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A HANDLE DECOMPOSITION OF AN EXOTIC E4
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Abstract

In [4] S. DeMichelis and M. Freedman constructed uncountably many
exotic E 's that can be embedded in S4 . Such an exotic E 4 can
be constructed in the boundary of a smooth compact 5-dimensional h-
cobordism that is not diffeomorphic to the product cobordism. An exam-
ple of nonproduct Λ-cobordism was explicitly described by S. Akbulut
[1]. In the present article Akbulut's description is used to construct a
compact handlebody which contains two copies of an eight-level Casson
tower and which has the following property. Any open handlebody that is
obtained from this compact handlebody by replacing each Casson tower
by a Casson handle embedded in it and by removing the boundary is an
exotic R . A concrete example of such an exotic E is obtained by an
application of the Reimbedding algorithm from [2]. This exotic R4 is
an open handlebody fully described by an infinite link calculus picture.

0. Introduction. It is known that there are smooth, compact, simply
connected /z-cobordisms between nondiffeomorphic 4-dimensional closed
manifolds. If (W5 X^, X*) is such an /z-cobordism, then it clearly can-
not be diffeomorphic to the product cobordism, Xo x / . However, by work
of M. Freedman [6], the λ-cobordism theorem holds in the category of 4-
dimensional, simply connected topological manifolds, so any /z-cobordism
between closed, simply connected 4-manifolds is homeomorphic to the
product cobordism. An analysis of Freedman's proof of the /z-cobordism
theorem shows that the "product structure" always smoothly exists over
the complement of a flat cell in XQ (see [6], [4], [9] or [7]). Moreover,
this flat cell contains an exotic R4 that is embedded in both XQ and Xx,
and X{ can be reconstructed from XQ by changing the embedding of this
exotic R 4 . A detailed exposition can be found in [4] or [9], but here we
will restrict ourselves to the slightly less general situation coming from the
/z-cobordism in [1]. Starting with Akbulut's explicit description of this
/z-cobordism, we extract a handle decomposition for an exotic R4 .
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Akbulut's paper [1] uses Kirby's link calculus to describe handle de-
compositions of 4-dimensional manifolds and diffeomorphisms of their
boundaries. We assume some familiarity with the link calculus on the
part of the reader (see [8] or [9]). Also, Casson handles and Casson tow-
ers [3] are used in our construction, but only their link calculus pictures
are described. Only some of the figures from [1] are reproduced and, for
example, [1, Figure 5] will refer to Figure 5 from [1]. All presented figures
appear at the end of this article (pp. 501-508).

1. Nonproduct /z-cobordisms, Casson handles and exotic R 's. Be-

fore we start a construction of an exotic E 4 , we review an argument due
to Casson and Freedman that predicts the existence of exotic R4 's in
the boundary of a nonproduct smooth Λ-cobordism (see [4] or [9]). Let
(W5 X*, X4) be a smooth simply connected Λ-cobordism between two
nondiffeomorphic closed 4-manifolds, Xo and X{. Furthermore, we as-
sume that W has a handle decomposition with only one 2-handle and one
3-handle, as in the case of the Λ-cobordism from [1]. So we have:

W5 ^{X0xI)Uh2Uh\

Let X{/2 denote the middle level between the 2- and 3-handles, that is,

Xι/2 = d ((Xo x /) U h2) - {Xo x 0). It is easy to see that the manifold X1/2

is diffeomorphic to X0$(S x S ) . The second homology of the summand

S2 x S2 of Xχ,2 is generated by the attaching sphere of the 3-handle, Ά\

and by the dual (or "belt") sphere of the 2-handle, ' 5 ' (see [10, §6] for

their definitions).

The algebraic intersection number of the 2-spheres A and B is equal
to ± 1 but, geometrically, there can be additional ± pairs of intersection
points of A and B. Note that if there was just one intersection point
between A and B, then the handles h2 and h3 would form a comple-
mentary pair of handles, and W would be diffeomorphic to the product
cobordism XQ x I [10, p. 78]. The Λ-cobordism from [1] is the simplest
possible nonproduct cobordism: there is only one additional ±pair of
intersections between A and B.

Recall that the standard proof of the Λ-cobordism theorem for man-
ifolds of dimensions greater than four uses the Whitney trick [10, §6].
Namely, a "Whitney loop" (defined in [10, p. 71]) for such an extra pair of
intersections between an attaching sphere A and a belt sphere B bounds
a 2-handle embedded in the complement of these spheres in the middle
level of the given A-cobordism. The existence of such an embedded "Whit-
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ney disc" is guaranteed by a general position argument. This embedded
2-handle is used to construct an ambient isotopy of A, such that the new
attaching sphere intersects B at only one point.

For 4-dimensional manifolds, the general position produces only an im-
mersed 2-handle. Freedman's proof of the topological Λ-cobordism the-
orem uses a construction of A. Casson [3]. Instead of a Whitney disc,
Casson's construction produces an embedded "flexible" or Casson handle
[3, Lecture I]. Freedman proved that every Casson handle is homeomor-
phic to the standard open 2-handle, (D2 x R2, Sι x R2), [6, Theorem
1.1]. In particular, in the obtained Casson handle there is a topologically
embedded 2-handle that caps the same framed Whitney circle as the Cas-
son handle. Such an embedded handle can be used in the Whitney trick.
In contrast to this topological result, any such Casson handle obtained as
a Whitney disc in the Λ-cobordism we are considering does not contain a
smoothly embedded 2-handle with the same framed boundary. Otherwise
the Whitney trick would also work in the smooth category which would
contradict the assumption that the manifolds Xo and Xχ are not diffeo-
morphic.

We now digress with a short description of Casson's construction [3].
Any of [3], [6] and [9] can serve as a good reference on Casson handles.
Instead of definition, we present a link calculus picture of a Casson tower,
a finite part of a Casson handle.

The framed link in Figure 1 is in the boundary of a 4-ball. This ball is
the unique 0-handle in the presented handlebody. Recall that a component
of a link that has a number next to it is the attaching circle of a 2-handle,
and the number specifies the framing of the attaching area with respect to
the 0-handle. The components with a dot represent 1-handles and are the
attaching circles of the replacing 2-handles that are scooped out from the
0-handle. Following a customary abuse of notation, we call such replacing
2-handles "1 -handles". The component denoted by 'a' in Figure 1 is the
attaching circle of the handlebody itself, and its framing is assumed to
be the 0-framing. The building blocks of Casson towers and handles are
"kinky handles" that can be defined as relative regular neighborhoods of
transversal immersions of (D2, d) into (D4, d) that have only double
singular points. The diffeomorphism type of a kinky handle is determined
by its "core", i.e., by an immersion of a 2-disc in a 4-ball that defines the
given kinky handle. The core, up to diffeomorphism, is determined by the
number and signs of the double points, or "kinks". There are three levels
of kinky handles in the Casson tower in Figure 1: the first level has a single
kinky handle, the second one has two, and on the third level there are three
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kinky handles. The five dashed circles in Figure 1 represent the "standard
loops", and the assumed framings are again the 0-framing. Standard loops
generate the fundamental group of a Casson tower and show where the
kinky handles of a fourth level should be attached. Each 1-handle (circle
with a dot) represents a kink on the core of a kinky handle.

When infinitely many levels are added and the boundary is removed, ex-
cept for an open solid torus around the 'a'-circle, then the resulting infinite
(open) handlebody is a Casson handle. Information sufficient to restore
a Casson handle up to diffeomorphism can be stored in an infinite based
signed tree, where vertices of a tree correspond to kinks on a Casson han-
dle and the signs of vertices correspond to the signs of kinks. For each pair
of Casson handles, CHχ and CH2 , there is always a Casson handle CH
that embeds in both of them; such a Casson handle can be constructed by
taking the union of corresponding trees and then, if necessary, by adding
kinks to the cores of CHχ and CH2 , as prescribed by this union of trees.
Any Casson handle can be embedded in the standard 2-handle (that cor-
responds to the tree with one vertex) by an embedding that preserves the
attaching area. In a situation like ours, when a Whitney circle does not
span a smoothly embedded 2-handle in X{,2 - (AU B), one can embed
by hand a six-level Casson tower that caps the Whitney circle. Then, as
Freedman has shown [6, Theorem 5.1], in any six-level Casson tower there
is an embedded Casson handle with the same first level. A modification of
this result is the Reimbedding algorithm from [2] which actually describes
an embedded Casson handle in a given six-level tower [2, Theorem 3.1].

The three intersection points of A and B form two ± pairs of inter-
sections, and we cap each pair by a Casson handle in Xχ,2 — JV{A U B).
Here yK(AuB) is an open regular neighborhood of A and B . We denote
these Casson handles by CHi (i = 1,2), and by U the open manifold
yV(A UB) u CHχ U CH2 . A piece of the Λ-cobordism W that contains U
as its middle level is a proper Λ-cobordism (V5 i? 0, R{), where Ro and
Rχ are obtained from U by surgering a 2-sphere B or A, respectively.
Note that V also has a handle decomposition consisting of a 2- and a
3-handle. Furthermore R. (i = 0, 1), is homeomorphic to R4 . To prove
this, we will use a link calculus description of the cobordism V.

Figures 2-4 contain link calculus pictures of Ro, U and R{, respec-
tively. These are all open manifolds, so it is assumed that the boundaries
of these handlebodies are removed. In the topological category, Casson
handles are equivalent to the standard (open) 2-handles, so in Figures 2-4
the Casson handles are treated as (open) 2-handles and their attaching cir-
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cles are drawn by dashed circles. So each pair consisting of a 1-handle (=
scooped-out 2-handle) and a Casson handle CHi is a complementary pair
and can be deleted from the picture. The remaining open handlebodies
in Ro and R{ consist of an open 4-ball with a pair of complementary
handles, and therefore R. (i = 0, 1) is homeomorphic to R4 .

Remark. As mentioned above, there is a Casson handle CH embed-
ded in both CHχ and CH2 , so whenever it is convenient we may assume
CHχ = CH2(= CH). Note that this implies that R{ is diffeomorphic to
Ro by a diffeomorphism that exchanges CHχ and CH2 for the 1- and
2-handle in Figure 2.

An argument that Ro and R{ are not diffeomorphic to R4 is presented
in [9, §XIV]. A short outline of the argument is presented next. The
embeddings of CH. (i = 1, 2) in the standard 2-handle are extended to an
embedding of the open handlebody R. in S4 and of U into S2 xS2 . In
other words, these Casson handles are replaced by the 2-handles in Figures
2 and 4, and so the Whitehead trick can be performed smoothly. So the
open cobordism (V Ro, Rχ) embeds into a cobordism of S4 to itself
whose handle decomposition consists of a complementary pair of 2- and
3-handles, and therefore it is diffeomorphic to S4 x I.

Now suppose that Ro is diffeomorphic to R4 . Then there is a standard

4-ball, B4 embedded in RQ and a compact set K in its interior such that

the smooth product structure on W exists over Xo - K [7, Theorem

7.1C]. The product structure over S^ = ΘBQ gives an embedding of a 3-

sphere, Sf in R{. If S3

{ bounds a ball in R{, then the product structure

over Xo -K extends over B4 and so W = XQ x I. Therefore, either RQ

is not diffeomorphic to R4 , or Sj* does not bound in R{. It is easy to see

that if Ro is diffeomorphic to R 4, then S3

{ bounds a 4-ball in Rχ: The

cobordism V is smoothly embedded in S4 x I and B4 in S x 0. The

complement S4 - intB4 is a 4-ball, and because over Ro-K the product

structures S4 x I and (MQ - K) x I coincide, S3

{ bounds "outside" in

S4 x 1. Again, a complement of a smoothly embedded 4-ball in S4 is a

4-ball, so iSf does bound a 4-ball in R{.
Let N be the handlebody from Figure 5. It contains two copies of

Γ 8, the eight-level Casson tower that has only one positive kink on each
level. Let CHt for / = 1, 2 be any Casson handles embedded in Γ g .
We construct an open handlebody in TV: each of the two copies of Γ8 in
N is replaced by one of CHi, and the remaining boundary is removed.
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The obtained open manifold R is the same as Ro or R{ in Figure 2 and
Figure 4, and, indeed, R has the same property:

Theorem A. If R and N are as above, then R is an exotic R 4.
A proof of Theorem A is the content of the remaining sections of this

article. Now we state our main result—a handle decomposition of an
exotic R4. The Reimbedding algorithm from [2] produces an explicitly
described Casson handle in the first six levels of the Casson tower Γg

(compare [2, Theorem 3.1]). The embedded Casson handle CH has a
single positive kink on the first level, and each kinky handle on the «th
level has yn positive and yn negative kinks where:

(a) y2=y3=y4=l, y5=100,

10 1 0

in i υ

(b) y6 is 1 0 i υ and

l o io ( y "-> )

i n 1 U

i n 1 U

1 Ω 1 0

(c) for Λ > 6 , yrt = 1 0 l ϋ

If in the construction of R we set both CHχ and CH2 to be equal to
CH, then we can complete the handlebody description of R from Figure
5 by adding to the picture an infinite handle decomposition of the two
copies of CH in R. Such a handlebody is described in Figure 6.

Theorem B. Let yn , 2 < oo, be a sequence of numbers defined by (a),
(b) and (c). Then the open handlebody described in Figure 6 is an exotic
τπ>

2. Constrained decomposition of En . We present a standard proof that

"En" linked once with a copy of C ? decomposes into CP2 and n copies

of CP . The proof is based on the link calculus operations that preserve

the diffeomorphism type of a handlebody. However, in the presence of

other components of a framed link that are linked with En and CP , the
resulting CP and CP 's will be also linked with the other components.
So in Figures 10-18 we will follow two such arcs through the applied link
calculus operations.

Figures 7-9 show the standard sliding-off in a chain of 2-handles. Notice
that the -1-framed component in Figure 7 is linked with an arc. In Figure
9 the other component is unlinked from the first one but is now linked with
the arc.

2 2

In Figure 10 there is an E9 linked with an arc Ά ' and a CP . The CP
is linked with an arc Έ \ Figure 11 is obtained by applying the handle slides
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from Figures 7-9 five times. Then, as indicated in the figures by dashed
arrows, slides are performed until E9 completely decomposes into a CP2

and nine CP % Figures 11-18. However, in the presence of the arcs Ά '

and Έ \ the resulting CP 's are linked once with B and the unique copy

of CP2 ends up being linked once with A and 3 times with B (Figure 18).

This process obviously works for any En, n > 5 the difference is in the

number of CP 's in Figure 18.
3. Construction of the handlebody N. The /z-cobordism from [1] con-

tains a relative /z-cobordism of Mazur's manifold to a different smooth
structure. Then the Mazur manifold is embedded in a homology ball, de-
noted by Q [1, Figure 7], and a closed manifold M is formed by gluing
-Q to a manifold "Mx

n [1, Figure 33] by a diffeomorphism of its bound-
aries, denoted by h . The relative /z-cobordism of Mazur's manifold is a
product on the boundary so it can be extended to an /z-cobordism over
M. The other end of the /z-cobordism is denoted by M, and it is a di-
rect sum of CP and S, a homotopy Kummer surface. As shown in [1],
M = Mχ Uh (-Q) * (3 CP2 )8(2O CP 2 ) .

The manifold with boundary, Mχ, contains an embedded Brieskorn
homology sphere Σ ( 2 , 3 , 7 ) , and Mχ itself is contained in the K3 sur-
face S. From [5] it follows that S has a nontrivial Donaldson invari-
ant. Because Donaldson invariants persist under connected summing with
CP 9 M = S$CP has a nontrivial Donaldson invariant. Since M
decomposes to a sum of complex projective planes, it has no nontrivial
Donaldson invariant. Therefore M\{kcf) and (M\cf )\{kcf )
are not diffeomorphic for any k > 0.

We define Xo = (Mχ% CP2 ) Uh (-Q). An /z-cobordism W is obtained
by trivially extending the relative cobordism over -Q to one over XQ . So

Xo = M$CP2 £ (3CP2)t)(21CP2) and Xχ = M$CP2 =5Ί)(2CP 2 ) .
The obtained /z-cobordism has the same pair of 2-handles and a 3-handle
as the cobordism between M and M from [1]. By the argument above,
XQ is not diffeomorphic to Xχ.

We start with a description of the relative /z-cobordism over the Mazur
manifold. Figures 19-29 all represent Mazur's manifold; Figures 19-25
are ambient isotopies of S3 and Figure 26 is obtained by introducing a
pair of 1- and 2-handles. In Figure 27 another pair is introduced. Figure
28 is a result of a slide of a 1-handle over the other one, as indicated by
the dashed curve in Figure 27. The 0-framed 2-handle can slide over the
+ 1 framed handle (Figure 29).
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The manifold ' β ' is the handlebody from Figure 30 (also [1, Figure 7]),
and it has a 0-handle and a 2-handle. This handlebody is diffeomorphic
to the manifolds in Figures 31 and 32. Q obviously contains Mazur's
manifold. The relative /z-cobordism is shown in Figures 32-34 (compare
with Figures 2-4). Figure 35 is obtained by a handle slide from Figure 34,
and Figure 36 is obtained by the diffeomorphism described by Figures 20-
26. Figure 37 is obtained by blowing down the -1-framed circle in Figure
36, and represents a closed 3-dimensional manifold diffeomorphic to the
boundary of the handlebody in Figure 36. So we have an extension of the
relative /z-cobordism over the Mazur's manifold to a relative /z-cobordism
over Q. The other end of the extended A-cobordism (denoted by Wχ in
[1]) contains a copy of CP 2 .

In Figure 33, one can see the spheres Ά ' and Έ ' with an extra pair of
intersections. The Casson handles should be added to 0-framed meridians
of 1-handles, as indicated in Figure 38, which shows a relevant piece of
Figure 28. Note that these two meridians are isotopic: one meridian can
slide over the 0-handle that is linked with the two 1-handles to the other
meridian. These two framed circles will be capped by a Casson tower,
but outside of Q, so these circles are isotoped into the boundary of Q.
They pass the levels that contain the two added complementary pairs of
1- and 2-handles (Figures 26 and 27). In Figure 39 only one meridian is
shown; the other one is its parallel copy. Figures 40-44 are pieces of Figure
25. In Figure 42 the two circles are now linked and have the framing
-1-1 (only one of them is drawn). In Figure 43 the circles bound twice-
punctured disjoint discs. Their framed punctures are visible in Figure 44.
By an obvious isotopy, we may assume that Figure 44 shows a piece of the
boundary of Q.

Akbulut has described a diffeomorphism of the boundary of Q onto
the 3-manifold from Figure 45 [1, Figures 8-31]. Figure 45 is [1, Figure
31] together with a missing piece visible in [1, Figure 23]. A blowup
with a —1-framing produces the boundary of the 4-dimensional manifold
in Figure 46. The -hi-framed circle from Figure 45 has the 0-framing in
Figure 46, where it bounds a scooped-out 2-handle. Mχ is the manifold in
Figure 46. In [1], the manifold Mχ is defined slightly differently [1, Figure
33]. These two manifolds with boundary are obviously diffeomorphic:
Figure 46 differs from [1, Figure 33] in having a complementary pair of
1- and 2-handles. The diffeomorphism h described by [1, Figures 8-
31] and by the change from Figure 45 (or [1, Figure 31]) to Figure 46
maps a 0-framed meridian of the knot in Figure 30 (= [1, Figure 8])
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onto the 0-framed meridian of the dotted circle in Figure 46. In [1] the
manifold M is obtained by gluing -Q to M{ by the diffeomorphism
h of their boundary. An inverse orientation of Q is obtained by taking
the dual decomposition that starts from the collar on the 3-manifold from
Figure 30. An equivalent way is to glue -Q and M{ with a composition
of h with the orientation-reversing diffeomorphism that maps Figure 30
to its mirror image. Note that this orientation-reversing diffeomorphism
changes the signs of framings. Consequently, the correct figures of -Q in
M are obtained by taking the mirror image of Figures 30-44, but in the
boundary of Mχ (after reversing the orientations and framings again) the
four framed punctures from Figure 44 are exactly as drawn and are linked
with the dotted circle in Figure 46.

Note that A and B from Figure 33 are mirror images of those from
Figure 3, and so the pairs of 1- and 2-handles from Figures 2, 4, 5 or 6
are mirror images of the corresponding pairs from Figures 32 and 34.

Figures 47-50 show isotopes of the 0-framed 2-handle from Figure 46.
Note that there are two copies of the boundary of El0 = Σ(2,3,7) in
Mχ: one is clearly visible and the other is obtained by sliding the — 1-
framed 2-handle linked with E9 over the other -1-framed 2-handle that

is linked with El0. Figure 51 is obtained by adding a CP to Mχ and
by performing the "constrained decompositions" of E9 and El0 from
Figures 7-18.

Figures 53 to 55 form an inverse sequence of embeddings, i.e., some of
the 2-handles are not drawn, and other changes are the result of handle
slides. The reason for forming the connected sum of M with CP is now
obvious from Figure 54: a copy of CP from the added CP is used in
Figure 54 to correct the framing of a 2-handle. In Figure 56 the attaching
circle of the 0-framed 2-handle bounds a punctured torus. The puncture
is a meridian of the 1-handle (arc with a dot), and the remaining piece of
the torus looks exactly as the standard picture of the characteristic torus
for a kink in a Casson tower. A symplectic basis of the first homology
also consists of the (0-framed) meridians to the 1-handle. The torus can
be surgered by a pair of ± copies of the CP 1 in one of 17 CP 's linked
with the 1-handle. This surgery amounts to running two pipes around the
1-handle (the circle with a dot) that connect symplectic generators on the
torus with a ± pair of copies of a punctured i C P 1 (these punctures come
from their intersections with the scooped-out 2-handle). Figure 57 is a link
calculus description of this surgery and is obtained from Figure 56 by two
handle slides. Figures 58 and 59 are isotopic to Figure 57.
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The result is a kinky handle with one positive kink. The framed bound-
ary and the "standard loop" of this kinky handle are ambiently isotopic:
they are 0-framed meridians to the 1-handle. We form 16 copies of this
kinky handle: take 16 copies of the core of the 0-framed 2-handle in Fig-
ure 48 and slide each of them twice over a different CP . Equivalently,
each of 16 copies of the core bounds a punctured torus, as described be-
fore. The tori, and also the added pipes and punctured CP1 's, can all be
made disjoint from each other. In both descriptions, we have 16 kinky
handles that can be connected by disjoint pipes to form two eight-level
Casson towers: start with a meridian from Figure 52, pipe it to one of the
kinky handles. A two-level Casson tower is formed by attaching one more
kinky handle over the standard loop of the first one. This standard loop
is again a 0-framed meridian to the 1-handle, and it can be piped to the
boundary of another copy of the constructed kinky handle, and so on. It
is straightforward to keep all pipes disjoint.

This process works because each kink, or clasp in the figures, is formed

from a separate CP . Consequently, one can produce as many disjoint

kinky handles as there are CP 's linked with the same 1-handle.
The two punctures that form the +1 -framed Hopf link in Figure 44

are connected by pipes to the —1-framed Hopf link that is boundary of
I 2

two copies of the punctured CP in the remaining CP that is linked
with the 1-handle from Mχ (see Figure 60). Equivalently, the -f 1 Hopf
link can be slid over a 2-handle with - 1 framing. These slides unlink
the components of the Hopf link from each other and from the 1-handle.
The resulting trivial link with 0-framings is, of course, slice and bounds
2-handles in the 0-handle of Mχ.

All punctures from Figure 44 are now capped, and the resulting sub-

manifold TV of Xo is shown in Figure 5. Note that the two Casson tow-

ers Γ8 are completely contained in M^CP , and so N is obtained

from the handlebody JV(A U 2?) U Γ8 U Γg in Xχ/2 by surgering the 2-

sphere B. It follows that for any pair of Casson handles CHχ and CH2

embedded in Γ g, the open handlebody R is obtained by surgering B in

U = JV(A U B) U CHχ U CH2 and therefore is an exotic R4 .
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