ [7], [20].

Proposition 3.1. Let C c P 3 be a smooth space curve, and let m =
m(C) be its regularity. Then 2/(ra - 1) > ε(C) > 1/m.

Proof. By a classical theorem of Castelnuovo-Mumford, the homoge-
neous ideal of C is saturated in degree m(C) and therefore ε(C) >
l/m(C). By definition, to prove the first inequality it is enough to show
that H\P3, J^ik)) = 0 for k > \2/ε(C)] - 3 because this implies
m(C) < 2/ε(C) +1 and then the statement. To prove the above vanishing,
observe that {2/([2/ε(C)] + l} < ε(C) and therefore ([2/ε(C)] + \)H-2E
is an ample integral divisor Xc . Since ωχ = (9χ (-4H+E), the Kodaira
vanishing theorem gives

Hl{Xc, ^ c((Γ2/β(C)l - 3)H -E)) = 0

for / > 0, as desired.
Remark 3.2. Using vanishing theorems on the blowup to obtain bounds

on the regularity is a well-known technique: see [3] for various results in
this direction.

Remark 3.3. It is not possible, in the above vanishing, to replace the
condition on λ; by fc > |~l/ε]. To see this, suppose that C is a complete
intersection of type (a, b) so that we have a Koszul resolution

0 -> &^{-b) -> ̂ P3 Θ^p3(fl -b)-* J'cia) -> 0.

It follows that i/ 2 (P 3 , J^(α)) - H\P3 , ^(-b)) φ 0, for b > 4.

Corollary 3.3. Let C c P 3 be a nondegenerate smooth curve. Then

Equality is attained in the previous corollary in the case of a twisted
cubic.

It is convenient to introduce the following definition.
Definition 3.3. Let C c P 3 be a smooth curve. For an irreducible

curve D c P 3 different from C let D be its proper transform in the
blowup of P 3 along C . Define

ε{(C) := sup{*/ e Q\(H - ηE)\E is ample}

and

ε2(C) := s\xp{η € Q\Hη D > 0 V irreducible curves D φ C}.
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Remark 3.4. ε(c) = m i n ^ ( C ) , ε2(C)} .
We are interested in estimating the Seshadri constant of a space curve

C. It is convenient to examine εχ(C) and ε2(C) separately. We shall
see that εχ(C) is determined by the structure of the normal bundle, while
ε2(C) depends on the "linkage" of C, and is generally much harder to
estimate. We start with an analysis of εχ(C).

Definition 3.4. Let C be a smooth projective curve, and let g7 be a
rank 2 vector bundle on it. For all finite morphisms f:C-*C and all
exact sequences of locally free shaves on C of the form 0 -> L —• /*ί? —•
M —> 0, consider the ratio deg(L)/ deg(/). Let Σ r denote the set of all
the numbers obtained in this way. Define s{β) =: Σ r .

Remark 3.5. As in [39], s(ί?) can be interpreted as a measure of the
instability of ί ? . More precisely, we have $(έ?) = \ deg(^) if ί? is
semistable, and s(^) = deg(L) if £? is unstable, and L c 8? is the maxi-
mal destabilizing line subbundle of %. In order words, s(&) - \ deg(ί?) >
0 always, and equality holds if and only if ί? is semistable.

We then have
Proposition 3.2. Let C c P3 be a smooth curve. Denote by N the

normal bundle of C in P , and let εχ{C) be as above. Then

Proof. Let / : Pc -> P 3 be the blowup of P 3 along C, and let E be
the expectional divisor; recall that E can be identified with the relative
projective space of lines in the vector bundle N. Set π = f\E , and denote
by F a fiber of π . Let ΰ c £ b e any reduced irreducible curve. If D is
fiber of π, then η > 0 ensures that H -D > 0. Hence we may assume that

D —• C is a finite map, whose degree is given by a = DF . Let ψ: D —•
ί ) c l c be the normalization of Z), and let p: 5 -• C be the induced
morphism. Then ^ is equivalent to the assignment of a sub-line bundle
L C p*ΛT, given by L = ^ ^ ( - 1 ) . Since ^ ( - 1 ) ^ ^ ( £ ) , we have
deg(L) = DE. Hence HηD = aH-C-η-deg(L) the condition η < ε{(C)
translates therefore in the condition η < inf{(// C)/deg{L)/a} . In other
words, then, it is equivalent to η < {H C)/s(N).

Example 3.3. Let C c P 3 be a smooth complete intersection curve of
type (a, b), with a > b. Then we have a Koszul resolution of the ideal
sheaf of C, from which it is easy to conclude that ε(C) > 1/α. On the
other hand, s(N) = a2b and therefore by Proposition 3.2 εx(C) = I/a.
Hence we have ε(C) = I/a.
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Example 3.4. Let C c P3 be given as the zero locus of a regular section
of a rank-2 vector bundle ί? on P 3 . It is well known that this is always
the case provided that the determinant of the normal bundle N extends.
The Koszul resolution then is

0 -+ det (^)" 1 -* g7* - Jc -> 0.

By Corollary 3.2 and Proposition 3.2, we then conclude that

where

ε(&) = s\xp{n/m\Sn^*(m) is spanned}.

We shall call e(l?) the Seshadri constant of the vector bundle g7. It has
the following geometric interpretation. Let P ^ be the relative projective
space of lines in ί ? . PicίPg7) is generated by two line bundles H and
(?(l), where H is the pullback of the hyperplane bundle on P 3 . Let R
be some divisor associated to the line bundle ^ ( 1 ) . It is well known that
the rational divisor H + ηR is ample, for sufficiently small η eQ+ [21].

Proposition 3.3. β(ί?) = s\xp{η e Q\H + ηRe DivQ(Pg7) is ample}.

Proof. Provisionally denoted by y{^) the right-hand side of the state-
ment. Also, for brevity let us set X — V%, and let Xz stand for the

z

fiber over a point Z G P 3 . Let us first prove that ε(^) < y{&). Suppose
then that η = n/m < ε(C), where n and m are such that Sn8'*(m) is
globally generated. Since

j x nR),

we have the identifications

H°(X, 0χ{mH + nR)) ^ i/°(P 3, Sn%*{m))

and

H°{Xz, 0χ {mH + nR)) cz SnE*(m)(z).

With this in mind, we then have a surjection

H°(X, 0χ{mH + nR)) -+ H°(Xz, 0χ {mH + nR))

for all Z G P 3 , and since (fχ{mH + nR) is generated along the fibers, it
is also globally generated.

Let us prove that γ(^) < ε(^). Let η = n/m < γ{&), where n and m
have been chosen so that mH + nR is ample. After perhaps multiplying
m and n by some large positive integer we may suppose that mH + nR
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is very ample and that H\X9SX (mH + nR)) = 0 for all / > 0 and all

z e P 3 (see Lemma 2.4). But then we have surjective restriction maps

H°(X, 0χ{mH + nR)) - H°(Xz, <9X (mH + nR))

for all Z E P 3 , and the lemma thus follows from the above identification.
Remark 3.6. The equation ε(C) > β(ί?) from Example 3.4 can then

be explained as follows. For each n > 0 we have the surjective morphism

> j ^ 1 and therefore a surjection of sheaves of graded algebras
n^* -• φn>0^c ' w h i c h y i e l d s a closed embedding i:Xc<-+P&.

On the other hand, i*&pg(R) = (9X (-E) and the above inequality is just

saying that if H + τ/i? is ample, it restricts to an ample divisor on Xc .

We now consider ways to estimate e2(C). e2(C) gathers more global

information than ε{(C), because it relates to how C is "linked" to the

curves in P . Recall that our definition was:

ε2(C) := sup{τ/ e Q\Hη D > 0 V irreducible curves ΰ c P 3 , D φ C}.

As usual, D denotes the proper transform of D in the blowup of C .
In order to estimate ε 2 (C), we assume given two distinct irreducible

hypersurfaces Va and Vb through C and divide the problem in two parts:
(a) to estimate the intersection numbers D E for D <$_ Va n f̂  , and (b)
to control the same numbers for D, a component of the residual curve to
C i n VaΠVb.

Let us start with the following simple observation. Let C and D be

reduced curves in P 3 , and let t: Dn -> D c P 3 be the normalization of

Z>. If / : Xc —• P 3 is the blowup of C, and Ec is the expectional divisor,

then clearly t factors through / , i.e., there exists u: Dn-+ Xc such that

t = fo u. On the other hand, ΓιC = u~ιf~ιC = u~ιEc and therefore

(1) D.Ec=Dn uEc = dcf>{ΓlC}.

We can now attack part (a), which is the easiest. We have the following.

Lemma 3.4. Let C c P 3 , Va and Vb be two distinct reduced irreducible

surfaces through C. Suppose that a>b, and let η < I/a. Then for every

irreducible curve D <f. Va n Vb we have D Hη > 0 .

Proof of the lemma. Let D be reduced and have degree s, and set
G := VaΓ\Vb. G i s a complete intersection curve, and then we know from
the Koszul resolution of its ideal sheaf that its Seshadri constant satisfies
ε(G) > I/a. Let XG -> P 3 be the blowup of P 3 along G, and let EG be
the exceptional divisor. For η e Q, let H* = g*H - ηEG. By what we
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have just said, H[, is a nef divisor on XG. Therefore, if we let D1 c XG

denote the proper transform of D in XG, we have Df Hf > 0, and this

can be written as D1 EG < as. Now let as above t: Dn —• D c P 3 be the

normalization of D, and let D c Xc denote the proper transform of D

in the blowup of C . Then by (1) we have

D Ec = d e g ^ C } < deg{r*G} = D' - EG,

since G D C as schemes. Therefore,

(2) Hl/a.D>H'l/a.D'>0,

and the statement follows, q.e.d.
There does not seem to be much that one can say about part (b) in

general; if we throw in some extra geometric information, however, there
is a possible estimate.

Proposition 3.4. Let C c P3 be a smooth curve. Suppose that C is
contained in the intersection of two distinct reduced and irreducible hyper-
surfaces Va and Vb of degree a and b, respectively. Suppose that all the
residual curves to C in the complete intersection VaΓ\Vb are reduced and
that at least one of the two hypersurfaces is smooth. Then

where the equality holds if and only if the residual curve to C is the union
of disjoint lines.

Example 3.5. It is well-known that a curve which is linked to a line L
in a complete intersection of type {a, b) is cut out by the hypersurfaces
Va and Vb and by a third equation of degree a + b - 2. Therefore its
ideal sheaf is generated in degree a + b - 2, so that ε(C) > I/(a + b - 2).
On the other hand, it is easy to check that LΈ = a + b-2. Thus in this
case we find directly that ε(C) = I/{a + b - 2). More generally, the same
argument works whenever C is linked to a union of (reduced) disjoint
lines.

Example 3.6. The assumption that the residual curves be all reduced
is necessary. To see this, let L c P 3 be a line, and let V be a smooth
surface of degree v through L. We have L -v L = 2 - v . Let H be
the hyperplane bundle restricted to V. Then for s > 0 the linear series
\sH - 2L\ is very ample. Choose a smooth curve C e \sH - 2L\. Then
C is linked to a double line supported on L in the complete intersection
V Π W, where W is a suitable hypersurface of degree s in P 3 . Thus we
have

L Ec = (sH - 2L) y L = s - 2L2 = s + 2υ - 4,

and so e2(C) <l/(s + 2υ-Λ).
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Proof. The following simple argument was suggested by the referee.
Suppose that Va is smooth. Let X c Va be the residual curve to C in
VaΓ\Vb, and let D c X be one of its components; write G = D + Df. We
then have

= D.[bH-C-D' + (a- 4)7/]

= (a + b - 4)H - D D' - D E.

From this one then gets

D E = (a + b - 4) deg(Z>) - D. // + 2 - 2/^,

and this is always < (a + b-2) deg(Z)), with equality holding if and only
if deg(Z>) = l , p ! ) = 0 a n d Z ) 2)/ = 0. q.e.d.

We now define two auxiliary invariants related to the Seshadri constant
that will be useful shortly.

Definition 3.5. Let C c P 3 be a smooth curve of degree d, and let
β(C) be its Seshadri constant. Let N be the normal bundle of C in P 3 .
For 0 < η < ε(C) a rational number, define

and

It

(3)

is easy to check

δn

K
that

(C):=η

(C) := η

• deg(iV) - d

2d2-δη(C).

-E2.H.

More explicitly, suppose that 0 < η < ε(C), and let m and n be large
positive integers such that η = n/m, and mH - nE is very ample. Then
for a general S e \mH-nE\ the intersection C' = EnS is an irreducible
smooth curve, and the induced morphism C' —• C has degree n. Thus

Similarly,

Remark 3.7. If we let x = ηd, we have ^ ( C ) = / ( x ) , where

f(x) = χ2-(4 + (2g-2)/d)x + d,
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g being the genus of C. For C sucanonical, / is the polynomial in-
troduced by Halphen in his celebrated speciality theorem [18], [19], [32]
given by

where e = max{k\Hι(C9 &c(k)) Φ 0}. Observe that e < {2g - 2)/d
always.

Corollary 3.4. Suppose that there exists an irreducible surface of degree
m through C, having multiplicity n along C. If η = n/m, then λη(C) >
0. In particular, λ (C) > 0 for all 0 < η < e(C). Equality holds if
and only if <fs(Cr) is numerically equivalent to a multiple of &S(H). In
particular, λ,cJC) > 0 and equality holds if C is a complete intersection.
If C is subcanonical and ηd is an integer, then λη(C) — 0 forces C to
be a complete intersection.

Proof. A straightforward application of the Hodge index theorem. The
last part follows from the corresponding statement of the speciality theo-
rem (see [18]).

Corollary 3.5. Let C c P3 have gerίus g, degree d and Seshadri
constant ε(C). Then

The right-hand side of the above inequality is a decreasing function of
ε in the interval (l/d, l/Vd). In other words, higher Seshadri constants
impose tighter conditions on the genus. For a Castelnuovo extremal curve
of even degree we have ε = 2/d and the right-hand side, as a function of
d, is asymptotic to d2/4.

Corollary 3.6. Let D be a divisor on Xc, and set s = D-H -H. Then
for 0 < η < ε(C) we have

Proof. Write

Then

and

From this we obtain

D2 Hη- D Hη E = s2 - sηd - λη(C)(y2 - y).

D2

D2

•Hn

-D

D. xH

)
' +y

•E<s2

+ yE.

\(o -

-sηd.

f 2xyd
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Since y is an integer, the statement then follows from Corollary 3.4.
Remark 3.8. From the inequality (see Remark 3.5) s(N) > j

and the definition of δη(C), it is easy to see that d > δη(C).

4. Gonality of space curves and free pencils on projective varieties

We have seen that if C c S is a smooth curve with C 2 > 0, then one
can give lower bounds on the gonality of C [35]. We deal here with the
next natural question: if C c P 3 , what can be said about gon(C) in terms
of the invariants of this embedding, and exactly which invariants should
one expect to play a direct role? A hint to this is given by Lazarsfeld's
result, to the effect that if C is nondegenerate complete intersection of
type (a, b) with a > b then gon(C) > a(b - 1).

For C c P Γ a smooth curve, we let

δη{C) = E2 Hr;2.

We then have δη(C) = ηr~3(ηdeg(N) - deg(C)).

Theorem 4.1. Let C cPr be a smooth curve of degree d, r > 3. Let
ε(C) be the Seshadri constant of C, and set

a = min{ 1,

Then

r-2 I ( '

Although we state the result for curves in P r for the sake of simplicity,
it is easy to see that the same considerations apply when PΓ is replaced by
a general smooth projective manifold X with V\c{X) ~ Z . Later in this
section we shall indicate how these results generalize to higher dimensional
varieties in P r .

Proof. To avoid cumbersome notation, we shall assume that r = 3.
The proof applies to higher value of r, with no significant change. We
want then to show that

where a = min{l, y/d(l - ε(C)Vd)} .
Suppose, to the contrary, that the statement is false: if k = gon(C),

then k is strictly smaller than both terms within the braces in the last
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inequality. For η < ε(C) sufficiently close to ε(C) the same holds. More
precisely, if we let aη = min{l, \ίd{\ - η\fd)}, we have

(7) k < δη(C)/4η

and

(8) k<aη(d-aη/η).

Pick a minimal pencil A e Pic*(C), and set V =: H°(C, A). Then V
is a two-dimensional vector space. On C we have an exact sequence of
locally free sheaves 0 —> -A -+V<g>(fc->A^0. Consider the blowup
diagram. Define

(9) &Ί=Ker(ψ:V®0x ^>π*A),

where π*A is a line bundle on E, and ψ is surjective. Since £ is a
Cartier divisor in Xc , & is a rank-2 vector bundle on Xc . As usual we
set H = H - ηE, where ^ is a rational number.

C/α/m 4.1. Let ?/ be a rational number in the interval (0, ε(C)). If
A: < \δ (C)/η, then ^ is Bogomolov-unstable with respect to H .

Proof. By Lemma 2.1, the Chern classes of SF are cχ{^) = - £ and

c 2 ( ^ ) = π*[v4], where [̂ 4] denotes the divisor class in Aι(C) of any

element in \V\, and we implicitly map Aλ(E) to A2(XC). Then the

discriminant of & (Definition 2.2) is given by

Therefore by the assumption we have

(10)

which implies that & is Bogomolov-unstable with respect to H . q.e.d.
Hence, by Theorem 2.3, there exists a unique saturated invertible sub-

sheaf Sf c & having the following properties:
(i) S* is the maximal destablizing subsheaf of & with respect to any

pair (H , R), with R an arbitrary ample divisor on Xc. In particular,
for any such pair we have (2c1(^7) - cχψ~)) Hη R > 0. Incidentally,
this implies that 3* is the same for all the values of 0 < η < ε(C) which
make the hypothesis of the claim true.

(ii) (2cj(^) - cχ{F)f Hη > A{F). Hη .

Given the inclusions Sf c «?" C @\ , we have

( i i) s? = <9xyϋ)
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for some effective divisor D on Xc . We can write

D = xH + yE,

with x and y integers and x > 0. Set

s=:D Hη-H = x + yηd.

Since & has no sections, D Φ 0. The same applies for the restriction to
any ample surface. Hence s > 0 for 0 < η < ε(C).

Lemma 4.1. Assume that s >a. Then k > a(d - a/η).
Proof. Given (11), from (ii) and (10) we get

(12) (E-2D)2.Hη>δη{C)-4ηk.

Since E2 H' = δ' (C), this can be rewritten

'D2-Hη-D Hη E>-ηk.

By Corollary 3.6, we then have

(13) s2 -sηd>-ηk.

On the other hand, we have the destabilizing condition (i)

(14) (E-2D)Hη H>0.

Now

E Hη H = ηd,

and therefore (14) can be written

(15) ηd>2s.

Therefore we can apply Lemma 2.5 with a = ηd and b = ηk to obtain
ηk > ηda — a . This proves the lemma, q.e.d.

The proof of the theorem is then reduced to the following lemma.
Lemma 4.2. s > a.
Proof. We shall argue that s > a for all rational η < ε(C) such

that the inequalities (7) and (8) hold. For all such η we are then in the
situation of Claim 4.1.

Claim 4.2 Sf is saturated in V <g> @x .

Proof By construction, J ? = #χ(-D) is saturated in ̂ . Therefore,

if the claim is false, then the inclusion & c V <8><fχ drops rank along

E. Hence there exists an inclusion &X{E - D) c ff\ . This implies that

D - E is effective, and in particular (D - E) H2 > 0. Together with
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the instability condition (E - 2D) H2 > 0, this would yield D H2 < 0,
against the fact that D is effective, q.e.d.

By Claim 4.2, there is an exact sequence

0 -+ 0X{-D) -> V ®@χ -> d^(Z>) <g> J ^ -+ 0,

where Y is a closed subscheme of X of codimension two or empty. Com-

puting

D2 H
Now,

puting c2(0χ) = 0 from this sequence, we obtain D2 = [Y], and therefore

D2 H >0. On the other hand, D2 -H = x2 -y2d, and so x >

By construction, i/°(X, ^ ) = 0, and therefore D / 0. Hence, if y = 0,
then s = x > I. I f y ^ O , then the above inequality shows that s >
Vd(l-ηVd). q.e.d.

This completes the proof of the theorem.
Example 4.1. Let C c P 3 be a smooth complete intersection curve of

type {a, b), with α > £ + 3, 6 > 2 . Then gon(C) > a(b - 1).
Remark 4.1. This shows that the result is generally optimal. However,

the theorem is void for a complete intersection of type {a, a). But for
complete intersections one knows more than just the Seshadri constant:
not only ε(C) = I/a, but in fact the linear series \aH- E\ is base point
free, and the general element is smooth. An ad hoc argument proves that
g o n ( C ) > α ( & - l ) [23].

Example 4.2. Let C be a nondegenerate smooth complete curve in P 3

that is linked to a line in a complete intersection of type (a, b). Then
for a > b > 0 we obtain gon(C) > deg(C) = {a + b - 2). This is clearly
optimal, because a base point free linear series of that degree is obtained by
considering the pencil of planes through the line. The same considerations
as in Remark 4.1 apply.

Remark 4.2. An analysis of "small" linear series on special classes of
space curves is carried out by Ciliberto and Lazarsfeld in [8]. It would be
interesting to know whether the present method can be adapted to give a
generalization of their results.

From the theorem, we immediately get
Corollary 4.1. Let X c PΓ be a smooth projective variety. Let d be

the degree of X, and ε(X) be its Seshadri constant. Suppose that A, is
a line bundle on X with a pencil of sections V c H°(X, A) whose base
locus has codimension at least 2. Let F be any divisor in the linear series
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\A\. Then

min j I („, (N) • χH"~'- ^ ) , „

where
c = codim(X,Pr)

and

α = minjl, \Jε{X)c~2d{\ - ε{X)\j ε(X)c~2 d)\ .

Proof. Let C c X be a curve of the form I n Λ , where Λ c P 3 is a
linear subspace of dimension c + 1, with c the codimension of X. Then
V restricts to a base point free pencil on C, and the result follows by
applying the theorem.

5. Stability of restricted bundles

We deal with the following problem.

Problem 5.1. Let % be a rank-2 vector bundle on P 3 , and let C c P 3

be a smooth curve. If & is stable, what conditions on C ensure that &\c

is also stable?
Remark 5.1. This question has been considered by Bogomolov [4], [6]

in the case of vector bundle on surfaces. In particular, he shows that if
S is a smooth projective surface with Pic(S) ~ Z, %? is a stable rank-2
vector bundle on S with cx (β) = 0, and C c S is a smooth curve with
C 2 > 4c2(<T)2, then g\c is stable.

After a suitable twisting, we may also assume that & is normalized,
i.e., cχ(%) = 0 or - 1 . We shall suppose here that cχ(β) = 0, the other
case being similar.

As usual we adopt the following notation: / : Xc —• P 3 is the blowup

of P 3 along C, E = f~ιC is the exceptional divisor, and π: E -* C

is the induced projection. Recall that for η e Q we set Hη := H - ηE,

where we write H for f*H. If 0 < η < ε(C), H is a polarization on

xc.
Definition 5.1. We define the stability constant of & with respect to C

as
y(C, g7) = sup{>/ € [0, β(C)] |/*r is (Hη, i/)-stable}.

Remark 5.2. Recall that f*% is (H, i/^-stable if for all line bundles

* we have £?-HHη<0.
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Lemma 5.1. Suppose 0 < η < e(C). Then /*J? is (H, Hη)-semistable

ifandonlyifη<γ{C,g).Ifη<γ(C,Z), fW is (H, Hη)-stable.
Proof. The collection of the numerical classes of nef divisors D with

respect to which /*!? is (H, D)-semistable (or stable) is convex, hence
it contains the segment [H, H,c %λ. Since /*ί? is (H, //)-stable, the
second statement follows.

Lemma 5.2. Suppose that V c P 3 w α smooth surface of degree a
containing C, and that %?\v is (fv(H)-stable. Then

Let V be the proper transform of V in Xc. Then K ~ V and

F € \aHχ,\. The hypothesis implies that for every line bundle J ? c /*!?

we have J ? Hλ,' H < 0. Hence the same holds for every 7/ with

0< η < I/a.
Remark 5.3. Note that the same argument actually proves the following

stronger statement: Let V D C be a reduced irreducible surface through
C having degree m and multiplicity n along C, and such that f*&\γ
is ^~(//)-stable. Then γ(C, %) > min{n/m, ε{C)}.

Lemma 5.3. Fix c2 > 0 an integer. Then there exists an integer k with
the following property. If & is a stable rank-2 vector bundle on P 3 with
cx(%) = 0 and c2{%?) = c2, and if V c P 3 is a smooth surface of degree
a>k, then g\v is &v(H)-stable.

Proof We start by finding s such that for a general surface S of degree
s we have Pic(S) ~ ZH (s > 4 will do) and furthermore the restriction
&\s is <fs(H)-stable. Bogomolov's theorem (Remark 5.1) then implies
that for any curve C c S such that C 2 > 4c2(^)2s2 the restriction &\c

is also stable. Let now α > 0 be such that α2 > 4c2(^)2s. Suppose that V
is a smooth surface of degree α and that &\v is not stable. Then the same
is true for C = V ΠS. For a general choice of S, C is a smooth curve,
and since C SC — α2s > 4c2(&)2s2, we have a contradiction, q.e.d.

We can in fact restate the previous lemma as follows:
Let s be the smallest positive integer such that for a general surface of

degree s we have Pic(S) ^ Z and %\s stable. If a > 2c2{^)y/s, and
F c P 3 is any smooth surface of degree a, then I? | F is (?v(H)-stable.

Corollary 5.1. Let % be a rank-2 stable bundle on P 3 with cγ{%) = 0
but c2{%) φ 1 (i.e., & is not a null correlation bundle [30]). If a > 2c2(&),
and F c P 3 is a smooth hypersurface of degree a, then %>\v is <fv(H)-
stable.
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Proof. In fact, a theorem of Barth implies that in this case we can take
s = 1 [2].

Remark 5.4. In light of Barth's restriction theorem, by induction these
statements generalize to PΓ for any r > 2 (for r = 2 this is just Bogo-
molov's theorem, and the hypothesis c2 Φ 1 is not needed).

Remark 5.5. In the proof of Corollary 5.1, we use stability on the hy-
pei plane section to deduce stability on the whole surface. What makes this
work is Bogomolov's theorem (cf. Remark 5.1), which gives us a control of
the behaviour of stability under restriction to plane curves. On the other
hand, if we are given an arbitrary smooth surface V, it may well be that
%\v is //-stable while <£\c is not, where C is an hyperplane section of
V. In that case, however, %?\vnw will be stable, if W is a smooth surface
of very large degree such that V Γ\W is a smooth curve. To improve the
above result, therefore, one would need to control the behavior of stability
under restriction to curves not necessarily lying in a plane. After prov-
ing the restricted Theorem 5.1 we shall strengthen the above corollary (cf.
Corollary 5.4).

Definition 5.2. If X is a smooth variety, and c{ e Aι(X) for i = 1
and 2, let ^x{cχ, c2) denote the moduli space of stable rank-2 vector
bundles with Chern classes cx and c2 .

Corollary 5.2. Fix integers r > 3 and c2 > 0. Then for any suffi-
ciently large positive integer a the following holds: if V c P r is a smooth
hypersurface of degree a, then ^pr(0, c2) embeds as an open subset of
•#F(0,c2α).

Proof ^pr(0, c2) forms a bounded family of vector bundles, and
therefore so does the collection of the vector bundles End(i", &), with
«\ & e Λfpr(0, c2). Therefore, if k > 0, we have H\Yr, End(^, 9*)
x (-a)) = 0 for all i < 2, a > k and for all g\ 9~ e Λί^(0, c2). Fur-
thermore, by the above lemma we can assume that E\v is έfF(//)-stable
for all & e ^ r ( 0 , c2). From the long exact sequence in cohomology
associated to the exact sequence of sheaves

0 -+ End(^, ̂ )(-a) -> End(<T, &) -> End(g\v, &\v) -+ 0,

we then obtain isomorphisms

H°(Pr, End(l?, 9)) ^ H\V,

and

Since there cannot be any nontrivial homomorphism between two non-
isomorphic stable bundles of the same slope, the first one implies that
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I? —• I ? | F is a one-to-one moφhism of ^ > r ( 0 , c2) into «/#F(0, c2a), and
the second that the derivative of this morphism is an isomorphism [24].

Corollary 5.3. γ(C,^)>0.
Proof. By Lemma 5.3, for r > 0 the restriction of % to any smooth

surface of degree r is stable with respect to the hyperplane bundle. So
we just need to consider a smooth surface through C of very large degree
and apply Lemma 5.2.

Example 5.1. Let C = Va Π Vb c P3 be a smooth complete intersection
of type {a, b), with a > b. Suppose that ϊ^ is smooth, and that %\v is
^ (7/)-stable. Then

In general, 0 < η < γ(C, %>) if and only if for m and n sufficiently large
integers such that η = n/m, and S e \mH - nE\ a smooth surface, we
have that f*^\s is ^(i/)-stable. In other words, we have a degree- m
hypersurface with an ordinary singularity of multiplicity n along C, such
that the pullback of % to the desingularization of S is //-stable.

Our result is then the following.

Theorem 5.1. Let & be a stable rank-2 vector bundle on P 3 with
cχ (β) = 0. Let C c P 3 be a smooth curve of degree d and Seshadri
constant ε(C), and let γ = γ(C, <§*) be the stability constant of % with
respect to C. Let a = min{l, Vd(y/3/4 - γVd)}. Suppose that %?\c is
not stable. Then

c2(?) >min{«y4, aγ(d - a/γ)}.

Proof. Suppose to the contrary that c2{β) is strictly smaller than both
quantities on the right-hand side. We can find a rational number η with
0 < η < γ such that

(16) 2 ,

and

(17) C2(?)<aη(d-a/η).

By assumption there exists a line bundle L on C of degree / > 0
sitting in an exact sequence 0 -> L -• &\c -> L" 1 - » 0 . Define a sheaf
& on Z c by the exactness of the sequence

(18) 0 - ^ -4 /*g? -> π * L - 1 - 0.

Then ^ is a rank-2 vector bundle on X c having Chern classes cχ (ίF) =
- [ £ ] and c2{&) = f*c2{%) - π*[L] (cf. Lemma 2.1). A straightforward
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computation thus gives

(19) Δ ( ^ ) Hη = δη(C) - 4c2{%) + Aηl > δη(C) - 4c2(&),

which is positive by (16). Therefore ^ is Bogomolov-unstable with re-
spect to H (Theorem 2.3). Let 3* c & be the maximal destabilizing
line bundle with respect to H . We shall write Sf = <9χ (-D), with
D = xH-yE.

Claim 5.1. J C > 0 .

Proof. Pushing forward the inclusion 3 c & we obtain an inclusion
&P*(—χ) c %> - Therefore the statement follows from the assumption of
stability on % and the hypothesis cχ(%) = 0. q.e.d.

The destabilizing condition implies (2cχ(Sf) - cχ{^)) H R > 0 for
all nef divisors on Xc, with strict inequality holding when R is ample.
In particular, with R = H we have

(20) (E-2D)Ήη H>0.

Let us set s = DHη H. T h e n (20) reads

(21) ηd>2s.

On the other hand, since 3 is saturated in SF, we also have (E-2D)2 H >
H , and with some algebra this becomes

(22) 2 η η η

Invoking Corollary 3.6 then gives

(23) c2(gf) > sηd - s2.

Claim 5.2. S? saturated in f%.
Proof. Suppose not. Then there would be an inclusion

and therefore the (//, // )-stability of /*& would force

(E-D) HηH<0.

On the other hand by instability we have E - H H > 2D - H - H and
from this it follows that

absurd, q.e.d.
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Therefore there is an exact sequence

0 -> 0xSrD) -> f& -> &Xc(D)®Jfw -> 0,

where W is a local complete intersection subscheme of Xc of codimen-

sion 2 or empty. Computing c2(/*ίf) from the above sequence we then

get fc2{&) = W - D2, i.e., D2 H > -c2(g). This can be rewritten

x2 > y2d - c2(&). Recall that we have (Remark 3.8) d > δη(C), and

therefore the assumption c2(g) < δ (C)/Λ implies

(24) c2(?)<d/4.

Lemma 5.4.

s > min{l, y/d(y/T/4 - ηy/d)} .

Proof. If y < 0, then s = x + \y\ηd > 1. If y > 0, we have s =

x-yηd > y\fd(J\ -- c2(g)/d - ηVd) and therefore using (24) we obtain

Hence we can apply Lemma 2.5 with a- ηd and b = c2(l?) to deduce

c2{g) > θίϊ\d - a2, which contradicts (17). This completes the proof of

the Theorem.

Corollary 5.4. Let % be a stable rank-2 vector bundle P 3 with cχ (I?) =

0 and c2(ί?) = c2 . If b > c2 + 2, and F c P 3 w a smooth hypersurface of

degree b, then %\v is ^v(H)-stable.

Proof Let a > b then we may assume that if W c P 3 is a surface
of degree α, then ^ | ^ is //-stable. If W is chosen generally, we may
also assume that C = W ΠV is a smooth curve. Thus use of Lemma 5.2
gives y(C, g) = β(C) = I/a. For α large enough, furthermore, we also
have a = 1. Hence the theorem implies that if g\c is not stable, then
c2 > b - 1. From the hypothesis it therefore follows that 8?\c is stable,
and this forces %>\v to be stable also.

Corollary 5.5. Let & be as above, let C = VaΓ\Vh be a smooth complete
intersection curve of type (a, b), and suppose that Va is smooth. Assume
that a > 4b/3 + 10/3 and that b>c2 + 2. Then if | c is stable.

Proof. By Corollary 5.4, g\v is //-stable. Hence by Lemma 5.2
γ(C, &) = \/a. The first hypothesis implies that a = 1. Thus if if | c is
not stable, the theorem yields c2 > b - 1, a contradiction.

Corollary 5.6. Fix a nonnegative integer c2 . Then we can find positive
integers a and b such that / / C c P 3 is any smooth complete intersection
curve of type (a, b), then ^ 3 ( 0 , c2) embeds as a subvariety o
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Proof. The argument is similar to the one in the proof of Corollary
5.2. Here one uses the Koszul resolution

0 -> ̂ (-a - b) -> ̂ ( - α ) Θ <%>(-b) ^ ^ c -+ 0

to show that //'(P 3, E n d ( ^ , / ) 0 / c ) = O for i < 1.
Remark 5.6. Using the above corollary, we obtain a compactification of

Jί^{cχ, c2), by simply taking its closure in the moduli space of semistable
bundles on the curve. It would be interesting to know whether these com-
pactifications are intrinsic, i.e., they are independent of the choice of the
curve or, if not, how they depend on the geometry of the embedding
C c P 3
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