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A SIMPLE GEOMETRICAL CONSTRUCTION
OF DEFORMATION QUANTIZATION

BORIS V. FEDOSOV

Abstract

A construction, providing a canonical star-product associated with any
symplectic connection on symplectic manifold, is considered. An action
of symplectomorphisms by automorphisms of star-algebra is introduced,
as well as a trace construction. Generalizations for regular Poisson man-
ifolds and for coefficients in the bundle Hom(£, E) are given.

1. Introduction

A manifold M is called a Poisson manifold, if for any two functions
u,v e C°°(M), a Poisson bracket is defined by

•"• > - ^
The bracket is a bilinear skew-symmetric operation, satisfying the Jacobi
identity

{u, {v, w}} + {υ, {w, u}} + {w, {u, υ}} = 0.

An important particular case is a symplectic manifold. In this case the
matrix tlJ has maximal rank 2n equal to the manifold dimension. The
inverse matrix ω. defines the exterior 2-form ω = \ωt dxι Λdxj which
is closed in virtue of Jacobi identity.

In [1] it has been proved that, if the tensor tιj has constant rank In >
dim M, there exists a symplectic foliation of the manifold M, a Poisson
manifold with this property being said to be regular. The leaves F of this
foliation locally are symplectic manifolds, and a Poisson bracket is defined
by the symplectic form ω (closed 2-form of the rank 2n = dimF) defined
on the leaves.

In the same paper [1] the question of deformation quantization of Pois-
son and in particular symplectic manifolds is considered. The problem is
to define an associative multiplication operation *, depending on param-
eter h (Planck constant), of two functions so that the space C°°{M) with
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usual linear operators and *-product would be a formal deformation of
commutative algebra of functions with a Poisson bracket. More exactly it
means the following. Let Z be the linear space, the elements of which
are formal series

(1.2) a = a{x,h) k

where ak(x) e C°°(M). Further for any a,b e Z let an associative
product operation

k=0

be defined with the following properties:
(i) ck are polynomials in ak , bk and their derivatives;

(ϋ) cQ(x) = ao{x)bo(x)
(iii) [a,b] = a*b-b*a = -ih{a0, b0} H , where dots mean the

terms of higher orders.
The algebra Z is called the algebra of quantum observables. Property

(i) means the locality of *-product, property (ii) means that algebra Z
is a deformation of the commutative algebra of C°° functions, property
(iii) is the so-called correspondence principle.

The question of the existence of such a product for symplectic manifolds
has been completely solved in [2]. Subsequently, an equivariant general-
ization of this construction [7] for symplectic manifolds was obtained, as
well as a generalization for regular Poisson manifolds [6]. The construc-
tions considered in these works are based on the analysis of Hochschild
cohomologies.

In [3] the author, being unaware of the results of [2], proposed another
construction of *-product for a symplectic manifold. This construction
admits straightforward generalizations for both the equivariant case and
the case of a regular Poisson manifold. In subsequent papers [4], [5] the
author studied the action of symplectic diffeomorphisms, proposed a trace
construction in algebra Z , introduced the concept of index, generalizing
the index of elliptic operators and obtained an index formula.

Unfortunately, work [3] was published in a local issue of Moscow Insti-
tute of Physics and Technology in very few copies, so it remained unknown
to most mathematicians. The purpose of the present article, containing the
extended exposition of some results of [3], [4], is to introduce the results
to broader mathematical circles.

Let us briefly describe the contents of subsequent sections. In §2 we
consider the Weyl algebras bundle W, W-valued differential forms, and a
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connection in the bundle W. These notions give us a basic machinery. In
§3 we introduce the notion of Abelian connection and prove the existence
of such connections. The sections of the Weyl algebras bundle, which
are flat with respect to a fixed Abelian connection, form an associative
algebra. We prove that these sections are in one to one correspondence
with the functions from Z . This allows us to transfer the associative
algebra structure to the set Z and thus to define a *-product.

The next sections are concerned with the notion of trace in the algebra
of flat sections. First of all we construct isomorphisms of this algebra,
corresponding to any symplectic diffeomorphism of symplectic manifolds.
This construction, introduced in §4, is used in §§5 and 6 to define a trace
by means of localization and reduction to the case of standard symplectic
space R2n. In §7 two generalizations are exposed. The first one gives
the construction of deformation quantization and the trace for the case
where the coefficients are homomorphisms of a vector bundle over M.
The second one deals with a generalization of the results obtained in §§2
and 3 for the case of regular Poisson manifolds.

A few years ago there appeared a paper [8], in which quantization is
based on the idea of identifying functions on a symplectic manifold with
the sections of the Weyl bundle. We use a similar approach. But their
means of such an identification is much more complicated than ours.

This article has been written during a visit to MIT. Taking this opportu-
nity, I would like to express my profound gratitude to the Department of
Mathematics at MIT and to Professor Guillemin for the kind invitation. I
would also like to thank Professor A. Weinstein for his useful corrections
and remarks.

2. Weyl algebras bundle

Let (M, ώ) be a symplectic manifold of dimension 2n . The form ω
determines a symplectic structure in each tangent space TχM.

Definition 2.1. The formal Weyl algebra Wχ, corresponding to the
symplectic space TχM, is the associative algebra over C with a unit, its
elements being formal series

(2.1) a(y)= Σ hkakh...i/' y\
2k+l>0

where h is a formal parameter, y = (yι, , y2n) e TχM is a tangent
vector, and a, are covariant tensors. The degrees 1 and 2 are pre-

scribed for the variables yι and h respectively. The product of elements
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a, b eWχ is determined by the Weyl rule

( \

-yft)'J—•—j I a(y, h)b(z, h)\z=y

\ί.ί\ . y Z '

A /, I, i, i, σ # σ 0
Λ:=0 . Qyh Qyh . . . Qyh

It is easily seen that the multiplication (2.2) does not depend on the choice
of a basis in TχM and is associative.

Taking the union of the algebras Wχ, x e M, we obtain the bundle of
formal Weyl algebras whose sections are "functions"

(2.3) a(x,y,h)= £ A*^.. .^*)/ •••/',
2k+l>0

where 0* , ..., a r e symmetric covariant tensor fields on M. The set of
sections also forms an associative algebra with respect to the fiberwise
multiplication (2.2). The unit in this algebra is the "function" identically
equal to 1. To simplify notation we shall also denote the algebra of the
sections by W (instead of the pedantic C°°(M, W)), which, to our mind,
should not cause any confusion.

It is easy to see that the center of W consists of the sections not contain-
ing y 's. Thus the central sections are defined by the series of form (1.2),
and consequently the center of W may be identified as a linear space with
the space Z mentioned in the introduction. There is a filtration in the
algebra W\ W D Wχ D W2D with respect to the total degree 2k + /
of the terms of the series (2.3).

We shall also need differential forms on M with values in W. A dif-
ferential tf-form is defined by the series

(2.4) a = y2hkak . . . . {x)yh > *ylp dxh Λ Λ dxJq,

whose coefficients are covariant tensor fields symmetric with respect to
indices iχ, , i and antisymmetric with respect to j χ , j . The dif-
ferential forms constitute an algebra W®K — φ^" 0 ( W®A), in which the
multiplication is defined by means of the exterior product of differentials
dxι and Weyl product (2.2) of polynomials in yι (dxι commute with yι).
The product of two forms will be denoted by the same symbol aob, such
as the product sections of W. A filtration W®A D Wχ <g>Λ D W2®A D
is introduced with respect to the total degree 2k+p corresponding to the
variables h, yι.
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Let us introduce the commutator of two forms a e W <g> Λ^1, be
W <g> A?2 defined by [a, b] = ao b - (-iyq2b o a. A form a is said to
be central, if for any b e W <8> Λ the commutator of a and b vanishes.
It is clear that the central forms are just the ones not containing y 's, i.e.,
Z <g> A is the center.

Define two projections of the form a = a(x, y, dx, A) onto the center:
a0 = a(x, 0, dx, h) and <z00 = α(x, 0, 0, A). In the particular case
where a = a(x, y, A) •€• W, we shall use the notation σ(a) for α0 =
a(x, 0, A) and call σ(a) the symbol of the section a.

Consider two important operators on forms:

(2.5) ί « = ̂ Λ 5 - F , J β - j

where i(d/dxk) means the contraction of the vector field d/dxk and

the form, multiplication by yk being the usual commutative product of

functions. The operator δ: Wp Θ Λ* —• Wp_χ <g) Λ^+1 which reduces the

filtration by 1 is similar to the exterior derivation. The operator δ*: W <g>

Λ^ -• Wp+ι Θ Λ^"1 raises the filtration by 1. In other words the operator
δ acts on the monomial

(2.6) Z 1 / 2 yip dxJι Λ dxJl Λ Λ dxJ«

by replacing one by one the variables yh , yh , , j ; φ by rfjc'1, rfx'2, ,
dxlp respectively; the operator δ* acts on (2.6) by replacing dxh , dxjl,
• , dxJq by yh , -y 7 2 , , (-\)qyJq respectively.

Lemma 2.2. The operators δ and δ* do not depend on the choice of
local coordinates and have the following properties:

(i) δ2 = (δ*f = 0,
(ii) for monomial (2.6) we have δδ* + δ*δ - (p + q) id.
The lemma is easily proved by a direct check, q.e.d.
Note that δ is an antiderivation, i.e., for a e W<8>Aqι and be W<8>Aq2

we have

(2.7) δ(aob) = (δa) ob + (-l)Qιaob,

(δ* does not possess this property).

Define the operator δ~ι acting on the monomial (2.6) by δ~ι =
δ*lip + q) for p + q > 0, and δ~ι = 0 for p + # = 0. By Lemma
2.2 it can be derived that any form a e W ® Λ has the representation

(2.8) a = δδ~la + δ~lδa 4- aQ0,

which is similar to the Hodge-De Rham decomposition.
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Definition 2.3. A symplectic connection is a torsion-free connection
preserving tensor ω. , i.e., diωjk = 0, dt being a covariant derivative

with respect to d/dxι.
In Darboux local coordinates the coefficients Yijk = o)imT™k of the

symplectic connection are completely symmetric with respect to indices
ijk. The symplectic connection always exists but is not unique, unlike
the Riemannian connection [1]. Two symplectic connections differ by a
completely symmetric tensor ΔΓijΊc.

Let d be a symplectic connection on the manifold M. Using the
covariant derivation of tensor fields, which are coefficients in (2.4), define
a connection in the bundle W as an operator d: W ®Aq —> W<S>Aq+ι by

(2.9) da = dxi Adta.

Definition 2.3 implies the following properties of the connection d in the
bundle W<g>A:

(i) d(aob) = daob + {-l)qιaodb for aeWβA*1.
(ii) For any scalar form φ e Aq , d(φ Λ a) = dφ Λ a + (- l )V Λ #<z.
In Darboux local coordinates the connection d can be written in the

form

(2.10) da = da + [

where Γ = jΓijky
ιyjdxk is a local 1-form with values in W, d = dxι Λ

d/dxι being the exterior differential with respect to x.
We shall consider more general connections D in the bundle W, namely,

connections of the form

where γ is a globally determined 1-form on M with values in W (i.e.,

section of W<8>Aι). Note that the operator δ, introduced above, may be

written in the form

(2.12) δa = -[(i/h)ωijy
idxJ\a].

Lemma 2.4. Let d be a symplectic connection. Then

(2.13) dδa + δda = 0,

(2.14) d2a = d(da) = [(i/h)R, a],

where
R = \RijklyydχkΛdxι,

^ijki = ωim^Tjki being the curvature tensor of the symplectic connection.
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Proof Identities (2.13), (2.14) are obvious consequences of equations
(2.10), (2.12). Note that (2.14) is a compact form of the Ricci identity.

Definition 2.5. Let D be a connection in the bundle W of the form
(2.11) with

(2.15) γo = O.

We shall call the 2-form

(2.16) £ Ω = :

the curvature of the connection D.
Lemma 2.6. For any section a e W <g> Λ we have

(2.17) D2a = [(i/h)Ω, a].

The proof is straightforward.
Remark. Note that the form γ in (2.11) is determined by the con-

nection D not uniquely but up to a central 1-form, because it appears
in commutators. For the uniqueness of γ and therefore of the curvature
(2.16) some normalizing condition is required. We assume that this con-
dition has the form (2.15) and call it Weyl normalizing condition. The
corresponding curvature (2.16) is called Weyl curvature.

3. Abelian connections and quantization

Definition 3.1. A connection D in the bundle W is said to be Abelian
if for any section a e W <8> Λ,

By (3.1) we can show that the curvature of Abelian connection is a central

form and conversely.
In this section we prove the existence of an Abelian connection of the

f 0 Γ m \i 1 Γ i •

D = S + d+ - i r , . \=d+ \τ(ωuy
ιdxJ + r),

d being a fixed symplectic connection, and r e W3 0 Λ1 being a globally
defined 1-form, satisfying Weyl normalizing condition rQ = 0. Calculat-
ing the curvature of this connection and using Lemma 2.4, we get

(3.2) Ω = -\ωu dχl Λ dxj + R-δr + dr + (i/h)r2.

The Abelian property will be fulfilled, provided

(3.3) δr = R + dr+(i/h)r2.
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Then for the curvature we shall have Ω = -ω, so that Ω will really be a
scalar form.

Theorem 3.2. Equation (3.3) has a unique solution, satisfying the con-
dition

(3.4) δ~ιr = 0.

(Note that (3.4) implies r0 = 0).

Proof. Let re W3®Aι satisfy (3.3), (3.4). The decomposition (2.8)

for the form r becomes r = δ~xδr as δδ~ιr = 0 by (3.4) and r0 0 = 0,

since r is a 1-form. Applying the operator δ~ι to (3.3) we get

(3.5) r = δ~lR + δ~l {dr + (//A)r2) .

The operator d preserves the filtration and δ~ι raises it by 1, so iteration
of equation(3.5) shows that it has a unique solution.

Conversely, we will show that the solution of equation (3.5) satisfies
(3.3), (3.4). The condition (3.4) is evidently fulfilled because of (δ~1)2 =
0. Let

A = δr-R-dr-(i/h)r2

be the difference between the left-hand and the right-hand sides of (3.3),
r being the solution of (3.5). Show that A satisfies the equation

(3.6) δA = dA + (i/h)[r,A]

and the "initial" condition

(3.7) δ~ιA = 0.

From (3.6) and (3.7) it follows that A vanishes. Indeed, applying δ~ι to
both sides of equation (3.6) and using (3.7) we shall get similar to (3.5)

from which by iterations it follows that 4̂ = 0.
For checking (3.7) we have

δ~lA = δ~lδr- δ~l (i? + dr + (//Λ)r2) = δ~lδr - r = 0.

Here we have used (3.5), condition (3.4), and the Hodge-De Rham de-
composition.

For checking (3.6) by taking into account that δδr = 0, we obtain

δA = -δR - δ{dr) + [(i/h)r, δr],

since
δR = {R^y dxj Λ dxk A dxl,



GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION 221

which is equal to 0 because of the relation

"ijkl + *iklj "•" *iljk ~ u

for the curvature tensor. Further, δ(dr) = -d(δr) according to Lemma

2.4. Thus,

(3.8) δA = d(δr) + [(i/h)r ,R + dr + (i/h)r2].

We have dR = 0 according to the Bianchi identity for the curvature ten-
sor, ddr = [(i/h)R, r] in virtue of Lemma 2.4 (Ricci identity), d(i/h)r2 =
[<9r, (i/h)r]. Taking into account that [(i/h)r, (i/h)r2] = 0, we get that
the last two terms in (3.8) would equal to 0, and this proves equality
(3.6). q.e.d.

Note that iterating equation (3.5) we can effectively construct the form
r and, consequently Abelian connection D. The first two terms are

r = ϊRukiyιyJy ^χ + hdmRijkiyιyJy ym dx + ,

dm being a covariant derivative with respect to the vector field d/dxm .
Further terms would contain not only y 's but also powers of h because
of the term (i/h)r2 in (3.5).

Introduce now the main object: the subalgebra WD c W, consisting of
flat sections, i.e., such that Da — 0.

Theorem 3.3. For any a0 e Z there exists a unique section a e WD

such that σ(a) = a0.
Recall that, for the section a(x, y, h) eW, σ(a) means the projection

onto the center, i.e., σ{a) = a(x, 0, h).
Proof. The equation Da = 0 can be written in the form

(3.9) δa = da + [(i/h)r,ά\.

Applying the operator δ~x and using Hodge-De Rham decomposition
yield

wherefrom by iterations we should get that equation (3.10) has a unique

solution because δ~ι increases the filtration.
Conversely, let a be the solution of (3.10). Then evidently we have

σ(a) = a0 since the result of applying δ~x contains only positive powers
of y 's. Further, using reasoning similar to the proof of Theorem 3.2, we
can show that the difference

A = δa - da - [(i/h)r, a] = Da
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between the left-hand and the right-hand sides of (3.9) satisfy the equation

(3.11) δA = dA + [(i/h)r,A]

and the trivial "initial" condition

(3.12) δ~lA = 0.

Equation (3.11) is fulfilled, since it means that DA = 0, so taking into
account that A = Da we shall have DA = D(Da) = 0 because D is an
Abelian connection. Further,

δ~xA = δ~ιδa - δ~\da + [(i/h)r, a]) = δ~xδa -a + a0

according to equation (3.10). The last expression is equal to 0 by Hodge-
De Rham decomposition, since δ~ιa = 0. q.e.d.

It is easily seen that for any a(y, h) e Wγ with fixed x n e M there
XQ υ

exists a flat section a(x, y, h) e WD (not unique, of course) such that
a(x0, y, h) = a(y, h). This fact implies that the centralizer of WD in W
coincides with the center Z of W. In other words, if a section b e W
commutes with any flat section a e WD, then b e Z. Similarly, the
centralizer of WD in W <g> Λ is Z ® Λ.

Iterating equation(3.10) we can effectively construct the section a e WD

by its symbol aQ = σ(a):

a = a0 4- e?,V + i

2didja0y
iyj + ^didJdkaoy

iyiyk

h R ω d

If the curvature tensor is equal to 0, iterations would give the explicit
expansion

k=0

It is clear that, provided Abelian connection D is fixed, flat sections form
a subalgebra WD with respect to fiberwise Weyl multiplication o in the
algebra W. Theorem 3.3 states that the map σ: WD —> Z is bijective.
Thus, the inverse map σ" 1 : Z —• WD has been defined.

Now we can explain the construction of *-product in the space Z .
Namely, by using the bijections σ and σ~ι associative product o in the
algebra W is transferred to the set Z , i.e., we assume for a, b e Z

(3.14) a*b = σ(σ~ι(a)oσ~\b)).

Using (3.13) it is easily checked that such defined *-product satisfies all the
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conditions (i)-(iii), formulated in the introduction. However, as will be
seen later, it is more convenient to use the subalgebra WD with o-ρroduct
than the *-product. Therefore later on we shall not mention *-product at
all. The subalgebra WD will be called an algebra of quantum observables.

4. An action of symplectomorphisms

Let M, ω, W, d , D, WD denote, similar to those in the previous
sections, a symplectic manifold, a symplectic form, the Weyl algebras bun-
dle (and the algebra of its sections), a symplectic connection on M, the
Abelian connection in the bundle W and the subalgebra of flat sections.
For a symplectic diffeomorphism f.M^M the pullbacks /* of these
objects are evidently defined (/*ω = ω since / is a symplectic map).
For example, for a section a(x, y, h) e W we assume

f being a differential of the map / . Since / is a diffeomorphism, both
pullbacks /* and pushforwards fm = (/"*)* are defined for all geometric
objects.

Consider in more detail the action of symplectomorphisms / : Aί —>
M on connections. Let d be a symplectic connection considered as the
connection in the bundle W according to (2.7), and D be the Abelian
connection corresponding to D by Theorem 3.2. Since /* and f^ are
evidently automorphisms of the algebra W, we can define the connections
d = fjb , D = fj) by the formulas

da = Λ(c?(/*α)) , Da = l(D(fa)).

It is clear that D is also an Abelian connection. The operators δ, δ ~ι and

Weyl normalizing condition are invariant under diffeomorphisms. (Be-

cause of the uniqueness of the solution of (3.3), (3.4), D corresponds to

d , i.e., D is obtained from d by Theorem 3.2.

Theorem 4.1. The automorphism fm: W -> W isomorphically maps

the subalgebra WD onto the subalgebra W~. Besides, if the symplectic

connection d is invariant under f, i.e., if d = fβ = d, thenf^ defines

the automorphism of the algebra WD.

Proof. The proof directly follows from the definitions. If a e WD, then

/ > G W~, since Df^a = f^Da) = 0. Further on, if d = d , the property

of the uniqueness of Theorem 3.2 implies that D = D, W~=WD, i.e., /j,

is an automorphism of the algebra of quantum observables WD. q.e.d.
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In particular, if G is a group of symplectomorphisms of M, and d
is a (/-invariant symplectic connection, then the corresponding Abelian
connection is also (/-invariant and the group G acts by automorphisms
on the algebra of quantum observables WD.

In a general case, when d is not invariant with respect to / , it is
nevertheless possible to define automorphism Af, corresponding to / ,
by using the fiberwise conjugation automorphisms. To do so introduce an
extension W+ of the algebra W as follows:

(i) Elements U e W+ are given by the series (2.1), but the powers of
h can be both positive and negative.

(ii) The total degree Ik + / of any term of the series is nonnegative.
(iii) There exists a finite number of terms with a given nonnegative total

degree.
It is clear that W+ is also an algebra with respect to Weyl fiberwise

multiplication, and the connections d and D act on sections a e W+ .
Lemma 4.2. Let a e W+ and Da = 0. Then a does not contain

negative powers of h, i.e., a eWDcW c W+ .
Proof. Let σ(a) = a(x, 0, h). Nonnegativeness of the total degree of

series terms implies σ(a) e Z, i.e., it does not contain negative powers
of h. According to Theorem 3.3 a flat section is uniquely defined by its
symbol σ(a) e Z and thus belongs to WD. q.e.d.

Like W the algebra W+ has the filtration with respect to the total
degree Ik + / of series terms (2.3).

Introduce a group, consisting of invertible elements of the algebra W+

with the leading term 1 having the form

(4.1) )

where H e W3. It follows from the Campbell-Hausdorff formula that
such elements form a group. It is clear that the map

( 4 . 2 ) a~UoaoU-l=jrU) ± [ H , [H, • • - , [ / / , a ] , •••]]
k=0 ^ '

(the commutator is taken k times) is an automorphism of W*, which
maps the algebra W onto itself. It is also clear that this map preserves
the filtration but not the degrees of the series terms.

Let D be the Abelian connection in the bundle W of the form (2.11),
γ satisfying Weyl normalizing condition γ0 = 0. Automorphism (4.2)
defines a new Abelian connection D by the rule
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(4.3) Da = Uo D(U~l o a o U) o U~l = Da - [DU o U~X, a].

From (4.3) it follows that the form γ, corresponding to the connection D
and satisfying normalizing condition, has the form

(4.4) γ = γ + Aγ = γ - DU o U~l + {DU o U'\.

Hence for the curvature we shall have

The last equality is obtained by using the relation

-D(DU o U~l) + {DU o C/"1)2 = 0.

The scalar form {DU o U~ι)0 belongs to W2 <8> Λ1 n Z , i.e., begins with
the first power of h. Thus we obtain that the curvatures of these two
connections D and D differ by an exact 2-form belonging to {W2<8>A2)Π
Z .

Theorem 4.3. Let d, d be two symplectic connections, and D, D be
the Abelian connections corresponding to d, d by Theorem 3.2. Then
there exists a section U e W+ of the form (4.1) such that

D = D-[DUoU~l ,•].

Proof The connection D can be written in the form

where

Aγ = Γ-Γ + r-re W2®AX

satisfies Weyl normalizing condition (Δy)0 = 0. Hence for the curvature

(i/h)Ω of the connection D,

Since this expression is to be equal to {i/h)Ω, we have

(4.5) D{Aγ) + {i/h){Aγ)2 = 0.

Find the section U e W+ as a solution of the equation

which is equivalent to

DUoU~l = -{i
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(4.6) DU = -(i/h)AγoU.

Condition (4.5) is necessary for the solvability of equation (4.6) in W+ .
Indeed, applying operator D, we get 0 on the left-hand side, since D U =
0. Thus

0 = -(i/h)D(Aγ) o[/ + (i/h)Aγ o DU.

Substituting (4.6) for DU in the above equation, we obtain

0 = -{(i/h)D(Aγ) + ((i/h)Aγ)2} o U,

which is fulfilled according to (4.5).
Let us show that condition (4.5) is also sufficient for the solvability of

equation (4.6). Rewrite (4.6) in the form

δU = (D + δ)U + {i/h)Aγ o U

and apply the operator δ~ι to both sides of the equation. Taking UQ = 1
and using the Hodge-De Rham decomposition, we get

(4.7) U = 1 + δ~l{(D + δ)U + {i/h)Aγ o U}.

Since the operator D + δ = d + [{i/h)r, •] does not change the filtration,
multiplication by (i/h)Aγ in W^ <s> Λ1 does not change the filtration
either, and δ~ι raises the filtration by 1, the iterations of equation (4.7)
give a unique solution. The resulting solution is an invertible element of
the algebra W+ , since its leading term is equal to 1.

Conversely, let us show that the solution of equation (4.7) satisfies (4.6).
Let

A = DU + (i/h)AγoU.

Then

(4.8) δ~lA = 0

according to (4.7). Further we have

DA = UDAy) OU- i-Aγ o DU
n n

= j |(Z)Δy) + ^(Δ}>)2} o U - l

τAy o {ΰU + ^Aγ o U} ,

Hence, in consequence of (4.5), A satisfies the equation

(4.9) DA + (i/h)AγoA = 0.

So, using reasoning similar to Theorem 3.2, we get 4̂ = 0. Indeed, equa-
tion (4.9) together with condition (4.8) gives
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A = (Γ1 ((D + δ)A + (i/h)Aγ o A).

Thus the iterations yield a trivial solution.
The solution of equation (4.6) is not unique. Let V be another solution.

Then for U~ι o V we get

D(U~l oV) = -U~l of l[/o[/" 1 oF+ U~l o DV

= U~l o (ι/A)Δy o V - U~l o (i/Λ)Δy o V = 0.

Consequently, U~ι o V = C £ WD, and the two solutions of equation
(4.6) differ by the factor C, which is an invertible flat section.

Let us finally show that the solution can always be chosen in the form
(4.1) with H eW3. Introduce the section

0 0 (-\\k+ι

(4.10) H = -ihlnU = -ihln(l + (U -I)) = -ihj^^-^—(U-lf,
k=\

where powers are understood with respect to the multiplication o. Since
U - 1 e Wχ, the series converges with respect to filtration in W* and
defines the section H e W^ . Multiplying U by the proper factor C = ea

to the right (a e WD and the exponent is calculated in the algebra WD)
we can always achieve HQ = 0. Indeed, if HQ e W4 n Z is not equal
to 0, then by Theorem 3.3, we can construct a E WD n W4, such that
σ(a) = Ho. Taking in (4.10) U o e~a instead of U, we get a new section
H, for which HQe W6Γ\Z . Repeating this procedure, we shall get sections
H with Ho having higher and higher degree so that in the limit we obtain
H with HQ = 0. Let us show that this section belongs not only to W^
but also to Wz as well. Indeed, derivating the exponent U = exp((//A)i7)
and substituting into equation (4.6) we obtain

nrτnτrι e*P(ad(07ft)#)) 1 * π u '
VU o (J = J / / . I I x ττ\ -run = — τ γ ,

ad((ι/A)J/) A A
where ad((i/h)H) = [(i/h)H, •]. This gives an equation for H, which
can be written in the form

ad((i/h)H) A.. ,
exp(ad((z/A)7/)) - 1

Applying J"1 and using Ho = 0, we shall get, according to Hodge-
DeRham decomposition,

Vexp(ad((//Λ)tf))-1 '

Since Aγ e W2<g>Aι, all the iterations will give elements of W^, so that the
section H belongs to W3. Hence the theorem has been proved, q.e.d.



228 B. V. FEDOSOV

Now if we are given a symplectic diffeomorphism / : M —• M, then
an automorphism A*: W -> W 9 mapping the subalgebra WD onto itself,
can be associated with / in the following way.

Let d be a symplectic connection on M, and D be the Abelian con-
nection in the bundle W, corresponding to d by Theorem 3.2. Let,
further, d = fjd and D — fj) be pushforwards of d and D under
diffeomorphism / . Since Weyl curvatures of D and D both are equal
to -(i/h)ω according to Theorem 3.2, by Theorem 4.3 there exists the
section U e W+ of the form (4.1) such that the connection D goes to the
connection D under conjugation automorphism (4.2). So automorphism
Ar defined by the relation

(4.11) Af:a^Uo(f^a)oU~ι

maps the sections of WD to the sections belonging to WD .
Generally speaking, these automorphisms do not satisfy natural cocycle

condition

(4.12) AfAfAf =id,
J\ Jι Jl

if /iΛΛ = ι^ However, we can state that the left-hand side of (4.12) is
the conjugation automorphism by the section U = Uχ o fu(U2 o /2+ί73) G
W+ of the form (4.1).

Lemma 4.4. Let conjugation automorphism (4.2) map the subalgebra
WD onto itself. Then locally there exists a function φ such that Ueφ e WD.

Proof For any U e WD we have Aa = U o a o U~x e WD. Then

0 = D(Uoao U~l) = [DUo U~X, Uoao U~l] + UoDaoU~\

wherefrom it follows that

[DUoU~\ UoaoU~l] = 0.

Thus, the form ψ = DU o U~x commutes with any section U o a o U~ι e
WD, i.e., it is the central form. This form is closed since

dψ = D(DU o U~l) = (DU o U~1)2 = ψ A ψ = 0.

So, locally ψ = dφ , and

D(Ue'φ)eφ o f/"1 = DU o U~l - dφ = 0,

which means that the section Ue~φ is flat in W* and then, according to
Lemma 4.2, it automatically belongs to W.
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Corollary 4.5. Automorphism A^A^A^ , where fxf2f3 = id, locally is

an inner automorphism of the algebra W.

5. A trace in the algebra of quantum observables on R2"

In this section we shall consider the case M = R2n with the standard
symplectic structure. The standard symplectic form has constant coef-
ficients, therefore we can take the operator of exterior derivation as a
symplectic connection. The Abelian connection D in the bundle W =
W(R2n), corresponding to d by Theorem 3.2, has the form D = -δ + D .
In this case the isomorphism σ~ι and the multiplication * have a very
simple explicit form

σ"1: a(x, h) ~ a(x + y, A) = £ -/a)a{x, h)ya,
|α|=0 a'

(5.1) α*6 = exp ^ ω ^ ^ j a(x9 h)b(y, * ) | ^

Definition 5.1. The trace in the algebra WD(R2n) is the linear func-
tional defined on the ideal W™mp(R2n), consisting of the flat sections
with compact support by formula

(5 2)

Thus the trace has values in Laurent formal series in h with negative
powers of h not greater than n, i.e.,

CO

» k—n

A:=0

Lemma 5.2. The trace has the property

where a € W™mp(R2n), b e W(R2n).
Proof Since σ(a o b) = σ{a) * σ{b), according to (5.1) it is sufficient

to check the equality

f dka dkb n f dka dkb n

R̂2" dx*1 - - dxh dxh - dJk JR2n dxh dxh dxh dx'k

which is easily verified by integrating by parts, q.e.d.



230 B. V. FEDOSOV

We shall prove that property (5.3) implies the invariance of the trace
under isomorphisms Af, considered in §4. For an open contractible set

O c R2n we shall denote the algebra of flat sections with support in O
by W™mp(O). Let / be a symplectic diffeomorphism, defined on O and
mapping it onto the open set /(O), and let Af: W™mp(O) -> W™mp(f(O))
be an isomorphism corresponding to / by formula (4.11).

Theorem 5.3. For any a e W»mp{O),

(5.4) tra = tτ(Afa).

Proof. For the proof we construct a family a(t), t e [0, 1], of flat
sections with compact support such that a(0) = a, α(l) = Aj a, satisfying
the Heisenberg equation

(5.5) ά(t) = (i/h)[H(t)> *(*)]>

with the Hamiltonian H(t) £ WD(R2n) . Then according to (5.3) we have

wherefrom it follows that tra(t) = const.
Lemma 5.4. Let ft be a family of symplectic diffeomorphisms of the

open set O and let

At; W™mp{0) - W™mp{ft{O)) c W™mp(R2n)

be the corresponding family of isomorphisms

(5.6) Ata = Uto(ft^a)oU-\

Then a(t) = A(a satisfies equation (5.5) with the Hamiltonian H{t) €
WD{R2n).

Proof of the Lemma. We have

(5.7) ά(t) = Ut o u;1 o a(t) - a(t) o Ut o U~ι + Ut o (ftma) o U~l.

Denoting the map, inverse to ft by gt, we shall have

, , v d ( ( . dgix) i \ ( da\ ,j(, da\dg! /

Since the section a is flat, da/dxj = da/dyj, so that the last expression
can be written in the form
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Hi ΐ

Here we have used the fact that for a symplectic map / the expression
ωuu\dfk/dxJ)(dgJ

t/dxι)vι is symmetric with respect to u,v e R2/I.
Substituting into (5.7), we get equation (5.5), where H(t) belongs to W*
but is, generally speaking, not a flat section. We will show that it is possible
to pick H(t) € WD(R2n). Applying the operator D to the both sides of
(5.5) and taking into account that Da(t) = 0 we get (i/h)[DH(t), Ata] =
0. Being fulfilled for any a e W™mp(O), this equation means that DH(ή
is a central (i.e., scalar) 1-form ψ, which is closed because

Hence, ψ = dφ, where φt = φt(x, h) is a scalar function, which is
uniquely defined if subjected to the normalizing condition φt(ft{x0)) = 0,
where x 0 e O is any fixed point. Replacing H{t) by H(t) - φt we do
not change equation (5.5), as φt belongs to the center, and, on the other
hand, D{H(t) - φt) = 0, i.e., H(t) = φt is a flat section, q.e.d.

Let us proceed to prove the theorem. According to the lemma, it is
sufficient to construct a family of symplectic diffeomorphisms ft, so that
fQ = id, and fx=f. Besides, we may confine ourselves to a sufficiently
small neighborhood Oγ of an arbitrary fixed point x n e O. A general
case would be obtained by using a partition of unit subordinated to a
sufficiently fine covering of a compact set supp a.

The desired deformation ft is constructed in two steps. At the first
step, consider the linear part L, of the map / at the point x0 given by

Since the group of linear symplectic transformations is connected, there
exists a deformation, connecting the identity map with Lj . At the second

step, consider a nonlinear map LZX f(x). In a sufficiently small neigh-
borhood of x0 it is close to the identity map, so it may be given by a
generating function S(z) according to the formulas

/c OΛ i i ijdS(z) Λ i ijdS(z)

(5.8) x =z + ω 7 — y , f(x) = z ~ω -^Γ
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From (5.8) we get

(5.9) z = Ϊ±JM ; dS{z) =

 l-ω..{f\x) - x*)dzj.

It is easy to see that the 1-form on the right-hand side of the second
equation of (5.9) is exact. Indeed, its exterior differential is equal to

ωu(d/ - dxι) Λ (dfs + dxj) = ω^df Λ df - ωtj dxι Λ dxj

+ ω^df Λ dxj - ωij dx* Λ df .

The first two summands give 0, since / is a symplectic diffeomorphism.
The second two summands also give 0, because

ωtj dxι Λ df = -ωu df Λ dxι = ωμ df Λ dxι.

Thus, (5.9) determine the generating function S(z), provided the first

equation of (5.9) determines a diffeomorphism x \-+ z, which is just so in

a sufficiently small neighborhood Oχ . Besides, we have S(z) = 0( |z | 3 ) .

Replacing the function S(z) in (5.8) by the functions tS(z), t e [0, 1],

we shall have the desired deformation ft(x) in the sufficiently small neigh-

borhood Ov by formulas (5.8).
0

Remark. If / is a linear transformation f(x) = AljXJ with a sym-

plectic matrix Alj, formulas (5.8), (5.9) give the Cayley transformation.

6. A localization and a trace

In this section we construct a trace in the algebra WD(M) on an arbi-

trary symplectic manifold M. The basic tool is a localization, i.e., a rep-

resentation of the algebra WD(M) by a compatible family of the algebras

of quantum observables in R2n . We shall denote the standard symplectic

form on R2n by ω0 and the Abelian connection -δ + d in W(R2n) by

Do.

Let {OJ be a locally finite covering of the manifold M by local Dar-

boux charts, {p^x)} be a partition of unity subordinated to this covering,

and χ.: O( —• R2n be coordinate maps. For a given symplectic connection
d and the corresponding Abelian connection D in the bundle W = W{M)
consider the algebra WD(M) of flat sections determined on M and its sub-
algebra PΓ^°mp(Oz), consisting of flat sections with supports in O{. Using
the constructions of §4 we may define isomorphisms

(6.1)
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of the form (4.11). More precisely, for a € W^omp(0.) we take its push-

forward χ^a, which is a flat section in ^ c o mP(jj2 '1) w ^ h respect to the

connection Di = χ^D, i.e., χ^a e H ^ ^ Q ^ O )). After that we pass

from the connection Zλ to the connection Do using the conjugation au-
tomorphism. Finally we get

' β H ί / . o θ : / t f l ) o i / . Γ e <

We shall call A{ coordinate isomorphisms.
For the algebra W^>mv{Oi Π Oj) we have two coordinate isomorphisms

A. and A., and thus transition isomorphisms are defined as follows:

(6.2) Au = A,Ajι: W™*^ Π O.)) - ^ ^ ( ^ ( O , . Π O,)).

From (6.2) it immediately follows that Atj satisfies a cocycle condition

(6.3) AuAjkAki = id

in the algebra W™mp(Ot n Oj n Ofc).

Using Theorem 3.3 we can construct the flat sections pi = σ~\pi) e
^>mp

i), which form a partition of unity in the algebra WD(M). Indeed

So, we obtain a set of flat sections

(6.4) β / = AyPi o a) e ^ ^

corresponding to the flat section aeW^O^. We shall call this set a local
representation of the section a, or shorter a localization. It is clear that

Definition 6.1. A trace in the algebra WD{M) is a linear functional
defined on an ideal W™mp(M) with values in Laurent formal series, con-
taining negative powers of h not greater than n = jdimM. For any
a e W*omp{M) and b e WD{M) the equality

(6.5) tτaob = tτboa

must be fulfilled.
Theorem 6.2. A trace in the algebra WD{M) does exist.
Proof. For a given coordinate covering {OJ and a partition of unity

{Pi{x)} take

(6.6) tra = ̂ t ra z . = Σ > ^ ( A ° a) >
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where a e WD(M) and the traces trai are given by formula (5.2) in
W™mp(R2n). We should check the correctness of the definition, i.e., inde-
pendence of the choice of a covering, a partition of unity, and coordinate
isomorphisms Ai, and then prove property (6.5).

Let us prove the independence of the choice of coordinate isomor-
phisms. Let a € W^°mp(0) be a flat section with a support in the co-
ordinate neighborhood 0 c M, χ and χ be two coordinate diffeomor-
phisms 0 —> R2n, and A and A' be the corresponding coordinate iso-
morphisms, mapping H^ o m p(0) onto ^ m p ( χ ( 0 ) ) , W^p{χ\θ)) re-
spectively. Then the symplectic map / = χχ~ι: χ{0) —> χ{0) and the
corresponding isomorphism Af: W™mp(χ(O)) - W^ o m p(/(0)) are de-
fined. According to Theorem 5.3 we have

(6.7) tr AfAa = trAa.

Generally speaking, the automorphisms A,A and A1: W™mp(O) —•

W^mp(χ(O)) do not coincide. However they differ by an inner automor-

phism of the algebra W™mp(χ'(O)) (see Corollary 4.5), i.e., there exists

a section S e W™mp(χ'(O)), such that AfAa = S o (A'a) o S~ι. Hence,

according to property (5.3) of the trace in the algebra WD (R2n) we get

tvAfAa = trSΌ {A!a) o S~ = tτA'a,

as desired. The independence of a covering and a partition of unity is now
proved in a standard way, i.e., by passing to a refined covering {0. n 0.}
and the corresponding partition of unity {/>,-/>•} -

Let us prove the equality (6.5). We have

a o b = /~ (̂/*j °fl)° (Pj ° b),

so
tra

which

ob

= tτboa,

)i o fl) c

7t o fl) (

• o b))

proves the theorem.

> ( ^ °

3 (P °

° ( ^ ι

*))

•6)) =

!; ()9. o a)) = z2^r^j{{Pj °b)o (p. o a))
ij
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7. Generalizations

The above constructions of the deformation quantization and the trace
in the algebra of quantum observables allow different generalizations.

Quantization with coefficients in Hom(is, E). An evident generaliza-
tion consists in considering matrix coefficients. No change is necessary,
except that in the definition of the trace (5.2) a matrix trace under integral
sign must be taken. A less evident generalization is obtained if we admit
that the coefficients ak , . (x) of series (2.3), (3.4) take values in a

' 1 p '-M Jq

bundle Hom(2?, E), where E is a vector bundle over M. Let us consider
this case in more detail.

Let ds be a symplectic connection on M, and dE be a connection in
the vector bundle E. Then d=ds<8>l + l<8>dE defines the connection in
Weyl algebras bundle W ® Hom(E, E) we will denote this bundle by W
as before for short. We shall look for Abelian connection D in the bundle
W in the same form as in (3.1). The same equation (3.3) is obtained for
r, R being now equal to

(*/2)/fJ dxι Λ dxJ + \Rs

ijkιy
iyJ dxk Λ dxl,

where the first term is the curvature of dE, and the second one is the same
as in (2.11); the superscript s means "symplectic". Theorems 3.2 and 3.3
are completely valid in this case.

As to the action of symplectic diffeomorphisms, the results of §4 are

also valid with some modifications. Let fs: M —• M be a symplectic

diffeomorphism of AT, and fs^E = (f~ι)*E be a pushforward of the

bundle E under fs, i.e., (^ - 1 )* is an induced bundle. Let a fiberwise

homomorphism φ: (fs+E) —• E be given as well. Then the formula

(7.1) (f%a)(χ) = <Pa(f~ι(χ))φ~ι

defines a lifting of the map f onto a bundle space Hom(£, E). We
define the pushforward of a section a(x, y, h) e W <g> Hom(2s, E), by
assuming

(7.2) (fma)(x, y, h) = φa(f^\x)9 (/8)'ιy, h)φ~X.

So, if lifting (7.1) is given, the pushforwards and pullbacks of the sections
and the connections d and D are defined as in §4.

In the case of coefficients in Hom(£, E) localization, considered in §6,
is constructed as before with some modifications. More exactly, not only
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a coordinate mapping χs: O. -> R2n is to be given, but the trivialization of
the bundle E as well. The trivialization defines a lifting χ of χs, so that
sections of Hom(£, E) over O go to matrix-valued functions on χs(O)
and allow us to define coordinate isomorphisms

and then a trace can be defined as before by formulas (6.6), (5.2) with the
matrix trace under integral sign in (5.2).

Deformation quantization of regular Poisson manifolds. As mentioned
in the introduction, a regular Poisson manifold has a symplectic foliation.
It means that it is possible to introduce local coordinates (Darboux coor-
dinates)

1 2 2n 2/n-l m Λ , , J7\ J \r

x , x , -•- 9 x , x , , JC 2n = mnk(t ), m = dimM,

in which the components of Poisson tensor tιj have the form
U + n j ί ' ' + " . ' ' = _ 1 . i - 1 2 ••• Λ

and the rest of its components are equal to 0. The leaves F of the foli-
ation are locally defined by equations xk = const, k = 2n + 1, , m,
and the form ω = Σ " = 1 rfx* Λ dxn+ι defines a symplectic structure on the
leaves. Thus the regular Poisson manifold can be locally considered as a
family of symplectic manifolds depending on parameters x2n+ι, , xm .
The quantization construction, given in §§2, 3, smoothly depends on pa-
rameters and is local, so it is evidently valid for the case of regular Poisson
manifolds.

More precisely, the construction looks as follows. We consider a tangent
bundle TF along the leaves and the exterior algebra AF = Λ(Γ*F). A
homomorphism Γ: T*M —> T*F is defined, induced by a local embed-
ding of the leaf /: F —• M. In Darboux local coordinates we introduce
the natural basis of vector fields ek = d/dxk (k — 1, , 2ή) tangent
to the leaves and the dual basis θ = (θι, , θ2n) in T*F. Instead of
series (2.4) we will now consider the series

(7.3) h . . .
= Σ h ak i.../ / . . . / ( χ ) y ι - - y l p d χ J ι Λ . . ΛdxJ<,

2k+p>0

where the terms ak p q are the sections of SP{TF) <g> Aq(T*F), x e M,
the range of the indices ik, j k is from 1 to In. Such series form an

a= Σ h ak



GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION 237

algebra with respect to the fiberwise multiplication o (the exterior product
of θj and Weyl product (2.2) for monomials in y 's). The algebra of
such series will be denoted by W <8> AF . The operators δ , δ*, δ~ι are
introduced similar to (2.5) as follows:

r nk da c*

δa = θ Λ—τ\ δ a =
(7.4)

and have the same properties, including Hodge-De Rham decomposition.
We shall also need a Poisson connection along the leaves d: C°°(TF) —•

C°°(TF <g> Aι

F). For such a connection, its local restriction on each leaf
gives a symplectic connection on the leaf. For the sake of completeness
let us give the construction of such a connection.

Let V be an arbitrary connection in the bundle TF over M. Let
us denote the indices ranging from 1 to In by Roman letters and those
ranging from 1 to m by Greek letters. In Darboux local coordinates we
have

Restricting it to the vectors tangent to the leaves, we get a connection VF

along the foliation

(7.5) V^eWrjy,
the Jacobian matrix of the transition diffeomorphism between two Dar-
boux local charts

rβ=dχιaidxβ

has a triangular form, because

dx^/dx* = 0, a = 2n + 1, •• , m ,

and its upper left block (fj) gives a transition function of the bundle
TF. Hence, a skew-symmetric part of the connection coefficients defines
a tensor ^\jky in the bundle TF (a torsion tensor), since df*/dxk =

d2fι/dxjdxk are symmetric with respect to j , k. Thus, symmetrizing
the coefficients Γ^ in (7.5), we get a new torsion-free connection VF

along the foliation.
Finally we find a tensor ΔΓ^ , which is symmetric in lower indices and

such that the connection d = VF+Γj.fc0 preserves the tensor ωtj inverse

to tlJ. We have

^
 P P i P = 0 ,
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wherefrom we obtain the equations

(7.6) Δ Γ / 7 , - Δ Γ M = (VF)fcω,7

for &Γ.jk = ω. AΓp

jk . In Darboux local coordinates

(VF)^ω.j = τ*ίkωpJ + fJΛω, p = fijk - fjik,

Γι

jk being the coefficients of VF. A partial solution of system (7.6) is
given by

(7.7) ΔΓ«* = i(2f W *-?, w -Γ w ,),

(the general solution is obtained by adding to (7.7) any completely sym-
metric 3-tensor).

Thus, we obtain the connection d along the leaves in the bundle TF
such that its restriction to any leaf gives a symplectic connection on the
leaf. According to (7.7) it smoothly depends on the coordinates JC2Π+1 , ,
xm , which are parameters, defining the leaf. Theorems 3.2 and 3.3 give a
smooth dependence on these parameters and thus define quantization for
regular Poisson manifolds.

As for the results of §§4, 5, 6 it is not quite clear whether a reason-
able generalization of these results for regular Poisson manifolds could be
made.
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