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GLOBAL EXISTENCE AND CONVERGENCE
OF YAMABE FLOW

RUGANG YE

1. Introduction

Let Mn be a closed connected manifold of dimension n > 3 and [g0]
a given conformal class of metrics on M. We consider the (normalized)
total scalar curvature functional S on [gQ],

S{g)= v(J"-^"IRsdVg' 8e[Soh

M

where dυg is the volume form of g, V(g) = / dvg, and R denotes

M

the scalar curvature function of g. Simple computations [1], [13] show
that the gradient of S at g is given by ({n - 2)/2n)V(g)~l(Rff - s)g,

/
g g

R 9dvv. The negative gradient flow of S is hence
M

given by

This flow preserves the volume, as can be easily verified. Changing time by
a constant scale, we then arrive at the Yamabe flow introduced by Hamil-
ton:

(1.2) ^ = (s-R)g.

(The subscript g is omitted.) Along Yamabe flow, the total scalar curva-
ture is decreased. Moreover, if the flow exists for all time and converges
smoothly as t —• oo, then the limit metrics have constant scalar curva-
ture. Hence, Yamabe flow should be an efficient tool to produce metrics
of constant scalar curvature in a given conformal class. Indeed, it was
originally conceived to attack the Yamabe problem. Then the Yamabe
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problem was resolved by Schoen [13] using a different approach. The sig-
nificance of Yamabe flow is that it is a natural geometric deformation to
metrics of constant scalar curvature. Moreover, this flow provides a natu-
ral approach to Morse theory for the total scalar curvature functional. One
also notes that Yamabe flow corresponds to the fast diffusion case of the
porous medium equation (the plasma equation) in mathematical physics
(see (1.4)). There is an extensive literature on local analysis of the porous
medium equation.

In order to state the results conveniently, we introduce some terminol-
ogy.

Definition. We say that [gQ] is scalar positive, scalar negative, or scalar
flat, if [g0] contains a metric of positive, negative, or identically zero scalar
curvature respectively. (It is well known that these three cases are mutually
exclusive and exhaust all possibilities.)

We first consider the scalar positive case.
Theorem 1. Assume that [g0] is scalar positive. Assume in addition

that (M, [g0]) is locally conformally flat. Then for any given initial metric
in [£oL the flow (1.2) has a unique smooth solution on the time interval
[0, oo). Moreover, the solution metric g converges smoothly to a unique
limit metric of constant scalar curvature as t -> oo.

We do not know whether the convergence rate is exponential. But such
is the case, at least when the limit metric is a stable critical point of the
total scalar curvature functional. Our methods do not extend directly to
manifolds which are not locally conformally flat. We hope to treat them
in a forthcoming paper.

In general, a scalar positive conformal class can contain constant scalar
curvature metrics which are saddle points of the total scalar curvature
functional [15]. Starting near a saddle point and in a descending direc-
tion, a negative gradient flow will go away from that point. It is a rare
phenomenon that a negative gradient flow (or gradient flow) always con-
verges in the presence of saddle points, unless the flow is defined on a
compact space or is a linear system of equations. Indeed, at least in a
geometric context, Theorem 1 seems to be the first example of this phe-
nomenon in an infinite dimensional space, where the flow equation is a
nonlinear parabolic equation depending on more than one non-time vari-
able. (The gradient flow of the classical energy functional for curves has
one non-time variable; the gradient flow of the symplectic action as studied
by Floer is a Cauchy-Riemann equation.)

Another remark is that the round sphere Sn is included in Theorem 1.
Since it has been a tradition to emphasize the difference between Sn and
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other manifolds in the context of the Yamabe problem, it might appear
unexpected that the Yamabe flow on Sn always converges.

Next we consider the scalar negative and flat cases.
Theorem 2. Assume that [gQ] is either scalar negative or scalar flat.

Then for any given initial metric in [g0], the solution of (1.2) exists for
all time and converges smoothly to a unique limit metric of constant scalar
curvature at exponential rate as t-+oo.

We also present a proof of the general long time existence theorem.
Theorem 3. For any given initial metric, the flow (1.2) has a unique

smooth solution on the time interval [0, oo).
Previous results on Yamabe flow are as follows. Long time existence was

first obtained by Hamilton (see [8]), but his proof has not been published.
Our argument is different from his. In case the initial metric has negative
scalar curvature, Hamilton has shown the convergence of the flow [8],
and also that the scalar curvature converges to a constant along Yamabe
flow, provided that the initial metric has positive scalar curvature. But the
resulting convergence is not strong enough to imply the convergence of the
flow itself (see [8]). For the special case that the initial metric has positive
Ricci curvature and is locally conformally flat, Chow [3] has been able
to extend the arguments in [7] to obtain the convergence. On the other
hand, the Ricci flow on surfaces—the 2-dimensional analogue of Yamabe
flow—has been completely solved by Hamilton [8] and Chow [2] (it always
converges).

Now we discuss the proofs of the above results. The proof of Theorem
1 is based on a Harnack inequality. Fix a background metric g0 € [g0]
and write g = u4^n~2^g0 with u denoting a positive function. Then (1.2)
can be written in the equivalent form

(1.3) %Γ = {Ά N

. Λ2 -h 2 « - 2
with TV = and c in) = -77 r-

n — 1 4(τz — 1

or, in consequence of changing time by a constant scale,

O 4) ^ Γ = ^

where L is the conformal Laplacian of gn:
So υ

We shall identify (1.4) with (1.3). Notice that in terms of u, the volume
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form dv of g is u2n^n~2>) dυ , the scalar curvature of g is

1 Lu

0 5) R = — r τ 4 - »
and hence the average scalar curvature s is

M

where

E{u) = j{\

is the energy. Thus we obtain the following Harnack inequality for the
solution u:

I Vα W I
(1.7) — ^ — < C or inf w > c sup w.

w t t

With this inequality, the long time existence and subconvergence at oo fol-
low easily. The convergence to a unique limit then follows from Simon's
unique asymptotical limit theorem [18]. The Harnack inequality (1.7) is
interesting for its own sake. Indeed, the general local (weak) Harnack in-
equality does not seem to hold for equations of the type (1.4) because the
exponent N on the left-hand side is too big. In some sense the critical
exponent is nj{n - 2) namely, a certain "intrinsic" Harnack inequality
holds if N is replaced by any positive number < n/(n - 2) (see [5]). For
comparison, one notes that the critical exponent for the maximum princi-
ple of Moser type is N. One would expect that the maximum principle
of Moser type holds under a small integral assumption at the critical ex-
ponent N. But this is still an open problem. In any case, local analysis of
(1.4) is rather delicate.

The proof of the Harnack inequality (1.7) depends on two global argu-
ments. The first is the injectivity of the developing map from the universal
cover of (M, [#0]) into Sn . The second is the Alexandrov reflection prin-
ciple. These two arguments were used by Schoen in [15] for proving the
compactness of constant scalar curvature metrics on locally conformally
flat manifolds which are not covered by the round sphere. The Alexan-
drov reflection principle was used earlier by Serrin [17] and Gida, Ni, and
Nirenberg [6] to obtain the symmetry properties of positive solutions of
certain nonlinear PDEs.

The proof of Theorem 2 is fairly elementary and essentially uses only
the maximum principle. We prove Theorem 3 in the following manner.
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Since the solution u can at most grow at an exponential rate by the max-
imum principle, the long time existence will follow if we can show that u
can never approach zero in finite time. We observe that the constancy of
volume together with an estimate of modulus of continuity for solutions of
the plasma equation (due to DiBenedetto [4] and Sacks [12]) implies that
u can never become identically zero in finite time. A comparison argu-
ment based on the maximum principle then demonstrates that u remains
positive always.

Applications of Theorem 1 to Morse theory for the total scalar curvature
functional will be discussed in a forthcoming paper.

We are grateful to Professors R. Schoen, R. Hamilton, and M. Struwe
for many helpful and stimulating discussions on the subject. In particular,
we thank Prof. Schoen for bringing our attention to his paper [15]. We also
acknowledge discussions with Professors M. Crandall and E. DiBenedetto
on relevant literature on the porous medium equation.

2. The scalar positive case

We start with the short time existence.
Proposition 1. For each δ > 0 and Λ > 0 there is some T > 0

depending on δ, Λ, n and the background metric g0 with the following
properties. If u0 is a positive smooth function on M such that u0 > δ,
II u0 || < Λ (norm measured in g0), then (1.4) with initial data uQ has a

unique positive smooth solution on the time interval [0, T].
This follows from the linear theory and the implicit function theorem

in a standard way. Although not necessary, it is possible to avoid dealing
directly with integration involved in s by rescaling in time. Namely, one
first solves the equations

9g o duN _
- = -Rg or _ - £ *

and then rescales in time to arrive at (1.2) or (1.4).
Now we assume that (M, [g0]) is locally conformally flat and that [gQ]

is scalar positive. Choose a background metric gQ . Let an initial metric
g° in [gQ] be given. By Proposition 1, we have a unique smooth solution
g for (1.2) with £(0) = g° on a maximal time interval [0, Γ*), and the
corresponding solution u of (1.4) will be denoted by u.

We first consider the case that (M, [#0]) is not conformally covered
by Sn . By a theorem of Schoen and Yau [H>], there is a conformal dif-
feomorphism Φ from the universal cover M of (M, [gQ]) onto a dense
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domain Ω of Sn . Thus (M, [g0]) is the quotient of Ω under a Kleinian
group, and Γ = dΩ is the limit set of this group. Note Γ φ 0 . We set
g = (Φ~x)*π*g and g - tf^n~2>}g , where π: M —• M is the cover-

s'1

ing map, and g denotes the round sphere metric. Then g solves (1.2)
sn

and u solves (1.4) with g0 replaced by g n . The following lemma is a

corollary of Proposition 2.6 in [16].
Lemma 1. For each fixed T e [0, T*), u(p, t) approaches oo uni-

formly for all t e [0, T] as p approaches the limit set Γ.
Given p0 G M, we choose a point p0 e M and a neighborhood F

of p0 such that π(?0) = p0 and dist(Φ(F), Γ) > 0. Then there is some
C > 0 such that

(2.1) uo>C \ | | δ o | | 4 < C o n Φ ( F ) ,

where w0 = w( , 0), and the norm is measured in g n . By Lemma 1, we

can actually assume that u0 > C" 1 holds everywhere.
For a fixed q0 eΦ(V), let F: Sn -> Rn be the stereographic projection

with #0 as north pole. To be more specific, F denotes the inverse of the
map

i ( 2x I x l 2 - l \

x | 2 + l

and we set q0 = (0, 0, , 1). We also introduce the following coordi-
nates around q0:

G(x) 2X

•fc
Note that (?(()) = qQ and that G is the composition of F ι with the

inversion xj \ x \2 . A simple computation leads to

Lemma 2. Let f be a positive smooth function on Φ(V). Set (F~1)*

• ( Z 4 7 ^ " 2 ^ n) = f41^'2^ n, where g n denotes the standard metric of Rn.

Define an = f(qΔ, a. = d(foG){o)/dxi, and a = d2(foG)(o)/dxidxj.

Then f has the following asymptotic expansion near oo (using summation
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convention):

(2.2)

c, / 1 \
n + 2 j j I I ιw-ι-1 I *

VI x I /
Now we define tί; in terms of

{F-lrg = w*l(n-2\

and set

We call the point y(t) with coordinates

y ( 0 =

the cen^r of iϋ( , r). Note that w satisfies the flow equation (1.4) with
# 0 replaced by g^n, i.e.,

(2.3) *^—=Aw + c(n)swN.
ot

By Lemma 2, the expansion (2.2) holds for w(>, i) with aQ = aQ(t),
α,. = a,.(0, and α .̂ = αZJ(0 . It is important to notice that the expansion
is uniform for all t e [0, T], where T is any given number in [0, T*).

Proposition 2. There is a constant C>0 depending only on dist(#0,Γ),
diam(Γ), dist(^0, dΦ(V)) and the constant in (2.1) such that

I y{t) I < c

for all te[O, Γ*).
Proof. Consider a given T e (0, Γ*). Performing a rotation of coor-

dinates and the transformation xn h-> -xΛ if necessary, we may assume
yn(T) = max. \yi(T) | . By the expansion (2.2) for w(-, t) and the argu-
ments for Lemma 4.2 in [6] we derive that for some λ0 > 1 the following
holds: for each λ > λ0,

(2.4) W Q M > WQ(X ) whenever xn < λ,
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λwhere w0 = w(-, 0) and xλ = {x, 2λ-xn) if we write x = (x , xn) (thus

xλ is the reflection of x about the plane xn = λ). Note that although
wQ is only defined on Rn\F(Γ), the arguments in [6] still apply here by
virtue of Lemma 1. It is not hard to see that λQ can be estimated from
above in terms of the constant C in (2.1), dist(#0, Γ), diam(Γ), and
diβt(ίo,flΦ(K)).

We may assume that F(Γ) lies strictly below the plane xn = λQ. Then
we claim yn{T) < λ0. By the same arguments as those for (2.4) and the
fact that the expansion (2.2) for w( ,t) is uniform for all t e [0, 7 ] ,
there is some λx > λ0 such that for each λ > λ{

(2.5) w{x, t) > w{xλ, t) whenever t e[0,T] and xn < λ.

Now we begin the procedure of moving the plane xn = λ by decreasing λ

as in [6]. Set wλ(x, t) = w(xλ, t). Then wλ solves (2.3) and coincides

with w along the plane xn = λ. We restrict wλ to the region xn < λ,

x £ F(Γ), 0<t<T,and define

I = {λ:λ>λ0, λ> max yπ(0> w <w}-

By (2.5), / is nonempty. / is also open. Indeed, wλ = w can never
happen for λ > λQ because of (2.4). (One may also use the singular set
F(Γ) to rule out w = w.) Hence for a given λ e I, the maximum
principle (the Harnack inequality for linear parabolic equations) implies

(2.6) wλ<w f o r x π < λ ,

and the (parabolic version of the) Hopf boundary point lemma implies

(2.7) dw/dxn < 0 along the plane xn = λ.

For each fixed t e [0, T], we shift the origin to y(t) to obtain the new
expansion for w( , t) in the new coordinates

2(π-2)/2 /

( )

 d w { . , t ) _ ( n 2 ) 2

oχ, ~ \χΎ ° '
The plane xn = λ becomes the plane xn = λ-yn(t) in the new coordinates.
Because λ £ I, we have λ - yn{t) > 0. Hence we can argue as in [6]
to show that there is an ε(t) > 0 with the following property: If λ' e

(λ-ε{t),λ + ε(ή), then wλ\ , t) <w( , t).
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Here, in addition to the arguments in [6], we also need to use Lemma
1. Since λ > max0<ί<τyn(t) and the expansion (2.8) is uniform for all
t G [0, T], we can choose ε(ή uniformly for all t e [0, T]. It follows
that (λ - ε, λ + ε) c / for some ε > 0. Thus the openness of / has been
shown. Next we prove that / is closed in (λ0, oo).

Let λ > λ0 be in the closure of / . By continuity, we have wλ < w
and λ > m&xo<t<Tyn{t). If λ = maxo<,<Γ)>n(O, then λ = yn{t0) for
some tQ e [0, T]. Now we choose y(t0) as the new origin, denote F(Γ)
in the new coordinates by Γ, and consider the stereographic projection
F : Sn -> Rn . Define z and zA in the following way:

Then z, zλ are defined on (Sl\F~ι(Γ)) x [0, Γ] , where 5" is a hemi-

sphere. The functions z and zλ satisfy (1.4) with g0 replaced by g n .

We also know that zλ < z, and zλ coincides with z along dS+ . More-
over, Lemma 2 and expansion (2.8) imply that

a z ( ' ? ' o ) (north pole) = ^ l i ^ o ) ( n o r t h p o i e ) = 0 ,
όv όv

where ι/ denotes the inward unit normal of dS^. By the Hopf bound-

ary point lemma we then deduce that z = zλ. This implies that w =

iί/, which is impossible because of (2.4). Thus we conclude that λ >
max ylt), whence λ e I. This shows that / is closed. We infer that

o<t<τ " v }

I = (λQ, oo). This proves our claim that yn{T) <λ0. Hence \ y(T) \ < C.
Since Γ is arbitrary, the proposition is proven, q.e.d.

Now we can derive the Harnack inequality for the solution u. Propo-
sition 2 immediately implies the estimate

\Vsnu\/u<C

on Φ(K') for some C > 0, where V' is a neighborhood of /?0 with

V' CC F , and S n indicates the metric g . Because of (2.1), this leads
s

to

on π(Vr) for some C > 0. Since Λ/ is compact, we can cover M by
finitely many such V' and thereupon obtain the above estimate on M for
a larger C .

Next we consider the case that (M, [g0]) is conformally covered by
Sn . (Here it is not necessary to assume scalar positivity.) We lift g and
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u to Sn . Then it is easy to see that the above arguments apply. In fact,
they are simplified here because no singular set is present. Summarizing,
we state

Theorem 4. Assume that (M, [g0]) is locally conformally flat and that
[SQ\ is scalar positive. Choose a background metric g0 e [g0]. If g is
a solution of (1.2) with initial metric g° £ [g0] and u denotes the corre-
sponding solution o/(1.4), then

(2.9) sup — ^ — < C ,

where C is a positive constant depending only on g°, g0, and the confor-
mal properties of (M, [g0]). For each t, integrating (2.9) along a shortest
geodesic between a maximum point and a minimum point of u(-, t) yields

(2.10) inf u >c sup u
1 t

for some c> 0.
This result immediately implies Theorem 1.
Proof of Theorem 1. We start with the solution g, u given before on

the maximal time interval [0, Γ*). We compute the change rate of volume

M M

Hence the volume stays constant. But

M

Thus the Harnack inequality (2.10) implies that u is uniformly bounded
from above and away from zero. By results of Krylov and Safonov [9] this
leads to a Holder continuity estimate for u on M x [min(l, Γ*/2), T*).
Standard linear theory and bootstrapping then yield smooth estimates for
u on M x [min(l, Γ*/2), Γ*). It follows that T* = oo, since otherwise
we would be able to extend u beyond Γ* by Proposition 1. By Simon's
general results [18], u converges smoothly to a unique limit u^ as t—>oo.
Consequently, g converges smoothly to a unique limit g^ as t —• oo . On
the other hand, the formula for the gradient of the total scalar curvature
functional S implies

(2.ii) Tt = ~r^F
M
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It follows that

oo

(2.12) jf(R- )2dυdt < oo.

0 M

We easily see that the limit metric g^ has constant scalar curvature.

3. The scalar negative and flat cases

We first deal with the scalar negative case. We choose the background
metric g0 such that Rg < 0. Let g° e [gQ] be an initial metric and g

the solution of (1.2) with g(0) = g° on a maximal time interval [0, T*).
First apply the maximum principle to (1.4) to derive

N

(3.1) — s p — > c(n) min \ R \ umin(t) + c(n)sumin(t),

where umin(t) = min, w. We have s > α F ~ 2 / w , where a denotes the
infimum of the total scalar curvature S on [gQ]. The conformal invariant
a is finite by formula (1.6) and the Holder inequality. Hence we obtain,
by integrating (3.1),

(3 2) C n 1 W > mm{umjθf-1, | a f1 min | RgQ \ V2"1}.

On the other hand, the maximum principle also implies

(3.3)

where wmax(0 = max, u. By (2.11), s < s(0). Consequently,

Note that this estimate holds without the scalar negativity assumption.
The estimates (3.2) and (3.4) imply T* = oo. Indeed, if Γ* < oo, then
by (3.2) and (3.4) u would be uniformly bounded from above and away
from zero. Then u would extend beyond T*.

Next we claim that s will eventually become negative, even if it may
not be so at the start. In fact, if s remains nonnegative always, then (3.1)
would imply
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whence umin(t) approaches infinity as t —• oc. This contradicts the con-

stancy of volume. Choosing a later time as the time origin, we may assume

s(0) < 0 . Then s < - \ s (0) | by (2.11). Hence (3.3) yields

max

which together with (3.2) implies that u is uniformly bounded from above

and away from zero, Therefore we obtain uniform smooth estimates on

w. By (2.12) we can get a limit g^ of g such that g^ has constant

negative scalar curvature. Then for some time Γ, g(T) has negative

scalar curvature. From this moment we can argue as in [8], and observe

that the scalar curvature R satisfies the evolution equation

(3.6)

which follows from a computation similar to (but simpler than) that in [7],

(or alternatively, also from the formulas for curvature deformations in [1].)

The maximum principle argument in [8] then shows that R approaches

s exponentially. From (1.2), it follows that u converges exponentially in

the C° norm as t —> oo. Then u and, hence, g converge smoothly at an

exponential rate.

Next we treat the scalar flat case. We use the above notation, but this

time we can assume Rσ = 0 . Note that s can never be negative. Oth-

erwise, formula (1.6) would imply that the first eigenvalue of Lσ is neg-

ative. If φ denotes a positive first eigenfunction, φ4^n~2^g0 would then

have negative scalar curvature, which cannot happen because of the scalar

flat assumption. If s is zero at the start, it remains so. Formula (2.11)

then implies that R has to be identically zero for all time. Thus the solu-

tion of Yamabe flow is constant in time. Next we assume that 5(0) > 0.

We observe

minv / >c(ή) f
JO

and
N

" Γ * ^ <g(w) / sdt,

which are consequences of (3.1) and (3.3). Hence we obtain the Harnack
inequality



EXISTENCE AND CONVERGENCE OF YAMABE FLOW 47

It follows that u exists for all time, and uniform smooth estimates on u
hold. Another consequence is that s —• 0 as t —• oo. To produce expo-
nential convergence, we look at integral quantities as in [8]. Multiplying
(1.4) by uι~~NΔσ u and then integrating the resulting equation, we deduce

°0

(3.7) M M

= 2c(n)sf\Vgu\2dυgo.
M

Using the inequality

/
I Δ p u I dv >c I v» u I rfv«

on o0 / "0 " 0

«/
M M

for some c > 0 and the fact lims = 0 we infer

(3.8) ί I vgu I2 dvgQ < Ce~ct.
M

(C and c always denote some positive constants.) Now by integrating
(3.7) we arrive at

"™ Λ
 -CT

M

for each T > 0, which implies

/ ; / *

2 ^ < C £ Γ c Γ .

M

Hence at some point in each interval T < t <T + 1 we have

l2dv<Ce~cί.

M

Since s decreases, this yields

s < Ce~ct

for all t. Integrating (1.4) we then see that the integral / u dvg con-

M

verges exponentially. On the other hand, estimate (3.8) and the Poincare
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inequality imply that uN converges to its average exponentially in the L
norm. Thus uN converges to its average smoothly at an exponential rate.
It follows that g converges exponentially, and the proof of Theorem 2 is
finished.

4. Long time existence

We first present two lemmas.
Lemma 3. Let C > 0 and ε > 0 be given. Let u be a positive smooth

solution of"(1.4) on some time interval [0, T] with u < C, \ s \< C,
and T > ε. Then the modulus of continuity of u on M x [ε, T] can be
estimated in terms of C, ε, n, and the background metric g0.

Proof This follows from [12]; see also [4].
Lemma 4. Let u be a positive solution of (I A) on some time interval

[0, T) with T < oo. Then u extends continuously to T and the extension
is positive everywhere.

Proof The continuous extension of u is guaranteed by Lemma 3, in-
equality (3.4), and the estimate aV~2^n < s < s(0). Since the volume
remains constant and is nonzero, the extension of u at T cannot vanish
identically. Assume that w( , T) is positive at a point p0, we are going
to show that w( , T) is positive in a uniform neighborhood of p0. By
the connectedness of M, this uniform positivity then implies that u is
positive everywhere at time T. Our argument is inspired by [10] and [11].

We work with the Riemannian manifold (M, g0). Let e be a unit
tangent vector at p0. Consider the point q0 = expp (roe), where rQ is
half the injectivity radius of (M, g0). There is some δ > 0 such that
w( , T) is positive on the spherical region D = Bδ(p0) Π dBr (q0), where
Br(p) denotes the closed geodesic ball with radius r and center p. Let r
denote the distance to q0. Then the Laplacian of g0 can be written

where H{r) is the mean curvature function of Sr = dBr(qQ), and Δs is

the Laplacian on Sr for the induced metric. Now consider the geodesic

cone Q with tip q0 and cap D, and set Dr = QnSr. Let φ(r, •) denote

the positive first eigenfunction of r2As on Dr with zero boundary values

and integral one. We put υ = rbφ, where b > 0 is to be determined. We
calculate
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(4.2) 8o d r dr2

where λ(r) is the first eigenvalue of r2As on Dr. It is easy to see that

r2Δs converges to the Laplacian on the unit Euclidean sphere as r -> 0.
In particular, λ(r) is uniformly bounded with respect to r. By the Hopf
boundary point lemma,

dφ/dv >0,

where v denotes the inward unit normal of Dr. With a little care one
actually obtains

(4.3) dφ/dv>ε,

where ε > 0 depends only on δ and the local geometry near q0. On
the other hand, it is not hard to derive a priori estimates on dφ/dr and
d2φ/dr2 which depend on δ and the local geometry near q0. Since
dφ/dr and d2φ/dr2 have zero boundary values, the positivity of φ and
estimate (4.3) imply

dφ d2φ

dr
<Cφ

for some constant C > 0. We also note that φ is uniformly bounded with
respect to r and that \H(r)\ < C'jr for some C' > 0 depending on the
geometry of (M, # 0 ). With all the above information, it is straightforward
to see that

Lυ > 0 ,

whenever r < r0, and b is chosen sufficiently large. Now we fix some
Tr <T and choose a small ε > 0 such that ευ <u on Dx [T1, T] and
Q x {Tf} . The inequality εv < u also holds on the remaining part of the
parabolic boundary of Q x [Tr, T], because υ vanishes there. Hence the
maximum principle implies that u>εv on Q x [Γ, T] consequently w
is positive along the geodesic exp^ (te), 0 < t < rQ. Since e is arbitrary,
we conclude that u is positive in Br (pQ). q.e.d.

With these two lemmas, the long time existence of Yamabe flow follows
easily.

Proof of Theorem 3. Let u be a positive smooth solution of (1.4)
on a maximal time interval [0, Γ*). If T* < oo, then u extends to a
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continuous positive function on ¥ x [ 0 , f ] . It follows that u is
uniformly bounded from above and away from zero. Hence u extends
smoothly beyond Γ*, contradicting the maximality of T*.
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