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THIN POSITION AND HEEGAARD SPLITTINGS
OF THE 3-SPHERE

MARTIN SCHARLEMANN & ABIGAIL THOMPSON

We present here a simplified proof of the theorem, originally due to
Waldhausen [7], that a Heegaard splitting of S3 is determined solely by
its genus. The proof combines Gabai's powerful idea of "thin position" [2]
with Johannson's [4] elementary proof of Haken's theorem [3] (Heegaard
splittings of reducible 3-manifolds are reducible). In §3.1, 3.2 & 3.8 we
borrow from Otal [6] the idea of viewing the Heegaard splitting as a graph
in 3-space in which we seek an unknotted cycle.

Along the way we show also that Heegaard splittings of boundary re-
ducible 3-manifolds are boundary reducible [1, 1.2], obtain some (appar-
ently new) characterizations of graphs in 3-space with boundary-reducible
complement, and recapture a critical lemma of [5]. We are indebted to
Erhard Luft for pointing out a gap in the original argument.

1. Heegaard splittings: a brief review

1.1. All surfaces and 3-manifolds will be compact and orientable. A
compression body H is constructed by adding 2-handles to a (surface) x
1 along a collection of disjoint simple closed curves on (surface) x{0} ,
and capping off any resulting 2-sphere boundary components with 3-balls.
The component (surface) x{l} of dH is denoted d+H and the surface
dH -d+H, which may or may not be connected, is denoted d_H (Figure
la, next page). If d_H = 0 , then H is a handlebody. If H = d+Hx 1, H
is called a trivial compression body. A spine for H is a properly imbedded
1-complex Q such that H collapses to Q\Jd_H (Figure lb).

1.2. Spines are not unique, but can be altered by edge slides, as follows:
Choose an edge e in Q and let Q be the graph Q - e. Let H denote
a regular neighborhood of d_H U Q. Then H is the union of H and a
1-handle h attached to d+Ή. The core of h is the edge e, with its ends
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in H deleted so that de c djί. Suppose γ is a path on d+H which
begins at an end of e (equivalently, a path in d+H which begins at a
meridian of h but never crosses the meridian) (Figure lc). Then the end
of e can be isotoped along γ before h is attached. The effect on Q is
to replace e with the union of e and a copy of γ pushed slightly away
from Qud_H (Figure Id).

Here is an apparent generalization: Suppose x is a point in the interior
of e, dividing it into two segments e and e". Suppose γ is a path in
d+H which begins and ends at the meridian of e at x and never intersects
a meridian of e . Then introduce a new vertex at x, perform an edge
slide of e using γ as above, and then reamalgamate e and e" at x.
This operation will be called a broken edge slide. A broken edge slide can
be viewed as a series of standard edge slides: slide an edge incident to the
other end of e" down e" to dx, introducing a vertex at x, perform the
(now standard) edge slide of e , then unto the original slide.

1.3. Let F be a closed connected surface imbedded in a 3-manifold
N. F is a splitting surface for a Heegaard splitting if F divides N into
two compression bodies Hχ and H2 with d+H{ = F = d+H2. An ele-
mentary stabilization of F is the splitting surface obtained by taking the
connected sum of pairs (N, F)#(S3, T), for T the standard unknotted
torus in S3. A Heegaard splitting is stabilized if it is an elementary stabi-
lization of another splitting. This is equivalent to the existence of proper
disks Dι c Hχ qnd D2 c H2 with dDχ Π dl>2 a single point in i 7 .
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The Heegaard splitting is reducible if there exists an essential simple
closed curve c c F which bounds imbedding disks in both Hχ and
H2. Equivalently, there is a sphere in JV which intersects F in a sin-
gle circle which is essential in F . A stabilized Heegaard splitting F with
genus(F) > 1 is reducible, for in this case the boundary of a regular neigh-
borhood of dDχ u dD2 is essential in F, yet bounds a disk in both Hχ

and H2 . A Heegaard splitting is d-reducible if there is a d-reducing disk
for JV which intersects F in a single circle.

1.4. Reducible and d -reducible Heegaard splittings have a particularly
nice property. Suppose S is a sphere intersecting F in a single essential
circle c. Remove a neighborhood S x 1 of 5 from JV and cap off S x d 1
with two 3-balls, creating a new 3-manifold iV7. Simultaneously compress
F along the disk in Hχ (or H2) which c bounds. Then F becomes a
Heegaard splitting surface for JV'. The same thing happens if JV is d-
reduced along a disk which is also d -reducing for the Heegaard splitting.

1.5. Suppose Δ is a properly imbedded family of disks in a 3-manifold
M, and D is a disk in M whose interior is disjoint from Δ and whose
boundary either lies entirely on Δ or is the union of two arcs, one on
Δ and one on dM. Then the boundary of a regular neighborhood of
Δ u D has two parts, one isotopic to Δ and the other a new set of properly
imbedded disks Δ; (together with a 2-sphere if dD c Δ). We say Δ' is
obtained from Δ by a disk-swap along D. If dD c Δ, then Δ' has the
same number of disks. Otherwise it has one more.

A property of the family Δ which is always preserved by disk-swaps is
said to be swap-preserved. Here are three examples of such properties:

(a) Δ contains a d-reducing disk for M.
(b) Δ contains a complete collection of d-reducing disks for M.
(c) For K a given normal subgroup of π{(dM), dA contains a com-

ponent representing a class not in K .

* 2. Sliding spines around: Haken's theorem

2.1. Let JV be a compact orientable 3-manifold, and H a properly
imbedded compression body in N, with spine Q. For a compression body
H, properly imbedded means dNΓ)H = d_H. Let (T,dT)c(N9 ΘN)
be a properly imbedded surface in JV, and (Δ, dA) a family of properly
imbedded disks in M = N-H. Extend Δ via the retraction H -• d_HuQ
so that it becomes a collection of disks in JV whose imbedded interior is
disjoint from Q and whose (singular) boundary lies on d_HuQ. Put T
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FIGURE 2

in general position with respect to Q and Δ. Then Q n T is a finite set
of points, and (ΔίΊ T) — Q is the interior of a 1-manifold whose boundary
is incident to QπT. Ignoring closed components of ΔΠ T, we can view
the result as a graph Λ in Γ, with vertices the points QΓ\T, and edges
the arc components of Δ n Γ . An edge in Λ is simple if its ends lie on
different vertices, otherwise it is a loop based at the vertex common to
both its ends. A loop is inessential if it bounds a disk in T disjoint from
Q, otherwise it is essential. A vertex in Λ is isolated if it is incident to
no edge. Such a vertex in Λ represents a point in an edge of Q which is
incident to no 2-disks of Δ. See Figure 2.

An edge a in Λ with an end at a vertex w is called an edge at w . The
edge a divides the disk D e A in which it lies into two disks. Suppose
one of them, E, contains no arc of intersection with T corresponding to
an edge of Λ at w . Then we say that a is outermost for w and that E
is the corresponding outermost disk. Note that E may still contain many
components of intersection with T, but none will be edges at w .

2.2. Proposition. For a given swap-preserved property of properly imbed-
ded disk families in M, let Q be a spine of H, and Δ a disk family in
M with the given propertyt chosen so that the pair (\Q Π T\, |Δ n T\) is
minimized. Then each vertex of the corresponding graph A in T is either
isolated or the base of an essential loop i T.
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FIGURE 3

Proof. The alternative is that there is a vertex w of Λ incident to some
simple edges and possibly some inessential loops. In fact there can be no
loops, because a disk-swap along the disk cut off in T by an innermost
inessential loop (or a disk component of T - A within it) would reduce
|Δ(Ί T\. Thus w is incident to some simple edges, but no loops. Let a be
an outermost edge in Λ at w , and E the corresponding outermost disk.

Let e be the edge in Q on which w lies. Since dA comes from
a normal family of simple closed curves in dη(Q), the subarcs of dA
lying on η(e) can be thought of as copies of e lying in dA. Since a is
outermost for w , no complete copy of e can lie in dE n dA. There are
then three possible ways in which the arc dE Π dA could intersect copies
of e in dA (see Figure 3):

1) dE n #Δ could be a subsegment of e or
2) one end of dE Π dA could lie in a copy of e or
3) each end of dE n dA could lie in a copy of e.
In each case we can reduce \Q n Γ| (see Figure 4, next page).
1) When dE = aU β, β a subsegment of e, then £ describes an

isotopy of /? to a which eliminates both K; and wf.
2) When dE Π #Δ is the union of an end segment β of e running

from w to an end vertex υ of e in Q, and a path y from υ to the
other end of α in Q - e, then y describes a path on which to slide the
end of e at v . The slide reduces the problem to the previous case.

3) In the last case, dE n dA is the union of three segments: an end
segment β{ of e running from w to an end vertex υ of e in β , a path
y from t> to an end vertex v of e, and a segment β2 of e running
from v to the other end of a, which we call w . /?2 cannot contain tϋ ,
since a is outermost for tt;. In the case that vf and υ are different ends
of e, the argument of case 2 applies, using y u /?2 instead of y. When
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v = v , as illustrated in Figure 3, we have β2 c βx, Break the edge e into
β2 and e- β2 by introducing a new vertex at w'. Then as in case 2), E
describes an edge slide of e - β2 which moves the segment βχ - β2 to α.
Then reamalgamate e-β2 and β 2 at w ' . This is a broken edge slide (see
1.2) which removes the point w , as well as any points of (β{ - β2) n T
from β Π Γ, thereby reducing \Q n Γ | .

The contradiction completes the proof of the proposition.
2.3 Corollary. 7f Q is a properly imbedded graph in a reducible or

d-reducible 3-manifold N, and N - η(Q) is irreducible but d-reduciblet

then, after some edge slides of Q, there is a d-reducing disk for N-η(Q)
whose boundary is disjoint from some edge in Q.

Proof Apply the proposition, letting T be a reducing sphere or d-
reducing disk of N, H a regular neighborhood of dNuQ, and Δ a
family of disks containing a 9-reducing disk. If Q is disjoint from T,
then T is a <9-reducing disk in N - η(Q) and we are done. Otherwise,
some vertex w of Λ must be isolated, since an innermost loop in T
would otherwise be inessential. But this implies that dA may be isotoped
off the edge of Q containing w .

2.4. Corollary, (a) Any Heegaard splitting of a reducible 3-manifold is
reducble.

(b) Any Heegaard splitting surface of a d-reducible 3-manifold is d-
reducible.

Proof (a) is essentially [3] and (b) essentially [1, 1.2]. The following
alternative proofs are really a reformulation of [4, 3.2] that exploits 2.2.
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First observe that it will suffice to prove a weaker proposition. A Hee-
gaard splitting of a reducible or d -reducible 3-manifold is either reducible
or d -reducible. To see that this suffices, suppose, for example, that N
is reducible. We would know, then, that the splitting is either reducible
(and we are done) or 9-reducible. Maximally 9-reduce N along disks
that are also d -reducing for the Heegaard splitting. The result is still a
Heegaard splitting for the new and still reducible manifold Nf. Since no
further d -reductions of the new Heegaard splitting Ff on N' are possi-
ble, we conclude that the splitting Ff must be reducible. But a reducing
sphere for F1 is also one for F. A symmetric argument, using maxi-
mal reductions of F, applies if instead we are initially given that N is
d -reducible.

So we proceed with the proof of the weaker assertion, given that N is
either reducible or d -reducible. Apply the proposition with the following
data: T is a reducing sphere or d -reducing disk foτN9H is one of
the two compression bodies in the Heegaard splitting of N, and Δ is
a family of disks in the other compression body H' which contains a
complete collection of 9-reducing disks for H1.

The argument of the previous corollary shows that either a d -reducing
disk for N is disjoint from Q, so the splitting is d-reducible, or some
edge e of the spine Q of H is disjoint from the boundary of a complete
collection of d -reducing disks for Hf. In the latter case the boundary μ
of a meridian of e is parallel in H1 to a circle c in d_Hf, or, if Hf is a
handlebody so d_Hf is empty, μ bounds a disk in H'. If c is essential
in d_H*, we have a d-reducing disk intersecting the splitting surface in
the single circle μ. If c is inessential in d_H', then μ bounds a disk in
H1 as well, giving a sphere intersecting the splitting surface in the single
circle μ. So in every case the splitting is either reducible or d-reducible.

3. Thin position of graphs in 3-space

Let Γ be a finite graph in S3 in which all vertices have valence 3. Let
h: S 3 -> R denote projection of S 3 c R4 onto a coordinate, so that,
besides the two poles, the level sets h~ι(ή of A are concentric spheres in
S3. Alternatively, we can think of Γ as lying in R3 and set h: R3 -> R
to be distance from the origin. Let V denote the set of vertices of Γ, and
S(t) the sphere h~\ή.

3.1. Definition. A graph Γ in S3 is in Morse position with respect to
h if
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(a) on any edge e of Γ, the critical points of h\e are nondegenerate
and lie in the interior of e,

(b) the critical points of h\T- V and the vertices V all occur at different
heights.

The set of heights at which either there is a critical point of h\T- V or
a vertex of V is called the set of critical heights for Γ. The vertices V
of Γ then can be classified into four types (see Figure 5):

V = {v in V so that all ends of incident edges lie below v},
Γ = {i; in F so that all ends of incident edges lie above υ},
Vγ = {υ in V so that exactly two ends of incident edges lie above v},
Vλ = {v in V so that exactly two ends of incident edges lie below v}.

We will further simplify the local picture by isotoping a neighborhood
of a vertex in V (resp. V), transforming it into a vertex in Vλ (resp.
VY) and a nearby maximum (resp. minimum). Then all vertices are of
type VY or Vλ. Such a graph is said to be in normal form.

3.2. A regular neighborhood η(Γ) of Γ can be viewed as the union
of 0-handles, each a neighborhood of a vertex, and 1-handles, each a
neighborhood of an edge. A simple closed curve in dη(Γ) is in normal
form if it intersects the boundary dB x 1 of each 1-handle in 1-fibers
and intersects the boundary dB3 of each 0-handle in arcs essential in the
complement of the three attaching disks for the 1-handles.

A disk (D, 3D) c (S3 - ί/(Γ), dη(Γ)) is in normal form if
(a) dD is in normal form on dη(Γ),
(b) each critical point of h on D is nondegenerate,
(c) no critical point of h on int(Z>) is a critical height of Γ,
(d) no two critical points of h on int(D) occur at the same height,
(e) the minima of h\dD at Γ-vertices, the minima of Γ, the maxima

of h\dD at A-vertices and the maxima of Γ are also local extrema of h
on D, i.e., "half-center" singularities. The maxima of h\dD at Y vertices
and the minima of h\dD at λ-vertices are, on the contrary, "half-saddle"
singularities of h on D (see Figure 6).

Standard Morse theory ensures that any properly imbedded essential
disk (D, dD) c (S3 - η(Γ), dη(Γ)) can be put in normal form. The image
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of such a normal form disk under the retraction (S3, η(Γ)) -* (S3, Γ),
will, with a slight abuse of terminology, be called a normal form disk
(D,dD)c(S3,Γ).

Suppose (D, dD) c (S3, Γ) is a normal form disk. For t a noncritical
value of h\D, S(t) intersects D in a disjoint union of proper arcs and
circles. At a critical height of A|Γ - V, the intersection may also include
a finite collection of points on dD, corresonding to half-saddles, may be
the endpoints of two arc components of S(t) Π D.

3.3. For each value of t, let w{t) = |Γ Π S(/)|. Then w is a function
of t which increases by 2 at a minimum of Γ - V and by 1 at a 7-vertex,
and decreases by 2 at a maximum of Γ - V and by 1 at a λ-vertex. Let W
denote the largest value of w(t), and n the number of times W appears as
a local maximum of w(t). Γ is in thin position if among all normal-form
graphs obtained from Γ by isotopies and edge slides, tu(Γ) = {W, ri),
lexicographically ordered, is minimized.

3.4. Proposition. Suppose a graph Γ in S3 is in thin position and
there is some nonempty disk family (Δ, <9Δ) c (S3, Γ) with a given swap-
preserved property. Then either there is such a disk family whose boundary
is disjoint from an edge of Γ or, after at most two edge slides, Γ contains
an unknotted cycle.

Before proving the proposition, we demonstrate its utility.
3.5. Corollary. Suppose Γ is a graph in S3, and S3 - η(Γ) has a

d-reducing disk whose boundary is nontrivial in πx(Γ). Then some edge
slides will convert Γ to a graph containing an unknotted cycle.

Proof of 3.5. Define the swap-preserved property of disk families in
S3 _ 77 (Γ) to be the property of containing a disk whose boundary is es-
sential in Γ. (An alternative description: take 1.5 example (c), with K
the normal subgroup generated by meridians of η(Γ).) Note that if dA
is disjoint from an edge e of Γ, then Δ satisfies the same property for
the graph Γ - e. So, of all normal-form graphs obtained from Γ by edge
slides and edge deletions, choose Γ7 to have a minimal number of edges
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subject to the requirement that some such family Δ exists for Γ7. Per-
form isotopies and edge slides of Γ* until it is in thin position. Since Γ7

contains a minimal number of edges, dA must intersect all edges of Γ7.
It follows from 3.4 that, after at most two edge slides, Γ' will contain an
unknotted cycle.

3.6. Corollary. Suppose Γ is a graph in S3, and S3 - η(Γ) is d-
reducible. Then some edge slides will convert Γ to a graph containing
either an unknotted cycle or a split link.

Proof. Following the previous case, either Γ contains an unknotted
cycle, or there is a d-reducing disk D so that dD is inessential in η(Γ).
Then 3D bounds a disk E in η(Γ). A series of edge slides will transform
Γ to a graph Γ7 in which E is the meridian of some edge e. Thus Γ7 - e
is split by the sphere D U E, so it contains a split link.

3.7. Corollary [5, Lemma 3.1]. Suppose Γ c S 3 is a connected graph
which is not a simple circuit, and suppose S3 - η(Γ) is d-reducible. Then,
after some edge slides, there is a d-reducing disk for S3 - η(Γ) whose
boundary is disjoint from some edge ofT.

Proof Since Γ is connected, S3 - η(Γ) is irreducible. Let γ c Γ
be either an unknotted cycle or split link, given by 3.6. Apply 2.3 to the
reducible or ^-reducible manifold S3 - η(γ) with Q the nonempty graph
Γ-y.

3.8. Corollary. Any Heegaard splitting of S3 is standard.
Proof Suppose Γ is the spine of one side of a positive-genus Heegaard

splitting F or S3. By induction, it suffices to show that the Heegaard
splitting is reducible or stabilized. Apply the proposition to Γ and the
swap-preserved property that Δ contain a complete set of d -reducing disks
for the handlebody S3 - η(Γ). If some edge e of Γ is disjoint from dA,
then the boundary of a meridian μ of e lies on the boundary of the 3-ball
S - η(Γ U Δ), so it bounds a disk E in S3 - η(Γ). Thus the union of
E and the meridian of e is a sphere intersecting the Heegaard splitting
precisely in μ, and therefore the splitting is reducible.

If, on the other hand, Γ contains an unknotted cycle γ, then the com-
plement of a small tubular neighborhood of γ in a larger regular neighbor-
hood of Γ is still a compression body H, with d_H the torus dη(γ), and
F = d+H = dη(Γ). Hence F gives a Heegaard splitting of the solid torus
S3 - η(γ). From 2.4 it follows that the Heegaard splitting of S3 - η(γ)
is d-reducible, so that γ bounds a disk whose interior is disjoint from
Γ. That disk and a meridian of γ define a stabilization of the original
splitting of S3.
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Proof of 3.4. We suppose that Γ is in thin position, and that for every
disk family Δ with the swap-preserved property, dA runs over every edge
of Γ. We will show that, after at most two edge slides, Γ contains an
unknotted cycle.

For any regular height t, the arc components of ΔnS(t) and the points
of Γ n S(i) create as before a graph A(i) in S(t). Since dA runs over
every edge of Γ, no vertex of A(t) is isolated. If a vertex were incident
to a single edge of A(t), then Γ would contain an edge e over which
the boundary of a disk D e A runs exactly once. Thus dD - e is a path
in Γ - e, and an edge slide of e along this path would convert e into
an unknotted cycle. So we further assume that every vertex of A(t) has
valence at least 2.

Now choose Δ to minimize \dA Π {meridia of Γ}|. A loop in A(t)
divides S(t) into two disks. Both must contain vertices of A(t), for
otherwise we could reduce \dA Π {meridia of Γ}| by a disk swap along
the disk in S(t) bounded by an innermost inessential loop. Likewise, any
edge in A(t) at a vertex inside an innermost loop must be simple.

Suppose a is an outermost arc for a vertex w in A(t), and E is the
corresponding outermost disk. We say E is upper or lower according as,
near α, it lies just above or below α for the given height function h on
S3. If w lies inside an innermost loop, then all edges are simple, and
some simple edge is outermost for w . Hence we conclude that A(t) is
either empty or it contains an outermost simple edge.

Suppose e is the edge of Γ which intersects S(t) at w in A(t) as
above, a is a simple edge in A(t) which is outermost for w, and E is
the corresonding outermost disk. Just as in 2.2, E can be used to perform
a (possibly broken) edge-slide and/or isotopy of the segment β of e. If
E is an upper (resp. lower) disk, the isotopy can be used to replace β
with an arc just below (resp. above) a.

In order to exploit thin position, we need to do this procedure simulta-
neously to a pair of simple edges.

3.9.1 Claim. Suppose that there are simple edges which are outermost
for vertices w and w' in A(t) and that there are no loops of A(t) based
at w . Then there are simple edges a and a which are outermost for
w and wr respectively so that either the outermost disk Ef cut off by a
has boundary disjoint from wf or the outermost disk E cut off by a has
boundary disjoint from w .

Proof Suppose dE1 intersects w. Then an outermost arc for w in
E' cuts off an outermost disk disjoint from w'.
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3.9.2. Claim. Suppose E and E' are outermost disks for w and
w respectively, and dE is disjoint from w' . Let β and β' be the
segments of dE and dE' described above. If β and β' are disjoint,
then isotopies and edge slides replace them respectively with a and a .
If not, then isotopy and edge slides replace them with a and removes
w'.

Proof. Since dE is disjoint from w', if β and β' are not disjoint,
then β c β'. Apply the argument above first to E and then to £ ' . Since
γ never passes through w', 2?' remains an outermost disk for w .

Let t be a regular height where w(t) achieves its maximum W. Then
the first critical height t_ for Γ below t is either a maximum or a Γ-
vertex, and the first critical height t+ above t is either a maximum or a
2-vertex.

Suppose there is both an upper and a lower outermost simple edge in
A(t), denoted a and a , with corresponding outermost disks E and E1.
If α and a are outermost for the same vertex w, lying on an edge
e, then 3.9.2 shows that the parts of e lying on dE, and dE' can be
slid and isotoped to lie in S{t). Unless this is the entire edge e, this
move will immediately reduce the width at height t without increasing it
elsewhere, contradicting thin position. So we conclude that all of e can
be slid and isotoped to lie in S{t). If a and a each had their other ends
at the same vertex, then e is a loop lying in S(t), hence an unknotted
cycle (Figure 7a). If the ends of e are at different vertices (Figure 7b),
then does a Whitehead move on e, converting the horizontal edge e in
Γ into a vertical edge (Figure 7c). This returns Γ to normal form, does
not increase the width outside [t_ , t+] and reduces the maximal width in
[t_ , t+] to at most W-1 (achieved perhaps at t±). Again this contradicts
thin position.

c)
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So for each vertex in Λ(/), either every outermost arc for the vertex
is upper or they are all lower. Suppose w is a vertex without loops and
every outermost arc for w is upper. Suppose there is anywhere in Λ an
outermost simple lower edge a for a vertex, with corresponding lower disk
Er. Then by 3.9.1, either dE' is disjoint from w or some outermost arc
d for w cuts off an upper disk E with boundary disjoint from w'. Now
apply 3.9.2 to a and a . This does not increase the width outside [t_ , t+]
and again reduces the maximal width in [t_, t+] to at most W - 1.

So either every outermost simple arc in A(t) is upper or they are all
lower, say upper. A critical point of h on int(D2) affects at most two arcs
in Λ. Unless W = 2, when Γ clearly contains the unknot, there are at
least four simple outermost arcs—two at each of the two or more vertices
in Λ without loops. It follows that at every regular value of t in [t_ , t+],
every outermost simple arc in Λ is upper. In particular, the critical height
t_ must correspond to a Γ-vertex v in Γ, for a regular value just above
a minimum always cuts off a lower disk.

Now consider a regular t just below t_ . If any outermost simple arc
is upper, then an isotopy or edge slide, not increasing the width outside
[t_ , t+] would again reduce the maximal width in [t_ , t+] to W - 1. So
we conclude that as we descend below t_ , all outermost upper simple arcs
disappear, and only lower outermost simple arcs are created. (See Figure
8.) Let w0 be the vertex of Λ(£ ) corresonding to the intersection of the
descending edge from v in Γ with S(t ). As t rises through ί_ , ends
of arcs of S(t) Π D at w0 merge in pairs to create new arcs or possibly
simple closed curves. But an arc in A(t) not incident to wQ is unaffected.
If it is outermost simple for one of its ends, it remains so after passing
through t_ . Hence we conclude that all outermost simple arcs at t are
incident to w0.

LJ

lower disks

FIGURE 8
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This implies in particular that there are no loops in A(t ) at any
vertex other than w0. If the descending edges in Γ from the maximum
or λ-vertex υ at t are also the ascending edges from v , then they form
an unknotted cycle and we are done (see Figure 9a). If one of the lower
edges from υ+ coincides with an upper edge from υ , let w be the point
where the other descending edge e from v+ first intersects S{i). We have
shown that there are no loops in Λ at w and that any outermost edge for
w has its other end at w0 and cuts off a lower disk. Now slide/isotope
the rest of the edge e as in 2.2 to an outermost arc a of A(t ) for
w , creating an unknotted cycle in Γ (see Figure 9b). Note that in 2.2 a
broken edge slide would be required only if w0 were also on e and e
pierced S(t ) in the same direction at both w and wQ. Since the latter
at least is visibly not the case, no broken edge slide is required.

If both lower edges e and e from υ+ in Γ intersect S(t ), let w

and w' be their points of intersection. Again there are no loops in A(t )

at w or w'. Apply 3.9.1 and 3.9.2 to outermost arcs a and a of A(t )

for w and w' respectively. Again the relevant outermost disks are lower
disks, so we have replaced the rest of the edges e and e by a and a .
This again creates an unknotted cycle in Γ (see Figure 9c).

c)

References

[1] A. Casson & C. McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (1987)
275-283 .

[2] D. Gabai, Foliations and the topology of 3-manifolds. Ill, J. Differential Geometry 26
(1987)479-536.

[3] W. Haken, Some results on surfaces in 3-manifolds, Studies in Modern Topology, Math.
Assoc. Amer., Prentice-Hall, Englewood Cliffs, NJ, 1968, 34-98 .



HEEGAARD SPLITTINGS OF THE 3-SPHERE 357

[4] Klaus Johannson, On surfaces and Heegaard surfaces, Trans. Amer. Math. Soc. 325
(1991) 573-591 .

[5] W. Menasco & A. Thompson, Compressing handlebodies with holes, Topology 28 (1989)
485-494 .

[6] J.-P. Otal, Sur les scindements de Heegaard de la sphere S*, Topology 30 (1991)
249-258 .

[7] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphάre, Topology 7 (1968) 195-203 .

UNIVERSITY OF CALIFORNIA, SANTA BARBARA

UNIVERSITY OF CALIFORNIA, DAVIS






