
J. DIFFERENTIAL GEOMETRY
39 (1994) 433-456

S0(3)-INVARIANTS FOR 4-MANIFOLDS
WITH b+ = 1. II

D. KOTSCHICK & J. W. MORGAN

1. Introduction

In this paper we extend the definition of Donaldson polynomial invari-
ants to cover the case of manifolds with bx = 0 and b\ = 1. We shall
consider SO(3)-bundles with w2 which lifts to an integral class. This
paper generalizes [2] where the case of S£/(2)-bundles with c2 = 1 was
treated. It should be viewed as the continuation of [5], where 50(3)-
bundles with arbitrary p{ were considered. It extends [5] in two ways.
First of all, it completes the proof of the fact that the values of these in-
variants depend only on the chamber containing the self-dual harmonic
2-form for the metric used to define the anti-self-dual (ASD) equation.
Secondly, it establishes more of the general properties of the differences of
the values of the invariants as the self-dual 2-form crosses a wall. It follows
from the properties that we establish here that, as conjectured in [5], the
value of an invariant on every chamber is determined by its value on any
one chamber; and in particular, the invariant is defined for all chambers
regardless of whether they contain forms which are self-dual harmonic for
some metric.

In spite of our progress, there is still more to be done, for we do not
give an explicit formula in general, like the one in [2], for the difference
term as the self-dual 2-form crosses a wall. We conjecture that there are
systematic formulae for these difference terms involving only the classes
defining the wall and the self-intersection form of the manifold.

Of course, as has been understood for a long time, the case of b\ = 1
is unlike that of b2 > 1 in that Donaldson invariants depend on the
metric which is used to define the ASD equations. Naively, this gives
invariants of Riemannian 4-manifolds. For applications one requires an
understanding of the way the invariant depends on the metric. In the case
w2 = 0 and pχ = - 4 it was shown in [2] that the invariant only depends
on the period point in the positive cone in H2(M\ R) of the self-dual
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harmonic 2-form for the metric. Furthermore, the invariant changes only
when this period point passes through a wall (a wall here being defined as
the space perpendicular to an integral class of square - 1 ) , and the change
is explicitly known in terms of the class defining the wall. The main result
of this paper is to prove a result analogous to the first of these properties
for the general 5Ό(3)-invariant. This completes the proof of Theorem 3.2
of [5]. In [5] there is a gap in the argument. Contrary to what is asserted
on page 432, it is not known whether two metrics whose period points lie
in the same chamber can be connected by a path of metrics whose period
points lie in that chamber. This is an extremely interesting and unresolved
question about the period map, one which we do not address here. We
proceed in a different manner, giving an argument which makes no use
of detailed properties of the period map. Our argument is based on a
generalized gluing construction for gluing concentrated ASD connections
over S4 into not necessarily ASD connections on M. This generalized
gluing construction may be of independent interest.

In the last section we give some very partial generalizations of the ex-
plicit formulae of [2] and [5] for the difference in the values of the invari-
ant as one crosses a wall, and we list some conjectures about the general
properties of the difference terms.

2. Conventions

Throughout this paper X is an arbitrary closed oriented smooth 4-
manifold, and M is a closed oriented smooth 4-manifold with b2 = 1
and b{ = 0. Fix a principal 5O(3)-bundle P over X with the property
that w2(P) admits a lift to an integral class. Also, fix a generic Rieman-
nian metric ^ 0 on I . We denote by Jί{P, g0) the moduli space of
equivalence classes of #0-ASD connections on P, where two connections
are defined to be equivalent if they differ by an 5Ό(3)-bundle isomor-
phism which lifts to an isomorphism with trivial determinant of some
{/(2)-bundle covering P. We denote the group of all such 5Ό(3)-bundle
isomorphisms by &(P). The moduli space is an orientable smooth man-
ifold, and a lift of w2(P) to an integral class together with an orienta-
tion of H*(X R) determines an orientation of it; see [5]. We denote by
J?{P, gQ) the compactification of Jt(P, gQ) obtained by adding ideal
connections; see [1], [4]. We define μ: H2(X\ Q) -> H2(J?{P, gQ); Q)
by slanting with -px(ζ)/4 where ξ is the universal 5Ό(3)-bundle over
X x J[{P, gQ). This map has a natural extension to a map μ: H2(X) ->
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H {Jί{P, gQ)). Following [5] and using perturbations as in the appendix

of [2] where necessary to remove nontrivial flat connections, we define the

Donaldson multilinear invariant Φ{x{, , xd) to be the intersection of

the classes 2μ(x{), , 2μ(xd). Our convention for evaluating a mono-

mial a{... ad e SymH2(X) as a multilinear function on H2(X) is

σ ,=1

where the sum ranges over σ in the permutation group on d letters. In

this way any multilinear function on H2(X) (e.g., the Donaldson invari-

ant) becomes a polynomial in H2(X). We call the resulting polynomial

the SO(3)-Donaldson polynomial of X associated to (P, g0).

3. Statement of the main theorem

Let M be a smooth closed oriented 4-manifold with bχ (M) = 0 and

b2(M) = 1. Let P -* M be a principal 5Ό(3)-bundle with w2(P) lifting

to an integral class. We shall say that a class a e H2(M; Z) defines a

P-wall if it satisfies

(1) a = w2(P) (mod 2),

(2) Pl(P)<a2<0.

For any such a the intersection of (a)± with the positive cone is called a
P-wall (or the P-wall defined by a). According to [3] the set of P-walls is
locally finite in the interior of the positive cone of H2(M R)/R*. Let Ap

be the set of (open) chambers into which this cone is divided by the hy-
perplanes perpendicular to classes satisfying the above conditions. Fix an
orientation of H^(M; R). Let Met be the space of smooth Riemannian

metrics on M, and for each g e Met let ω(g) e H2{M\ R)/R* be the

ray of self-dual ^-harmonic 2-forms contained in the positive component

(with respect to the given orientation on H+(M; R)) of the positive cone.

Let %? be the set of components in Met of the preimage of Δ^ under this

mapping. Let c £ H2(M; Z) be a lift of w2(P), and let d = -px(P) - 3.

In the case where w2(P) is not the pullback of a class in

H2(K(π{(M), 1); Z/2Z) it is established in [5] that there is a function

Φ™c: 9 -+ Symd(H2(M; Z)) (denoted Φ ^ c in [5]) which associates to

each generic metric g the 5O(3)-Donaldson polynomial of M associated

to (P, g). Without this assumption the moduli space of ASD connections
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may have ends associated with flat connections with w2 equal to w2(P),
and therefore its closure may not have a fundamental class if the space
of such flat connections is too large. As in the appendix to [2], since
Hι (M R) = 0 one can avoid this problem by perturbing the ASD equa-
tions until the only flat solution is the trivial solution. We will always
implicitly assume that this has been done if M is not simply connected.
In particular, φf c is defined for all M with bχ = 0 and b\ = 1.

Our main theorem is that Φp c factors to induce a map from Ap.
More precisely, we have

Theorem 3.0.1. Let M be a closed oriented ^-manifold with b2(M) =

1 and bx(M) = 0, and let P -^ M be a principal SO(3)-bundle with

w2(P) lifting to an integral class. Then there is a function δp from the

set of classes a e H2(M\ Z) defining P-walls to Symd {H2(M Q)) and a

map Φp\c: Ap -> Symd {H2{M; Z)) such that the following hold:

1. For any generic metric g we have Φ f̂ c(g) = Φ^ C(C ) where C is
the chamber containing ω(g).

2. Properties 1-4 stated in Theorem 3.2 of [5] hold.
3. If C_j and C{ are chambers in the same component of the positive

cone, then

(3) <c(ci) -<c(c-i)

where ε(c, a) = (-\γ(c~aW y and the sum is taken over all a defining
P-walls with (α, C_x) < 0 < (α, Cx).

Remark 3.0.2. Notice that as a consequence of item 3 the value of
Φ f̂ c on every chamber is determined by the function δp and the value

of Φ*£ c on any one chamber. This verifies Conjecture (3.5) in [5]. It
seems to us an interesting problem to compute the difference terms δp(a)
in general. Partial results along these lines are contained in the last section
of this paper.

4. A generalized gluing construction

We shall consider the question of gluing concentrated ASD connections
on S4 into a not necessarily ASD background connection on X. Of
course, the first part of the gluing construction, the patching of connec-
tions, does not require that the background connection be ASD. Thus, just
as in [6], associated to each open stratum of the fc-fold symmetric prod-
uct of X we can define a space of gluing parameters for connections. The
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problem is that there is no natural way to amalgamate these pieces as we
pass from one stratum to another. However, the embeddings of the var-
ious pieces into the space of connections given by performing the gluing
differ only by a small error term, and hence by general considerations one
can find (noncanonical) deformations of the images of these pieces until
they do match. The homotopy type of the result is independent of the
choices of deformations. In this section we shall give this construction not
only for a single metric and background connection but also for compact
families of background connections and metrics.

4.1. A space of generalized connections. Fix a closed oriented Rieman-
nian 4-manifold (X, g0) and principal 5Ό(3)-bundle P over X. Set
k = -pχ(P)/4 and set w2 e H2{X\ Z/2Z) equal to w2(P). For any /
with 0 < / < k and with / = k (modZ) let 3SX be the space of gauge
equivalence classes of connections on the principal SΌ(3)-bundle Pι sat-
isfying p^) = -41 and w2(Pι) = w2. Of course, 3Bk = 3S{P). We
form a space of gauge equivalence classes of ideal connections

&{P) = 3§k U {βk_x x I ) U - U (^kHk] x Σ[k](X)),

where [k] is the greatest integer in k, and Σr(X) is the rth symmetric
product of X. For any ideal connection (A, [xχ, , xr\) e «^_Γ x
Σr(X) we call the JC its singular points, A its background connection, and
\\FA\\2 + ΣiSπ2δχ , its measure. The topology on this space is the topology
of convergence up to gauge equivalence of background connections on
compact subsets in the complement of the singular points together with
convergence of measures in the weak topology. Clearly, the topology on
this space is independent of the choice of Riemannian metric on X.

We set Mf(P) c 3${P) equal to the points whose background connec-
tion is reducible to 0(2) but not to the trivial subgroup.

The following is a clear consequence of the description in Chapter 3 of
[4].

Lemma 4.1.1. Let F be a family of Riemannian metrics on X, and
let Jί(P, &") be the compactified parametrized moduli space ofASD con-
nections on P. Then there is natural inclusion JK{P, &") c 38 (P) x ZΓ
which is a homeomorphism onto its image which is a closed subset.

Lemma 4.1.2. Let x e H2(X;Z). Then there is a well-defined class
μ{x) ^H1{β{P)-~M{P)\ Q) whoserestriction to 3*(P) is slant product of
x with -/7j(^)/4 where ξ is the universal SO(3)-bundle over X x &(P).

Proof. Fix a surface C c X representing x. Let S(C) c !&{P) be
the (closed) subset of ideal connections with a singularity at some point
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of C . By choosing a base point p e C we can form the space of based
ideal connections

There is a restriction map from this space to the space of gauge equiva-
lence classes of based connections over C. Pulling back the usual SO(3)-
equivariant two-dimensional class from this space gives us a class β in

°) A w a y f r o m ^ ( p ) t h e 5Ό(3)-action has stabilizers with triv-

ial first cohomology, and hence β descends to a class μ(x) £ H2{β{P) -

We claim that this class has a unique extension to a class μ(x) €
H2(&(P) - Ί%(P)). The argument is similar to the one given in §6 of
Chapter 3 of [4] for the case of the moduli space. The point is the fol-
lowing. Consider ε > 0, a collection of open balls of radius less than ε
with disjoint closures Bχ, , Bs in X, positive integers nχ, , ns,
and c0 > 0. Associated to these choices there is an open subset of &(P)
consisting of all points whose measures v satisfy

1. 11/(2?,.) - 8π2nz.| < ε and
2. on X - (J. Bi the measure density is less than cQ.
Given c0, if ε is sufficiently small, then this neighborhood has a small

deformation, preserving the singularities of each ideal connection, onto the
subset of ideal connections which are ASD in each of the balls. Using this,
and following the line of argument in [4], we can deform any two chains
in 7%{P) - Ί%(P) until they are disjoint from *f(C). Furthermore, as
in [4] we also see that any two cycles in W(P) - (^{P)UJr(C)) which
are homologous in 3§{P) - 3ί{P) give the same value when paired with
μ(x). This proves the existence of the unique extension μ(x) as claimed.

4.2. The space of gluing parameters defined by a single stratum. For
this subsection we keep the Riemannian manifold (X, gQ) and principal
bundle P from the previous subsection, and we fix a (not necessarily
ASD) background connection A on a principal 5Ό(3)-bundle Q -* X
with w2(Q) = w2(P) and pχ{Q) = pχ(P) + 4r for some r > 0. In this
subsection we describe a space of parameters for gluing the concentrated
ASD connections of total measure 8π2r on S4 to A to form connections
on P .

Fix a stratum Σ of Σr(X). Then there is a set nχ > > ns of
positive integers with sum r associated to Σ. These integers describe the
multiplicities of the various points in the support of any σ e Σ .

Fix ε > 0 sufficiently small. As described in §4 of Chapter 3 of
[4] associated to Σ there is a bundle EΣ. It is Π/=i(G xχ τ%) over
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I x x I . T h e bundle EΣ is a principal Π/=i(5Ό(3) x SO(4)) bundle
on which the permutation group associated to Σ, i.e., the group permuting
points of equal multiplicity, acts by bundle automorphisms.

For each n > 0 let Zn be the space of gauge equivalence classes of

based (at the south pole) ideal ASD connections on the round S4 which

are centered at the north pole and concentrated in the ε-ball about the

north pole. There are natural commuting actions of SO(3) (on the right,

changing the base frame) and SO(4) (on the left, induced by rotating

the sphere) on Z π . We form the bundle over X x x X with fiber

Π/=1 Z n associated to EΣ and this action. The symmetry group of Σ

acts on this associated bundle covering the natural action on X x x X.

Let Σ c l x x l be the complement of the full diagonal. The space

of gluing parameters associated to Σ is the quotient of the preimage of Σ

under the action of the symmetry group of Σ. It is denoted by GP,Σ * =

GP (Σ ή(A, g0). There is the obvious projection π : GP (Σ ε ) —• Σ. This

map is a locally trivial fiber bundle with fiber Π/=i Zn. •

As is proved in [4] the fibers of the space of gluing parameters are cone

bundles, and the structure group preserves the cone bundle structure. The

section given by the cone points is naturally identified with Σ. We rep-

resent the point x e GP^Σ e ) by an element (z{, , zs) € Π/=i Zn > by

identifications of the fibers of the bundles over the south pole of S4 with
the fiber of Q over points p. and by identifications of the tangent space
of S4 at the north pole with the tangent spaces to X at the pt. Exponen-
tiating the latter identifications gives us identifications of the ball of radius
ε centered at the north pole of S4 with balls of radius ε in X centered
at the p.. Using these identifications we transfer the singular points of the
based connections z( with their multiplicities to points with multiplicities
in X. By definition, these points with multiplicities are the singularities
of x. The subspace of GP,Σ ε ) consisting of ideal connections whose sin-
gularities have total multiplicity r is identified with a neighborhood of Σ
in Σr(X). Clearly, GP(Σ, ε) admits a natural action of the gauge group

4.3. Gluing defined by the stratum Σ . We keep the notation and as-

sumptions of the previous subsection, and fix a compact subset K c Σ.

We denote by GP{K ε) = GP{Kε)(A, gQ) the preimage of K in GP{Σ ε)

under the natural projection mapping π. It contains a neighborhood of

int(A") in GP,Σ ε). For all ε sufficiently small we shall define a local gluing
m a P ΨK ε: GP(κ ε) -^&(P)> which depends on go,A,K, and ε.
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Choose ε sufficiently small so that for any p e K and any points p. Φ p.
of X in the support of p the distance from pt to p. measured by g0 is at
least 4ε, and so that in any ball of radius 2ε the measure of the connection
A is at most ε. Fix a C°° cutoff function β : [1, 2] -> [0, 1] which is
identically 1 near 1 and identically 0 near 2. Let x e GP(κ,ε) b e g i v e n

Let p £ K be its image under the natural projection, and {px, , ps}
its support. As above, we represent the point x e <χP(Σ ε ) by an element

(zj, , zs) e Π/=i Zn > by identifications of the fibers of the bundles

over the south pole of S4 with the fibers of Q over points p. and by

identifications of the tangent space of S4 at the north pole with the tangent

spaces to X at the p.. Let Bi be the ball of radius 2ε centered at pt.

We give a product structure Q\B( = β|{/jj x Bt by ^-parallel transport

along normal geodesies from p.. In this product structure A is almost a

product connection.
As in §4 of Chapter 3 of [4] we use this data (linearly scaling down β

to the interval [ε, 2ε]) to glue together the various connections, forming
a family of connections on X which agree with A outside the balls Bt

and agree with the ASD connections on the sphere inside concentric balls
B\ C B. of radius ε .

The result is a continuous map φκ ε : GP,K ε ) —• &(P) preserving the
singularities and their multiplicities.

Clearly, this construction can be done continuously as we vary A in a
family of background connections Aτ parametrized by a compact space
T. We call the resulting map φτ κ e. If the family Aτ is invariant under
Stab(^ί) c &(Q), then φτ κ ε is also invariant under Stab(^4).

4.4. Fitting the various spaces of gluing parameters together. In this
subsection we shall show how to glue the spaces GP^K ε ) together as we
vary the stratum Σ. Here we cannot directly follow the argument in [6].
The reason is that since A is not assumed to be ASD the glued-up connec-
tions are also not necessarily a family of almost ASD connections. Hence,
the deformations that we use to match up the various pieces are less natural
than those in [6].

Suppose that Σ and Σ' are distinct strata with Σ ; contained in the
closure of Σ, and also that we have data (K, ε) and {K1, ε) related to
Σ and Σ' as in the previous subsection.

Definition 4.4.1. Define an open subset V(Σ, Σ') c Σ as follows. It
consists of all p e Σ for which there is a point p e int K1 such that the
balls of radius 2ε about the points of support of p are contained in balls
of radius ε centered around the points of support of p . (See Figure 1.)
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FIGURE 1

For each p e V(Σ, Σ') there is a partition of the points of support of p :
the subsets of the partition are the subsets contained in a given one of the
balls of radius ε . While the point p' e K' is not necessarily determined,
since distinct points of X in the support of any point in Kf are at least
distance 4ε apart, the partition of the points of support of p is unique.
We define a map p : V(Σ, Σ') -»int K1 by associating to p the centers of
mass of the subsets of the partition of the points of support of p given
above (with the obvious induced multiplicities).

The next step is to cover the maps given by the restrictions p\(K Π
F(Σ, Σ')) by maps defined on analogous open subsets

(4) U(Σ,Σf) = π l(V(Σ,Σf))nGP{K} e)

of GP^K ε ) . Given a point ζ e U(Σ, Σ') we represent φκ ε(ζ) by an ideal
connection A! on P —> X. Given base frames for the bundle Q at the
points of support of p(n(ζ)), we parallel translate these frames via A to
trivializations of Q over the annuli of radii ε and 2ε centered at these
points.

Over the union C of these annuli the bundles P and Q agree, so
that we have a trivialization of P\C as well. Using this trivialization
we transfer the restriction of A! to each of the balls of radius 2ε to
a connection on the 2ε ball centered at the north pole of the 4-sphere.
Using the cutoff function β suitably scaled, we extend the restriction of
this connection to the ε ball centered at the north pole to a connection
on all of S4 trivial outside the 2ε ball. The resulting connection on
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S4 is almost ASD with respect to the standard metric. We deform this
connection using the deformation described in [6] to an ASD connection.
Since these constructions are equivariant with respect to the action of
SO(3) by changing the base frames, and the action of SO(4) by rotating
the tangent frames, they induce a map

where Jtn (S4) is the moduli space of based ideal ASD connections (ASD
with respect to the round metric) on an 5rC/(2)-bundle with c2 = ni. (The
south pole is not allowed to be a singular point, and the base frame is taken
over the south pole.) The resulting ideal connections will be concentrated
near the north pole, but they will not necessarily be centered at the north
pole. We translate each of them until they are so centered. This produces
a map ψΣ> : C/(Σ, Σ') -• Πz %n > which is equivariant with respect to the
SO(3) x 5Ό(4)-action changing the frames for Q and TX at the points
in the support of p(π(ζ)). Because of this equivariance, the maps p o π
and ψΣ, together induce a map p : U(Σ, Σ') —• GP,K> ^ covering the

restriction of p to V(Σ, Σ')nK. Clearly, the map p is invariant under
Stab(Λ).

Notice that if ζ e U{Σ, Σ'), then φκ ε(ζ) and φκ» ε>{p{ζ)) are close
together in &(P), and have the same singularities. In particular, p is the
natural identification on the subset of U(Σ, Σf) identified with a subset
of Σr{X).

Here is the theorem which states that we can use maps close to the p in
order to glue the GP,K e* together to form a space of global gluing param-
eters. More precisely, the following theorem shows that for appropriate
choices of (K, ε) for each stratum of Σr(X) there is a space covered by
open subsets of the GP,K , such that on the overlap of two pieces the
transition function is close to the map p.

Theorem 4.4.2. There is a smoothly stratified space GP{A, g0) with a
smooth action of Stab(;4) and for each stratum Σ of Σr{X) a compact
subset K c Σ and ε > 0 so that the local gluing map φκ ε is defined,
satisfying the following properties:

1. GP(A,g0) contains Σr(X) as a substratifiedspace.
2. For each Σ there is a Stab(A)-invariant neighborhood WΣ of K c

GP(K, ε) and a smooth Stab(A)-equivariant embedding ιΣ : WΣ —•
GP(A, #0) which is the natural identification on the subset of WΣ iden-
tified with a subset of Σr(X).
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3. The union of the ιΣ(WΣ) cover GP{A, gQ).
4. For each Σ there is a compact subset L c ΊnXK such that Y =

WΣ n π~ι(K - L) is covered by open subsets ΎΣ,, indexed by Σ! in the
closure of Σ, with the property that ΎΣ, is contained in £/(Σ, Σ') and
ίΣ(T/) is contained in ιΣ>{WΣ,).

5. For each Σ' in the closure of Σ the map ιΣ>
1 o ιΣ : TΣ/ —• WΣ, is close

in the smooth topology to the restriction of p to ΎΣ,.
Proof Choose an ordering {Σo, , ΣJ of the strata of Σr(X) such

that if Σj is in the closure of Σ., then j < i. By induction on i we shall
construct

compact subsets Kt c Σ̂  and L. c Ίn\Ki,

• e , > 0 ,
• spaces GPt and WΣ ,

• embeddings GPi_ι -^ GPt and ιΣ : WΣ -^ GPt

such that the following hold:

(I) The local gluing maps φκ ε are defined.

(Π) (Σi+ι-Li+ι)cGPr

(III) The union over j such that Σ̂  is in the closure of Σf of U(Σ(, Σ )̂

contains the subset π " 1 ^ . - intL.) of GP{K ε).

(IV) For the maps p : U{Σi, Σj) ^ GP{Kj>Ej), we have U ^ / W ^ ^ )

containing π~ι(K. — mtL ) .

It follows by induction that for each j < i we have an embedding
GP. c GPt. Hence, for j < i we can view the ι. as embeddings of
WΣ into GPi. We also require inductively that properties 4 and 5 of the
theorem hold for Σ = Σj with j < i and with K, L replaced by the
inductively given K., L..

To begin the induction we take KQ = Lo = Σo and ε0 > 0 sufficiently
small so that φv p is defined. We take GP0 = WΎ = G/> p , .

Now suppose we have completed the induction through i. It follows
by induction from the above properties that the union of the ιΣ{WΣ) for
j < i cover GPt. It is easy to see that we can choose compact subsets
Ki+ι ^ Li+ι in Σ.+1 and β + 1 > 0 such that items (I)-(ΓV) hold.

Set WΣM = GP(KM9εM) and U'MJ = {β)'ι{WΣj) c W^. We

have the compositions ιΣ o p : U'i+ι }f -> GPr On the overlap U'i+ljΓ)

ϋ'i+λ t these compositions do not necessarily agree. But by the construc-
tion of the p and by the inductive hypothesis on the ιΣ , they are closed
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in the smooth topology. Set U* = \JjKi U'i+ι j . Using a Stab(^4)-invariant

partition of unity on U' subordinate to the open cover {U'i+ι ; } y we can

find a Stab(^)-equivariant smooth map / : U' -• GPt which for every j

is close in the smooth topology to \. o p on Ur

i+ι j .

Now we wish to glue WΎ to GP using the map / . In order for this

gluing to produce a Hausdorff space, we may have to shrink GPi. We find

a Stab(Λ)-invariant open neighborhood GP[ in GPt of (Σ / + 1 - L / + 1 ) U

U/<, +i Σ

7

 w i t h t h e property that the intersection of its closure with the

closure of f{Uf) is equal to the closure of f(Yi+ι).

Replace GPt by GP , and for each y < / + 1 keep K and L^ as

before. Replace WΣ by the preimage under ιΣ of GP/. The set of data

still satisfies the inductive conditions for /.
Using the embedding / : YM -> GP[, glue WΣ to GP/ along Yi+1 in

order to form the space GPi+ι. The action of Stab(^4) is the one induced
from the actions on the two pieces. One checks easily that all inductive
conditions hold for / + 1. This completes the inductive step and hence
the proof of the theorem.

Remark 4.4.3. Because the deformations required in this construction
do not change the singularities, there is a natural identification of Σr(X)
with the subset of GP(A, g0) consisting of points with singularities of to-
tal multiplicity r. There is a Stab(^4)-equivariant deformation retraction
of GP(A, gQ) to Σr(X) well defined up to homotopy.

Definition 4.4.4. Any space GP{A, gQ) satisfying the conclusion of
Theorem 4.4.2 is called a global space of gluing parameters for (A, # 0 ) .

We can also do this construction for compact families of background
connections.

Theorem 4.4.5. Given a family Aτ of connections At parametrized by
a compact set T, there is a smoothly stratified space GP(AT, g0) which
fibers over T with the fiber over t being a space of gluing parameters for
At and g0. Furthermore, if the family Aτ is invariant under a compact
subgroup G of 2?(Q), then one can perform this construction equivariantly
with respect to the action of G so that there will be a resulting action of G
on GP(AT, gQ) covering the given action on Aτ.

Definition 4.4.6. Any space GP(AT, gQ) satisfying the previous theo-
rem is called a global space of gluing parameters for (Aτ, £ 0 ) .

The subspace of points x e GP{AT, gQ) with singularities of total mul-
tiplicity r is identified with T x Σr(X). As before, there is a Stab(^Γ)-
equivariant deformation retraction of GP(AT, g0) onto T x Σr(X).
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4.5. The generalized gluing map. Fix a metric g0 and a smooth (finite-
dimensional) submanifold Aτ in the space of connections on Q. We
suppose that Aτ is invariant under a compact subgroup G of &{Q), and
that the quotient of Aτ by the action of G embeds into the gauge equiva-
lence classes of connections on Q. Let us also fix a G-equivariant space of
gluing parameters GP(AT, g0) as defined in the previous subsection. Our
purpose here is to define a G-equivariant gluing map λτ : GP(AT, g0) ->
&()

First let us suppose that the submanifold is a point, represented by a
single connection A on Q. We write the space GP(A, g0) as a union
of the images under ιΣ of the open subsets WΣ c GP,K ε) as in Theo-
rem 4.4.2. On each WΣ we have the local gluing map λΣ = φκ e\WΣ,
^Σ : WΣ^> &(P). These maps do not necessarily fit together to form a
map on all of GP(A, g0), but the differences in the overlaps are small
in the smooth topology. Thus, using a partition of unity on GP(A, g0)
subordinate to the open cover ?Σ(W^), we can deform the maps λΣ o ι~ι

until they agree on the overlaps. In this way we construct a map λ :
GP(AT, gQ) —• £B(P) which on each WΣ is close to λΣ o ι~ι. Any such
map is called a gluing map. We can perform this construction in such a
way that the singularities are preserved. Furthermore, we can perform this
construction in a Stab(^4)-invariant way, so that it gives an embedding of
GP{A,go)/St*b{A) in^(P).

Now suppose that Aτ is a compact smooth family of connections in-
variant under G c 8?(P). Then there is a gluing map λτ : GP(AT, gQ) ->
3S{F) which is invariant under G and restricted to each ιΣ(T x w y is
close to the local gluing map λΣ o ι Σ

ι . This map leaves the singulari-
ties invariant and hence is the natural identification on (T/G) x Σr(X) c
GP(AT, g 0 ) . We call any such map a gluing map for Aτ, g0.

4.6. Varying the metric. So far we have let many things vary, but we
have always fixed the metric. Now it is time to allow the metric to vary
in a compact family. Clearly, all the constructions so far can be made to
vary smoothly as we vary the metric. Thus, we have

Theorem 4.6.1. Let gs be a smooth family of metrics parametrized by
a compact smooth manifold S. For each s e S, suppose that Aτ is a
smooth submanifold in the space of connections on Q, varying smoothly
with s. Suppose that there is a compact subgroup G ofS?(Q) such that for
each s the submanifold Aτ is G-invariant Then there is a smooth family
GP(AT , gs) of spaces of global gluing parameters and a smooth family of
gluing maps λτ : GP(AT , gs) -> &(P), seS.
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4.7. The homology class represented by the link of the reducible ideal
connections in the space of gluing parameters. For this subsection we fix
a smooth closed oriented 4-manifold M with bχ{M) = 0 and b^M) = 1
and a principal 5Ό(3)-bundle P -> M.

Let a e H2(M\ Z) be a class defining a P-wall. Let Q be the SO(3)-
bundle obtained by stabilizing the [/(l)-bundle with cx = α. Let A be
a reducible connection on Q compatible with its given reduction. Since
Stab(i4) acts on Q preserving the given reduction, there is a natural iden-
tification of Stab(A) with C/(l). (Replacing a by -a changes this iden-
tification by complex conjugation.) We suppose that we have a smooth
submanifold Aτ of the space of connections on Q diffeomorphic to the
open unit ball in C^ with the connection A corresponding to the origin.
We suppose that this submanifold is invariant under Stab(A) and that the
action of Stab(^4) is equivalent to the standard complex action on this
open ball. We also suppose that the map T/Stab(A) -> &B{Q) given by
t K* [At] is an embedding. We give the space Aτ its complex orientation.
The space GP(AT, g0) inherits an orientation from this orientation on T
and the orientation of M.

Let GP(AT, gQ) be a space of global gluing parameters, and let L c
GP(AT, g0) be the boundary of a Stab(^4)-invariant regular neighborhood
of T x Σr(M). It inherits a stratification from that of GP(AT, gQ).
It also inherits the boundary orientation from the given orientation on
GP(AT, gQ). (Replacing a by -a but leaving the family T unchanged
affects the orientation of L/U(l) by (-1)^+ 1 .)

Remark 4.7.1. In the case where a2 = px{P) the space GP(AT, gQ) is
T and clearly the local orientation on GP(AT, gQ) that we have chosen
is the one induced from the complex structure on T.

The gluing map λτ of the previous subsection induces an embedding
λτ : GP(AT, go)/U(l) -> &(P) sending (JΓ/Stab(4)) x Σr(M) to the
singular locus of reducible ideal connections 31 [P). The space L is closed
and of dimension 8r+2iV-l . The quotient L/U(l) is then of dimension
8r + 2N - 2, and the image of its fundamental class (Ϊ Γ ) JL/£/(l)] is an
element in H^1N_2(β{P) - &{&)).

We now come to a result which shows that this homology class is inde-
pendent of all the choices required in forming the gluing map.

Theorem 4.7.2. Let M, P,AT, go,a be as above. Let GP(AT, gQ)
be any space of gluing parameters invariant under Stab(^4), and λτ :
GP(AT, g0) -> ΊB(P) be any gluing map. Denote by L(AT, g0) c
GP(AT, gQ) the boundary of a Stab(A)-invariant regular neighborhood
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of T x Σr(M). The image of the fundamental class (A r)JL/t7(l)] in
Hff{3B(P) - 3ί[P)) depends only on the isomorphism class of the U{\)-
reduction of Q induced by A and the complex dimension N of the space
T. We denote this class by D(A, N) e H^(β{P) - Ί%{P)).

Proof Suppose that we have two sets of data (Aτ, gQ) and (A'τ,, gf

Q)
as in the theorem with A and A! inducing isomorphic reductions of Q.
By conjugating the second set of data we can assume that A and A' in-
duce the same reduction of Q. Then there is a one-parameter family As

of connections, all inducing the same reduction of Q, connecting A and
A'. It is easy to see that there is in fact a smooth one-parameter family of
submanifolds Aτ , each isomorphic to the unit ball in C^ with the origin
corresponding to As e Aτ and each invariant under Stab(^4), connecting

AΎ to A!T, . Lastly, we choose a smooth one-parameter family of met-
rics connecting g0 to g'o. Applying Theorem 4.6.1 to this one-parameter
family of data yields the result.

Remark 4.7.3. Even if one assumes that Aτ and A!τ, are families of
g0- and #Q-ASD connections, there is no reason to expect that one can
choose the one-parameter family of data connecting them to be ASD for
each value of s. Because of this, we must allow the Aτ to be families of
non-ASD connections. This led us to consider the situation of the general
gluing result.

It will be important for our explicit computations to know for x e
H2(M) the nature of the classes 2μ(x) on the space L(AT, go)/U(l).

The following lemma is the analogue of Proposition (2.13) in [5] and
follows from the discussion in [1] concerning the nature of the μ-map near
ideal connections.

Lemma 4.7.4. For any x e H2(M\Q) the class 2μ(x) e
H2(L(AT, gQ) : Q) is equal to 2π*Σr(x) + (α, )cx where cχ is the first
Chern class of the U{\)-bundle L(Aτ,g0) -• L(AT, gQ)/U(l), π:
L(AT, gQ)/U(l) ->Σ r(M) is the map induced by any Stab(A)-invariant de-
formation retraction GP{AT, g0) -> ΣΓ(M), and Σr{x) e H2{Σr{M); Q)
is the class induced from the Poincare dual of x in H2(M; Q) by sym-
metrization.

Remark 4.7.5. In the case where r = 0, this formula yields

2μ(x) = {a,x)cl9

which is exactly what was proved in Proposition 2.13 of [5] (since the

Chern class cχ is the Chern class of the tautological bundle over CPd and

is hence equal to minus the Poincare dual of ^ 1
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5. Proof of the main theorem

For this section we fix a 4-manifold M and a principal 5Ό(3)-bundle
P over M as in §3. We denote by Ap the set of chambers into which
H2(M ;R)/R* is divided by the P-walls. The proof of the fact that Φp\c

induces a map on the set of chambers will be deduced from a result about
the difference of the values of Φ f̂ c on two metrics connected by a path
of metrics crossing only one geometric wall.

5.1. Definition of the difference term associated to a class defining a
P-wall. Let a e H2(M; Z) be a class with pχ(P) < a2 < 0 and a =
w2(P) (mod2). Set r = {a2 -p{{P))/4 and N = -a2 - 2. We define
a polynomial δp(a) of degree d = -pλ{P) - 3 in H2(M\ Q) as follows.
Let Qa be the 5Ό(3)-bundle obtained by stabilizing the [/(l)-bundle with
first Chern class equal to a, and Aa be any reducible connection on Qa

compatible with the above splitting.

Definition 5.1.1. First, suppose that a2 < -2. Then for any classes
x\' ' * * ' xd e Hi(M) w e define

δp(a)(xl9... ,xd) = (2μ(xι)U ..U2μ(xd),D(A,N)),

where the class D(A, N) is as in Theorem 4.7.2. Now suppose that a2 =
— 1, and we set

δp(a)(xl9... ,xd) = (cιU2μ(xι)U. .U2μ(xd),D(A,0)),

where c{ is the first Chern class of the t/(l)-bundle L(A,g0) ->
L(A, gQ)/U(l) as in Lemma 4.7.4.

Since by Theorem 4.7.2 the homology class D(A, N) depends only on
the isomorphism class of the [/(l)-reductionof Qa determined by a and
on the integers N and r, we see that δp(a) is a well-defined function of
a, and furthermore we have

(5) δp(-a) = -(-l/δp(a).

5.2. The local formula for crossing a wall. Consider a one-parameter
family γ of metrics on M. We denote by J[{P, γ) the parametrized
moduli space and by Jί{P, γ) the compactified parametrized moduli
space.

In this subsection we shall consider the case where the path of self-
dual harmonic 2-forms associated to γ crosses only one geometric P-wall.
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There is one case where the result is somewhat different, but already well-
understood.

Remark 5.2.1. If w2(P) Φ 0, then J?(P, g) does not contain any
ideal connection whose background connection is trivial. If w2(P) = 0,
and px{P) < - 4 , then the stratum of Λf(P, g) containing ideal con-
nections with trivial background connection is of codimension at least 2
and hence does not affect the arguments that we give below. (If M is
not simply connected, then these moduli spaces are the spaces of gauge
equivalence classes of solutions of appropriately perturbed ASD equations
as in the appendix of [2]. Hence, there are no flat, nontrivial background
connections in the moduli spaces that we consider.) In the remaining case
where w2(P) = 0 and ρλ{P) = - 4 , the moduli space does not carry a
fundamental class. However, the issues that we are concerned with here
are completely understood in this case; see [2]. So we shall implicitly avoid
this case in our discussion.

Here is our main local result.
Theorem 5.2.2. Suppose that γ = {gs, —1 <s <l} isa generic family

of metrics on M with the following properties.
1. For every SO{3)-bundle P' with w2(Pf) = w2{P) and 0>p{(P') >

PX{P), the parametrized moduli space Jί{P', y) is a smooth manifold
away from the reducible connections.

2. For all s Φ 0 we have that Jί{P, gs) contains no points whose
background connections are reducible but not trivial.

3. The self-dual form ω(g0) lies in a single geometric P-wall', that is to
say all the go-ASD reducible background connections in J[{P, g0) define
complex line bundles whose first Chern classes are rational multiples of each
other.

4. The path of self dual two-forms given in the previous item crosses the
geometric P-wall transversely at s = 0.

Then

where ε(c, a) = (_i) ( ( c~α )/2 )

 y and the sum is taken over all a which define

the geometric P-wall containing ω(g0) and which satisfy (a,w(g_{)) <

0<(α,ω(y1)>.
Remark 5.2.3. (i) Notice that because of formula (2.17) of [5] and

equation (5) this theorem implies that if one crosses a wall in the opposite
direction, the difference term has the opposite sign.

(ii) Even though the path of self-dual 2-forms crosses a single geometric
wall, this wall may well be defined by several different classes a (all being
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rational multiplies of each other). Thus, in general the sum given in the
theorem is over more than one class.

Proof. Fix a path γ of metrics as in the statement of the theorem.
By the proof of Proposition (4.2) in [5], since the path γ is generic, any
background connection for a point of Jί(P, γ) which is O(2)-reducible
is actually 5Ό(2)-reducible. Let v c Jί(P, y) be a regular neighborhood
of the subset of ideal connections whose background connections are re-
ducible but not trivial. From the usual cobordism argument, the perturba-
tion argument from the appendix of [2], and the fact that the 2μ(xi) are
defined away from reducible, nontrivial connections, we have that for any
classes xx, , xd e H2(M),

= (2μ(Xi)U---l)2μ(xd),[dv]),

where dv is given the orientation as the boundary of Jί{P, γ) - int(i ) .
There is one component dva of dv for each class a defining the P-

wall that contains ω(gQ). Thus,

We claim that for each a with α 2 < - 2 we have

[fli/J = β(c, a)D(A, N) e HΦ(&(P)-&(P))9

where N = -a2 - 2, and [̂ 4] is the reducible background connection on

an SΌ(3)-bundle associated to the line bundle La . We also claim that for

a2 = - 1 we have

[dva] = e(c,a)D(a,0)ncl9

where cx is the first Chern class of the [/(l)-bundle L -* L/ (7(1), with L
the boundary of a neighborhood of Σr(M) in GP(A0, gQ). The theorem
is immediate from these claims and the definition of δp(a).

Let us consider the case where a < — 2 first. Let Aτ be the inter-
section of the space of y-ASD connections with the slice centered at Aa

for the action of the gauge group &(Qa) on the space of connections on
Qa . Since γ is generic, Aτ is a smooth submanifold of the slice of real
dimension IN. It is invariant under the action of Stab(^4α), with Aa

being the only point fixed by any nontrivial element of Stab(4 ) . Thus,
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this family is equivariantly diffeomorphic to an open ball in C^ with its
standard {/(l)-action. In this case by Taubes's gluing theory for ASD con-
nections [6], the space dva is the quotient of a space of gluing parameters
for (Aτ, g0) by the action of Stab(^α), and its inclusion in ~38{P) is
a gluing map. If we orient the moduli space J£(P, y) using a (this is
an admissible choice since a = w2(P) (mod2)), then the orientation on
va as a boundary component of the parametrized moduli space is the one
opposite to its orientation as the boundary of the space of gluing parame-
ters modulo the action of 17(1). Thus, using the given class c to orient
the moduli space, the difference in orientations is -ε(c, a) (see Lemma
(2.17) in [5].) Consequently,

[dv]a = ε(c, a)D(Aa, N) e Hld(β{P) - #(/>))

(see Theorem 4.7.2).

In the case where a2 = -1 the connection Aa is an isolated point of
the space of y-ASD connections in the slice. Furthermore, the obstruction
space H^(M; Aa) is three-dimensional, and the action of Stab(^4α) on
this space is isomorphic to the standard action of (7(1) on R θ C . Since
the path of metrics γ is generic, the obstruction space at Aa for the
parametrized moduli space for the bundle Qa is two-dimensional, and
the action of Stab(^4α) on it is equivalent to the standard action of C/(l)
on C. We consider the space R of gauge equivalence classes of ideal
connections in &(P) satisfying the following conditions:

• The self-dual part of the curvature lies in the eigenspace for the
smallest positive eigenvalue of the Laplacian on self-dual 2-forms
on La, and

• On a large subset of M the connection is close to Aa .
According to Taubes's gluing theorem [6] R is the image under a glu-

ing map of the quotient of a space GP(Aa, g0) of gluing parameters
by the action of Stab(^4α). Restricting to the preimage of dR, this
determines a principal [/(l)-bundle L —> dR and identifies R with
L/U(l). In particular, the fundamental class of dR is equal to D(Aa, 0)
in HJ^38{P) -3ί{P)). According to [6] dva is the zero locus of a section
of a vector bundle over dR. This vector bundle is the bundle associated
to L —• dR and the action of £/(l) on the obstruction space for the
parametrized moduli space on Qa at [Aa]. Thus, the fundamental class
[dva] is equal to ε(c, a)D(Aa, 0) nc{ where c{ is the first Chern class of
the natural C/(l)-bundle L-^ dR. (The comparison of orientations is as
in the previous case.) This completes the proof of the result in this case
as well.
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5.3. The general wall-crossing formula. Now we can pass from this re-
sult about paths of metrics whose self-dual 2-forms cross a single geometric
wall to a similar result about an arbitrary path of metrics.

Theorem 5.3.1. Suppose that γ = {gs, - 1 < s < 1} is a generic path
of metrics on M with the following properties.

1. For every SO(3)-bundle P' with w2(P') = w2(P) and 0 > px(Pf) >
PX(P), the parametrized moduli space ^{P1, γ) is a smooth manifold
away from the reducible connections.

2. The intersection of the path of self dual 2-forms co(gs) with any P-
wall is transverse.

Then

where the sum is taken over all a, which define P-walls and which satisfy

1

Proof Since the set of P-walls is locally finite, this follows immediately
by additivity from the previous result together with the usual cobordism ar-
gument for smooth parameterized moduli spaces (for the perturbed equa-
tions). Notice that if the path crosses a wall twice in opposite directions
then the changes in the value of φf c associated to these two crossings
cancel out since the difference term δp(a) depends only on the wall the
path is crossing, not where it crosses that wall and changes sign when the
direction of crossing is reversed (see Remark 5.2.3).

5.4. Completion of the proof of Theorem 3.0.1. It follows immediately

from the above result that if g0 and gx are metrics whose period points

ω{gi) lie in the same element of Ap, then φf c(g0) = Φf>c(gι). Thus,

Φ*£ c defines a function Φ f̂ c on the subset of Δ p of chambers containing

period points of metrics. Since the space of metrics is connected, it also

follows from the above theorem that for any two chambers in this subset

equation (3) holds. Since δp(a) is defined for every α defining a P-wall,

this equation allows us to uniquely extend the definition of Φp to the

entire set Ap so that equation (3) holds for all pairs of chambers.
Given this, properties 1-4 of Theorem (3.2) of [5] were established in

[5].

6. Properties of the difference term δp(a)

While we are far from a general understanding of the nature of the
difference terms δp(a), in this section we give some conjectures and partial
results towards such an understanding.
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6.1. A partial computation of the difference term δp{a). In this subsec-
tion we give a partial computation of the difference term. In particular, we
shall compute the lowest order term in the expansion of δp(a) in powers
of the class a. Our computation generalizes (3) of Theorem (3.2) in [5].

According to our conventions on the symmetric algebra, if a e V* and

q € Sym2(F*), then the monomial a qs evaluated on (xχ, , xr+2s)
 e

Vr+2s gives the result

ίr + 2s)! 2 ^ l i ^ α ' X°{ϊ)) 11 q(Xσ{r+2j-l) > Xσ{r+2j)) '
σ i= l 7=1

where σ ranges over the symmetric group on r + 2s elements.
Theorem 6.1.1. Let P —• M be a principal SO(3)-bundle, and suppose

that a e H2(M\Z) defines a P-walL Let d = -pγ(P) - 3 and r =

(α2 - p{(P))/4. If a2 < - 1 , then in the polynomial ring on H2(M\ Q)

we have

ίϋ\ s ( \ ( \\d~>lr d\ d-2r r , , d-2r+2,

(6) δp(a) = (-l)2 rl(d2r)\a Q ( m o d α )

If a2 = - 1 , then in the polynomial ring on H2(M; Q) we have

(7) δp(a) = -2 rl{d_2r)\a Q ( m θ d α

Proof To prove this we shall use the following elementary lemma in
multilinear algebra.

Lemma 6.1.2. Let V be a finite-dimensional Q-vector space, and let
p e Sym^F*) be a homogeneous polynomial function. Suppose that a e
V* is nonzero, and set K cV equal to the kernel of a. Then the following
hold:

1. p = 0 (modα ) if and only if for elements (jCj, — , xd) of V we
have p(xx, , xd) = 0 whenever at least d - k + 1 of the xt are in K.

2. If p = 0 (mod*/) define p e Symd~k(K*) by the formula

p(Xι>~ >xd-k)= kι{dLkyP(xι> >xd-k>a>- >*)>

where a e V is any class such that (a, a) = 1. Then

p=pak ( m o d α * + 1 ) .

Let us first show that δp(a) = 0 ( m o d c / ~ 2 r ) . According to the lemma

it suffices to show that ^ ( α ) ^ , , xd) = 0 whenever xl9-- , x2r+\
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are in the kernel of a. Let L = L(AT, g0) be as before. By Lemma 4.7.4
for each i we have

2μ(xi)\(L/U(l)) = 2πΎ(Xi) + (a.xfa .

Under our hypothesis it follows that

2μ{xi) = 2πΎ(xi)

for / < 2r + 1. Since the dimension of Σr{M) is 4r, it is clear that

Thus,

and hence

δp(a){Xχ9> ' 9JCd) = O.

Now we turn to the first nontrivial power of a. Let us first consider the
unobstructed case, this is the case where a2 < - 1 . In this case we show
that

s ί \ t \\d~>lr d\ r d-2r

^ ( α ) ( 1 ) 2 q a^ ( α ) ( 1 ) 2 r\{d-2r)\

is equal to zero modulo ad~2r+ι. To do this we consider classes (xt, • • • ,
xd) in H2(M; Z) such that *,,-•• , x2r are in the kernel of a. We have

(2μ(Xι)U - U2μ(xd))\(L/U(l))

where the sum runs over all subsets / of {1, ••• , d}, \I\ is the car-
dinality of /, and Cj is the Chern class of the principal [/(l)-bundle
L -* L/U(l). As above, if |/| > 2r, then Πje/^ί^i) = ° H e n c e > i ι

suffices to consider only the terms where |/| < 2r. On the other hand,
if |/| < 2r, then for at least one j £ I we have j < 2r, and hence
(α, Xj) = 0. Thus, in fact we need only consider the terms where |/| = 2r
and every j £ \I\ is greater than 2r. There is only one such term, which
is

2 d 2

7=2r+l

A direct computation shows that Σr(x{) U U Σr(x2r) e H4r(Σr(M) Z)
is ((2r)!/r! 2r)qr{xχ, , xlr) times the fundamental cohomology class of
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Σr(M). Thus,

^ 2

j=2r+\

where F c L/C/(l) is a generic fiber of the map L/U(l) -> Σ r (M).

The space F is the quotient of the link of the central point of cd~4r+ι x

Tlrc(SO(3)) by the natural C/(l) action. An easy computation shows that

Thus, we have shown that

(2r)\ d

δp(ά){xl9 ,xd) = {-l) 2 2 r ^ / ( x 1 5 . . . ,x2r) Y[ (α,*,.).
ί=2r+l

Invoking part 2 of Lemma 6.1.2 gives the result in this case.
The case where a2 = - 1 follows by a similar argument. The sign is

evaluated to be - (-1) . Since d must be even in this case we can rewrite
the sign as in the statement.

Remark 6.1.3. The leading coefficient in the case d = 2 and a2 = - 1
was computed in Theorem 3.11 of [5] by a different argument. The result
there agrees with what we establish here, though because of a difference in
conventions the coefficient there is given as - 4 , whereas here plugging in
d = 2 and r = 1 gives a coefficient of - 8 .

Now we have established the congruences claimed in equations (6) and
(7) modulo c/~ 2 r + 1 . It remains to establish them modulo ad~2r+2 . The
two cases are similar, so we restrict ourselves to the case where a2 < -1.
We wish to show that

d

\X\ 5 * * * 5 Xiγ) W \ a 5 •*,•/

i=2r+l

vanishes if xx, , xlr_x are orthogonal to a. Consider Σr(xι) U U

Σ Γ (JC 2 Γ _ 1 ) . This is a cohomology class dual to a two-dimensional homology

class in Σr(M) represented by a surface S embedded in the top stratum

of Σr(M). Up to a multiplicative factor, to evaluate the above difference

on the classes we must evaluate the remaining d-2r+l classes on the top

cycle of the preimage B of S in L/U(l). The map B -» S is a locally

trivial fiber bundle with fiber the link of the central point in cd~4r+ι x

Π' = 1 c(SO(3))/U(l). Because of what we have already established, the

result will follow if we can show that cd~2r+ι vanishes on B. The fiber
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bundle over S is associated with the symmetric product of the product of
the principal 5Ό(3)-bundle P -> M and the frame bundle of the tangent
bundle of M. Thus, at the expense of replacing the x. by positive even
multiples, we can assume that B -> S is a trivial fiber bundle. It is then
clear that the restriction of the circle bundle to B is isomorphic to the
product of a circle bundle with S

j
/

/[/(I) x

As a consequence, cd

χ ~
2 r + 1 vanishes on B.

6.2. Conjectural properties of the difference term. We end with two
general conjectures about the difference terms δp(a).

Conjecture 6.2.1. The difference term δp{ά) is a homotopy invariant
of the triple (P, M, a).

We make the following apparently stronger conjecture:

Conjecture 6.2.2. The difference term δp(ά) is a polynomial in a and

the quadratic form qM of the manifold with coefficients depending only

on a2, pλ (P), and the homotopy type of M.

Both these conjectures are true in the case where a = p{ (P) (see The-

orem 3.6 of [5]) and in the case where a2 = - 4 , px{P) = - 8 , and a is

divisible by two (see [7]). Notice that, unlike the leading coefficient which

depends only on a2, the general coefficients will depend on b2(M).
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