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SURFACES WITH GENERALIZED SECOND
FUNDAMENTAL FORM IN I2

ARE LIPSCHITZ MANIFOLDS

TATIANA TORO

Abstract

This paper focuses in the relationship between the class of surfaces with
second fundamental form in L2 and the class of Lipschitz surfaces (i.e.,
surfaces that are locally homeomorphic via a bilipschitz map to a flat
disc). In particular we prove that graphs of JV2'2(R2) functions are
Lipschitz surfaces.

Introduction

For functions u, defined on a domain Ω c R 2 , having locally square
integrable partial derivatives up to order 2 (in the generalized sense), the
Sobolev embedding theorems guarantee that u is locally Holder continu-
ous with any exponent a < 1, and also that the gradient Du is locally in
If for every p < oo. There are, of course, examples illustrating that such
u may not be locally Lipschitz—that is, Du need not be locally bounded
in Ω. Since it gives some important insight into the nature of the sin-
gularities of general W ' functions, we discuss a couple of particular
examples in some detail.

Example 1. LetZ) be the disc of radius \ in R 2 , and let u : D —•

R be defined by u(x,y) = xlog| logr |, where r = yx2+y2. Direct

computation shows that the Hessian D2u is in L2(D) in fact \D2u\ <

Cr~11 log r l " 1 . On the other hand, Du is evidently unbounded on ap-

proach to the origin, in fact

wJC = log|logr| + O( | logrf 1 ) and uy = O(\ logr\~ι) as r | 0.

One can easily check that while Du has a singularity at 0, the unit normal

i/ = (1 + \du\2)~ι/2(-Du, 1) has limit -ex = ( - 1 , 0, 0) as r j 0 and the

graph of u is a C 1 surface embedded in R3 with tangent plane normal
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to -eχ at the origin. This example seems to indicate that while Du has
singular behavior, nevertheless we might expect the graph of u to have
some reasonable behavior. The second example, based on a modification
of Example 1, shows that this fact is not obvious.

Example 2. Let D be the disc of radius \ in R2 , and let u : D —• R

be defined by u(x, y) = xlog|logr| sin(log|logr|). In this case \D2u\ <

Clog | log r|(r| log r|)~*, and therefore the Hessian is in L2(D). The gra-

dient satisfies

uχ = log|logr|sin(log|logr|) + O

a s r i 0

One can check that there is a sequence Rk T oo such that for each 0 e R
and each e > 0

θ-e<uχ<θ + e for R~l <r/rk<Rk,

where rk \ 0 is the sequence of points such that log | log rk \ sin(log | log rk \)
= θ. We conclude that for every K > 1 there exists Rκ such that for each
s e (0, Rκ) the graph z = u(x ,y) of w is close to the plane x = θz in
the annular region K~ι < r/s < K. Thus, roughly speaking, the graph is
always close to a plane Ls: z = θsx in annular regions K~ι < r/s < K,
but this plane changes slowly as s changes; furthermore the slope θs of
the plane Ls oscillates (very slowly) between very large positive values
and very large negative values.

Thus this graph fails to be C 1 (as it was for the example above). We
can easily construct examples with much more singular behavior than the
exhibited in Example 2. For instance, let D be the disc of radius \,
{Xj, y.) be a countable dense subset of D and for each N > 1 let

N

uN = Y^2~\x- x.)log I logr.\ sin(log| logr. |),
7=1

where r. = J(x - Xj)2 + (y -yj)2 Each uN has singular behavior at

each of the points (JC , y.)j=ι N like the singular behavior of Example

2. The sequence {uN} converges in the W2'2φ) norm to a function

u e W2'2(D) with a countable dense set of singular points.

Despite the pathologies presented in the examples above we show here
that it is nevertheless true that the graph, S* = {(x, u(x)) : x e Ω c
R 2 }, of a W2'2 function u is a Lipschitz surface. Thus for each point
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Xo = (xQ, u(x0)) e 5?, we can find R > 0, a domain D c R 2 , and a
homeomorphism Φ : D -> 5 Π 2fΛ(ΛΓ0) such that

f |Φ(x) Φ(y)| < L\x - y \

{ \φ-ι(X)-φ-\Y)\<L\X-Y\

where L is a positive constant.
Theorem. Let Ω c R2 be a strongly Lipschitz domain, u e
2 2

gy p

W2'2(Ω, R) and S? = {(JC, κ(x)) : x e Ω}. ΓΛCT, ^ r ^ exist a do-

main Ω7 c R2 and a homeomorphism Φ : Ω' —• S? so that (*) Λo/ίfe with

L < (1 + C||w||^2,2 ( Ω ))
1 / 2. Further, the metric g = (rfφ)* orfφ (/.e, ί/ze

metric induced on Ω' by pulling back the metric of graph u induced by the

Euclidean metric of Rn) is comparable to the standard Euclidean metric of

Ω' //I the sense that

gtj are the components of g; thus g..{x) = (Φ( (e.)9 Φ, (ey)> for

ι ,7 = l , 2 . 7/ere C w α constant that depends only on Ω .

Actually the main result in this direction is somewhat more general,

beging applicable to a larger class of surfaces in Rn . Given β, e , p > 0,

let &β e(Bp(ζ)) denote the set of C°° embedded and connected surfaces

S? in Rn , with d<9> n J?,(C) = 0 , and satisfying

ΠBp(ζ))<βp2 and / M | 2 r f ^ 2 < 6 2

Here 4̂ denotes the second fundamental form of S?, i.e., for £ e 5?,

A(ζ) is the symmetric bilinear form on T^S? with eigenvalues the prin-

cipal curvatures of & at ζ. Let ̂  e(B (ζ)) be the set of integer multi-

plicity varifolds υ_(S^, θ) which in B (ζ) can be expressed as a measure

theoretic limit of sequences { ^ } , where S?k e ^ e(B (ζ)). The main
theorem in this setting is the following result:

Theorem. For any β > 0, there exists e0 = eo(/?, Λ) so that if v_(S^, θ)

eϊrβ)€Q(Bp(ζ)) and ζe<9>, then

'L^/ 6 4(O) = |;£(^L^/64(O) ?

1 α̂c/z 2Ji is the image of a disc in R2 via a bilipschitz map Φ z , and
where the decomposition is compatible with the multiplicity. Moreover for
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i = l , . . . ,Nζ,

WidΨf o (DΨ,) - ι\\L <Ce2

0, and LipΨ,, L ipΨ" 1 < 1 + CeQ

2.
OO

Here ( )* denotes the adjoint, and i denotes the identity transformation

on R 2 .
Now, we would like to indicate how to prove the first theorem as a

corollary of this last theorem. Since Ω is a strongly Lipschitz domain,
Calderon's extension theorem asserts that there exists a function v e
W 2 ' 2 ( R 2 , R ) so that

V |Q = M, v = 0 on R2\BR{0), and N | ^ 2 , 2 ( R 2 ) < C\\u\\wi.i(ik)9

for some R large enough, and where C only depends on Ω. For λ e

(0, 1], let S?k = {(x,υλ(x)) : x e R 2 } , where υλ(x) = λυ(x). Since

vλ e W^2(B2R(O)ΠR2), then υλ e C° (see [2]) and ^ = graphvλ is C°

embedded in R 3 . There exists a sequence of functions v e W2y2(R2) n

C™(B2R(0) ΠR 2) that approximate ι>λ in the ί Γ 2 ' 2 norm. In particular
for j large enough

and if A. denotes the second fundamental form of S?. = graphv j , then
we have

1 j \ D \ . \ 2 < C0λ
2\\u\\2

w2,2{Ωy

Moreover there exists K > 0 so that for all j > 1, supR2 \υ.\<K. Choos-
ing p> 0 large enough so that graphs., c BAO), the monotonicity

n 2 μ

2R

formula (see §4) guarantees that for r > p

< C (r-2jr2(<9> Π Br(0)) + ί \A\2 d^Λ < β.
V J^pBr(0) J J

Choosing λ small enough so that C0λ
2||w||^2,2(Ω) <ε^ , where ε0 = εo(β) is

as in the theorem above we conclude that for j large enough S?}\Γ\Bp(0) e

<FβyS(Bp(0)) and therefore S?λ e^e(Bp(0)). Thus applying the previous

result combined with the fact that S?λ is C° embedded in R3 we are led

to that there exists a bilipschitz homeomorphism Φλ: Ω' —• S?λ so that

and
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Let Rλ{xι, x2, x3) = {xι, x2, A~V) and define Φ = J^ oφ^ . One
easily checks that Φ is a suitable bilipschitz homeomorphism onto graph
w.

The second theorem gives some insight on the structure of integer multi-
plicity 2-dimensional varifolds with generalized second fundamental form
in L2 . Specifically, for an open domain ί / c R " with O G U, let &"{U)
denote the set of multiplicity one 2-dimensional varifolds without bound-
ary, υ(S"), with C°° connected support in U, containing 0 and which
have uniform local bounds in U on their areas and on the L2 norms

of their second fundamental form. Let ^(U) be the set of v_{<¥, θ)

which in U, can be expressed as the measure theoretic limit of sequences

{ ϋ ( ^ ) } > where v{<2%) e^{U). That is, we assume, that for each com-

pact K c U there is a constant Cκ such that ^2{5^k n K) < Cκ,
2 2 2f<7kΠK\Ak\
2'd^2 < Cκ and J^fdβT2 -> f^fdμ for each fixed con-

tinuous / : U —• R with compact support in U. Under these conditions
2

μ = 3?2

LΘ, where θ is a positive integer-valued function; {^} converges
to S? in the HausdorfF distance sense and the generalized second funda-
mental form A of S? (see [3]) is well defined and in L2 with respect to
the 2-dimensional Hausdorff measure on S?. Then we have

Corollary. For v[<9" 9 θ) e ^(U), there are finitely many points ζχ,
••• , ζp e 5" so that for all ζ e S^\{ζ{, ••• , ζp} there exists r{ζ) > 0
such that ifθ<r<r(ζ), then

where each 3f. is a bilipschitz image of a disc in R 2, and where the de-
composition is compatible with the multiplicity.

In order to prove the main theorem we initially focus our attention on a
special type of neighborhoods, the quasirectangles which behave very much
like rectangles in R 2 , in the appropriate sense. In particular they admit pa-
rameterizations that are bilipschitz with respect to their intrinsic distance.
Then using the Approximate Graphical Decomposition Lemma [11], [12],
we prove that if ζ e S? and f^nB (C) \A\2 d^2 is small enough, there
exists a quasirectangle in S? Π Bp(ζ) containing ζ, where the euclidean
distance and the intrinsic distance are equivalent. The result about the
equivalence of the Euclidean and the intrinsic distances also follows from
work of G. David and S. Semmes concerning surfaces with unit normal
having small BMO norm; see [7], [8], [9].
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We would like to emphasize that all the constants C which appear in
this paper only depend on n , the dimension of the ambient space, and in
particular do not depend on the surface. We always assume C > 1.

I would like to thank Leon Simon for many helpful conversations and
for his continual encouragement. The results in this paper were part of
the author's doctoral dissertation at Stanford University.

2. Quasirectangles

Most of the technical content of the theorem lies in the proof of the fact
that, intrinsically, quasirectangles are bilipschitz surfaces. This section is
devoted to the study of this type of neighborhoods.

Definition 2.1. Let a e (0, | ) and let Σ c R " be diffeomorphic, via
a C°° diffeomorphism, to the unit square [0, 1] x [0, 1]. We say that Σ
is an a-quasirectangle if the following conditions hold:

(i) JΣ\A\2d^2<a2.
(ii) There exists a 2-dimensional subspace L c R " (spanned by τx, τ 2

with IτJ = | τ 2 | = 1, (τχ, τ2) = 0) so that dΣ projects simply onto L
and

sup 1^(0 Λτ2(C)-i/l < α ,
ζedΣ

η = τιAτ2 = T l(C0) Λ τ2(C0) for some ζoedΣ,

where τ{(ζ),τ2(ζ) form an orthonormal basis for TζΣ.

(iii) There exist a rectangle β c R 2 with

length of the longer side of Q
~ length of the shorter side of Q ~

and a smooth map / : R2 —• L with f(Q) = R, where R is the compact
region of L bounded by the orthogonal projection Λ of dΣ onto L, so
that

where ()* denotes the adjoint, and i is the identity transformation of R .
Σ will be referred to simply as a quasirectangle if it is an α-quasirectangle
with α € ( 0 , J ) . We denote by u(ζ) the2-vector τι(ζ)Aτ2(ζ) orthogonal
to TζΣ.

Remarks.

2.1. Notice that, since \dfχ(τ)\ < Vl +a2 < 1 +a2 for each unit vector
τ , by integration along straight line segments we see that / satisfies the
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Lipschitz condition

\f{χ)-f(y)\<(i+«2)\χ-y\<i\χ-y\, Vx,yeR2.

Assume that L = R 2. Then det df Φ 0, and hence / would be a covering
map of R 2 . This implies, by a monodromy argument that / i s 1 : 1 .
Thus (even in the case where L is arbitrary), we have that / is a dif-
feomorphism. Also, condition (iii) above implies that the inverse h of f
satisfies supχ€L \\(dh* o dh)χ — ιx\\ < 2a2 , and hence that

\h(x)-h(y)\<(l+2a2)\x-y\<l\x-y\, Vx,yeL.

2.2. Since ΘΣ projects simply onto L, the curve Λ of the above
definition is the diffeomorphic image of the boundary of the unit square.
Since oscaΣi/ < 2sup5Σ|ι/ - η\ < 2α, there exist a neighborhood W of
Λ in L and a function w e C°°(L, L±) so that V = graphW\WnR is a
boundary neighborhood of Σ and dΣ = graph w^dR. Here for A c L,
graph w,A = {x + w(x): x e A}. For ζ e V cΣ there exists x e W so
that C = x + w(x), and the 2-vector normal to Σ at ζ can be expressed
as

τ. Λτ~+ Dτ w Λτj + τ* ΛDr w + Dτ w ΛDr w
r

±{l + \Dw\2 + \DτwΛDτw\2)ι/2

The fact that η = ^(Co) f°
Γ some ζ0 e dΣ, guarantees that we can find

such a w satisfying

sup \Dw\ < oscDw < 4oscaΣz/ < \ .
L L

Lemma 2.1. /f Σ ώ a quasirectnagle with corresponding rectangle Q c
R2 as in Definition 2.1, ί/ze« diamΣ<Cdiamβ α«rfJίί?2(Σ)<C(diamβ)2,

2where diam β denotes the diameter of Q, αwrf %f2 denotes the 2-dimen-
sional Hausdorjf measure.

Proof. By the first variation formula

f
JΣ

fdivΣΦ= /
Σ JΣ JdΣ

where the notation is as follows: H_ is the mean curvature vector of Σ,
\H\ = I trace A \, Φ is any Lipschitz vector field defined in a neighborhood
of Σ, υ is the outward unit conormal vector of dΣ, and divΣΦ is the
tangential divergence of Φ. Setting Φ(ζ) = ζ - ζ0, where ζ0 is a point
of dΣ we deduce that

= [{H9ζ-ζ0)+ [ <t/,C-Co>-
JΣ JdΣ



72 TATIANA TORO

By the definition of quasirectangle we have that

*(dΣ) < ί 1 + sup \DwΛ T(Λ)

< ILip/|dβ| < I . § .4 diamQ < όdiamβ,

where \dQ\ denotes the length of dQ, and ^ denotes the 1-dimensional
Hausdorff measure. Moreover since diamdΣ < \%?{βΣ), we have

2^ 2 (Σ) < diamΣ / \H\ +,T(dΣ)diam9Σ < diamΣ / \H\ + 18(diamβ)2.
JΣ JΣ

Applying the Cauchy-Schwarz inequality on the right yields

18(diamβ)2< diamΣ(^2(Σ))1/2 ( ί \HΛ + 18(diamβ)

< 2diamΣ(^2(Σ))1/2 (ί \A\2\ + 18(diamβ)2.

We need to estimate diamΣ in terms of diamβ so: either diamΣ <
4^(dΣ) < 24diamQ or diamΣ > 4^{dΣ). In the first case we conclude
that

2 < 2 24 |d iamβ(^ 2 (Σ)) 1 / 2 + 18(diamβ)2

2 1 / 2 + 18(diamQ)2

In the second case there exists ζ{ e Σ such that dist(C1, dΣ) > ^ diamΣ.
We apply the first variation formula to Φ(ζ) = | ^ | ~ 2 ^ where X = ζ - ζx,
0 < σ < ^ d i a m Σ < p , \X\σ = m a x { | C -ζx\,σ}, and Bp(ζχ) ΓιdΣ = 0.

Letting σ [ 0 we have the identity

4 \X\2 ) 2hτ\ \X\21 16 h

where ( ) x denotes the projection onto the normal space to Σ. Hence

- diamΣ v ' 8

3 diamΣ < %βf(dΣ) + — diamΣ.
o4

The above inequality implies diamΣ < 4^{dΣ), which contradicts our
original assumption. Therefore we always have diamΣ <
24diamβ which implies ^ 2 ( Σ ) < C(diamβ)2 .
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The following lemma is the key technical ingredient of the proof of the
main theorem. It shows that a quasirectangle with nice boundary, in a
suitable sense, is the image of its associated rectangle by means of a map
that is bilipschitz with respect to the intrinsic distance.

Main Lemma. There is a fixed constant εQ > 0 such that if ε < εQ, if

Σ ( 0 ) is an ε-quasirectangle {satisfying conditions (i), (ii), (iii) above with

Σ ( 0 ) , Q ( 0 ) , L ( 0 ) , ^ ( 0 ) , / 0 ) , ε inplaceofΣ,Q,L,η,f,a respectively)

and if ^(dΣ{0)) fdΣ{Q) \A\2 < ε2, then there exists a map Φ of Q{0) onto

Σ ( 0 ) such that

Cε2)'l\x -y\ < d(Φ(x),Φ(y)) < (1 + Cε2)\x-y\ Vx, y e Q{0)

and

where d(*, •) denotes the intrinsic distance measured in Σ^ .

Remark 2.3. Note that the additional hypothesis ^(dΣ{0)) JaΣ«» \A\2 <

ε2 guarantees the part of the definition of ε-quasirectangle which requires

osc^Σ(θ)^ < ε.

Proof The main ideas of the proof are: give a procedure for subdivid-

ing Q ( 0 ) into six subrectangles Q[1) , , Q^ and Σ ( 0 ) into six quasirect-

angles Σ ^ , , Σ ^ which correspond to Q[1^, , Q^ respectively as

in Definition 2.1; show that this construction can be iterated.

First we note that, by Remark 2.2, there is a smooth function w^: L ( 0 )

-> {L{0Y and a neighborhood W{0) of Λ(0) = / 0 ) ( 5 Q ( 0 ) ) so that

graph ^(0)^(0) = V{0) for some boundary neighborhood F ( 0 ) of Σ ( 0 ) ,

dΣ{0) = graph w^R{Q), and

sup \Dw^\ < osczW < 4 osc v < 4ε.
L ( 0 ) L ( 0 ) ^

Let s^Q^^^Q^) be the edges of Q ( o ) parallel to the x-axis, la-

belled so that the y-coordinate of s{(Q{0)) is less than the y-coordinate

of s3(Q{0)), and let s2(Q{0)), s4{Q{0)) be the edges of Q{0) parallel to

the y-axis, labelled so that the x-coordinate of s2(Q{0)) is less than the

x-coordinate of s4{Q^). Now we describe the subdivision of Q^ . With-

out loss of generality we assume that |s2(Q ( 0 ))| < ^ ( β ^ ) ! w h e r e \Sj{Q{0))\

means length of the edge ^ ( β ( 0 ) ) . Let x t , x2 be the x-coordinates

of the points ^, \ of the way along the edge ^ ( β ( 0 ) ) > and yχ the y-

coordinate of the midpoint of the edge s 2 (Q ( 0 ) ). We slice Q ( 0 ) in lines



74 TATIANA TORO

{x = λχ}, {x = λ2}, and {y = λ3}, where λ is to be chosen in the

interval I. = (Xj - ^\5x{Q{0))\, x} - ^ ( Λ ) for 7 = 1, 2, and A3 is

to be chosen in the interval 73 = (yχ - ^ | J 2 ( β ( 0 ) ) | , yx - fe(β(0))|)

We shall make the actual choices of λ{9 λ2, λ3 shortly, but for the

moment we observe that the subrectangles β j 1 ' , , Q^ obtained by so

slicing <2(0) satisfy

for k = 1, , 6. Hence for k = 1, , 6

and
. 6k,(Q ( 0 ) ) | 12

- ^1*2(^)1" 7

It was precisely in order to arrange this property that we chose to subdivide
β ( 0 ) into six pieces, rather than into four.

Let A(0) = ( / ^ Γ 1 : L ( 0 ) -> R2 and note that by Remark 2.1 we have

\h{0\x) - h{0\y)\ < (1 + 2ε2)\x - y\ for all x, y e R{0),

and A(0) is C°° because df^ is nonsingular at each point. Let /?(0) be
the orthogonal projection onto L ( o ) , and consider the slices

Γ 1 , Λ = { C G Σ ( 0 ) : < e 1 , A ( V 0 ) O > = A } ) A € / „ i = \ , 2 ,

where eχ, e2 are the canonical basis for R2 . Since Λ(0) o/?(0) is smooth,
Sard's theorem guarantees that Γ̂  λ is a finite union of smooth Jordan
arcs and closed Jordan curves for almost all λ, with the Jordan arcs having
endpoints which project under /?(0) to Λ(0) = <9i?(0).

We have established the notation needed in the proof, which at this
point can be divided in four distinct parts;

Part 1. We shall prove that it is possible to select λt € /,- for / = 1, 2, 3
such that each Γf λ is a union of smooth Jordan curves and arcs, one of

which is a Jordan arc γ. with endpoints in dΣ ( 0 ) and

1/2
^. I f . . .A \

oscz/
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Part 2. Assuming Part 1 we see that γχ, γ2, y3 divide Σ ( o ) into six

pieces ΣJj1*, , Σ ^ each of them diffeomorphic to the unit square [0,1]

x [0, 1] and where the labelling is such that Q^ corresponds to ΣJ^ in

the natural way. We then choose ε small enough so that if Σ ( 0 ) is an

ε-quasirectangle we can guarantee that each one of the resulting Σ^!) is a

εj^-quasirectangle with ε[1} < | . In particular, for each k = 1, ,6

we need to exhibit a plane L^ and construct a function J^: R2 —• L^

satisfying conditions (ii) and (iii) from Definition 2.1.
Part 3. We shall prove that it is possible to choose ε, as in Part 2, so

that the construction described in Parts 1 and 2 can be iterated arbitrarily
many times. This fact is a consequence of the properties required from
the curves yx, γ2, γ3 described in Part 1.

Part 4. From Part 3 we conclude that Σ ( 0 ) can be partitioned into

arbitrarily small quasirectangles. The construction of the map Φ: β ( 0 ) -•

Σ ( o ) becomes then straightforward.

Part 1. Let gχ, g2, g3: Σ ( 0 ) - R be defined by gi(ζ) = (ex, Λ(0) op(0)(C))

for i = 1, 2 and g3(ζ) = (e2, Λ(o) op{0\ζ)). By the co-area formula we

have

ί ^(ri λ)dλ= ί

< L i p Λ ( 0 ) /

< | ^ 2 ( Σ ( 0 ) ) < C ( d i a m Q ( 0 ) ) 2 ,

by virtue of Lemma 2.1. For each / = 1,2,3 there exists a set l[ c I{

so that \l\\ > jf|/.| and Vλ e l'n ^ ( Γ / ) λ ) < Cdiam(2 ( 0 ) . Let /* be a

subinterval of /. of length ^|/.| satisfying,

\A\2

over all subintervals ϊ. of /. with length \\I.\. By the co-area formula

f f 2 f
Jr Λ\ 3 J{ζ

<-cL \Λ\\
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hence there exists a set (/*)' c /* so that |(/*)'| > ±|/*| and Vλ € (/*)'

ί Ml2 < — ^ - T O T /
hj diamβ(0) J{

in{ ί
Ml2

m ί ~
diamβ ( 0 ) j ; ΛίeΣ"": *,«)€/,}

Since |/^| > jf|/(.| and |(/*)'| > ^|/*| = l ^ l , we conclude that there exists
a set Ji c Ii so that |J;| > ^I/J and VA e 7,

iλ)t \A\2<Cinf[ „ \A\2.

In particular for λ e /,

(2)
< Cmin

where /z j , /.. 2 are the subintervals of I. of length | |/ z | which lie at

opposite extremes of / z. Since gt and Σ(0) are smooth, Sard's theorem
ensures that we can select all of these λ to be such that γ. λ is a finite union
of smooth closed Jordan curves and smooth Jordan arcs with endpoints
in dΣ{0). Actually since for i = 1, 2 and λ € Jt, / 0 ) ( { ( λ , y): y e R})
are smooth curves, each of them passing through 9i?(0) in exactly two
points, and since /?(0) projects dΣ(0) simply onto L ( 0 ), for each such λ,
there is exactly one Jordan arc in the above union, which we call Γ* λ with

endpoints on <9Σ(0). A similar result holds for λ e / 3 , f^°\{(x, λ): x e

R}) and Γ3 λ . Notice that, since \A\ = |VΣ ι/|, by integration along the

Jordan arc Γ* λ we have

ί Γ £ i μ ι s (
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hence by (2)

osc v < Cmin

(3)

< Cε.

For ε > 0 small Γ* λ projects simply into i? ( 0 ). Furthermore since
suPχ€<2(0) II^ C °dfo)χ~ ι

x\\ ^ ε2' ^ e intersection with dR^ at the end-

points is transversal and so are the intersections of Γ* λ and ΠJ λ with

Γ3 λ (in fact almost orthogonal for ε small enough). Therefore we can

select Γ* λ to be the required curves γ.9 ί = 1, 2, 3, so that in particular

osc v < Cε, and the y.'s can be used to subdivide Σ(0) into six pieces

ΣjJ), , Σ^ diίfeomorphic to the unit square [0, 1] x [0, 1], where the

labelling is so that Q^ corresponds to ΣJjV in the natural way.

Part 2. In Part 1 we proved that dΣ^ projects simply onto L ( o ), that

/ ^ ( Q ^ ) is the compact region of L(0) bounded by p{0){dΣ^]), that

(4) osc v < C ( ί \A\2\ + osc v < Cε,
oy(l) \ 7 Σ ( 0 ) / /?Σ(0)

υ k

and that

osc \v - η \ < osc v + osc v < 2Cε,

for k = 1, , 6. By the same argument used in Remark 2.2, to prove
the existence of w: L —• Lx, we establish that for each k there is a
smooth function w{°]: L{0) -+ (L ( 0 )) x such that

supίW 0 ) < 2 sup \u - w(0)| < 2 osc v + 2 osc v < Cε,

and

where t/^0) is a neighborhood of

forjc€ββiI)
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Recall that our goal is to prove that Σ^ , , Σ ^ are quasirectangles.

Choose η^ to be any value of v on dΣ^ , let L^ be the plane through

the origin in R" which is normal to the 2-vector η^, p^ the orthogonal

projection onto L^, and q^ the orthogonal projection onto {L^)±.

Define /^: R2 -^ L{

k

ι)

Note that ΘΣ^ projects simply onto L[ι), that f^\d(^) =p{

k

ι)(dΣ{^) =

Λ[1} and that

|^/(0) - ηP\ < sup | / / ( 0 ) - Ϊ / | + sup \η^ - v\ < osc v + osc v.

By direct computation we have

namely for i, j = 1, 2

Since q^idf^/dx^ = 0 where q{0) is the orthogonal projection onto

(L ( (V, and

then

Hence
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and since Lip/^ < | (see Remark 2.1 following Definition 2.1), applying
Cauchy-Schwarz we have

sup

which implies

sup \)«dJΪl))* o (dfίι)))x - ijl < sup ||((rf/0);f o d/\ -

4- C ί osc 2u + osc

< C o e 2 .

Remark 2.1 allows us to conclude that ^ is a bilipschitz map from

R2 onto L[1 }. This fact combined with the remark that J^\d(^) =

p{

k

l)(dΣ{

k

ι)) = A[l) guarantees that ^ ( β ^ ) = R[{) , where R™ is the

compact region of L^ bounded by Λ^ .

In view of (4) and (5) we have shown that for each k = 1, , 6,

ΣĴ  is a quasirectangle (choosing ε small enough so that Cε < | ) , with

flx): R2 -+ 4 υ > Qk]> Rίl)> iP corresponding to / : R2 -> L, Q, R, η
in the definition of quasirectangle.

By Remark 2.2 we know that there exist a smooth function w^: L^ —•

(L[ιY and a neighborhood W^ of dR1? = Λ^1} = /^(dQ^) such that

graph w)p^)nRa) = V^ι) for some boundary neighborhood V^ of Σ^\

dΣ[ι) = g raphw™^ , and

sup \Dwί I < oscDw, < 4 osc v < Cε.
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The previous construction shows that for x e dQk

in particular, for x e aβ[ 1 } Π

3. We can repeat the slicing procedure, starting with ΣJ^, Q^\

flx), 4 υ in place of Σ ( 0 ), ζf], / ( 0 ) , L(0) respectively, to generate τf,

β [ 2 ) , yj[2*, L[ 2 ) , 1 < k < 6 2 . In fact we can repeat the slicing procedure j

times, generating ΣJ?, β f , >ί7), Lf , 1 < fc < 67, for each / = 1, , j ,

provided

(7) C ^ 2 < ( l / 8 ) 2 ,

where Co is the constant appearing in the second inequality of (5). Indeed
(according to the definition of α-quasirectangle) we only need to stop when
we get to the first integer j such that

(8) sup ||(^/ί7))* o(^40 )) - z|| > (1/8)2 or OSCI/>1/8
2 ^

for some k e {1, , 6J} . There is a useful criterion, more precise that
(7) which guarantees that (8) cannot occur, provided that ε is chosen small
enough to begin with. Namely, suppose that we have successfully iterated
the slicing procedure j times, generating Σf, Q^, fj^l), L^ , 1 < k < 6ι,
for each / = 1, , j . Then a simple induction based on the first inequal-
ity in (5) shows that if {ΣJ^}/=0 with kχ G {1, , β1} is an arbitrary

nested sequence of the Σ^/} (i.e., Σ^/} c Σ^~1} for 1 < / < j), then

(9) sup Wid/W)* aid/™) - i|| < sup \\(d/0))* o(d/0)) - i|| + q
R2 R2 /=o <

for suitable Ct (in fact twice the constant C which appears in the first
inequality of (5)). Thus we will be able to prove that (8) cannot occur if
we can show that the sum Σ)/=ooscaΣ(/)Z/ Γ e m a i n s s m a 1 1 (independent of
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j) for any such sequence. It becomes clear now how crucial the choice of
yχ, γ2, γ3 made in Part 1 is.

Recall that we label the edges of β ( 0 ) parallel to the x-axis ^ ( β ^ ) ,

s 3(β ( 0 )) and the edges parallel to the y-axis s2(Q{0)),s4(Q{0)) (with

^ι(Q^), s2(Q^) having smaller y and x coordinates than s 3 (β ( 0 ) ) ,
54(Q(0)) respectively). This labelling induces a corresponding labelling for

the edges of β[ 1 } , ΘΣ{0), and dΣ^ in particular

where the last equality comes from the fact that for x ^

Notice that (2) gives

(10) ^{Si{τf))ί \A\2<Cmm\[ \A\2, f \A\2) ,

provided that ^(ΣJ^) is one of the new edges of ΣĴ  , that is, ^(ΣJ^) <£

ί(.(Σ(0)) where St , = {C € Σ ( 0 ): gt(Q e /,.,,} and Si>2 = {ζ e Σ ( 0 ): g.(ζ)

e /, 2 } . Note that by construction dist(/(. 2, li 2) = ^|ί,(β ( 0 )) l and

dist(5,. ,, Si2) > (LipΛ^y'distί/,.,, 7,.2) > I ^ | ί ,((2 ( 0 ) ) |

S i n c e f o r 1 < / < , k, e { 1 , ••• , 6 1 } , k , _ γ e { 1 , ••• . ό ' " 1 } , a n d

QΪ, c G*'"1*' d i a m Qkj £ T5diamβ?"0'we h a v e

(12) diam βj° < (8/15)ydiam Q ( 0 ).

Combining Lemma 2.1, (11) and (12) we have

diamΣf < 24diamβ[Λ < 24(8/15);diam Q ( 0 ),

and

24 (J^Jβ
< d i s t ( 5 , . j , 5,. 2 ) f o r ; > 1 1 .
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Thus for j > 11, no ΣJg" can intersect both S( { and Si 2 » and hence
(10) implies

(13) ^{s.{Σ\})) / \AΓ < C I \A\ if s.(ΣY}) £ sAΣ{ϋ))

for each 1 < k < 6. Now this can be applied with any of the iterates ΣJĵ

in place of Σ ( o ), so long as σu+n) is well defined; thus if j > 1 and ΣĴ

are defined for k < 6ι and each / < j + 11, and if Σ^} c c Σ^} c

Σ ^ c Σ ( ) is any nested sequence, with 1 < k{ < 6ι for each /, then (13)

actually implies

By the construction, for any nested sequence we have

^ 5 9 8 . ,n(/-ik, . / 9 \ 2 8 5 y ,

for / < 7 + 11, where w^' satisfies the same conditions as the function

w constructed in Remark 2.2 did, but with respect to L^, Σ{P and ϋ P
κι κι κι

in place of L, Σ, and R, respectively. Therefore
(15)

Now consider the alternatives

(I) s^Σf) c c s ^ { l ~ k ^ l ) ) £ s ^ Σ ^ ) for s o m e \ < l < j

or

(II) s ( Σ ^ ) c C S (Σ^)

In case alternative (I) holds for some /, from (14) and (15) it follows that

•,<4Λ»/ M I 2 < c m ' / Ml!,
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while in the case where alternative (II) holds we deduce that

M|2 £ c ( ί
Since dΣ^ is connected, we have

4 4

osc v < y^ osc v and osc v < 4 ^ osc 2v.
ω * — ' v (γU)\ U)

 Z — ' U)

Thus, regardless of which one of the alternatives (I), (II) holds, the follow-
ing is true:

<*c2v<ci2(l)'[ [Af + ciD'rid^f \A\2.
fcy /=υ *,-_/ kj-ι+n

Since this is also valid for any q < j in place of y, by summation we
obtain that

2 J * , , χ /
> OSC V <

(16)

+ C
ήr=O

But

/

4=0 /=0

,ή Γ - / r . ^ / ~ /

?=0/=0

/η\P

11) ί \A\2,

and hence (16) implies

_i_ 2 ( [ 1 (0) f 2\ 2

(17) ]Γosc * / < c ( / ^ r + ;r(<9r ;) / ( 0 )MN <Ce ,

provided only that Σ [ 7 + 1 1 ) is well defined by the iterative slicing proce-
dure described above. Note that we have used the additional hypothesis
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Let β0 e (0, | ) be an arbitrary value to be specified later and Σ(0 ) be

an ε-quasirectangle with ε < β0 . Suppose j > 1 is such that ΣĴ  is well

defined and

£osc2z/<y?0

2

/=0 k[

for every nested sequence {Σ^}j

ι=0 with fc7 € {1 , , 67} . In particular
for q < j , by inequality (9), we have

sup kq ° kq i o>

which implies that for any # < j and any /ĉ  e {1 , , 6^}, ΣJĵ  is a

C2jff0-quasirectangle, where C2 = y/2Cx. We then choose β0 so that

C 0

Π(C 2)ff 0) 2<(l/8) 2;

in particular βQ is independent of Σ ( 0 ) or j . This inequality asserts that

condition (7) is satisfied with C2βQ in place ε. Thus Σ[ 7 ) is well defined

for all / < j + 11 and kχ e {1, , 61} . Hence by (17) we have

7

(18)

Also using (4), for any Σ^7+1) c ΣJĵ  with k+ι e {1, , 6j+ι} we obtain

(19) osc v < C ( ί \A\2) + osc ι/ < Cε.

Combining (18) and (19) we conclude that

7+1
2 2

/=0 z

for e < ε0 where ε0 e (0, | ) is a fixed constant not depending on Σ(0 ) or

j and for every nested sequence { Σ ^ } ^ with kt e {1, , 61}.

We have proved that there exists a fixed constant ε0 € (0, | ) such

that if e € (0, ε 0 ] , if Σ ( 0 ) satisfies the hypothesis of the main lemma

for ε, and if the ΣJ^ are well defined by the above slicing procedure

with j > 0 and Σ/=ooscaΣ(/ )Z/ - ^o f o r e v e r y n e s t e d sequence {Σ^}/ = 0 ,
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then the Σ^) are well defined for / < j' + 11, ΣJ=0 osc^/) < Cε2 and

Σ/=o osc^(l)lf ^ Po f°Γ e v e i Ύ nested sequence ΣJ^ , / = 0, , 7 , 7 + 1.

Thus by mathematical induction we can show that ΣJĵ  is well defined for

any j > 0 and k e {1, , 6J} moreover for all j > 0 , J2J=o 2

Cε2 for every nested sequence Σ$ .

h f i4. Another way of phrasing the above conclusions is as follows:

there exists a fixed constant ε0 e (0, | ) such that if e € (0, ε 0 ] , and

Σ ( 0 ) satisfies the hypothesis of the Main Lemma for such ε, then for

every j > 0 , Σ ( 0 ) can be partitioned into 6 ; ε7-quasirectangles { Σ ^ } } ^ = 1 ,

with ε. < Cε. In particular for every j > 0 and every fc = 1, , 67

there is a plane L^] orthogonal to the 2-vector η\p , a rectangle β [ y ) , a

compact region i ? ^ c L^ , and a smooth map f\p: R2 -> L ^ satisfying

conditions (i), (ii), and (iii) of Definition 2.1. By Remark 2.2, we know

that there is a smooth function w^: L^ -• (L^-)± and a neighborhood

W™ of a 4 7 ) = Λ^} = jiJ\dQ^) such that g r a p h t i ; ^ , ^ ^ = V™

for some boundary neighborhood V^ of Σ^7), ΘΣ^ = graphtϋ^

and

sup I D ^ I < oscD?i;[7) <4oscv <Cε.

In view of (6), for x e dQ^ n a β ^ } , k, ^ € { 1 , , 6 ;} we have

Note that since Σ ( 0 ) is C°° and d iamΣ^ < 2 4 ( ^ ) ; d i a m β ( 0 ) , for

large enough j , we can select the w\p to be so that graph W^\RU) = Σ^ .

From now on we fix one such j . We define maps φ^: Q^ —> Σ^ by

One can easily check that for all k = 1, , 6J\

which by Remark 2.1 implies that the Jacobians of φψ and (φ^)"x are

bounded by 1 + Cε2 . The map Φ: Q{0) -+ Σ ( 0 ) defined by
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is a well-defined homeomorphism. Moreover, it is clear that

In order to obtain the appropriate Lipschitz bounds for Φ and Φ ι , let
x j e β ( 0 ) and let σ denote the segment joining them, then

|Φ(JC) - Φ(y)| < d(Φ(x), Φ{y)) < ^ ( Φ ( σ ) )

& . «

k=\ k=\

and

\Φ(x) - Φ(y)\ < d(Φ{x), Φ{y)) < (1 + Cε2)\x - y\.

This inequality shows that Φ is Lipschitz with respect to both the intrinsic
and the Euclidean metrics. Let γ c Σ ( 0 ) be a smooth curve joining Φ( c)
and Φ(y) and such that

lengthy = &{y) < (1 + Cε2)d(Φ(x), Φ(y)),

then
βj

\x -y\< <%*(Φ~ι(γ)) < ^ ^ ( Φ ~ 1 ( y ) Π Q^)
k=\

6J βj

< Σ^{{<pΐ)~\y)) < (1 + Cε2) ΣXly Π Σ[7))
k=\ k=\

< (1 H- Cε )^(y) < (1 + Cε )d(Φ(.x), Φ(y)).

This establishes that Φ is a bilipschitz map with respect to the intrinsic
distance on Σ ( 0 ) .

3. Bilipschitz parameterization in the smooth case

Simon proved (see [11], [12]) that for S? an arbitrary smooth surface

in Rn if f^nB {0)\A\2d^2 is small enough, then <9*nBp/2(0) is well

approximated by graphs of functions with small Lipschitz constant. The
existence of this special type of decomposition allows us to conclude that
for f^nB ( 0 ) \A\2 d<3Γ2 small enough there exists a quasirectangle Σ ( o ) con-

,(0) '
taining a neighborhood of the origin, and satisfying the hypothesis of the
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Main Lemma from the previous section. Moreover we deduce that the
Euclidean distance and the intrinsic distance are equivalent on Σ ( o ) this
allows us to conclude, thanks to the Main Lemma, that Σ ( 0 ) admits a
bilipschitz parameterization.

Lemma (Approximate Graphical Decomposition [12]). For any β >

0, there exists ε0 = eQ(β, n) > 0 (independent of 5?, p) such that if

ε € (0, e0], if d<9> n Bp(0) = 0 , if %r2(S? n Bp(0)) < βp2, and if

fsΉB (0) l^|2 d<^2 < ε2 * then the following holds: There are pairwise dis-

joint sets Pχ, , PN c S? with

N

<Cεi/2p

and a set S c (3/?/4, p) with L(S) > p/16 such that if σ e S then
dBσ(0) intersects S? transversely, dBσ(0) Π (\JjPj) = 0 a n d

where each Dσ . is topologically a disc so that d i a m ^ i>C~1σ. More-

over there exist functions u . e C ^ Ω p Lf) with L{ a plane in RΛ, Ωf. a

smooth bounded domain in Lt of the form Ωi = ίl°i\(\Jkdi k), where Ω^

is simply connected and d{ k are pairwise disjoint closed discs in Lt which

do not intersect ΘΩ®, with graph w connected, and

supp~ι\u\ + sup|Z)M,| < Cε 1 / 2 ( 2 n ~ 3 ) ,
Ωf Ω,

and Dσ ^grapht/ is a union of a subcollectίon of the PJf and each Pj is
topologically a disc.

We claim that there exists ex > 0 so that if S? satisfies the hypothesis of
the lemma above for ε < εχ < εQ, and if 2a is the connected component
of S? Π Bσ(0) containing the origin, then there exists a function u e
C°°(Ω, (L')±) with l! a plane in Rn containing the origin, Ω a smooth
bounded domain in l! of the form Ω = Ω°\(|JA: dk), where Ω° is simply
connected and dk are pairwise disjoint closed discs in ll, with graph
u connected, and supΩ|/)w| < Ce, graphu Π Bσ,2(0) c 3fσC\Bσ.2{ϋ)9

and 3tσ Π 5σ/2(0)\graph-w = \S^\ Pj > w h e r e the P. are pairwise disjoint
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topological discs and £ y diamPy < ±σ. Note that since 0 e ^ Π 5 σ / 2 ( O ) ,

suρQ\Du\ < Cε and ^diam/^ < ^σ imply σ~ι suρΩ|w| < ^ for ε{

small enough.
Using the notation from the Approximate Graphical Decomposition

Lemma and assuming Dσ χ.= 2ίa it is easy to prove, using basic calculus,

that there exist a point Xo e Ω, and a set Ω(/) c Ω. with |Ω(1)| > ±|Ω?|

such that for all X e Ω(1)

f \D2Ui

Since |Dw| < j , we have

which implies that for all X eΩ{ι),

\Dut{X) - DUi(X0)\ <

Therefore for X £ Ω(1)

MX + ut{X)) - i/(ΛΓ0 + 11,(^)1 < 2\Dut(X) - DUi(XQ)\ < Cε,

where v(ζ) denotes the 2-vector orthogonal to TζS^. Let K > 0 be an
arbitrary constant to be specified later and let ζ0 = Xo + u^X^). Sard's
theorem and the co-area formula [1, 3.2.22] guarantee that there exists
t € (Ke/2, Kε) such that the set Γ = { C G ^ : |I/(C0) - i/(C)| = t) is
contained in the union of finitely many pairwise disjoint Jordan curves
and Jordan arcs with endpoints in d2Jσ , and

Let

ffo<ί}

Let L" be the plane through the point Xo with unit normal (̂Co)
let p" denote the orthogonal projection onto L,". Let D = Bσ/2{0)Γ)L"
Then the Poincare inequality implies that

" < Cσ2/K
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for any disjoint open subsets ^ , ̂  c D\p"{Γ) such that d^nD c p"(Γ)
(see [6]). Hence by choosing K large enough, independent of Σ and p,
we can guarantee that there is a unique component & c D\p"(Γ) such
that

\D\&\<Cσ2/K and p"(&)c&.

If 3B — (Jf ̂ z where the ^ are the connected components of 3S, then
(see Lemma 2 from [11]),

diam^ < C

and

< C ( — + ε j σ < — σ < —σ,

for K large enough. The rest of the proof is now straightforward.
Without loss of generality we may assume that Lf is the xλ,

x2-plane. In order to prove that if f^nB ( 0 ) \A\2d<%*2 is small, then there

exists a quasirectangle containing a neighborhood of the origin, we let

3Jσ Π Bσ/2(0) = 3 and consider the function s: 2 -> R defined by

(̂JCJ , JC2 , , xn) = ^(l^! -x 2 l + lxi +xi\) - I n particular, 5 is a Lipschitz
function whose Jacobian is bounded above by 2. The co-area formula
implies that there exists σ0 e (<τ/4, σ/2) so that s~ι(σ0) Π& does not
intersect \Jj P.,

(2) Jr(s~ι(σQ)n&) < {ClaW2(β) < Cβσ,

and

(3) / \A\2 d%? < - ί J*s\A\2 < - ί \A\2 d%f2.
Js"ι(σ0)n3f σ J9f σ J^ΠBp(0)

Let Q(0) = [-σ0, σ0] x [-σ0, σ0] and Σ(0) = 3 Π (Q(0) x RΛ""2). From the

Approximate Graphical Decomposition Lemma and the fact that s~ι (σo)Π

Uy Pj = 09 we conclude that Σ(0) is diffeomorphic to the unit square and

that dΣ(0) projects simply onto l/. Moreover putting (2) and (3) together
we have

ί ί 2

We conclude that condition (ii) from Definition 2.1 is satisfied for η =

ι/(C(0)) for some ζ ( 0 ) e 3Σ( 0 ) and L orthogonal to η. Let p be the

(4) osc 2v < JT(dΣ{0)) ί \A\2 <C ί \A\2 dJT2 < Cε
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orthogonal projection onto L. For x e L1 we define f(x) = p(x + υ(x)),

where v e C 0 0 ^ ' , ^ ' ) 1 ) , V 0 ) nΩ = w|<2(0)nΩ' a n d s up L ' |£^ |<2sup Ω |Z)w|

< Cε. Note that / is smooth and that f(Q{0)) = R{0) where R{0) is

the compact region bounded by p(e?Σ(0)). By direct computation we show

that
sup\\(df)*o(df)-ι\\<Cε2.

R2

Thus we have
Lemma 3.1. For any β > 0, there exists ε{ = εχ(β, n) > 0 so that

if S? satisfies the hypothesis of the Approximate Graphical Decomposition

Lemma for ε <εx < ε 0, then there exists a quasirectangle Σ ( 0 ) containing

a neighborhood of the origin and satisfying ^ ( # Σ ( )̂ jdτp) \A^ < ε2.

In order to prove that Σ ( 0 ) admits a bilipschitz parameterization, the
only thing left to do is to check that the Euclidean metric and the intrinsic
metric are equivalent in Σ ( 0 ) .

Lemma 3.2. For any β > 0, there exists ε2 = ε2(β, n) > 0 so that
if S? satisfies the hypothesis of the Approximate Graphical Decomposition
Lemma for ε < ε2 < ε{, and 2J is the connected component of ΣnBσ,2(0)
containing the origin, then for any ζ e&

Remark. From the previous lemma we deduce that for any given ζ{, ζ2

S" if either

\A\2dJ^2<ε2 or

and if in either case ζχ and ζ2 are in the same connected component,
then

Proof of Lemma 3.2. Let ζ' e 21 with \ζ'\ = p . Then there exists
a e {\ρ , 2p) so that

grnBσ,(0)=&u [\JPij with & c graph u and ]Γdiam/>z.< ^σ\

with u e C°°(Ω, L1), Ω c L, and L a plane containing the origin,
and supΩ \Du\ < Cε, and (σ'Γ^uplwl < ^ . Let ^{x) = x + u(x) for
x € Ω and let π denote the orthogonal projection onto L. The segment
joining the origin to π(ζ') is the union of segments [q., pi+ι] which are
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completely contained in Ω and segments [p(, q.] which do not intersect
Ω. We denote by κ\π(ζf)\ the total length of the segments [p., q.], i.e.,
Σ; \Pi - 9, l = *|π(C')| < κ\£\ Note that K < ^ . Using this notation we
have

d(0, ζ') < Σ
[pnqi}nΩ=0

<(l + Cε2)

< (1 + Cε2)(l - κ)\ζ'\

Let C, = &{Pι) and ^ = 9"{qt) then

Σ IC - ii\ = ΣdΛ - «/ + I"(P, ) - «(«/)l2)1/2 ^ 0 + C ε ' ) Σ IP. - «. l

< ± ( i + cβ2)ifΊ
In order to evaluate rf(Cf., η ) we repeat the previous process replacing

0, ζ', &, π, p., q., and K by ζ., η., 9[, π., ptJ, q.j , and κ , respec-

tively. Then

and

Ce2)(l - κ)|CΊ + (1 + Cε2) £ ( 1 - κ{)\ζt - ηt\

Iterating the process k times and using the notation ζ. ...,.,!/,- ...,-,

&iχ,..., / , ^. . , /7 f , 9 / ,. , and jcf. f in place of 'C-, η],

«^\ π f , p, y-, qt j , and κ ( , respectively, for n < k, we obtain

ζ')<(l + Cε2)(l-κ)\ζ'\

2

+ Σ
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where

= Σ

Ί >->'*

We choose ε > 0 so that A = ^ ( 1 4- Cε2) < \. Since 3 is a com-
pact smooth surface, we conclude that there exists k > 0 so that for all

Under this assumption we have

C*) < (1 + Cβ2)(l - ίc)lc

Σ

+O-HC*2)2 Σ ^
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')<{l + Cε2)(l-κ)\ζ'\

2

n=\ / , , - ,/„

Cε2)

*,,, .'Λ.~Λ-V .'

n = l /,,— , ι Λ

+ Cε A |ς | .
Therefore we conclude

( k+l \

Since the inequality \ζ'\<d{0, ζ') holds for any ζ' e <9*, the proof of
Lemma 3.2 is complete.

Hence combining the results from the Main Lemma and Lemmas 3.1
and 3.2 we deduce

Theorem 3.1. For any β > 0, there exists εQ = εo(β, ή) > 0 so that
if & is a smooth surface in Rn, if ε e (0, β0], if d<9> n 5^(0) = 0 , i/

n 5^(0)) < jff/?2, and if f^nBp{Q) \A\2 dZf1 < ε2, then

where each 2Jt is the image of a disc in R2 by a bilίpschitz map
Moreover for i = 1, , N,

.)* o(rfφ.) - z||Loc < Cε2 and LipΦ., LipΦ" 1 < 1 + Cε2.

4. Bilipschitz parameterization in the varifold case

Recall that given β, ε, p > 0, we denote by ^ > e ( ^ ( 0 ) ) the set of C°°

embedded connected surfaces <5* in Rn , containing o with

0 , and satisfying
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π ΰ ΛO))<βp2 and / \A\2 dJ^2 < ε2,

where A denotes the second fundamental form of S?. We denote by
the set of integer multiplicity varifolds v_{3^, θ) which in

B (0) can be expressed as a measure theoretic limit of sequences ^

where S?k e &~βe(Bp(0)), i.e., f^ f d%?2 -• f^fdμ for each continuous

function / : B (0) —> R with compact support in B (0). In particular μ =

<%"2LΘ . In order to prove the local result we study the class ^ ε(Bp(0)),
but other than simplifying the notation there is nothing special about the
choice of Bp(0) over Bp(ζ).

Lemma 4.1. Let {5"k} c ^t6(Bp(0)) converge to vi^.θ) e

^βiε(Bp(0)) in the above measure theoretic sense. Then {S*k} converges

to S? in the Hausdorff distance sense.
Remark. It follows from the proof to be given below, that S? has

generalized second fundamental form A in the sense of [3] and that A is
in L 2 .

Proof. Let {^} c Fβε{Bp{ΰ)) be so that / ^ f d%f2 -> f^fdμ for
any continuous function / with compact support in Bp(0). By the mono-

tonicity formula, for all ζ e B /2{0) and for almost all τ e (0, p/4),

Uτ-2^\^k Π Bt(Q) = ±[ ^ 1

dτκ k τ^n dτJ^nBτ(ζ) r

2

f
in the distribution sense, where r = \x - ζ\. Integrating between σ and
τ with σ < τ, we have

n Bσ(ζ))

\Hk\
2dβT2.
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Applying Cauchy's inequality (ab < εa2/2 + b2/2ε), and letting a \ 0 for
ζ e 5^k we deduce

(1) 2τ-V

If S?k did not converge to S? in the Hausdorff distance sense, then there
would be a sequence {ηk} with ηk e S?k, ηk -» η, and f/ $. S?. Let
τ > 0 satisfy S*nB2τ(η) = 0 , and let k be large enough so that \ηk-η\<
τ. Fix TV > 0 and let Nr = τ . Since <5^ is connected and the S?k

converge to &*, there exist points pl9'-- ,pNe^k such that Br/Λ(p.) c
Biλγlk)\B{i-\)λγlk) Applying (1) with p. in place of ζ, r/4 in place of τ ,
summing over i, and using the fact that \jf Br/4(p.) c ^ τ ( ^ ) C B2τ(η),
we obtain

Hence for all TV > 0,

liminf f \AΛ2 d^2 > lim inf f \AΛ2 d%>2 > 2Nπ,

where ^4fc denotes the second fundamental form of S?k. This last in-
equality contradicts the fact that the L2 norms of the Ak are uniformly
bounded on B (0).

Theorem. For any β > 0, ίλere exώϋ εo = εo{β, n) so that if v_{S?, θ)
€ ^ , o ( ^ ( O ) ) and OeS", then

βαcΛ 3ft is the image of a disc in R2 via a bilipschitz map Φ , and
where the decomposition is compatible with the multiplicity. Moreover for
i = l,••• ,N0,

||(rfΦf.)* o(rfφ.) - Ϊ||LOC < Cε] and LipΦz-, LipΦ^1 < 1 + Cε2.

Proof For /? > 0, let ε0 be as in Theorem 3.1. Since £(<$*, θ) e

^ e (^(°)) > t h e r e e x i s t s a sequence {.5^} c ^ £ (^(0)) which con-

verges to v ( ^ , θ) in the measure theoretic sense on -B (0). In particular

l i m i n f ^ ^ / ^ ^ (0 ) |^| 2rf^ 2 < ε 2, and { ^ } converges to ^ in the

Hausdorff distance sense. Thus there exists a sequence {ζk} with ζkeS^k
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such that ζk -» 0. For all k large enough, Bpjl{ζk) c Bp(0) and Theorem
3.1 guarantees

Mk

^Bpβ2{ζk) = \JΦk

j{D)nBpβl{ζk) and dφ){D) nBpβ2(ζk) = 0 ,
; = i

where Φ ; is a bilipschitz map from a disc flcR2 centered at the origin,
onto one of the connected components of S?k Π B ,32(ζk). Since the areas
of the S?k are locally uniformly bounded, the Mk% are uniformly bounded
independently of k (i.e., supfc Mk < M). By passing to a subsequence we
may assume that Mk = N > 1 for all k, and that

liminf / | l | 2 / ^ 2 lim f \AΛ2| y l , | 2 ί / ^ 2 = lim f \AΛ

Furthermore for each j = 1, , N,

LipΦ^, Lip(Φ^)"1 < 1 + C ί \AA2

J J J^B{ζ)

by Theorem 3.1. For fixed j = 1, , N, and φj? are equicontinuous
and uniformly bounded. Thus by Arzela-Ascoli we conclude that there

k'

is a subsequence {Φ } which converges uniformly to a bilipschitz map
φ.. Without loss of generality we can choose a subsequence of {k'} that
works for all j . Since the S^, converge to S? in the Hausdorff distance
sense,

N

= Σ v(Φj(D)Aσ/(A{0)), with dΦj(D) Π Bσ/64(0) = 0
7 = 1

and

LipΦ., Lip(Φ )"1 < 1 + Climinf / \AΛ2d%f2 < 1 + Cεl.
3 J k-+°° J^knBp(0)

Furthermore since for each j = I, •> , N,

letting k —> oo we obtain
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N o t i c e a l s o t h a t i f ζ e & Π B σ / 6 4 ( 0 ) , t h e n 0 ( 0 = \{j e { 1 , , N } : ζ e

* / J > ) * ( 0 ) } |

Recall that for an open domain U c Rn with 0 e I/, 1Γ{U) de-
notes the set of multiplicity one 2-dimensional varifolds without bound-
ary, viS?), with C°° connected support in U, containing 0 and which are
have uniform local bounds in U on their areas and on the L2 norms of
their second fundamental form. We denote by ^{U) the set of υ[<9", θ)
which in U, can be expressed as the measure theoretic limit of sequences
te(^)}, where y£<9*k) €^(U). That is, we assume that for each com-
pact K c U there is a constant Cκ such that ^2{S^k Π K) < Cκ,
f<7kΠK\Ak\

2dJ^2 < Cκ and S^fdβ?2 -^ f^fdμ for each fixed con-
tinuous / : 17 —• R with compact support in U. Under these conditions
μ = ^ 2

L 0 , where θ is a positive integer valued function, and {^k} con-
verges to S? in the Hausdorff distance sense.

Definition. Let v ( ^ , θ) e ^(U), let ε > 0 we say that ζ € S? is
a bad point for ε if for every sequence {v_{^k)} c <9^{U) converging to
v_{S?, θ) in the measure theoretic sense,

lim I lim inf

Note that for a given ε > 0 there are finitely many bad points ζ{, , ζ'
with p = p(ε). If ζ e <5*\{ζι, , Cp}, then we say that ζ is a good
point for ε.

Corollary 4.1. ΓΛere ααrfj ε0 > 0 so that if ε e (0, ε 0 ], if v_{S^, θ) £
^(U), and ifζeS* is a good point for ε, then there exists r(ζ) > 0
such that for all 0 < r < r(ζ)

where each 3{ is a bilipschitz image of a disc in R 2, and the decomposition
is compatible with the multiplicity. Thus if ζf € S^nBr(ζ) has multiplicity
I, then precisely I of these discs 2J{ contain ζ'.

Corollary 4.2. // {υ{S%)} c ^"(R 3) converges to υ{^9 θ) e 3

°in the measure theoretic sense, and 5? is C° embedded, then S? is a
Lipschitz surface.

Proof Assume initially that ζ e 5? is a good point for ε < ε 0 , where
the notation is the same as above. In order to prove that S? has a bilip-
schitz parameterization in a neighborhood of ζ it is enough to show that
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there exists r E (0, σ/64) so that for /, j e {1, , N} either

(*) Φ ;'(ί))nΦI'(ΰ)nJδ r(ί) = 0 or Φi(D)ΠBr(ζ) = Φj(D

Assume this is not the case. Using the hypothesis that S? is C° embedded
in U, we can choose r € (0, σ/64) so that S? Π 2?Γ(£) is homeomorphic
to a flat domain R c R2 via a map / , and /(£) e intR. We may also
assume that r is small enough so that

and each one of the Φi{D)C\Br(ζ) is connected. Since / is a homeomor-
phismand Φ7 is a bilipschitz map, f(Φj(D)nBr(ζ)) is an open set in R
for each j . Furthermore, f(ζ) e intR implies that there exists σ > 0 so
that

Bσ(f(ζ)) n R2 c Π /(Φy(^) n Br(ζ)).

The fact that (*) does not hold for any r > 0 means that, for example,

Φι{Dι)ΠBr{ζ) φ Φ2{D2)ΠBr{ζ), Vr > 0. Since dΦi{D)Γ)Br(ζ) = 0 , there

exists a sequence {ζι

n}n c (Φ^/)) n 5r(C))\(Φ2(I>) Π 5r(C)) or a sequence

{C2}π C (Φ2(D)Π5Γ(0)\(Φ1(/))nJBΓ(C)) converging to ζ. Thus for n

large enough f(ζJ

n) e Bσ(f(ζ)) ΠR2 for j = 1 or j = 2, suppose j = 1

the /(Cj) € /(Φ2(ί>) ΠBΓ(C)) and hence ζι

n e Φ2(D)nBr(ζ) because /

is a homeomorphism. This contradicts the choice of the {ζl

n}n . Hence,

locally, ^ admits bilipschitz parameterizations away from finitely many

bad points ζ{, 9ζp.
Assume now that for some 0 < δ = δ(ε0) < e0,

lim lim inf / \Ak\
2 dβ?2 > δ2.

(T->0 fc->oo J^nB (0)

Nevertheless we claim that there exists a subsequence S?k, (denoted sub-
sequently by S"k) so that

lim lim lim inf / \AΛ d%? < ε
σ _0β-*0 fc-oo Jstn(BJ0)\BΛJ0))JS%Π(Bσ(0)\Bβσ(0))

Otherwise we could find a decreasing sequence Wk}k>0 converging to 0
and so that for each k > 0 there exists nk such that V« > nk,

ί
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Since { ^ } c^(U)9 there exists C > 0 such that

sup / \Ak\ d%f < C.
k>0 Js^.ΠB (0)

— K &o

Let kQ > 0 be large enough so that jk0δ
2 > C, and let iV0 = max0<i<k ni.

Then

ί
k

>(ko + l)δ2>C,

which contradicts the assumption that sup J ^ n 5 ( 0 ) | ^ | 2 < C. Therefore^ n 5 (

we can find a subsequence, denoted subsequently simply by { ^ } such
that for fixed a > 0 we have

Let n > 3 and let J?7' denote any of the S?n . Then the argument used
in [12] to prove the Approximate Graphical Decomposition Lemma goes
through, in the codimension-one case, if we replace 5?1 Π Bσ(0) by S?1 n
(*,(0)\2ϊσ/8(0)) as long as

/ \A\2dJT2<δ2<ε2

0.
S"n(Bσ(0)\Bσβ(0))

Namely there are pairwise disjoint sets P{, , PN c S?' with

N
1/2

7=1

σ i e ( i σ ' i σ ) a n ( * σ2 G ( i σ ' σ ) s u c ^ ^ a t ^OΓ z = »̂ 2, dBσ (0) inter-

sects ^ ; transversely, dBσ (0) Π (U7 /̂ O = 0 , and

2 i
7=1

where each ^(flΊ , σ2) is topologically an annulus so that d iam^σj, σ2)

> C~ισ{. Moreover there exist functions w e C°°(Ω., Lf)-with L{

a plane in R3, and Ωz a smooth bounded domain in L{ of the form

Ωz = Ω?\(Ufc di k ) , where Ω^ is connected, and dt k are pairwise disjoint
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closed discs in L. which do not intersect dΩ®, with graph ut connected,
and with

super" \uλ + sup|Z>w,-| <Ce ,
Ω, Ω,

graphM. Π (Bσ2(0)\Bσι(0)) C Afa , σ2),

where Ai(σι, σ2)\ graph w;. is a union of a subcollection of the Pj , and
each Pj is topologically a disc.

Now choose p e {\σ, \σ) so that dBp{0) Π (Uf. ^ diJc) = 0 , and

Jnp(Bσ/2(0)\Bσ/4(0))

where the second inequality comes from the fact that \Dut\ < \ .
Let wt e C°°(L.nBp(0)) satisfy

2d%f2.

\ wt = u{, D^. = Dui on Lz. Π dBp(0).

Then (see [11])

/ I^V I2 < Cp ί \D2u.\2 < C ί \A\
JLpB^O) JdB^ΠL, JAfa.σJ

In particular

\D2

Wi\
2<C f \D2

Ui\
2,

) ^Ω / n(5 σ / 2 (0)\ J B ( T / 4 (0))

where 4̂t is the second fundamental form of graph wi. Let

( M \ (M \

UW^i.^ACj)) u ί (Jβraphti J ,
where Cp is the cylinder (L. n 5^(0)) x (L^)"1. Then ^ is a C 1 ' 1 com-
posite surface, satisfying

L \ A \ 2 < [
JSΉBJΌ) JS

and

\A\2<Cδ2<±ε2

0,

for δ small enough.
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We have constructed a new sequence { ^ } of C 1 ' 1 composite surfaces
that converges to & in the measure theoretic sense and so that

lim (liminf [ \λ\

Therefore we can find a sequence {S*k} c ^(U) converging to S? in the
measure theoretic sense and so that for all k

J^knB
\Ak\

2<Cδ2<εl
)

Thus the origin is not a bad point for ε0 with respect to this new sequence,
and 5? admits a bilipschitz parameterization in a neighborhood of 0.

Remark. If ζ € S? and Φ: D c R2 -+ 5? Π Br(ζ) is the bilipschitz
parameterization constructed above, then from Theorem 3.1 it follows that
Φ is a quasi-isometry in the sense that

\\(dΦ)*o(dΦ)-ι\\Lθ0{D)<Cε2.
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