HOROSPHERIC FOLIATIONS AND RELATIVE PINCHING

BORIS HASSELBLATT

Abstract

Relative curvature pinching in negative curvature provides regularity of the horospheric foliations up to $C^{2-\epsilon}$.

The horospheric foliations of a negatively curved Riemannian manifold are defined as the stable and unstable foliations of its geodesic flow, as explained below. There are two classical results about smoothness of horospheric foliations: Negatively curved surfaces have C^{1} horospheric foliations [4], and $\frac{1}{4}$-pinched Riemannian manifolds have C^{1} horospheric foliations [2]. The latter has been improved to give $C^{2 \sqrt{a}}$ foliations assuming a-pinching $(a \in(0,1))$. An open question, posed in [2], is whether these results hold assuming only relative pinching (e.g., does relative $\frac{1}{4}$ pinching imply C^{1} foliations). We do not know the answer, but give sufficient relative pinching conditions for the same range of smoothness and indicate where improvements seem possible. See [1] for a brief survey of interesting related results.

Definition 1. The sectional curvature of a compact negatively curved Riemannian manifold N is relatively a-pinched if $C \leq$ sectional curvature $<a C$ for some $C: N \rightarrow-\mathbb{R}_{+}$. If C is constant, the curvature is said to be (absolutely) a-pinched.

Theorem 2. For $a \in(0,1)$ a compact relatively a-pinched Riemannian manifold has $C^{2 a}$ horospheric foliations.

This follows from Theorems 5 and 6. Theorem 5 is a regularity theorem for the stable and unstable foliations of an Anosov flow based on a "bunching" assumption of contraction and expansion rates sharpening the standard regularity theory in [1], which cannot be substantially improved. Theorem 6 establishes a connection between relative pinching and bunching which may not be optimal. Here are the needed properties

[^0]of the geodesic flow of a negatively curved Riemannian manifold.
Definition 3. A flow φ^{t} on a compact Riemannian manifold M is called Anosov with Anosov splitting $\left(E^{u}, E^{s}\right):=\left(E^{s u} \oplus E^{\varphi}, E^{s s} \oplus E^{\varphi}\right)$ if $T M=E^{s u} \oplus E^{s s} \oplus E^{\varphi}, E^{\varphi}=\operatorname{span}\{\dot{\varphi}\} \neq\{0\}$, and $\exists \lambda<1, C>0$, $\forall p \in M, t>0$ such that
$$
\left\|D \varphi^{t}(v)\right\| \leq C \lambda^{t}\|v\| \quad\left(v \in E^{s}(p)\right)
$$
and
$$
\left\|D \varphi^{-t}(u)\right\| \leq C \lambda^{-t}\|u\| \quad\left(u \in E^{u}(p)\right)
$$

Call $\varphi^{t} \alpha$-bunched if there exist $\mu_{f} \leq \mu_{s}<1<\nu_{s} \leq \nu_{f}: M \times \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ with

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \sup _{p \in M} \mu_{s}(p, t) \nu_{s}(p, t)^{-1} \mu_{f}(p, t)^{-\alpha}=0 \\
\lim _{t \rightarrow \infty} \sup _{p \in M} \mu_{s}(p, t) \nu_{s}(p, t)^{-1} \nu_{f}(p, t)^{\alpha}=0
\end{gathered}
$$

such that for all $p \in M, v \in E^{s s}(p), u \in E^{s u}\left(\varphi^{t} p\right), t>0$, we have

$$
\begin{aligned}
\mu_{f}(p, t)\|v\| & \leq\left\|D \varphi^{t}(v)\right\| \leq \mu_{s}(p, t)\|v\| \\
\nu_{f}(p, t)^{-1}\|u\| & \leq\left\|D \varphi^{-t}(u)\right\| \leq \nu_{s}(p, t)^{-1}\|u\| .
\end{aligned}
$$

This notion of bunching is weaker than the one used in [1]. For geodesic flows in negative curvature the terminology is clearer since $\mu_{i}=\nu_{i}^{-1} \quad(i=$ $f, s)$ by symplecticity, and hence α-bunching means

$$
\lim _{t \rightarrow \infty} \sup _{p \in M} \nu_{s}(p, t)^{-2 / \alpha} \nu_{f}(p, t)=0
$$

so $\nu_{s} \leq \nu_{f}<\nu_{s}^{2 / \alpha}$ uniformly for large t.
E^{u} and E^{s} are tangent to foliations W^{u} and W^{s}, respectively (unstable/stable foliations), whose leaves are C^{∞} injectively immersed cells depending continuously on the base point in the C^{∞} topology [3]. In the case of a geodesic flow these are the horospheric foliations on the unit tangent bundle. The regularity of E^{u}, E^{s} in the C^{∞}-topology is that of their representations in smooth local coordinates. Regularity of horospheric foliations is the regularity of their tangent distributions. For regularity C^{1} and higher this coincides with all alternative definitions.

Definition 4. A map f between metric spaces is called Hölder continuous with exponent $\alpha \in(0,1]$ if $d(f(x), f(y)) \leq$ const $\cdot(d(x, y))^{\alpha}$ for nearby x and y. If $\beta \in \mathbb{R}, f: \mathbb{R} \rightarrow \mathbb{R}, f$ is $C^{[\beta]}$ and $f^{([\beta])}$ is $\beta-[\beta]$-Hölder, then we say $f \in C^{\beta}$. A distribution is C^{β} if it is C^{β} in a smooth chart.

Theorem 5. The Anosov splitting of an α-bunched Anosov flow is C^{α} in the C^{∞}-topology for $\alpha \in(0,2)$.

Theorem 6. A geodesic flow on the unit tangent bundle $M=S N$ of a compact relatively a-pinched Riemannian manifold N is $2 a+\epsilon$-bunched for some ϵ.

Remark. a-pinching implies $2 \sqrt{a}+\epsilon$-bunching [6, Theorem 3.2.17], which is stronger. Ideally this would follow already from relative a pinching.

Proof of Theorem 5. We only treat the case $\alpha \in(0,1)$ to show how to modify [1]. The framework of the argument is the same as in [1] which in turn uses the formulation of [5]. For $p \in M$, take a hypersurface \mathscr{T}_{p} transversal to $\dot{\varphi}$ of uniform size depending C^{∞} on p. For each p, let $W^{u}:=W^{u}(p) \cap \mathscr{G}_{p}, W^{s}:=W^{s}(p) \cap \mathscr{T}_{p}, E^{u}:=T W^{u}$, and $E^{s}:=T W^{s}$. Take coordinates $\Xi: M \times[-\epsilon, \epsilon]^{k+l} \rightarrow M$ such that $\Xi_{p}:[-\epsilon, \epsilon]^{k+l} \xrightarrow{C^{\infty}} \mathscr{O}_{p}$ is continuous in $p,[-\epsilon, \epsilon]^{k} \times\{0\} \rightarrow W^{u},\{0\} \times[-\epsilon, \epsilon]^{l} \rightarrow W^{s}$, and if $\phi^{t}: \mathscr{T}_{p} \rightarrow \mathscr{T}_{\varphi^{t} p}$ is the induced map then

$$
D \phi_{\left.\right|_{0}}^{t}=\left(\begin{array}{cc}
A_{t} & 0 \\
0 & C_{t}
\end{array}\right)
$$

with $\left\|A_{t}^{-1}\right\|<\nu_{s}(p, t)^{-1}$ and $\left\|C_{t}\right\|<\mu_{s}(p, t)$. Write the coordinates as (x, y) with $\Xi_{p}(x, 0) \in W^{u}$ and $\Xi_{p}(0, y) \in W^{s}$.

Lemma 7. Given $p \in M, q \sim(0, y) \in W^{s},\left(0, y_{t}\right):=\phi^{t}(0, y)$, there exist $C>0$ and $C_{t}>0$ such that

$$
D \phi^{t}=\left(\begin{array}{cc}
A_{t} & 0 \\
B_{t} & C_{t}
\end{array}\right)
$$

with $\left\|A_{t}^{-1}\right\|<C \nu_{s}(q, t)^{-1},\left\|C_{t}\right\|<C \mu_{s}(q, t),\left\|C_{t}^{-1}\right\|<C \mu_{f}(q, t)^{-1}$, $\left\|B_{t}\right\|<C_{t}\|y\|, C\left\|y_{t}\right\| \geq \mu_{f}(q, t)\|y\|$.

Proof. $\left\|A_{t}^{-1}\right\|<\nu_{s}(q, t)^{-1}$ in coordinates centered at q. But up to a distortion factor, uniformly bounded independently of t, the linear part of the coordinate change is of the form $\left(\begin{array}{cc}I & O \\ D & I\end{array}\right)$, so that up to a bounded factor the representations A_{t}^{-1} agree in both systems, as do the ones for C_{t} and $C_{t}^{-1} .\left\|B_{t}\right\|<C_{t}\|y\|$ since φ^{t} is a diffeomorphism with B_{t} differentiable and vanishing at the origin of the coordinate system. For the remaining claim it is slightly easier and by boundedness of coordinate changes clearly sufficient to show $\|y\| \leq C \mu_{f}(p, t)^{-1}\left\|\phi^{t}(y)\right\|$. To this end let $\gamma_{t}:[0,1] \rightarrow \mathscr{T}_{\varphi^{t} p}$ be a geodesic with $\gamma_{t}(0)=\phi^{t}(p), \gamma_{t}(1)=\phi^{t}(q)$,
where $q \sim(0, y)$. By standard hyperbolic theory $\phi^{-t} \gamma_{t}$ converges to a smooth curve $c(\cdot) \subset \mathscr{T}_{p}$. If $\lim _{n \rightarrow \infty}\left\|\phi^{t}(y)\right\| / \mu_{f}(p, t)\|y\|=0$, then by the intermediate value theorem this holds for all $c(s), s \in(0,1]$. Using compactness of M (to control higher derivatives) yields uniformity in s, so $\lim _{n \rightarrow \infty}\left\|D \phi^{t}(v)\right\| / \mu_{f}(p, t)\|v\|=0$ for $v=\dot{c}(0)$, contrary to the choice of μ_{f}. q.e.d.

In Ξ_{p}, represent elements

$$
v \in V(\delta):=\begin{aligned}
& \{k+1 \text {-dimensional distributions } v \text { on } M \text { such } \\
& \text { that } \left.v(p) \text { contains } \dot{\varphi}(p) \text { and is } \delta \text {-close to } E^{u}(p)\right\}
\end{aligned}
$$

by identifying $v(p)$ with $v(p) \cap T \mathscr{G}_{p}$; likewise for $v(q)$ in coordinates Ξ_{p} for $q \in \mathscr{T}_{p}$. Thus δ-closeness is determined by representing $v(p)$ as the graph of a linear map $D: \mathbb{R}^{k} \rightarrow \mathbb{R}^{l}$ via Ξ_{p} and using the norm topology. φ^{t} acts on $V(\delta)$ via $\left(\mathscr{P}_{t} v\right)(p):=D \varphi^{t}\left(v\left(\varphi^{-t} p\right)\right) . \mathscr{P}_{t}(V(\delta)) \subset V(\delta)$ for large t and $\mathscr{P}_{t} v \xrightarrow{t \rightarrow \infty} E^{u}$ for $v \in V(\delta)$. Also one easily shows

Lemma 8. For $\delta, \epsilon_{0}>0$ there exists $K=K\left(\delta, \epsilon_{0}\right)>0$ such that $V(\delta) \subset V\left(\delta, \epsilon_{0}, K\right):=\left\{E \in V(\delta) \mid\|E(z)\| \leq K\|z\|^{\alpha}\right.$ when $\left.\epsilon_{0} \leq z \leq \epsilon\right\} \subset$ $V(\delta)$.

This is useful since for all sufficiently large t we have $\mathscr{P}_{t}(V(\delta)) \subset V(\delta)$.
Proposition 9. If $\alpha \in(0,1]$ and φ^{t} is α-bunched, then E^{u}. is C^{α}.
This follows from
Lemma 10. For all $\delta \in(0,1)$ there exist $K>0, \eta \in(0,1)$ such that for all sufficiently large t we have $\mathscr{P}_{t}(V(\delta)) \subset V\left(\delta, \eta^{t}, K\right)$.

Namely $\bigcap_{i \in \mathbb{N}} \mathscr{P}_{t}(V(\delta)) \subset V(\delta, 0, K)$, i.e., every $E \in \bigcap_{i \in \mathbb{N}} \mathscr{P}_{t}(V(\delta))$ is Hölder continuous with exponent α and constant K. But by construction we have $E^{u} \in \bigcap_{i \in \mathbb{N}} \mathscr{P}_{t}(V(\delta))$.

To obtain Lemma 10 we show
Lemma 11. There exist $K, \epsilon>0$ such that if $v \in V(\delta(\epsilon))$ and $\|y\|<$ ϵ, then there is a $T \in \mathbb{R}$ such that for $t \in[T, 2 T]$ we have $\mathscr{P}_{t}(V(\delta(\epsilon))) \subset$ $V(\delta(\epsilon))$ and, with $(0, z)=\phi^{t}(0, y)$,

$$
\|v(0, y)\|<K\|y\|^{\alpha} \rightarrow\left\|\left(\mathscr{P}_{t} v\right)(0, z)\right\|<K\|z\|^{\alpha} .
$$

Inductively this yields
Corollary 12. There exist $K, \epsilon>0$ such that for $v \in V(\delta(\epsilon))$ and $\|y\|<\epsilon$ there is a $T \in \mathbb{R}$ such that for $t>T$ we have $\mathscr{P}_{t}(V(\delta(\epsilon))) \subset$ $V(\delta(\epsilon))$ and $\|v(0, y)\|<K\|y\|^{\alpha} \Rightarrow\left\|\left(\mathscr{P}_{t} v\right)(0, z)\right\|<K\|z\|^{\alpha}$.

If we take η to exceed the slowest contraction rate, then Lemma 10 follows by Lemma 8 and we are done.

Proof of Lemma 11. Write $v(y)$ instead of $v(0, y)$, etc. Then $v(y)$ is the graph of a linear map D and hence the image of the map $\binom{I}{D}$ where I is the (k, k)-identity matrix. Thus

$$
\left(\left.D \phi^{t}\right|_{y}\right)(v(y))=\left(\begin{array}{cc}
A_{t} & 0 \\
B_{t} & C_{t}
\end{array}\right)\binom{I}{D}=\binom{A_{t}}{B_{t}+C_{t} D} \sim\binom{I}{\left(B_{t}+C_{t} D\right) A_{t}^{-1}}
$$

where " \sim " indicates that the two maps have the same image. If $\|v(y)\| \leq$ $K\|y\|^{\alpha}, z=\phi^{t} y$, and T is such that $C^{2+\alpha}\left(\nu_{s}(q, t)^{-1} \mu_{s}(q, t) \mu_{f}(q, t)^{-\alpha}\right)$ $<\frac{1}{2}$ and $\mathscr{P}_{t}(V(\delta)) \subset V(\delta)$ for $t>T$, then

$$
\begin{aligned}
\|D(z)\| & =\left\|\left(B_{t}(y)+C_{t}(y) D(y)\right) A_{t}^{-1}(y)\right\| \\
& \leq\left\|B_{t}(y)\right\|\left\|A_{t}^{-1}(y)\right\|+\left\|A_{t}^{-1}(y)\right\|\left\|C_{t}(y)\right\|\|D(y)\| \\
& \leq C_{t}\|y\| \cdot C \nu_{s}(q, t)^{-1}+C^{2} \nu_{s}(q, t)^{-1} \mu_{s}(q, t) K\|y\|^{\alpha} \\
& \leq C_{t} C^{2} \mu_{f}(q, t)^{-1} \nu_{s}(q, t)^{-1}\|z\| \\
& +C^{2+\alpha}\left(\nu_{s}(q, t)^{-1} \mu_{s}(q, t) \mu_{f}(q, t)^{-\alpha}\right) K\|z\|^{\alpha} \\
& <K\|z\|^{\alpha}
\end{aligned}
$$

for $t \in[T, 2 T]$ whenever $K>\sup _{t \in[T, 2 T]} 2 C_{t} C^{2} \mu_{f}(q, t)^{-1} \nu_{s}(q, t)^{-1}$. q.e.d.

Theorem 5 now follows after similarly modifying [1] for $\alpha \geq 1$ and getting the same regularity for E^{s} by reversing time. q.e.d.

For Theorem 6 we need a lemma from ordinary differential equations.
Lemma 13. (Gronwall's inequality). If $f, g \in C^{0}([0, \infty),(0, \infty))$, $\alpha \in \mathbb{R}_{+}$, and $f(t) \leq \alpha+\int_{0}^{t} f(s) g(s) d s$, then $f(t) \leq \alpha e \int_{0}^{t} g(s) d s$. The same holds with reversed inequalities, so $0<h(t) \leq f^{\prime}(t) / f(t) \leq g(t)$ implies $f(0) e^{\int_{0}^{t} h(s) d s} \leq f(t) \leq f(0) e^{\int_{0}^{t} g(s) d s}$.

Proof. Integrating $f(t) g(t) /\left(\alpha+\int_{0}^{t} f(s) g(s) d s\right) \leq g(t)$ yields

$$
\log \left(\alpha+\int_{0}^{t} f(s) g(s) d s\right)-\log \alpha \leq \int_{0}^{t} g(s) d s
$$

hence $f(t) \leq \alpha+\int_{0}^{t} f(s) g(s) d s \leq \alpha e^{\int_{0}^{t} g(s) d s}$. Same with " \geq ". q.e.d.
Proof of Theorem 6. This is an adaptation of the arguments in [6, Theorem 3.2.17]. Fix $\tau>0$ and a continuous family of symmetric operators E from the horizontal subspace V_{h} in $T S N$ to the vertical subspace $V_{v} \simeq V_{h}$. For $p \in S N$, take the geodesic with $\dot{c}(0)=p$, and let $E_{\tau}(p)=\left(g^{\tau}\right)^{*}(E(\dot{c}(-\tau)))$ be the image of $E(\dot{c}(-\tau))$ under the geodesic flow, whose action is given by the Riccati equation $\dot{E}(t)+E^{2}(t)+K(t)=0$
along c. So if $K_{1}(t):=-\inf K_{c(t)}$ and $K_{2}(t):=-\sup K_{c(t)}$, both taken over all two-dimensional subspaces, then $\beta(t):=\min _{v \in S_{p} M}\left\langle E_{t}(v), v\right\rangle>0$ and $\gamma(t):=\max _{v \in S_{p} M}\left\langle E_{t}(v), v\right\rangle>0$ satisfy differential inequalities $\dot{\beta} \geq$ $K_{2}-\beta^{2}$ and $\dot{\gamma} \leq K_{1}-\gamma^{2}$ along c. By relative a-pinching, $K_{2}>a K_{1}$, so whenever $\beta(t) \leq a \gamma(t)$ we have

$$
\begin{aligned}
\dot{\beta} \gamma-\beta \dot{\gamma} & \geq\left(K_{2}-\beta^{2}\right) \gamma-\beta\left(K_{1}-\gamma^{2}\right)>(a \gamma-\beta) K_{1}+\gamma \beta(\gamma-\beta) \\
& >(a \gamma-\beta)\left(K_{1}+\gamma \beta\right) \geq 0
\end{aligned}
$$

and

$$
\frac{d}{d t} \frac{\beta}{\gamma}(t)>0 .
$$

Thus $\beta>a \gamma$ for all t as long as we take $\beta(0)>a \gamma(0)$. The spectrum of $U:=\lim _{\tau \rightarrow \infty} E$ is thus in $\left[\kappa_{0}(p), \kappa_{1}(p)\right]$ for Hölder continuous $\kappa_{i}: S N \rightarrow$ \mathbb{R}_{+}with $a \kappa_{1} \leq \kappa_{0}$. (Here one would like \sqrt{a} instead.)
U represents the unstable distribution in the sense that every $v \in E^{u}(p)$ can be written as $\left(v_{h}, U(p) v_{h}\right)$ for some horizontal vector $v_{h} \in T_{p} S N$. In effect, v_{h} gives the initial value of an unstable Jacobi field along c, and $U v_{h}=\nabla_{\dot{c}(0)} v_{h}$ gives the initial derivative. Along c we write $\kappa_{i}(t)$ for $\kappa_{i}(\dot{c}(t))$ and $U(t)$ for $U_{i}(\dot{c}(t))$. Then
(1) $2 \kappa_{0}(t)\left\|v_{h}(t)\right\|^{2} \leq \frac{d}{d t}\left\|v_{h}(t)\right\|^{2}=2\left\langle v_{h}(t), U(t) v_{h}(t)\right\rangle \leq 2 \kappa_{1}(t)\left\|v_{h}(t)\right\|^{2}$,

$$
\begin{equation*}
\kappa_{0}^{2}(t)\left\|v_{h}(t)\right\|^{2} \leq\left\|\nabla v_{h}(t)\right\|^{2}=\left\|U(t) v_{h}(t)\right\|^{2} \leq \kappa_{1}^{2}(t)\left\|v_{h}(t)\right\|^{2} \tag{2}
\end{equation*}
$$

With $x_{i}(t):=\int_{0}^{t} \kappa_{i}(s) d s$, Lemma 13 and (1) give

$$
\left\|v_{h}(0)\right\|^{2} e^{2 x_{0}(t)} \leq\left\|v_{h}(t)\right\|^{2} \leq\left\|v_{h}(0)\right\|^{2} e^{2 x_{1}(t)}
$$

which together with (2) yields

$$
\begin{gathered}
\frac{\kappa_{0}^{2}(t)}{\kappa_{1}^{2}(0)}\left\|\nabla v_{h}(0)\right\|^{2} e^{2 x_{0}(t)} \leq \kappa_{0}^{2}(t)\left\|v_{h}(0)\right\|^{2} e^{2 x_{0}(t)} \leq \kappa_{0}^{2}(t)\left\|v_{h}(t)\right\|^{2} \leq\left\|\nabla v_{h}(t)\right\|^{2} \\
\leq \kappa_{1}^{2}(t)\left\|v_{h}(t)\right\|^{2} \leq \kappa_{1}^{2}(t)\left\|v_{h}(0)\right\|^{2} e^{2 x_{1}(t)} \leq \frac{\kappa_{1}^{2}(t)}{\kappa_{0}^{2}(0)}\left\|\nabla v_{h}(0)\right\|^{2} e^{2 x_{1}(t)}
\end{gathered}
$$

Since the κ_{i} are bounded, the last two equations show that

$$
\frac{1}{C}\|v(0)\| e^{x_{0}(t)} \leq\|v(t)\| \leq C\|v(0)\| e^{x_{1}(t)}
$$

So if $p=\dot{c}(0)$ then $\nu_{s}(p, t) \geq e^{x_{0}(t)} / C, \nu_{f}(p, t) \leq C e^{x_{1}(t)}$, and

$$
\nu_{s}(p, t)^{-2 / 2 a} \nu_{f}(p, t) \leq C^{\prime} e^{(1 / a)} \int_{0}^{t} a \kappa_{1}(s)-\kappa_{0}(s) d s
$$

By compactness relative a-pinching implies relative $(a+\epsilon)$-pinching for some $\epsilon>0$, so the integrand is bounded away from zero. This implies $2 a$-bunching and also $(2 a+\epsilon)$-bunching by the same token. q.e.d.

References

[1] B. Hasselblatt, Regularity of the Anosov splitting and of horospheric foliations, Ergodic Theory Dynamical Systems, to appear.
[2] M. Hirsch \& C. Pugh, Smoothness of horocycle foliations, J. Differential Geometry 10 (1975) 225-238 .
[3] __, Stable manifolds and hyperbolic sets, Global Analysis, Proc. Sympos. Pure Math., Vol. 14, Amer. Math. Soc., Providence, RI, 1970, 133-163.
[4] E. Hopf, Statistik der geodätischen Linien in Mannigfaltigkeiten negativer Krümmung, Ber. Verh. Sächs. Akad. Wiss. Leipzig 91 (1939) 261-304 ;Statistik der Lösungen geodätischer Probleme vom unstabilen Typus. II, Math. Ann. 117 (1940) 590-608.
[5] S. Hurder \& A. Katok, Differentiability, rigidity and Godbillon-Vey classes for Anosov flows, Institut Hautes Études Sci. Publ. Math. 72 (1990) 5-61 .
[6] Wilhelm Klingenberg, Riemannian geometry, de Gruyter Stud. Math., 1982.

[^0]: Received July 16, 1992, and, in revised form, September 18, 1992. Research at MSRI supported in part by NSF Grant DMS 8505550.

