THIN POSITION AND HEEGAARD SPLITTINGS OF THE 3-SPHERE

MARTIN SCHARLEMANN \& ABIGAIL THOMPSON

We present here a simplified proof of the theorem, originally due to Waldhausen [7], that a Heegaard splitting of S^{3} is determined solely by its genus. The proof combines Gabai's powerful idea of "thin position" [2] with Johannson's [4] elementary proof of Haken's theorem [3] (Heegaard splittings of reducible 3-manifolds are reducible). In §3.1, $3.2 \& 3.8$ we borrow from Otal [6] the idea of viewing the Heegaard splitting as a graph in 3-space in which we seek an unknotted cycle.

Along the way we show also that Heegaard splittings of boundary reducible 3-manifolds are boundary reducible [1, 1.2], obtain some (apparently new) characterizations of graphs in 3-space with boundary-reducible complement, and recapture a critical lemma of [5]. We are indebted to Erhard Luft for pointing out a gap in the original argument.

1. Heegaard splittings: a brief review

1.1. All surfaces and 3 -manifolds will be compact and orientable. A compression body H is constructed by adding 2-handles to a (surface) \times 1 along a collection of disjoint simple closed curves on (surface) $\times\{0\}$, and capping off any resulting 2 -sphere boundary components with 3 -balls. The component (surface) $\times\{1\}$ of ∂H is denoted $\partial_{+} H$ and the surface $\partial H-\partial_{+} H$, which may or may not be connected, is denoted $\partial_{-} H$ (Figure 1a, next page). If $\partial_{-} H=\varnothing$, then H is a handlebody. If $H=\partial_{+} H \times 1, H$ is called a trivial compression body. A spine for H is a properly imbedded 1-complex Q such that H collapses to $Q \cup \partial_{-} H$ (Figure 1b).
1.2. Spines are not unique, but can be altered by edge slides, as follows: Choose an edge e in Q and let \bar{Q} be the graph $Q-e$. Let \bar{H} denote a regular neighborhood of $\partial_{-} H \cup \bar{Q}$. Then H is the union of \bar{H} and a 1 -handle h attached to $\partial_{+} \bar{H}$. The core of h is the edge e, with its ends

[^0]

Figure 1
in \bar{H} deleted so that $\partial e \subset \partial_{*} \bar{H}$. Suppose γ is a path on $\partial_{+} \bar{H}$ which begins at an end of e (equivalently, a path in $\partial_{+} H$ which begins at a meridian of h but never crosses the meridian) (Figure 1c). Then the end of e can be isotoped along γ before h is attached. The effect on Q is to replace e with the union of e and a copy of γ pushed slightly away from $Q \cup \partial_{-} H$ (Figure 1d).

Here is an apparent generalization: Suppose x is a point in the interior of e, dividing it into two segments e^{\prime} and $e^{\prime \prime}$. Suppose γ is a path in $\partial_{+} H$ which begins and ends at the meridian of e at x and never intersects a meridian of e^{\prime}. Then introduce a new vertex at x, perform an edge slide of e^{\prime} using γ as above, and then reamalgamate e^{\prime} and $e^{\prime \prime}$ at x. This operation will be called a broken edge slide. A broken edge slide can be viewed as a series of standard edge slides: slide an edge incident to the other end of $e^{\prime \prime}$ down $e^{\prime \prime}$ to $d x$, introducing a vertex at x, perform the (now standard) edge slide of e^{\prime}, then unto the original slide.
1.3. Let F be a closed connected surface imbedded in a 3 -manifold N. F is a splitting surface for a Heegaard splitting if F divides N into two compression bodies H_{1} and H_{2} with $\partial_{+} H_{1}=F=\partial_{+} H_{2}$. An elementary stabilization of F is the splitting surface obtained by taking the connected sum of pairs $(N, F) \#\left(S^{3}, T\right)$, for T the standard unknotted torus in S^{3}. A Heegaard splitting is stabilized if it is an elementary stabilization of another splitting. This is equivalent to the existence of proper disks $D_{1} \subset H_{1}$ qnd $D_{2} \subset H_{2}$ with $\partial D_{1} \cap \partial D_{2}$ a single point in F.

The Heegaard splitting is reducible if there exists an essential simple closed curve $c \subset F$ which bounds imbedding disks in both H_{1} and H_{2}. Equivalently, there is a sphere in N which intersects F in a single circle which is essential in F. A stabilized Heegaard splitting F with $\operatorname{genus}(F)>1$ is reducible, for in this case the boundary of a regular neighborhood of $\partial D_{1} \cup \partial D_{2}$ is essential in F, yet bounds a disk in both H_{1} and H_{2}. A Heegaard splitting is ∂-reducible if there is a ∂-reducing disk for N which intersects F in a single circle.
1.4. Reducible and ∂-reducible Heegaard splittings have a particularly nice property. Suppose S is a sphere intersecting F in a single essential circle c. Remove a neighborhood $S \times 1$ of S from N and cap off $S \times \partial 1$ with two 3-balls, creating a new 3-manifold N^{\prime}. Simultaneously compress F along the disk in H_{1} (or H_{2}) which c bounds. Then F becomes a Heegaard splitting surface for N^{\prime}. The same thing happens if N is ∂ reduced along a disk which is also ∂-reducing for the Heegaard splitting.
1.5. Suppose Δ is a properly imbedded family of disks in a 3 -manifold M, and D is a disk in M whose interior is disjoint from Δ and whose boundary either lies entirely on Δ or is the union of two arcs, one on Δ and one on ∂M. Then the boundary of a regular neighborhood of $\Delta \cup D$ has two parts, one isotopic to Δ and the other a new set of properly imbedded disks Δ^{\prime} (together with a 2 -sphere if $\partial D \subset \Delta$). We say Δ^{\prime} is obtained from Δ by a disk-swap along D. If $\partial D \subset \Delta$, then Δ^{\prime} has the same number of disks. Otherwise it has one more.

A property of the family Δ which is always preserved by disk-swaps is said to be swap-preserved. Here are three examples of such properties:
(a) Δ contains a ∂-reducing disk for M.
(b) Δ contains a complete collection of ∂-reducing disks for M.
(c) For κ a given normal subgroup of $\pi_{1}(\partial M), \partial \Delta$ contains a component representing a class not in κ.

- 2. Sliding spines around: Haken's theorem

2.1. Let N be a compact orientable 3 -manifold, and H a properly imbedded compression body in N, with spine Q. For a compression body H, properly imbedded means $\partial N \cap H=\partial_{-} H$. Let $(T, \partial T) \subset(N, \partial N)$ be a properly imbedded surface in N, and $(\Delta, \partial \Delta)$ a family of properly imbedded disks in $M=N-H$. Extend Δ via the retraction $H \rightarrow \partial_{-} H \cup Q$ so that it becomes a collection of disks in N whose imbedded interior is disjoint from Q and whose (singular) boundary lies on $\partial_{-} H \cup Q$. Put T

Figure 2
in general position with respect to Q and Δ. Then $Q \cap T$ is a finite set of points, and $(\Delta \cap T)-Q$ is the interior of a 1-manifold whose boundary is incident to $Q \cap T$. Ignoring closed components of $\Delta \cap T$, we can view the result as a graph Λ in T, with vertices the points $Q \cap T$, and edges the arc components of $\Delta \cap T$. An edge in Λ is simple if its ends lie on different vertices, otherwise it is a loop based at the vertex common to both its ends. A loop is inessential if it bounds a disk in T disjoint from Q, otherwise it is essential. A vertex in Λ is isolated if it is incident to no edge. Such a vertex in Λ represents a point in an edge of Q which is incident to no 2-disks of Δ. See Figure 2.

An edge α in Λ with an end at vertex w is called an edge at w. The edge α divides the disk $D \in \Delta$ in which it lies into two disks. Suppose one of them, E, contains no arc of intersection with T corresponding to an edge of Λ at w. Then we say that α is outermost for w and that E is the corresponding outermost disk. Note that E may still contain many components of intersection with T, but none will be edges at w.
2.2. Proposition. For a given swap-preserved property of properly imbedded disk families in M, let Q be a spine of H, and Δ a disk family in M with the given property, chosen so that the pair $(|Q \cap T|,|\Delta \cap T|)$ is minimized. Then each vertex of the corresponding graph Λ in T is either isolated or the base of an essential loop $i T$.

Figure 3

Proof. The alternative is that there is a vertex w of Λ incident to some simple edges and possibly some inessential loops. In fact there can be no loops, because a disk-swap along the disk cut off in T by an innermost inessential loop (or a disk component of $T-\Delta$ within it) would reduce $|\Delta \cap T|$. Thus w is incident to some simple edges, but no loops. Let α be an outermost edge in Λ at w, and E the corresponding outermost disk.

Let e be the edge in Q on which w lies. Since $\partial \Delta$ comes from a normal family of simple closed curves in $\partial \eta(Q)$, the subarcs of $\partial \Delta$ lying on $\eta(e)$ can be thought of as copies of e lying in $\partial \Delta$. Since α is outermost for w, no complete copy of e can lie in $\partial E \cap \partial \Delta$. There are then three possible ways in which the arc $\partial E \cap \partial \Delta$ could intersect copies of e in $\partial \Delta$ (see Figure 3):

1) $\partial E \cap \partial \Delta$ could be a subsegment of e or
2) one end of $\partial E \cap \partial \Delta$ could lie in a copy of e or
3) each end of $\partial E \cap \partial \Delta$ could lie in a copy of e.

In each case we can reduce $|Q \cap T|$ (see Figure 4, next page).

1) When $\partial E=\alpha \cup \beta, \beta$ a subsegment of e, then E describes an isotopy of β to α which eliminates both w and w^{\prime}.
2) When $\partial E \cap \partial \Delta$ is the union of an end segment β of e running from w to an end vertex v of e in Q, and a path γ from v to the other end of α in $Q-e$, then γ describes a path on which to slide the end of e at v. The slide reduces the problem to the previous case.
3) In the last case, $\partial E \cap \partial \Delta$ is the union of three segments: an end segment β_{1} of e running from w to an end vertex v of e in Q, a path γ from v to an end vertex v^{\prime} of e, and a segment β_{2} of e running from v^{\prime} to the other end of α, which we call $w^{\prime} . \beta_{2}$ cannot contain w, since α is outermost for w. In the case that v^{\prime} and v are different ends of e, the argument of case 2 applies, using $\gamma \cup \beta_{2}$ instead of γ. When

Figure 4
$v^{\prime}=v$, as illustrated in Figure 3, we have $\beta_{2} \subset \beta_{1}$, Break the edge e into β_{2} and $e-\beta_{2}$ by introducing a new vertex at w^{\prime}. Then as in case 2), E describes an edge slide of $e-\beta_{2}$ which moves the segment $\beta_{1}-\beta_{2}$ to α. Then reamalgamate $e-\beta_{2}$ and β_{2} at w^{\prime}. This is a broken edge slide (see 1.2) which removes the point w, as well as any points of $\left(\beta_{1}-\beta_{2}\right) \cap T$ from $Q \cap T$, thereby reducing $|Q \cap T|$.

The contradiction completes the proof of the proposition.
2.3. Corollary. If Q is a properly imbedded graph in a reducible or ∂-reducible 3 -manifold N, and $N-\eta(Q)$ is irreducible but ∂-reducible, then, after some edge slides of Q, there is a ∂-reducing disk for $N-\eta(Q)$ whose boundary is disjoint from some edge in Q.

Proof. Apply the proposition, letting T be a reducing sphere or ∂ reducing disk of N, H a regular neighborhood of $\partial N \cup Q$, and Δ a family of disks containing a ∂-reducing disk. If Q is disjoint from T, then T is a ∂-reducing disk in $N-\eta(Q)$ and we are done. Otherwise, some vertex w of Λ must be isolated, since an innermost loop in T would otherwise be inessential. But this implies that $\partial \Delta$ may be isotoped off the edge of Q containing w.
2.4. Corollary. (a) Any Heegaard splitting of a reducible 3-manifold is reducble.
(b) Any Heegaard splitting surface of a ∂-reducible 3-manifold is ∂ reducible.

Proof. (a) is essentially [3] and (b) essentially [1, 1.2]. The following alternative proofs are really a reformulation of [4, 3.2] that exploits 2.2.

First observe that it will suffice to prove a weaker proposition. A Heegaard splitting of a reducible or ∂-reducible 3-manifold is either reducible or ∂-reducible. To see that this suffices, suppose, for example, that N is reducible. We would know, then, that the splitting is either reducible (and we are done) or ∂-reducible. Maximally ∂-reduce N along disks that are also ∂-reducing for the Heegaard splitting. The result is still a Heegaard splitting for the new and still reducible manifold N^{\prime}. Since no further ∂-reductions of the new Heegaard splitting F^{\prime} on N^{\prime} are possible, we conclude that the splitting F^{\prime} must be reducible. But a reducing sphere for F^{\prime} is also one for F. A symmetric argument, using maximal reductions of F, applies if instead we are initially given that N is ∂-reducible.

So we proceed with the proof of the weaker assertion, given that N is either reducible or ∂-reducible. Apply the proposition with the following data: T is a reducing sphere or ∂-reducing disk for N, H is one of the two compression bodies in the Heegaard splitting of N, and Δ is a family of disks in the other compression body H^{\prime} which contains a complete collection of ∂-reducing disks for H^{\prime}.

The argument of the previous corollary shows that either a ∂-reducing disk for N is disjoint from Q, so the splitting is ∂-reducible, or some edge e of the spine Q of H is disjoint from the boundary of a complete collection of ∂-reducing disks for H^{\prime}. In the latter case the boundary μ of a meridian of e is parallel in H^{\prime} to a circle c in $\partial_{-} H^{\prime}$, or, if H^{\prime} is a handlebody so $\partial_{-} H^{\prime}$ is empty, μ bounds a disk in H^{\prime}. If c is essential in $\partial_{-} H^{\prime}$, we have a ∂-reducing disk intersecting the splitting surface in the single circle μ. If c is inessential in $\partial_{-} H^{\prime}$, then μ bounds a disk in H^{\prime} as well, giving a sphere intersecting the splitting surface in the single circle μ. So in every case the splitting is either reducible or ∂-reducible.

3. Thin position of graphs in 3-space

Let Γ be a finite graph in S^{3} in which all vertices have valence 3. Let $h: S^{3} \rightarrow R$ denote projection of $S^{3} \subset R^{4}$ onto a coordinate, so that, besides the two poles, the level sets $h^{-1}(t)$ of h are concentric spheres in S^{3}. Alternatively, we can think of Γ as lying in R^{3} and set $h: R^{3} \rightarrow R$ to be distance from the origin. Let V denote the set of vertices of Γ, and $S(t)$ the sphere $h^{-1}(t)$.
3.1. Definition. A graph Γ in S^{3} is in Morse position with respect to h if

Figure 5
(a) on any edge e of Γ, the critical points of $h \mid e$ are nondegenerate and lie in the interior of e,
(b) the critical points of $h \mid \Gamma-V$ and the vertices V all occur at different heights.

The set of heights at which either there is a critical point of $h \mid \Gamma-V$ or a vertex of V is called the set of critical heights for Γ. The vertices V of Γ then can be classified into four types (see Figure 5):
$\bar{V}=\{v$ in V so that all ends of incident edges lie below $v\}$,
$V=\{v$ in V so that all ends of incident edges lie above $v\}$,
$V_{Y}=\{v$ in V so that exactly two ends of incident edges lie above $v\}$,
$V_{\lambda}=\{v$ in V so that exactly two ends of incident edges lie below $v\}$.
We will further simplify the local picture by isotoping a neighborhood of a vertex in \bar{V} (resp. \underline{V}), transforming it into a vertex in V_{λ} (resp. V_{Y}) and a nearby maximum (resp. minimum). Then all vertices are of type V_{Y} or V_{λ}. Such a graph is said to be in normal form.
3.2. A regular neighborhood $\eta(\Gamma)$ of Γ can be viewed as the union of 0 -handles, each a neighborhood of a vertex, and 1-handles, each a neighborhood of an edge. A simple closed curve in $\partial \eta(\Gamma)$ is in normal form if it intersects the boundary $\partial B^{2} \times 1$ of each 1 -handle in 1 -fibers and intersects the boundary ∂B^{3} of each 0 -handle in arcs essential in the complement of the three attaching disks for the 1 -handles.

A disk $(D, \partial D) \subset\left(S^{3}-\eta(\Gamma), \partial \eta(\Gamma)\right)$ is in normal form if
(a) ∂D is in normal form on $\partial \eta(\Gamma)$,
(b) each critical point of h on D is nondegenerate,
(c) no critical point of h on $\operatorname{int}(D)$ is a critical height of Γ,
(d) no two critical points of h on $\operatorname{int}(D)$ occur at the same height,
(e) the minima of $h \mid \partial D$ at Y-vertices, the minima of Γ, the maxima of $h \mid \partial D$ at λ-vertices and the maxima of Γ are also local extrema of h on D, i.e., "half-center" singularities. The maxima of $h \mid \partial D$ at Y vertices and the minima of $h \mid \partial D$ at λ-vertices are, on the contrary, "half-saddle" singularities of h on D (see Figure 6).

Standard Morse theory ensures that any properly imbedded essential disk $(D, \partial D) \subset\left(S^{3}-\eta(\Gamma), \partial \eta(\Gamma)\right)$ can be put in normal form. The image

Figure 6
of such a normal form disk under the retraction $\left(S^{3}, \eta(\Gamma)\right) \rightarrow\left(S^{3}, \Gamma\right)$, will, with a slight abuse of terminology, be called a normal form disk $(D, \partial D) \subset\left(S^{3}, \Gamma\right)$.

Suppose $(D, \partial D) \subset\left(S^{3}, \Gamma\right)$ is a normal form disk. For t a noncritical value of $h \mid D, S(t)$ intersects D in a disjoint union of proper arcs and circles. At a critical height of $h \mid \Gamma-V$, the intersection may also include a finite collection of points on ∂D, corresonding to half-saddles, may be the endpoints of two arc components of $S(t) \cap D$.
3.3. For each value of t, let $w(t)=|\Gamma \cap S(t)|$. Then w is a function of t which increases by 2 at a minimum of $\Gamma-V$ and by 1 at a Y-vertex, and decreases by 2 at a maximum of $\Gamma-V$ and by 1 at a λ-vertex. Let W denote the largest value of $w(t)$, and n the number of times W appears as a local maximum of $w(t) . \Gamma$ is in thin position if among all normal-form graphs obtained from Γ by isotopies and edge slides, $w(\Gamma)=(W, n)$, lexicographically ordered, is minimized.
3.4. Proposition. Suppose a graph Γ in S^{3} is in thin position and there is some nonempty disk family $(\Delta, \partial \Delta) \subset\left(S^{3}, \Gamma\right)$ with a given swappreserved property. Then either there is such a disk family whose boundary is disjoint from an edge of Γ or, after at most two edge slides, Γ contains an unknotted cycle.

Before proving the proposition, we demonstrate its utility.
3.5. Corollary. Suppose Γ is a graph in S^{3}, and $S^{3}-\eta(\Gamma)$ has a ∂-reducing disk whose boundary is nontrivial in $\pi_{1}(\Gamma)$. Then some edge slides will convert Γ to a graph containing an unknotted cycle.

Proof of 3.5. Define the swap-preserved property of disk families in $S^{3}-\eta(\Gamma)$ to be the property of containing a disk whose boundary is essential in Γ. (An alternative description: take 1.5 example (c), with κ the normal subgroup generated by meridians of $\eta(\Gamma)$.) Note that if $\partial \Delta$ is disjoint from an edge e of Γ, then Δ satisfies the same property for the graph $\Gamma-e$. So, of all normal-form graphs obtained from Γ by edge slides and edge deletions, choose Γ^{\prime} to have a minimal number of edges
subject to the requirement that some such family Δ exists for Γ^{\prime}. Perform isotopies and edge slides of Γ^{\prime} until it is in thin position. Since Γ^{\prime} contains a minimal number of edges, $\partial \Delta$ must intersect all edges of Γ^{\prime}. It follows from 3.4 that, after at most two edge slides, Γ^{\prime} will contain an unknotted cycle.
3.6. Corollary. Suppose Γ is a graph in S^{3}, and $S^{3}-\eta(\Gamma)$ is ∂ reducible. Then some edge slides will convert Γ to a graph containing either an unknotted cycle or a split link.

Proof. Following the previous case, either Γ contains an unknotted cycle, or there is a ∂-reducing disk D so that ∂D is inessential in $\eta(\Gamma)$. Then ∂D bounds a disk E in $\eta(\Gamma)$. A series of edge slides will transform Γ to a graph Γ^{\prime} in which E is the meridian of some edge e. Thus $\Gamma^{\prime}-e$ is split by the sphere $D \cup E$, so it contains a split link.
3.7. Corollary [5, Lemma 3.1]. Suppose $\Gamma \subset S^{3}$ is a connected graph which is not a simple circuit, and suppose $S^{3}-\eta(\Gamma)$ is ∂-reducible. Then, after some edge slides, there is a ∂-reducing disk for $S^{3}-\eta(\Gamma)$ whose boundary is disjoint from some edge of Γ.

Proof. Since Γ is connected, $S^{3}-\eta(\Gamma)$ is irreducible. Let $\gamma \subset \Gamma$ be either an unknotted cycle or split link, given by 3.6. Apply 2.3 to the reducible or ∂-reducible manifold $S^{3}-\eta(\gamma)$ with Q the nonempty graph $\Gamma-\gamma$.
3.8. Corollary. Any Heegaard splitting of S^{3} is standard.

Proof. Suppose Γ is the spine of one side of a positive-genus Heegaard splitting F or S^{3}. By induction, it suffices to show that the Heegaard splitting is reducible or stabilized. Apply the proposition to Γ and the swap-preserved property that Δ contain a complete set of ∂-reducing disks for the handlebody $S^{3}-\eta(\Gamma)$. If some edge e of Γ is disjoint from $\partial \Delta$, then the boundary of a meridian μ of e lies on the boundary of the 3-ball $S^{3}-\eta(\Gamma \cup \Delta)$, so it bounds a disk E in $S^{3}-\eta(\Gamma)$. Thus the union of E and the meridian of e is a sphere intersecting the Heegaard splitting precisely in μ, and therefore the splitting is reducible.

If, on the other hand, Γ contains an unknotted cycle γ, then the complement of a small tubular neighborhood of γ in a larger regular neighborhood of Γ is still a compression body H, with $\partial_{-} H$ the torus $\partial \eta(\gamma)$, and $F=\partial_{+} H=\partial \eta(\Gamma)$. Hence F gives a Heegaard splitting of the solid torus $S^{3}-\eta(\gamma)$. From 2.4 it follows that the Heegaard splitting of $S^{3}-\eta(\gamma)$ is ∂-reducible, so that γ bounds a disk whose interior is disjoint from Γ. That disk and a meridian of γ define a stabilization of the original splitting of S^{3}.

Proof of 3.4. We suppose that Γ is in thin position, and that for every disk family Δ with the swap-preserved property, $\partial \Delta$ runs over every edge of Γ. We will show that, after at most two edge slides, Γ contains an unknotted cycle.

For any regular height t, the arc components of $\Delta \cap S(t)$ and the points of $\Gamma \cap S(t)$ create as before a graph $\Lambda(t)$ in $S(t)$. Since $\partial \Delta$ runs over every edge of Γ, no vertex of $\Lambda(t)$ is isolated. If a vertex were incident to a single edge of $\Lambda(t)$, then Γ would contain an edge e over which the boundary of a disk $D \in \Delta$ runs exactly once. Thus $\partial D-e$ is a path in $\Gamma-e$, and an edge slide of e along this path would convert e into an unknotted cycle. So we further assume that every vertex of $\Lambda(t)$ has valence at least 2 .

Now choose Δ to minimize $\mid \partial \Delta \cap\{$ meridia of $\Gamma\} \mid$. A loop in $\Lambda(t)$ divides $S(t)$ into two disks. Both must contain vertices of $\Lambda(t)$, for otherwise we could reduce $\mid \partial \Delta \cap$ \{meridia of $\Gamma\} \mid$ by a disk swap along the disk in $S(t)$ bounded by an innermost inessential loop. Likewise, any edge in $\Lambda(t)$ at a vertex inside an innermost loop must be simple.

Suppose α is an outermost arc for a vertex w in $\Lambda(t)$, and E is the corresponding outermost disk. We say E is upper or lower according as, near α, it lies just above or below α for the given height function h on S^{3}. If w lies inside an innermost loop, then all edges are simple, and some simple edge is outermost for w. Hence we conclude that $\Lambda(t)$ is either empty or it contains an outermost simple edge.

Suppose e is the edge of Γ which intersects $S(t)$ at w in $\Lambda(t)$ as above, α is a simple edge in $\Lambda(t)$ which is outermost for w, and E is the corresonding outermost disk. Just as in 2.2, E can be used to perform a (possibly broken) edge-slide and/or isotopy of the segment β of e. If E is an upper (resp. lower) disk, the isotopy can be used to replace β with an arc just below (resp. above) α.

In order to exploit thin position, we need to do this procedure simultaneously to a pair of simple edges.
3.9.1 Claim. Suppose that there are simple edges which are outermost for vertices w and w^{\prime} in $\Lambda(t)$ and that there are no loops of $\Lambda(t)$ based at w. Then there are simple edges α and α^{\prime} which are outermost for w and w^{\prime} respectively so that either the outermost disk E^{\prime} cut off by α has boundary disjoint from w^{\prime} or the outermost disk E cut off by α^{\prime} has boundary disjoint from w.

Proof. Suppose ∂E^{\prime} intersects w. Then an outermost arc for w in E^{\prime} cuts off an outermost disk disjoint from w^{\prime}.
3.9.2. Claim. Suppose E and E^{\prime} are outermost disks for w and w^{\prime} respectively, and ∂E is disjoint from w^{\prime}. Let β and β^{\prime} be the segments of ∂E and ∂E^{\prime} described above. If β and β^{\prime} are disjoint, then isotopies and edge slides replace them respectively with α and α^{\prime}. If not, then isotopy and edge slides replace them with α^{\prime} and removes w^{\prime}.

Proof. Since ∂E is disjoint from w^{\prime}, if β and β^{\prime} are not disjoint, then $\beta \subset \beta^{\prime}$. Apply the argument above first to E and then to E^{\prime}. Since γ never passes through w^{\prime}, E^{\prime} remains an outermost disk for w^{\prime}.

Let t be a regular height where $w(t)$ achieves its maximum W. Then the first critical height t_{-}for Γ below t is either a maximum or a Y vertex, and the first critical height t_{+}above t is either a maximum or a λ-vertex.

Suppose there is both an upper and a lower outermost simple edge in $\Lambda(t)$, denoted α and α^{\prime}, with corresponding outermost disks E and E^{\prime}. If α and α^{\prime} are outermost for the same vertex w, lying on an edge e, then 3.9 .2 shows that the parts of e lying on ∂E, and ∂E^{\prime} can be slid and isotoped to lie in $S(t)$. Unless this is the entire edge e, this move will immediately reduce the width at height t without increasing it elsewhere, contradicting thin position. So we conclude that all of e can be slid and isotoped to lie in $S(t)$. If α and α^{\prime} each had their other ends at the same vertex, then e is a loop lying in $S(t)$, hence an unknotted cycle (Figure 7a). If the ends of e are at different vertices (Figure 7b), then does a Whitehead move on e, converting the horizontal edge e in Γ into a vertical edge (Figure 7c). This returns Γ to normal form, does not increase the width outside $\left[t_{-}, t_{+}\right]$and reduces the maximal width in $\left[t_{-}, t_{+}\right]$to at most $W-1$ (achieved perhaps at $\left.t_{ \pm}\right)$. Again this contradicts thin position.

Figure 7

So for each vertex in $\Lambda(t)$, either every outermost arc for the vertex is upper or they are all lower. Suppose w is a vertex without loops and every outermost arc for w is upper. Suppose there is anywhere in Λ an outermost simple lower edge α^{\prime} for a vertex, with corresponding lower disk E^{\prime}. Then by 3.9.1, either ∂E^{\prime} is disjoint from w or some outermost arc ∂ for w cuts off an upper disk E with boundary disjoint from w^{\prime}. Now apply 3.9 .2 to α and α^{\prime}. This does not increase the width outside $\left[t_{-}, t_{+}\right]$ and again reduces the maximal width in $\left[t_{-}, t_{+}\right]$to at most $W-1$.

So either every outermost simple arc in $\Lambda(t)$ is upper or they are all lower, say upper. A critical point of h on $\operatorname{int}\left(D^{2}\right)$ affects at most two arcs in Λ. Unless $W=2$, when Γ clearly contains the unknot, there are at least four simple outermost arcs-two at each of the two or more vertices in Λ without loops. It follows that at every regular value of t in $\left[t_{-}, t_{+}\right]$, every outermost simple arc in Λ is upper. In particular, the critical height t_{-}must correspond to a Y-vertex v in Γ, for a regular value just above a minimum always cuts off a lower disk.

Now consider a regular t_{-}just below t_{-}. If any outermost simple arc is upper, then an isotopy or edge slide, not increasing the width outside $\left[t_{-}, t_{+}\right]$would again reduce the maximal width in $\left[t_{-}, t_{+}\right]$to $W-1$. So we conclude that as we descend below t_{-}, all outermost upper simple arcs disappear, and only lower outermost simple arcs are created. (See Figure 8.) Let w_{0} be the vertex of $\Lambda\left(t_{--}\right)$corresonding to the intersection of the descending edge from v in Γ with $S\left(t_{-}\right)$. As t rises through t_{-}, ends of arcs of $S(t) \cap D$ at w_{0} merge in pairs to create new arcs or possibly simple closed curves. But an arc in $\Lambda(t)$ not incident to w_{0} is unaffected. If it is outermost simple for one of its ends, it remains so after passing through t_{-}. Hence we conclude that all outermost simple arcs at t_{-}are incident to w_{0}.

Figure 8

This implies in particular that there are no loops in $\Lambda\left(t_{--}\right)$at any vertex other than w_{0}. If the descending edges in Γ from the maximum or λ-vertex v_{+}at t_{+}are also the ascending edges from v, then they form an unknotted cycle and we are done (see Figure 9a). If one of the lower edges from v_{+}coincides with an upper edge from v, let w be the point where the other descending edge e from v_{+}first intersects $S(t)$. We have shown that there are no loops in Λ at w and that any outermost edge for w has its other end at w_{0} and cuts off a lower disk. Now slide/isotope the rest of the edge e as in 2.2 to an outermost arc α of $\Lambda\left(t_{-}\right)$for w, creating an unknotted cycle in Γ (see Figure 9b). Note that in 2.2 a broken edge slide would be required only if w_{0} were also on e and e pierced $S\left(t_{--}\right)$in the same direction at both w and w_{0}. Since the latter at least is visibly not the case, no broken edge slide is required.

If both lower edges e and e^{\prime} from v_{+}in Γ intersect $S\left(t_{-}\right)$, let w and w^{\prime} be their points of intersection. Again there are no loops in $\Lambda\left(t_{-}\right)$ at w or w^{\prime}. Apply 3.9.1 and 3.9.2 to outermost arcs α and α^{\prime} of $\Lambda\left(t_{-}\right)$ for w and w^{\prime} respectively. Again the relevant outermost disks are lower disks, so we have replaced the rest of the edges e and e^{\prime} by α and α^{\prime}. This again creates an unknotted cycle in Γ (see Figure 9c).

Figure 9

References

[1] A. Casson \& C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987) 275-283.
[2] D. Gabai, Foliations and the topology of 3-manifolds. III, J. Differential Geometry 26 (1987) 479-536 .
[3] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math. Assoc. Amer., Prentice-Hall, Englewood Cliffs, NJ, 1968, 34-98 .
[4] Klaus Johannson, On surfaces and Heegaard surfaces, Trans. Amer. Math. Soc. 325 (1991) 573-591.
[5] W. Menasco \& A. Thompson, Compressing handlebodies with holes, Topology 28 (1989) 485-494.
[6] J.-P. Otal, Sur les scindements de Heegaard de la sphere S^{3}, Topology 30 (1991) 249-258.
[7] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968) 195-203 .
University of California, Santa Barbara
University of California, Davis

[^0]: Received January 15, 1993. Authors are supported in part by a National Science Foundation grant. The second author is a Sloan Foundation Fellow.

