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BOUNDED 3-MANIFOLDS ADMIT NEGATIVELY
CURVED METRICS WITH CONCAVE BOUNDARY

JOEL HASS

Abstract

A metric can be constructed on any 3-manifold with nonempty boundary
such that with respect to the metric the manifold has negative sectional
curvature and the boundary is concave. In particular, the 3-ball admits
such a metric.

Introduction

In this paper we construct a metric on any 3-manifold with boundary
such that with respect to the metric the manifold has negative sectional
curvature and the boundary is concave outwards. In particular, we con-
struct such a metric on the 3-ball. This is surprising for several reasons.

Firstly, such a construction cannot be carried out in two dimensions.
The Gauss-Bonnet theorem implies that the boundary of a negatively
curved 2-disk is somewhere convex.

Secondly, such a metric cannot be constructed with constant negative
sectional curvature. This contrasts with the recurrent theme in low-dimen-
sional topology that negatively curved manifolds behave similarly to hy-
perbolic ones. Thus Thurston's geometrization conjecture states that a
closed 3-manifold admitting a metric of negative sectional curvature also
admits a hyperbolic metric, and Thurston has proved this for closed Haken
manifolds and for bounded manifolds with totally geodesic boundary [4].
By contrast, there is no hyperbolic metric on the ball whose boundary is
concave. Otherwise we could use the developing map [4] to immerse the
ball into H3 under a local isometry. An extremal point of the image
would be a boundary point that could not be concave. Thus this construc-
tion can be viewed in some weak sense as giving negative evidence for the
geometrization conjecture.

This metric has other strange properties. It is not induced by an im-
mersion of the 3-ball into a complete negatively curved 3-manifold. The
interior of the ball contains a null-homotopic closed geodesic. By contrast,
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in a complete negatively curved manifold there is a unique geodesic in each

homotopy class.
The motivation for this construction was an attempt to generalize the

2π-theorem of Gromov and Thurston [1], which states that all but finitely
many Dehn fillings on a cusped hyperbolic 3-manifold yield a closed, neg-
atively curved 3-manifold. Cutting off a cusp of a hyperbolic 3-manifold
along a horospherical torus gives a concave boundary to the hyperbolic
manifold, and the metric can be extended over the solid torus added dur-
ing Dehn filling so as to preserve negative curvature. The results of this
paper show that the solid torus, like a hyperbolic manifold truncated along
a cusp, admits a metric with negative sectional curvature and concave
boundary. But all of the infinitely many Dehn fillings on the solid torus
yield manifolds which do not admit a metric of negative sectional curva-
ture. Thus the 2π-theorem does not generalize from the hyperbolic setting
to the setting of variable negative curvature.

The paper is organized so as to first construct a metric on the 3-ball with
negative sectional curvature and concave boundary, and then generalize the
construction to obtain such metrics on arbitrary bounded 3-manifolds.

Construction of the metric on the 3-ball

The idea of the construction is to take a suitable hyperbolic manifold
with totally geodesic genus-two boundary and to add two 2-handles to ob-
tain a 3-ball. Pushing in the totally geodesic boundary slightly gives a
concave boundary. The 2-handles can then be made to have a compat-
ible negatively curved metric if the attaching curves are sufficiently long
geodesies.

Lemma 1. There is a 3-manifold X, obtained by removing an arc from
T x{0} to T2x{l} in T2 x I, which is hyperbolic and has totally geodesic
boundary.

Proof. An arc running from T2 x {0} to T2 x {1} whose complement
is boundary incompressible, anannular, and atoroidal exists by the results
of Meyers [2], [3]. Let X be the manifold obtained by removing a small
open neighborhood of this arc. The double of X is a closed atoroidal
3-manifold, and admits a hyperbolic metric by Thurston's geometrization
theorem for Haken manifolds. This manifold has an isometric involution
preserving dX. It follows that dX is totally geodesic, proving the lemma.

In Example 1 we will give a more direct construction of a hyperbolic
manifold with all the properties we need. This construction avoids the
need to apply the less constructive results of [2], [3].
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Let ε > 0 be a constant such that the boundary 9 1 of I admits
a collar neighborhood of width ε (ε can be chosen to depend only on
the genus of dX, but for our purposes any ε > 0 will do). Let Xε be
the submanifold obtained from X by removing an ε-neighborhood of
the boundary of X. Then dXε is a concave surface of constant normal
curvature. Let K(ε) be the normal curvature of dXε, so that K(0) = 0
and K(ε) > 0 for ε > 0. K(ε) is also the normal curvature of the surface
in H3 which is at constant distance ε from a hyperbolic plane.

We now examine what happens when a 2-handle is added to X. Let m
be a closed curve on 9 1 , which is a meridian of the arc removed from
T x I. dX is cut by m into two punctured tori, Tχ and T2 .

Lemma 2. Any 2-handle addition to X along a non-separating curve
in Tχ gives a solid torus. For any one of these, infinitely many distinct
2-handle additions along curves in T2 give rise to a 3-ball.

Proof. Compressing a punctured torus yields a 2-sphere. Thus any 2-
handle addition along a non-separating curve in Tχ gives a manifold X'
with a single torus as boundary. One way of constructing X1 is to first
take T2 x I, add a 2-handle to get a solid torus with a ball removed,
and then remove an arc connecting the torus boundary component to the
sphere boundary component. Such a construction always produces a solid
torus.

Adding a second 2-handle to T2 will in general give rise to a punctured
lens space. However an infinite number of distinct 2-handles yield a ball,
namely those where the attaching curve consists of one longitude and any
number of meridians.

We now show that the 2-handle addition can be carried out with suitable
control of the metrics. We construct a metric on the attaching 2-handles
which is negatively curved, hyperbolic near the 2-handle boundary, and
suitably concave. We begin by constructing a metric on the core of the
2-handle.

Lemma 3. Given a positive constant K(ε) there is a constant Lε > 0
such that a disk D whose boundary has length{dD) > Lε admits a smooth
metric h satisfying:

1. D is hyperbolic in a neighborhood of dD,
2. D is negatively curved everywhere,
3. dD is convex with constant normal curvature K(ε).

Proof We take polar coordinates (r, θ) on D and a metric of the
form h = dr2 + f2(r) dθ2 , where / is a function defined as follows. Fix
ε > 0 and pick a constant a e R and a smooth function f(r) so that:
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cosh(r-α)

FIGURE 1

2. /(0) = 0,
3. f(r) = csinh(r) for r e [0, ε],
4. /(r) = cosh(r - a) for r e [a + ε/2, α + e],
5. /"(r) > 0 for all r (i.e., / is convex).

The existence of such an / for large enough a follows immediately from
Figure 1.

A calculation using Cartan's method of moving frames shows that the
resulting curvature of the disk is given by -f" I f, r > 0. Explicitly, take
orthonormal 1-forms

ωl =dr, ω2 = f(r)dθ.

Then

and

So

The sectional curvature is given by -f"/f, so this metric on the disk
has negative curvature, equal to -1 near r = 0 and near dD. The metric
has a singularity at r = 0 with cone angle 2πc. An appropriate branching
gives a nonsingular metric on the disk with cone angle 2π. The boundary
length then multiplies by \jc. Although the construction of / is restricted
in that there is an upper bound to which value of c can be chosen, there
is no lower bound, so that we can pick the cone angle to be anything less
than some fixed constant c0. As a result we can branch appropriately to
get an arbitrary boundary length larger than some constant Lε. The metric
near a totally geodesic submanifold of a hyperbolic manifold has the form
dr + cosh2 r dx2 , where r measures the distance from the submanifold,
and dx is the hyperbolic metric on the submanifold (these are sometimes
called Fermi coordinates). As a result the metric near the boundary of the
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disk is the same as the metric on a hyperbolic surface at distances between
ε/2 and ε from a geodesic.

We now extend this metric to a 3-dimensional 2-handle.
Lemma 4. Given D as in Lemma 3, there is a metric on D x I such

that

1. D x I is hyperbolic in a neighborhood of dD x I,
2. D x I is negatively curved everywhere,
3. dD x I is convex with constant normal curvature K(ε),
4. D xdl is concave.

Proof. We first consider D2 x R with coordinates (r, θ) on D2 and
p on R. Define the metric

g - dp2 + cosh2 p h = dp2 + cosh2 p dr2 + cosh2 p f2 dθ2,

and calculate its curvature using moving frames.
Orthonormal 1-forms are

ωl=dp, ω2 = cosh p dr, ω3 = f cosh pdθ

Differentiating gives

dω1 = 0 = -ωx

2 Aω -ωι

3Aω ,

dω = sinh pdp Adr = (sin p/ cosh p)ωι A ω2

= - ω χ Aω - ω 3Aω ,

dω = f sinh pdp A dθ + f cosh pdr A dθ

/ s i n h / Λ i A 3 , / ' 2 A 3
= —7T- ω Λ ω -h -p—r—ω A ω\cosh p) fcoshp

3 A 1 3 A 2

= - ω 1 Λ ω - ω 2 Λ ω .
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jkω . Then

u = ω 2 A ω -\- ω 3 A ω

— a 2lω Aω -\-a 23ω Aω -\-a 3lω Aω -\-a 32ω AωJ,

so a 2 1 = 0 , a 2 3 = a 32, α 3 1 = 0 ,

1 1 2 1 3

ω 2 — a 22ω + α 2 3 ω ,
1 1 2 1 3

ω 3 = a 2 3 ω + α 3 3 ω '
2 2 1 2 2 2 3
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(sin /?/ cosh p)ω Λ ω = — ω { Λω — ω 3 Λ ω

= a 22ω Λ ω + a 2 3 ω Λ ω
2 1 3 2 2 A 3

- α 3 1 ω Λω -a 3 2 ω Λω ,

so a2

32 = 0, α 1 ^ = -sinhpjcosh/?, α 1 ^ = - Λ 2

3 1 ,

ω 2 = - (sinh/?/cosh/?)ω + 0 2 3 ω ,
1 1 2 1 3

ω 3 = a 2 3ω + α 3 3ω ,
2 1 1 2 3

ω 3 = - a 2 3ω + a 3 3ω ,

/ s i n h / ? \ 1 3 / 2 3
— = - * - ω Λ ω + -jr^-r:— ω Λ ω

\cosh/>/ /cosh/?
3 A 1 3 A 2 1 2 A 1 , 1 3 A 1

= — ω χl\ω — ω 2Aω = a 2 3 ω Λω - h α 3 3 ω Λω

- aι

23coι Λ ω + α 3 3 ω Λ ω ,

= -(sinh p/ cosh /?), α 2

3 3 = -/ '/(/cosh/?), α 1 ^ = 0, and

ω 2 = - (sinh/?/coshp)ω ,

so

ωl

3= - (sinh/?/cosh/?)ω ,

ω 2

3 = - (/7/cosh/?)ω3.

We now calculate Ω = dω + ω Λ ω:

2 = - rf((sinh/?/cosh/?)ω ) =

= - cosh pdp Λdr = - ω Λω ,
!

3 = - rf((sinh/?/cosh/?)ω3) = -d

= - /(r) sinhpdr Λdθ - /(r) coshpdp Aωdθ

/(r)sinh/? 2 A 3 1 A 3
= ί τ^ω Λω — ω Λω ,

/(r)cosh /?

= - f" /(fcosh2 p)ω2 Λω3,
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Since / 7 / and / are positive, all the sectional curvatures Rι

 r are nega-
tive. Moreover the metric is hyperbolic near r = 0 and near 3D x R.

We now construct a submanifold Y of DxR with the following prop-
erties:

1. Y is homeomorphic to D x [-1, 1].
2. Z) x {-1} and D x {1} are concave.
3. dD x [-1, 1] is convex with constant normal curvature K(ε).
4. D x {-1} and ΘDxI are tangent at dD x {-1} , and D x {1} and

dDx I are tangent at <9Z> x {1} .

We first arrange for property 2. Note that Sι acts isometrically on
D x R, via a (p, r, θ) = (p, r, a + θ), a e [0, 2π]. We identify
the orbit space 0 with the set of points 0 = 0. O sits inside 7 as
a totally geodesic submanifold, and inherits the hyperbolic metric dp2 +
cosh2 p dr2 . Each circle orbit with r > 0 has a curvature vector which is
invariant under the circle action. This gives a smooth equivariant vector
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Y

FIGURE 2A FIGURE 2B

field on {D - (0,0)} x R, which projects to a smooth vector field V on
the interior of the orbit space, as depicted in Figure 3. At θ = 0, V is
tangent to D x {0) and points towards the center of this disk. As r —> 0,
V becomes perpendicular to the r = 0 axis. The direction of V, though
not its magnitude, is illustrated in Figure 3.

Let cχ, c2 be a pair of curves in O, each of which is convex outwards
and transverse to V on int(O), as in Figure 3. Construct surfaces of
revolution Cχ and C2 by taking the Sι orbits of cχ and c2, and let W
be the compact submanifold of DxR cut off by CXUC2. Since O is totally
geodesic, cχ and c2 are principle curves of Cχ and C2 respectively. The
other principle curvature of Cχ and C2 is the normal curvature of an
Sx -orbit. This points outside W by construction, so that both principle
curvatures are outward pointing and Cχ and C2 are concave.

We now adjust W and Cχ, C2 near dD x R to obtain Y. W is
hyperbolic near dD x R, and dD x R has constant normal curvature K(ε)
in the θ direction, zero in the p direction. We construct the convex part
of d Y by taking the submanif old of W with constant normal curvature
K(e) in every direction on dD x /. Finally we adjust Cχ and C2 so that
they meet the convex portion of d Y smoothly, as illustrated in Figure 2b.

Theorem 1. Let M be a manifold which has negative curvature and
concave boundary. Suppose that γ is a simple geodesic on the boundary
dM ofM, length(y) > Lε, and the metric on M in a neighborhood of γ
is hyperbolic with constant normal curvature K(ε). Then the manifold ob-
tained by attaching a 2-handle along γ admits a negative curvature metric
which is concave at the boundary.
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Proof. The geodesic γ has a ^-neighborhood for some δ > 0. The
2-handle in Lemma 4 can be constructed so that its width is arbitrarily
small, in particular less than δ . Attaching the 2-handle along γ gives the
desired metric.

Theorem 2. There exists a metric on a 3-dimensional ball B3 which
has negative sectional curvature and is concave at the boundary.

Proof. We take the manifold X(ε) constructed in Lemma 1 and attach
a 2-handle to Tχ along a curve of length > Lε. Theorem 1 implies that the
resulting solid torus has a negative sectional curvature metric with concave
boundary. In this metric the punctured torus T2 in the boundary of the
solid torus has a neighborhood which is hyperbolic, has constant normal
curvature K(ε), and has a geodesic boundary curve corresponding to the
meridian m of the removed arc. It follows that there are geodesic curves
in T2 which have arbitrarily long length such that adding a 2-handle along
any of these curves gives rise to a ball. Performing a 2-handle addition
along one of these curves and applying Theorem 1 proves Theorem 2.

Geodesies in a complete negative sectional curvature manifold are al-
ways homotopically nontrivial. In contrast, for bounded negative sectional
curvature manifolds we produce a closed null-homotopic geodesic con-
tained in the interior of the manifold. This is not possible in dimension
2.

Corollary 1. There exists a negative sectional curvature metric with con-
cave boundary on the 3-ball in which the interior of the ball contains a
null-homotopic closed geodesic.

Proof. Take a closed geodesic in the hyperbolic structure on X which
misses an ε-neighborhood of dX. The metric in a neighborhood of this
curve is unchanged by the 2-handle additions.

Corollary 2. There exists a negative sectional curvature metric on the
3-ball which is not induced by an immersion into any complete negatively
sectional curved 3-manifold.

Proof. If so, then the complete negatively sectional curved 3-manifold
would contain a null-homotopic closed geodesic.

Construction of metrics on arbitrary bounded 3-manifolds

We next consider the question of what other manifolds admit negative
sectional curvature metrics with concave boundary. A construction similar
to the one of Lemma 1 shows that all 3-manifolds have such metrics.

Theorem 3. There exists a metric on any orientable 3-manifold with
nonempty boundary, which has negative sectional curvature and is concave
at the boundary.
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Proof. Case 1. M has a boundary component which is not a sphere.
Glue 3-balls to any spherical boundary components to get a manifold M1,
possibly coinciding with M. Remove an unknot K from a small ball
in int(Λf'), the interior of M1. Using Myers' theorem, an arc a can be
found running from K to a boundary component of M such that the
complement X of an open neighborhood of K U a is boundary incom-
pressible, atoroidal, and anannular [2], [3]. X admits a hyperbolic metric
with dX consisting of horotori and totally geodesic surfaces. Push the to-
tally geodesic surfaces in slightly to get concave boundary. Infinitely many
distinct surgeries on K give rise to a manifold homeomorphic to M'.
Choosing a sufficiently long surgery curve, as in Theorem 1, gives a metric
with negative sectional curvature concave boundary on M'. Removing
small balls if necessary, we obtain such a metric on M.

Case 2. M has only 2-sphere boundary components. Glue 3-balls to any
spherical boundary components to get a closed manifold Mf. Remove a
two-component unlink from a small ball contained in Mf (a Hopf link
would also serve, as it did for the case of a 3-ball). Using Myers' theo-
rem, remove an arc running from one of the components of this link to
the other, so that the complement X of an open neighborhood of the re-
sulting graph is boundary incompressible, atoroidal and anannular. This
manifold X admits a hyperbolic metric with dX a. totally geodesic, genus-
2 surface. Push the boundary in slightly to get concave boundary. Just as
before, infinitely many distinct pairs of Dehn surgeries on each component
of the original unlink give rise to a manifold homeomorphic to M' — {B } .
Choosing sufficiently long curves, as in Theorem 1, gives a metric with neg-
ative sectional curvature and concave boundary on M1 - {B3} . Removing
more balls if necessary, we obtain a manifold homeomorphic to M.

Example 1. We give here a specific example of a manifold X which
is hyperbolic, has totally geodesic genus-2 boundary, and such that on
dX there are curves c{ c2 of arbitrarily long length with the property
that adding 2-handles along cx and c2 gives a 3-ball. Take X to be the
complement of the handlebody in S3 depicted in Figure 4. Thurston has
observed that the complement of this handlebody can be decomposed into
two truncated regular hyperbolic tetrahedra so as to have totally geodesic
boundary [4]. By adding a 2-handle to a meridian of this handlebody, as
indicated in Figure 4, one obtains a solid torus in S3. Addition of another
2-handle then gives a 3-ball. Note that many more pairs of curves also yield
B , as one can do "handle slides", i.e., given two curves, replace one of
them by parallel copies of each connected by an arc in their complement.
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glue meridian here

FIGURE 4

This process enables us to choose the attaching curves of the two handles
arbitrarily long. Applying Theorem 1 gives the conclusion.

Question. Does every ^-manifold with boundary admit a metric which
has negative sectional curvature and is concave at the boundary, n > 3 ?
In particular, does the w-ball?
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